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SMALL GAPS IN THE RANGE OF STABLE PROCESSES

BY T. S. MOUNTFORD
1

AND S. C. PORT

University of California, Los Angeles

We examine the structure of the range of a stable process with drift

near its initial position and derive an integral test to determine the rate of

growth of the size of intervals in the complement of the range. This

integral test depends on the random number of excursions that the

process makes away from the initial point.

0. Introduction. We consider processes

˜X s bt q X ,t t

˜ ˜Ž .where X is a strictly stable process with index a g 0, 1 , X s X s 0 and b0 0

is a strictly positive constant; that is to say, X is a stable process with drift.

We examine the structure of the range of X close to the origin. The range of
w Ž .X has positive Lebesgue measure see, e.g., Kesten 1969 or Bretagnolle

Ž .x Ž .1971 . However, if the Levy measure puts infinite mass on 0, ` , the range´
w Ž .xis a.s. nowhere dense see, e.g., Mountford and Port 1991 . Therefore there

must be open intervals in the complement of the range arbitrarily close to the

origin both to the right and left of the origin. This paper answers the question

of how large these intervals can be as we approach the origin.

THEOREM 0.1. Let X be a stable process with positive drift and Levy´
Ž .measure which puts mass on 0, ` . Let h be a continuous, increasing function

Ž .satisfying h 0 s 0. Define the event

ynA s there exists x g 0, 2 so that Range X l x , x q h x s B .Ž . Ž . Ž .Ž .� 4n

Given that X makes r excursions from the origin, the event F A hasn n

probability 0 or 1 according to whether

ya
r

h y dyŽ .H
0q

is finite or infinite.

Here the number of excursions is equal to the number of times the process

leaves the origin, which is equal to the number of returns to the origin plus 1.

It should be noted that as h is continuous the event A is equal to the unionn
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yn Ž . �w Ž .xover rational numbers q less than 2 of the events A q s q, q q h q l
4Range X s B . Consequently no measurability problems arise.Ž .Ž .

In the last section we will show that an excursion of X, conditioned to

return to the origin, is the time reversal of an excursion of the dual of X, also

conditioned to return to the origin. This and the proof of Theorem 0.1 makes

the following immediate.

THEOREM 0.2. Let X and h be as in Theorem 0.1. Define the event

ynB s there exists x g y2 , 0 so that Range X l x y h yx , x s B .Ž . Ž . Ž .� 4n

Given that X makes r excursions from the origin, the probability of F B isn n

equal to 0 or 1 according to whether

ya
ry 1

h y dyŽ .H
0q

Ž .is finite or infinite. If r s 1, then there must be an interval yy, 0 which is

disjoint from the range of X.

REMARK. This result is uninteresting if X has no jumps to the left.

Ž .This work follows previous work by Erickson 1983 and Mountford, O’Hara
Ž .and Port 1995 examining large-scale structures of gaps.

The paper is organized as follows: Section 1 gathers some bounds on

probabilities; these bounds show that, for small x, outside of a set of small
w xprobability, X enters the interval x, 2 x at x and leaves through 2 x and

does not return to the interval before hitting the origin; Section 2 establishes

inequalities for the probability of a certain sized gap in the range of r

excursions from 0, a given distance from the origin; Section 3 completes the

proof of Theorem 0.1. The last section is devoted to showing that the time

reversal of an excursion of X from 0 which returns to the origin is equal in

law to the law of such an excursion from the origin by the dual of X. Theorem

0.2 is immediate given this result and the proof of Theorem 0.1, and no

further comment is required. The rest of this section is spent introducing

terms and giving definitions.

Ž . Ž .Definitions. For a process Y and a time interval I, R Y, I or Y I will
� 4denote the closure of the set x: x s Y for some s g I .s

w .If the interval I s 0, ` , then we drop I from the notation.

Ž . Ž . Ž .An interval p, q is a gap for a process Y if p, q l R Y s B and
� i4q - sup Y . The interval is called a gap for a family of processes Y if it is as s

gap for each Y i. Given a function h on an interval containing 0 and a family
Ž . Ž .of processes, an interval p, q is an h-gap if it is a gap and q y p ) h p .

� i4Given a process or family of processes Y and an increasing, continuous
� i4function h, we say that h is a.s. a gap function for Y if, for each x ) 0,

w xthere exists an h-gap ; 0, x , with probability 1. We will use the phrase h is

a.s. not a gap function in a similar manner.
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Ž .An interval p, q , p / q, is called a jump at time t for Y if Y s p,ty

Y s q. The interval is a jump of Y if it is a jump of Y for some t. Obviously,t
i Ž .given processes Y an interval p, q can be a gap only if there are jumps

Ž . i Ž . Ž . Ž .p , q for each Y , so that p, q ; p , q for each i. A jump or gap p, q isi i i i

said to be in interval I if p g I.

Given a process Y, the process Y U will represent the process Y killed on
Ž xhitting y`, 0 .

Ž .Given a process Y X by default , T will denote the first hitting time ofA

the set A, and TU will denote the first hitting time of A by the process Y U ;A

Ž U . Ž U .Q resp., Q will denote the quitting time of A by the process Y resp., Y ;A A

Ž U . Ž U .S resp., S will denote the first time after T resp., T that the processA A A A

leaves A.

For simplicity, throughout the paper we will assume that b, the drift of the

process X, is equal to 1.

1. We use potential theory to establish some probability bounds.

LEMMA 1.1. There exists K - ` such that, for all x small and positive,

0 w x 1yaP T - T F ` - Kx .0 x

PROOF. Define

0 w x 0 w xp s P T - T F ` , q s P T - T F ` .x x 0 x 0 x

Ž .Let L be the random number of times the point y is hit for strictly positivey

times. Then

< <w xg x s E L s p E L T - T q q E L T - TŽ . x x x x 0 x x 0 x

s p 1 q g 0 y q q g xŽ . Ž .Ž .x x

w Ž .xsee Fitzsimmons and Port 1989 . Similarly,

< <g 0 y s E L s p E L T - T q q E L T - TŽ . Ž .0 x 0 x 0 x 0 0 x

s p g yx q q 1 q g 0 y .Ž . Ž .Ž . Ž .x x

Solving, we obtain

g 0 y 1 q g 0 y y g x g yxŽ . Ž . Ž . Ž .Ž .
q s .x 2

1 q g 0 y y g x g yxŽ . Ž . Ž .Ž .

Ž .Port 1989 gives the bounds

< < < < 1yag 0 y y g yx q g 0 y q 1 y g x F Kx ,Ž . Ž . Ž . Ž .

for some K. The result follows. I

Similar arguments give the following lemma.

LEMMA 1.2. There exists K - ` such that, for all x sufficiently small but

positive,
0 w x 1yaP T - T F Kx .0 yx
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COROLLARY 1.3. There exists K - ` such that, for all x sufficiently small

but positive,

1yaP T - T F Kx .0 wyx , 0x yx

Ž . ywPROOF. The point y is irregular for y`, y ; also, for each « ) 0, P T -x

x« ) 1 y « for x y y sufficiently small but positive; therefore there exists d
1yw x Ž .such that P T - T ) for x y y g 0, d . Thus, applying the strongx Žy`, y . 2

1w x w xMarkov property at T , we obtain P T - T G P T - T .wy x, 0x 0 0 yx 0 wyx, 0x yx2

The corollary now follows from Lemma 1.2. I

COROLLARY 1.4. There exists K - ` such that, for all x sufficiently small

but positive,

0 1yaP T - T - Kx .w x , 2 x x x

PROOF. By the strong Markov property,

0 0 yw xP T F T G P X g dy P T F TH0 x T 0 w0, y xw x , 2 x x
Ž xx , 2 x

0 0s P X g dy P T F TH T yy wyy , 0xw x , 2 x x
Ž xx , 2 x

1 0G P X g x , 2 x .ŽT2 w x , 2 x x

Ž .The corollary follows from Corollary 1.3 if x is small enough and Lemma

1.1. I

LEMMA 1.5. There exists K - ` such that, for all x sufficiently small but

positive,

30 1yaP x n T - T F Kx .w2 x , `. w x , 2 x x2

PROOF. We have

3 x
0 w xP T - T F P X f x , 2 x q P T F .w2 x , `. w x , 2 x x 3 x r2 w2 x , `.

2

˜Using the decomposition X s t q X , these last two probabilities can bet t

bounded by

x x x
X0 0 0 1ya˜ ˜ ˜< < < <P X ) q P sup X ) F K P X ) F Kx . I3 x r2 s 3 x r2

2 2 20FsFxr2

w x 1yaLEMMA 1.6. We have P T - x - Kx for some K - `.Žy`, 0x
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Ž . � � w yn ynq1 x4 4PROOF. Let A n be the event inf X : s g 2 x, 2 x F 0 . Clearly,s

� 4 Ž . < xas the event T - x is equal to D A n , we have P T - x FŽ`, 0x n Žy`, 0x
` w Ž .xÝ P A n . Nowns1

yn˜P A n F P inf X F y2 xŽ . s
ynq10FsF2 x

1yayn 1ya yn˜ yn q1F kP X - yx2 F Kx 2Ž .x 2

and so the lemma follows. I

Lemmas 1.6 and 1.5 enable us to extend the previous results to XU, the
Ž xprocess obtained by killing X when it hits y`, 0 .

PROPOSITION 1.7. Let XU be the process X killed upon hitting the negative

half-line. Let TU be stopping times analogous to T for process X. ThereŽ . Ž .

exists finite K such that, for all x positive and sufficiently small, the following

hold:

Ž . Ž U U . 1yaa P T s T - ` G 1 y Kx ;x Ž x, `.

Ž . Ž U U U U . 1yab P T s T s Q s S - ` G 1 y Kx .2 x w2 x, `. w x, 2 x x w x, 2 x x

Ž .PROOF. We prove a :

3 x 3 x
U UT s T - ` : T s T - ` j T ) j T F .� 4 � 4x w x , `. x w x , `. x Žy` , 0.½ 5 ½ 52 2

Thus

3 3 x
U UP T s T - ` G P T s T - ` y P T ) y P T -Ž . Žy` , 0xx w x , `. x Ž x , `. x

2 2

G P T - T y P T - Tw x , 2 x x w2 x , `. w x , 2 x x x

3 x 3 x
y P T ) y P T - .x Žy` , 0x

2 2

The result now follows from Lemma 1.5, Corollary 1.4, Lemma 1.5 again and
Ž .Lemma 1.6. Inequality b is proved in essentially the same way but also uses

Corollary 1.3. I

2. The aim of this section is to prove two propositions.

PROPOSITION 2.1. Let X i, for i s 1, 2, 3, . . . , r, be independent copies of X,

killed on hitting the negative half-line. There is a constant k so that, for xr

and h sufficiently small,

ri yaw xP ' gap p , q ; 0, x of length greater than h for the X F k xh .Ž . r
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PROPOSITION 2.2. Let X i for i s 1, 2, 3, . . . , r, be independent copies of X,
Ž w x.killed on hitting the negative half-line or killed on leaving 0, x . There is a

constant k so that, for x and h sufficiently small and ha
ry 1

F xr2.r

iw xP ' gap p , q ; 0, x of length greater than h for the XŽ .

G k xhya
r

n 1 .Ž .r

w xNote that the event in question implies the existence of an h-gap in 0, x .

Before proving these propositions, we require some preparatory lemmas

and definitions.

Given r independent excursions from the origin killed upon entering the

negative axis, X 1, X 2, . . . , X r, and an interval, or collection of intervals, I, we
IŽ . Ž . Ž .define J k, i to be the collection of random jumps p, q such that the

following hold:

Ž yiy1 yi x1. q y p g 2 , 2 ;

2. p g I;

3. there exists t so that X k s p and X k s q.ty t

w x tŽ .If the interval I is of the form 0, t , we write J k, i instead.

w < IŽ . <xLEMMA 2.1. Let I be an interval or union of intervals. Then E J k, i -
Ž . ia < < Ž .Kl I 2 . Here denotes cardinality and l denotes Lebesgue measure.

kŽ . � k k k 4PROOF. Let N x, A s a t; X y X ) x, X g A . Then it followst ty ty

from elementary properties of Levy processes that´

UkE N x , A s v x , ` G A ,Ž . Ž . Ž .

U Ž .where v is the Levy measure of X and G A is the expected occupation time´
of A for X k.

From the definition of N and J we have

J I k , i F N k 2yiy1 , I ,Ž . Ž .

so

UI yiy1E J k , i F v 2 , ` g y dyŽ . Ž . Ž .H
I

F v 2yiy1 , ` g y dyŽ . Ž .H
I

F v 2yiy1 , ` g 0 q l IŽ . Ž . Ž .
yaX yiy1s K 2 l IŽ . Ž .

s K 2qi a
l I . IŽ .
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Ž .PROOF OF PROPOSITION 2.1. Let A r, h, t , 0 F h, t F 1, be the event that
Ž .there exists an interval p, q so that the following hold:

Ž . w xa p g 0, t ;
Ž .b p y p ) h;
Ž . Ž . r Ž i.c p, q l D R X s B.is1

The event A is decreasing in h, so it will be sufficient to consider the case

h s 2yi for some i.
Ž .If A occurs and p, q is a corresponding interval, then for each k g

� 4 tŽ . Ž .1, 2, . . . , r there exists an interval I g J k, i with i F i so that p, q ;k k k

I . Therefore,k

A r , 2yi , t ; B t
p , i , i , . . . , i ,Ž . Ž .D D 1 2 r

Ž . i Fi F ??? Fi FipgS r 1 2 r

Ž . � 4where S r is the set of permutations on 1, 2, . . . , r and

tŽ . �B p , i , i , . . . , i s for k s 1, 2, . . . , r, there exist jumps V g1 2 r k
tŽ Ž . . 4J p k ,i such that V l V ??? V / B .k 1 2 r

By symmetry, the events

B t
p , i , i , . . . , iŽ .D 1 2 r

i Fi F ??? Fi Fi1 2 r

have equal probability as p varies, and so,

yi tP A r , 2 , t F r !P B id, i , i , . . . , i ,Ž . Ž .D 1 2 r

i Fi F ??? Fi Fi1 2 r

where id is the identity permutation. Henceforth we suppress id, writing
tŽ . tŽ .B i , i , . . . , i for B id, i , i , . . . , i .1 2 r 1 2 r

Ž . w yŽ nq1. yn xGiven an interval I s r, t with t y r g 2 , 2 , we say the en-
Ž . Ž yn yn.largement of the interval, e I , is the interval r y 2 , t q 2 . Define a

relation R between two intervals as follows:

for I s p , q , J s r , t , I R J if r g e I .Ž . Ž . Ž .
tŽ . tŽ . tŽ .Then B i , i , . . . , i ; C i , i , . . . , i , where C i , i , . . . , i is the1 2 r 1 2 r 1 2 r

event

there exist I g J t k , i so that, for all k , I R I .Ž .� 4k k k kq1

Our proposition will follow from Lemma 2.2.

LEMMA 2.2. We have

rt iaP C i , i , . . . , i F k t2 for some finite k .Ž .D 1 2 r r r

i Fi F ??? Fi Fi1 2 r
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PROOF. We prove this lemma by induction on r and Lemma 2.1.

First, if r s 1, then the lemma follows directly from Lemma 2.1. We now

assume that Lemma 2.2 has been established for less than or equal to r y 1

independent excursions. First note that, by the inductive hypothesis,

jr rat ia iaP C i , i , . . . , i F k t 2 y j F k t2 for j - r .Ž . Ž .D 1 2 r j j

ryji Fiaj

i Fi F ??? Fi Fi1 2 r

Therefore it remains to show

rt iaP C i , i , . . . , i F V t2 for some finite V .Ž .D 1 2 r r r

ry ji )ia ; jj

i Fi F ??? Fi Fi1 2 r

However, in this case we can use the obvious bound

t tP C i , i , . . . , i F P C i , i , . . . , i .Ž . Ž .D Ý1 2 r 1 2 r
ry jry j i )ia ; ji )ia ; j jj

i Fi F ??? Fi Fii Fi F ??? Fi Fi 1 2 r1 2 r

Obviously,

t t< <P C i , i , . . . , i F E N i , i , . . . , i ,Ž . Ž .1 2 r 1 2 r

tŽ . Ž .where N i , i , . . . , i is the collection of all r-tuples I , . . . , I such that1 2 r 1 r

the following hold:

Ž . tŽ .a I g J k, i for each k;k k

Ž .b I R I for each k F r y 1.k kq1

Furthermore, iterated use of Lemma 2.1 yields

t a i yi a i yi a i1 1 2 ry1 r< <E N i , i , . . . , i F Kt2 K 2 2 ??? K 2 2Ž . Ž . Ž . Ž .1 2 r

s K rt2yŽ1 ya .i1 2yŽ1 ya .i2 ??? 2yŽ1 ya .i ry 1 2 a i r .
Thus

tP C i , i , . . . , iŽ .Ý 1 2 r
ry ji )ia ; jj

i Fi F ??? Fi1 2 r

F K rt2yŽ1 ya .i1 2yŽ1 ya .i2 ??? 2yŽ1 ya .i ry 1 2 a i rÝ
ryji )ia ; jj

i Fi F ??? Fi1 2 r

X r XiaF K r t2 for some K r . IŽ . Ž .

If we know that our process X makes r excursions from 0, then these

excursions, while independent, are not iid. The first r y 1 will be distributed

as excursions conditioned to return to 0, while the last will be distributed as

an excursion conditioned never to return. Accordingly we require Corol-

lary 2.4.
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COROLLARY 2.1. Let X 1, X 2, . . . , X r be independent excursions of X from
k Ž .the origin. Suppose each X is separately conditioned either to return to the

origin or not to return to the origin. Then

w xP ' interval p , q ; 0, x of length greater than h so thatŽ .
ri yr yap , q l D R X s B F u kxh ,Ž . Ž .Ž .

where k is the constant of Proposition 2.1 and

g 0 1Ž .
0 0w x w xu s min P T - ` , P T s ` s min , .Ž .0 0 ž /g 0 q g 0 qŽ . Ž .

We also require some preparatory lemmas before proving Proposition 2.2.

The two lemmas below are elementary and so are stated without proof.

LEMMA 2.3. Let X be an excursion from 0. There exists c ) 0 so that, for1

w x w xeach x g 0, 1 , P T s T G c .x w x, `. 1

LEMMA 2.4. Let X be an excursion from 0. There exists c ) 0 such that,2

w x xw xfor all x g 0, 1 , P T F T G c .0 w0, x x 2

The following lemma is crucial to the proof of Proposition 2.2.

1 k , ew xLEMMA 2.5. Let I be a subinterval of 0, . Then, for X an excursion2

from zero killed on hitting the negative half-line,

k , eP there exists an h-gap for X in I

1yayaF c l I h n 1 y c l I ,Ž . Ž .Ž . Ž .3 4
1for h - .2

Ž .PROOF. Let I s x, y . Lemma 2.3 states that, with probability at least c ,1

T s T - `; furthermore, by the strong Markov property,x w x, `.

Y s X y Xs T qs Tx x

� Ž .4is a stable process independent of FF . Let V s inf s ) 0; Y y Y g h, 2h .T s syx

Ž .Mountford and Port 1991 show that

W s Y y Y , 0 F s F V ,s Vy Vys

X Ž . Xis a Levy process killed at rate v h, 2h , where v is the Levy measure of X´ ´
W Ž . X Ž . cwith unit drift and Levy measure given by v dy s v dy I .´ � y g Žh, 2 h. 4

Thus the probability of the event

R Y , V l Y , Y s B l V F l I r2� 4� 4Ž . Ž . Ž .Vy V

�is greater than the probability of the event W does not hit the negative
4 � Ž . 4 Ž Ž X w Ž .axis l V F l I r2 . This last term is at least c 1 y exp yl I r

Ž X Ž ..x..2v h, 2h for

<c s P W does not hit y`, 0 V s l I r2 .Ž . Ž .
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Ž .Let the event A I, h be the intersection of the following events:

Ž . � 4a T s T - ` ;w x, `. x

Ž . � Ž . Ž . 4c R Y, V l Y , Y s B ;Vy V

and

Ž . � Ž . 4b V - l I r2 , where V is as defined above.

The above paragraph demonstrates that

l IŽ .
X yaP A I , h G c 1 y exp y F c l I h n 1Ž . Ž .Ž .Xž /ž /2v h , 2hŽ .

X Ž .for some c . Let B I be the intersection of the following events:

Ž . � 4d T s T - `w x, `. x

and

Ž . � w Ž .x w Ž . x4e X y X g 0, l I for s g 0, l I r2 .T qs Tx x

Lemmas 1.5 and 1.6, the strong Markov property applied at T and the factx

w Ž .c x Ž .1yathat X is a Levy process imply that P B I F Kl I for some K.´
Ž . Ž . Ž .cOn the event C I, h s A I, h R B I we have the following:

Ž . Ž .a T ) T q l I r2;0 x

Ž . Ž . Ž .b X , X l R X, T q V s B;ŽT qV .y T qV xx x

Ž . Ž .c X , X ; I.ŽT qV .y T qVx x

The bounds given above for the probabilities of the respective events imply
w Ž .x XŽ Ž . ya . Ž .1yathat P C I, h G c l I h n 1 y Kl I .

U Ž . Ž . ULet C I, h be the event corresponding to C I, h for the excursion X
Ž . Ž .killed on hitting the negative axis. Since, on C I, h , T ) T q l I r2,Žy`, 0x x

w U Ž .x w Ž .x U U Ž U .we have P C I, h s P C I, h . The random time T q V for X is ax
U Ž .stopping time; and, on the event C I, h , X y X is a Levy process´T qVqs T qVx x

Ž x Žkilled on hitting `, yX but otherwise independent of FF . So if I isT qV T qVx x

.small ,

XU U U <P X g X , X for s ) T q V C I , h ) c ,Ž .Ž .s ŽT qV .y T qV xx x

for some strictly positive c
X
. The result follows. I

PROOF OF PROPOSITION 2.2. We use induction on r. The result follows

directly from Lemma 2.5 above if r s 1. Suppose now that the result holds

when the number of excursions is less than or equal to r y 1. Let v s ha

=va
ry 2

s ha
ry 1

F xr2; so, by the inductive hypothesis, with probability at
Ž ya ry 1 . Ž ya r .least k tv n 1 s k th n 1 , there is a gap I for the processesry1 ry1

2 3 r w xX , X , . . . , X of length at least v completely contained in the interval 0, x .

Applying Lemma 2.5 to the process X i and the interval I, we obtain the

result. I
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3. In this section we establish Theorem 0.1.

We will decompose the process X into a collection of independent excur-

sions X i. Define a sequence of stopping times by

� 4T s 0; for i ) 0, T s inf t ) T : X s 0 .0 i iy1 t

� 4Let R be the random number of excursions from 0: R s inf i: T s ` .i

Conditionally if r s 1, then X simply has the law of an excursion from the

origin conditioned never to return. If R ) 1, then, for i F R y 1, the pro-

cesses Y i defined by

X , for s - T y T ,T qs i iy1iy 1iY ss ½ d , for s G T y T ,i iy1

where d is some graveyard state, are independent processes each with law

equal to that of an excursion by X from 0, conditioned to return to 0. The

process Y R defined by

Y r s X , s G 0,s T qsRy 1

is independent of the Y 1, . . . , Y Ry1 but has law equal to that of an excursion

from 0, conditioned never to return.

Ž .It is well known that, for every s ) 0 and all i F R v , there exists a
Ž .random « v ) 0 so that

iwR Y s, ` l 0, « v s B for each i F r v .Ž . Ž .. .Ž .
Therefore, if X i are the processes obtained by killing the Y i upon hitting the

� i4negative axis, then h is a gap function for Y if and only if h is a gap
Ž i4 ifunction for X . Given R ) 1, the X processes, while independent, are not

identically distributed.

It follows that Theorem 0.1 will be proved by the following pair of proposi-

tions.

PROPOSITION 3.1. Let h be a continuous increasing function, zero at the

origin, and let X i, i s 1, 2, . . . , r, be independent stable processes with posi-

tive drift, killed on hitting the negative axis. Then

dx
- `rH a

0q h xŽ .

implies that a.s. there do not exist arbitrarily small x with
r

ix , x q h x l R X s B.Ž . Ž .Ž . Dž /
is1

PROPOSITION 3.2. Let h be a continuous increasing function, zero at the

origin, and let X i, i s 1, 2, . . . , r, be independent stable processes with posi-

tive drift, killed on hitting the negative axis. Then

dx
s `rH a

0q h xŽ .
� i4implies that a.s. h is a gap function for X .
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PROOF OF PROPOSITION 3.1. As h is increasing,

`dx 1 r1 ayn ynG 2 h 2 .Ž .r ÝH a 20 h xŽ . ns1

So finiteness of the integral implies finiteness of the sum. Corollary 2.1

implies that if X i, i s 1, 2, . . . , r y 1, are excursions from the origin, condi-

tioned to return to the origin, while X r is an excursion conditioned not to
Ž . Ž yn .ya

r ynreturn and all r excursions are independent, then P A F K h 2 2 ,n r

where

w yŽ nq1. yn x yŽ nq1.A s there exists p , q , p g 2 , 2 , q y p G h 2Ž . Ž .n ½
r

isuch that p , q l R X s B .Ž . Ž .D 5
is1

� 4The event h is a gap function is clearly contained in the event lim sup A ,n

but, by the Borel]Cantelli lemma and the finiteness of the relevant integral,

the latter event has probability zero. I

PROOF OF PROPOSITION 3.2. Augmenting the probability space if necessary,

we assume the existence of independent stable processes Z i, n which in
i Ž .addition are independent of our r excursions from 0, X . Say an index i, n is

good if the following holds:

for the process X i , T yn s T yn .2 w2 , `.

Define the processes W i, n by

X y 2yn , if i , n is good,Ž .T qs2y ni , nW ss i , n½ Z , if i , n is not good,Ž .s

i, n w yn ynq1 xand the processes W are killed on exiting 2 , 2 . The W processes

are all independent. By Proposition 1.7 and the Borel]Cantelli lemma for all
Ž .i, i, n is good for n large enough and for all i and, for n large enough,

yn i , n i w yn ynq1 x2 q R W s R X l 2 , 2 .Ž . Ž .

Therefore h is a.s. a gap function for X i, i s 1, 2, . . . , r, if A occurs infinitelyn

often, where

ny1 � i , n4A s there exists a gap of size h 2 for W , i s 1, 2, . . . , r .� 4Ž .n

� 4By design, the events A are independent.n

Ž .ya
r yn Ž ynq1.ya

r

The infiniteness of H h x dx implies that Ý 2 h 2 s `. Let0q n

2yn
ry 1

aynq1G s n G 1: h 2 GŽ .½ 52
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and

2yn
ry 1

aynq1B s n G 1: h 2 - ;Ž .½ 52

Ž .G for good denotes the n’s for which Proposition 2.2 yields information. The

sum

ya
r ya

r ya
r

yn ynq1 yn ynq1 yn ynq12 h 2 s 2 h 2 q 2 h 2 .Ž . Ž . Ž .Ý Ý Ý
n B G

yn Ž yn .yaThe first sum on the right-hand side is majorized by Ý 2 2 r2 , whichn

Ž .y a
r

is finite. Hence the infiniteness of H h x dx implies that0q
yn Ž ynq1.ya

r
Ž .Ý 2 h 2 is infinite. This and Proposition 2.2 implies thatG

w xÝ P A s `. The result now follows from the second Borel]Cantelli lemma.n n

I

4. To prove Theorem 0.2, we require the result that time reversals of
Ž .excursions of X that remain are equal in distribution to excursions of the

Ž .dual. This result follows with elementary modifications from Getoor and
Ž .Sharpe 1981 . We include a short proof for completeness.
ˆLet X s yX be the dual process of X ; quantities relative to this processt t t

� 4will be marked with a caret. Let T be the stopping time inf t ) 0: X s 0 ,t

Ž .0 - h - h - ??? - h ; let q t, x, y be the transition function for the pro-1 2 n 0

cess X killed at time T ; and let f , f , . . . , f be bounded continuous func-0 1 n

tions.

PROPOSITION 4.1. We have

n n
0 0 ˆ ˆ4.1 E f X ; h - T - ` s E f X ; h - T - ` .Ž . Ž .Ł Ł ž /i Tyh n i h ni i

is1 is1

To establish this proposition, we will need to recall some potential-
Ž . lŽ .theoretic facts. These can be found in Port 1989 . Let g x s

` Ž . Ž .H exp ylt q t, 0, x dt, where q is the unkilled transition probability func-0
lŽ . ` Ž . Ž . lŽ . xw Ž .xtion. Let g x, y s H exp ylt q t, x, y dt. Let h x s E exp ylt , and0 0 0

x l l l ˆ ˆl lŽ . w x Ž . Ž . Ž . Ž .h x s P T - ` . Then h x s C g yx , h x s Cg yx , C s C, C s C ,
lŽ . lŽ . Ž . Ž . lŽ . lŽ . lŽ .g yx s g x , q t, x, y s q t, y, x , g x, y s g y, x , g 0, x s 1 yˆ ˆ ˆ0 0 0
lŽ .. lŽ .h 0 g x and

l ˆl1 y h 0 1 y h 0 1Ž . Ž .
s s ,

l l < <ˆ bC C

where b is the drift, which in our case is 1. Using these facts, we find that

l l l lˆ4.2 1 y h 0 g x C g yy s 1 y h 0 g y Cg yx .Ž . Ž . Ž . Ž . Ž . Ž . Ž .ˆ ˆ
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Ž .To establish 4.1 , note that

n
`

0E f X ; t q h - T - ` exp ylt dtŽ .Ž .ŁH i Tytyh ni
0 is1

n

s ??? g 0, x q h y h , x , xŽ . Ž .ŁHH H 0 n 0 i iy1 i iy1
is1

n
x 0= f x E exp ylT dx dx ??? dxŽ . Ž .Ł i i 0 1 n

is1

n

s ??? 1 y h 0 cg x q h y h , x , xŽ . Ž . Ž .Ž . ŁHH H n 0 i iy1 i iy1
is1

n
l l= f x c g x dx dx ??? dx .Ž . Ž .Ł i i 0 0 1 n

is1

Ž .By 4.2 and dual identities, this last expression is equal to

n
l l l

??? 1 y h 0 cg yx c g x q h y h , x , xŽ . Ž . Ž . Ž .ˆŽ . ŁHH H n 0 0 i iy1 iy1 i
is1

n

= f x dx dx ??? dx .Ž .Ł i i 0 1 n
is1

However, this is equal to

n
`

0 ˆ ˆE f X ; t q h - T - ` exp ylt dt .Ž .ŁH ž /tqh ni
0 is1

Therefore, t-a.e.,

n
0 ˆ ˆE f X ; t q h - T - `Ł ž /tqh ni

is1

n
0s E f X ; t q h - T - ` .Ž .Ł i Tytyh ni

is1

4.3Ž .

Ž . Ž .Equation 4.1 now follows from 4.3 and the fact that X and X areˆt t

standard processes.

PROOF OF THEOREM 0.2. If the process X makes r excursions from 0, then

r y 1 of these are excursions which return to the origin and the last is an

excursion that never returns. This latter excursion does not hit an interval
Ž Ž . xy« v , 0 for strictly positive, random « , and so is irrelevant to left gaps.

The r y 1 excursions that return to the origin are, by Proposition 4.1, time
ˆreversals of independent excursions of X, again conditioned to return to the

ˆorigin; X is a process that drifts to the left. The arguments for Proposition 3.1

and 3.2 now imply Theorem 0.2. I
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