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BROWNIAN MOTION IN A WEDGE WITH VARIABLE
REFLECTION: EXISTENCE AND UNIQUENESS

By R. DANTE DEBLASSIE
Texas A & M University

Existence and uniqueness in law of reflecting Brownian motion in a
wedge is proved. The direction of reflection along the sides of the wedge
varies in a reasonable fashion, except perhaps at the corner.

1. Introduction. In this paper we prove existence and uniqueness (in
law) of reflecting Brownian motion (RBM) in a wedge, where the direction of
reflection along the sides varies in a reasonable fashion, except perhaps at
the corner. Varadhan and Williams (1985) have completely solved the prob-
lem when the direction of reflection is constant on each side of the wedge.
Under various geometric conditions, Dupuis and Ishii (1991, 1993) have
considered similar questions for more general domains and higher dimen-
sions. In fact, their results are crucial for the present work. Other authors
on this subject include Skorokhod (1961, 1962), McKean (1963, 1969), Ikeda
and Watanabe (1989), Watanabe (1971), El Karoui (1975), El Karoui and
Chaleyat-Maurel (1978), El Karoui, Chaleyat-Maurel and Marchal (1980),
Stroock and Varadhan (1971), Bensoussan and Lions (1982), Tanaka (1979),
Lions and Sznitman (1984), Harrison and Reiman (1981), Saisho (1987),
Tsuchiya (1976, 1980) and Kwon (1992). Special cases of their results overlap
with certain cases of ours, but we include new results. Rogers (1990, 1991)
and Burdzy and Marshall (1992) have studied the question of whether or not
the corner of the wedge is hit by RBM started away from the corner. While we
do not use their results, we make use of some of their techniques.

Let S =S(£)=8,={(r,0): r>0,0 < 0 < &} be the wedge of angle ¢ €
(0,27), where (r, 0) are polar coordinates. Let

S, ={(r,0):r>=0,6=0},
Sy ={(r,0):r>=0,0=¢}

be the sides of the wedge. Denote by 0(x) € (—7/2,7/2), x € dS \ {0}, the
angle of reflection at x, where 6(x) is measured clockwise from the inward
normal at x.

A nondecreasing continuous function .7 [0,) — [0, ) is a Dini modulus
of continuity if, for each ¢ > 0,

(1.1) fty/(u)

0 u

du < o,
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We say 0(-) € CL7(a8, N {0}), i = 1, 2, if 6(-) € C1(4S; \ {0}), and for each
compact set K € dS; \ {0} there is some C; > 0 depending on K such that

[DO(x,) — DO(x,5)| < Cx#(lxy — x,1), x;, x5 €K,

where D is any first-order partial derivative.

The principal result is existence and uniqueness of RBM in an arbitrary
wedge S. The main feature is that 6(x) need not have limiting values as
x = 0in dS; \ {0} or as x — 0in 4S, \ {0}. Here and throughout this paper,
6(-) is taken to be bounded away from + /2. This corresponds to “non-
tangential reflection.” Also, our interest is primarily in behavior near 0, so we
will assume that far away the reflection is normal.

THEOREM 1.1. For the wedge S = S;, 0 < £ < 27, suppose 6(x) =0 for
|x] > 1,

(1.2) 0(-) € Ci,70(aS; N {0}), i=1,2,
o
(1.3) sup |0] < 3
aS\ {0}

and, for some & > 0,

(1.4) sup  O(x)| —| inf 6(x)|<2¢.
lx|<e lx|<e
x€ 39Sy \ {0} x€dS,\{0}

Then RBM in S exists uniquely in law.

REMARK. Notice in the case of &> 7/2 that condition (1.4) is a conse-
quence of (1.3).

Let us outline the key ideas of this paper. Following the approach of
Varadhan and Williams (1985), we characterize RBM in S as a solution of a
submartingale problem. Uniqueness in law of RBM in S is equivalent to
having a unique solution of the submartingale problem. Commonly in this
type of problem, uniqueness rather than existence is the most difficult part to
prove. Aside from technicalities, we reduce consideration to the upper half-
space via conformal invariance of RBM. Another conformal transformation,
due to Rogers (1990, 1991), reduces the problem to consideration of a Lip-
schitz domain with constant vertical direction of reflection. Here our assump-
tions on the angle of reflection 6(-) come into play. To prove uniqueness in
this setting, we use results of Dupuis and Ishii (1993) on pathwise (or strong)
uniqueness of stochastic differential equations with reflection (SDER) in
nonsmooth domains. Our key idea is to show that pathwise uniqueness for a
related stochastic differential equation implies uniqueness for the submartin-
gale problem. A general theorem of this type, “pathwise uniqueness for SDE
with reflection implies uniqueness for the corresponding submartingale prob-
lem,” seems quite difficult to prove in a setting with nonsmooth state space or
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nonsmooth reflection. For this reason we are unable to use the very general
existence and uniqueness results of Tsuchiya (1976, 1980) on diffusions with
reflection in the upper half-space. Finally, note that the methods of Kwon
(1992) can be used to obtain results when 6(-) has limiting values along the
sides of S.

The paper is organized as follows. In Section 2 we give formulations of
RBM as a solution of a submartingale problem and also as a solution of a
stochastic differential equation with reflection. The main result of this section
is that pathwise uniqueness for a certain stochastic differential equation with
reflection implies uniqueness for the corresponding submartingale problem.
The proof is deferred to Section 5. In Section 3 we present some results on
hitting times of RBM crucial to later developments. Section 4 extends the
submartingale property to a certain class of functions. This is essential for
the proof of the main theorem in Section 2 concerning pathwise uniqueness
and uniqueness in law. In Section 5 we show that a solution of the submartin-
gale problem, under appropriate hypotheses, is the solution of a stochastic
differential equation. With this, we prove the main theorem of Section 2.
Section 6 presents conformal invariance of RBM under certain technical
hypotheses. These hypotheses are required because of the nonsmooth nature
of the state space and reflection field at the origin. In Section 7 we prove the
half-space case by using Rogers’ conformal transformation. This transforma-
tion gives rise to a setting in which the results of Dupuis and Ishii on
pathwise uniqueness apply. Finally, in Section 8 we handle the general
wedge.

2. Formulations of RBM. Let D C R? be a domain such that 0 € 4D,
dD is Lipschitz and gD \ {0} is C2. More precisely, dD is the graph of a
Lipschitz function y = f(x), x € R, and f is C? on R \ {0}. We also assume
D lies above the graph of f. Let 6(x) € (—7/2,7/2), x € dD \ {0}, denote
the angle of reflection, measured positive in the clockwise sense with respect
to the inward unit normal n(x). Denote by y(x) the vector making angle 6(x)
with n(x), and call it the direction of reflection. Any normalization is allowed
(this will be apparent below), and in the sequel we will take either y-n = 1 or
|yl = 1, as the situation demands.

Let Q5 = C([0,*), D) be the space of continuous paths in D, and let
Z,(0) = o(t), t €[0,), be the coordinate map. Set .Z, = o(w(s): s < t} and
M = g{w(s): s = 0}. A solution of the submartingale problem on D, starting
from x € D, is a probability measure P, on (Qg, .#) such that

(2.1) P(w(0) =) = 1;

for each f € CZ(D) with f constant near {0} and y- V£ > 0 on dD \ {0},

(22) flo(0) = 5 [ (Af)(w(s)) ds
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is a P -submartingale;

(2.3) pr[[:z{o}(w(s)) ds} - 0.

A family {P,: x € D} is a solution of the submartingale problem on D if, for
each x € D, P, solves the submartingale problem on D, starting from x. We
say Z(-) together with {P,: x € D} is an RBM in D and Z(:) under P, is an
RBM in D starting from x.

The statement “RBM in S exists uniquely in law” now has precise mean-
ing: there is exactly one solution of the submartingale problem on D.

For a stopping time 7, we will consider RBM in D stopped at time 7. This
is just the law of the coordinate process Z(-) under P,, where P, satisfies
(2.1)-(2.3) except t in (2.2) is replaced by ¢ A 7 and the « in (2.3) is replaced
by 7. In this case we say P, solves the submartingale problem stopped at
time 7.

For uniqueness, we make use of some special cases of results in Dupuis
and Ishii (1993). For this it is necessary to introduce certain stochastic
differential equations with reflection. Let (),.%, P) be a complete probability
space, let {#: ¢t > 0} be a right-continuous complete filtration and let
{B,: t > 0} be standard {#}-Brownian motion in R?.

DEeFINITION 2.1 (SDER). A continuous {%}-adapted process X(¢) is a solu-
tion to the SDER for D, with direction of reflection y(-), initial condition
x € D and Brownian motion {B,: ¢t > 0} if

(2.4) P(X(t) €eD,Vt>0) =1,

and

(2.5) X(t) =« + B(t) + Y(¢),

where

(2.6) Yi() = [ I(X(s) € 9D)IdY[(s) <= ass.
(0,¢]

and

(2.7) Y(t) = f(o t]y(X(s))Ile(s) a.s.

LEMMA 2.2. Let X(-) be a solution to the SDER for D with direction of
reflection y(-) and initial condition x € D. Then the law of X(-) on (Qg, #)
solves the submartingale problem on D starting from x.

ProOF. Let P, be the law of X(-) on (Qp, .#). It is routine to check that
P satisfies (2.1) and (2.2). For (2.3), by the occupation time formula for
semimartingales [Revuz and Yor (1991), Corollary VI.1.6, page 209],

fOtIm}(Xl(S)) ds = [ Iy(a)Lida=0 fort>0,

where L® is the local time for the semimartingale X,(-) at a. O
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There is a natural type of uniqueness associated with SDER: pathwise
uniqueness. This means if X(-) and X'(-) are solutions to SDER (on the same
filtered probability space with the same Brownian motion and initial condi-
tion), then X = X’ a.s.

We will also consider SDER stopped at time 7, where 7 is a stopping time.
This just means replace ¢ in (2.4)-(2.7) by # A 7. The meaning of the
statement “pathwise uniqueness for SDER stopped at time 7” is clear:

X(AT)=X'"("AT) as.

Uniqueness in law for SDER holds if whenever X and X' are solutions to
SDER (with the same initial condition), possibly on different filtered probabil-
ity spaces or possibly with different Brownian motions, then the laws of X
and X’ on (Qp, .#) coincide.

Assume pathwise uniqueness holds for SDER for D. Then the usual proof
of uniqueness in law for SDER for D goes through. [See Ikeda and Watanabe
(1989), corollary on page 166.] Hence to show uniqueness in law holds for
RBM in D, it suffices to show a solution P, of the submartingale problem in
D starting from x has a realization as a solution to the SDER for D. More
precisely, there is a continuous stochastic process {X(¢): ¢ > 0} defined on
some filtered probability space (E, £,{Z,},. , Q) such that the following hold:

(1) there exists a two-dimensional {Z,}-Brownian motion B with B(0) = 0
a.s.;
(i) X is a two-dimensional process adapted to {Z,: ¢ > 0};

(iii) there exists a two-dimensional continuous {Z,: ¢ > 0}-adapted process
{Y(#): t > 0}, with Y(0) = 0, such that

() = fOtI(X(s) € gD)|dY|(s) <= as.Q
and
Y(t) = /:y(X(s))Ile(s) as. Q;

(v) X(¢) =x + B(t) + Y(2);
(v) the law of X on (Qp, .#) under @ coincides with P,.

Then it is clear that, to prove the law of RBM in D stopped at time
(2.8) o5(w) = inf{t > 0: |w(¢)| = 8}

is unique, it is enough to know pathwise uniqueness for SDER stopped at
time o; holds and there is a realization X(-) satisfying ()—(v) up to time
a5(X).

We will do this below. A general theorem that pathwise uniqueness for
SDER for D implies uniqueness in law for RBM in D seems quite difficult to
prove. We content ourselves by proving a special case directly applicable to
our needs. The next result will be proved in Section 5.
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THEOREM 2.3. Assume D is a domain such that 0 € dD, dD is Lipschitz,
dD \ {0} is C?,

- T
6 = suplf(x)| < 3
and the inner and outer cones for D at {0} are, respectively,

C = {(y1,S’2)3 ¥yq = |y;tan 5} cD,
—|y,Itan 5} c De.

IA

Cour = {(y17y2): Yo

If the direction of reflection is v=(0,1), then for some 8> 0 pathwise
uniqueness for SDER for D stopped at time oy implies uniqueness in law for
RBM in D stopped at time oy.

The explicit nature above of the inner and outer cones is crucial to the
proof.

3. Auxiliary results on stopping times. As in Section 2, D is a
domain with 0 € dD, dD Lipschitz and ¢D \ {0} is C2. Recall, for r > 0,

o,(w) = inf{¢ > 0: |w(t)| = r}.

LEMMA 3.1. Let 0 <a < 8 < b. Then foreach t > 0 thereisap(a, 8,b) <1
such that, for any family of solutions {P,: z € D} of the submartingale
problem on D,

sup P,(o, A o, <t) <p(a,?d,b).
lx|=8
x€D

Proor. For |z| = 8, P, is a probability measure on Q; = {0 € Qp: |w(0)|
= 6} and the set {0, A 0, <t} is a closed subset of ;. Since a > 0 and
dD \ {0} is C2, RBM in D starting from z is uniquely determined up to time
o, A o,. Consequently the law of Z(- A 0, A 0,) under P, converges weakly
to the law of Z(-A g, A 0,) under P, whenever z, — z with z, € D and

|z,| = & [see Stroock and Varadhan (1971)]. In particular, the function
P(o, Nopy <t), zeD, |z| =5,

is upper semicontinuous, and so it achieves its supremum at some z, € D
with |zy| = 8. Hence to prove the lemma it is enough to show that, for each
z € D with |z] = 6§,

(3.1) P,(o, Aoy >1t)>0.
Choose w, € Q; such that w,(0) = z and

a < inf |wy(s)] < sup lwy(s)| < b.
s<t

s<t
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Then choose y > 0 such that, for any w € {w € Q4:sup, _, lw(s) — wy(s) < v},
a < 1nf|w(s)| < sup |lw(s)l < b.

s<t

Then
P(o, Noy,>t) > Pz(sup 1Z(s) — wy(s)l < y).
s<t

The lower probability is positive by the support theorem [cf. Kwon and
Williams (1991), Theorem 3.1]. Thus (3.1) holds. O

REMARK. Suppose K is a closed set satisfying K < B,(0)° N B,(0). Then,
for some pg(a, b) < 1,

sup Pz(o-a A Op = t) <pK(a’ b)’
zeKnD
where P, is any solution of the submartingale problem on D starting from z.
The proof is similar to that of Lemma 3.1.

The following lemma is from Varadhan and Williams [(1985), Lemma 3.1].
Their proof is valid in the present context.

LEMMA 3.2. Suppose x € D and P is a solution of the submartingale
problem starting from x. Let T be a stopping time, and let {P]} be a regular
conditional probability distribution (r.c.p.d.) ofPI% For each o € {r < «},
define P7 on (Qp, #) by

PI() =Pl(Z(-+ 7(w)) €¥), S e

Then there is a P-null set N € #, such that, for o € N U {r = o}, P:Z is a
solution of the submartingale problem starting from 7(w).

LEmMMA 3.3. Let P, be a solution of the submartingale problem on D
starting from x. Then for the sequence of stopping times T,,, n > 0, defined by
T, =0,

Ty,i1=1inf{t > Ty,: lw(¢)] = 8},
Ty, o =1inf{t > Ty, ,1: lo(t)l = 6/2},

we have T, > © a.s. P, as n — «.

Proor. By Lemmas 3.1 and 3.2,
P (Ty, <t) = EP[I(Ty, y < ) B[ 05,5 <t = Ty, y(w)]]
Lo <t]]
< EP[I(Ty, | < t)BT 1[0y A 05,5 < t]]
<p(8/2,8,28)P,[T,, | <t]
<p(6/2,8,28)P (T,,_5<t).

< B[ (T,, , <t)Bl
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Hence, iterating,
P(T,, <t) <p(8/2,8,28)".
Since p(8§/2,5,28) <1, P,(lim T, < t) = 0. It follows that

n— o

P(lim T, = =) = 1. O

n— o

LEMMA 3.4. Suppose for some bounded open set B, with 0 € B, that
heC(DnB)NC*DnBN\{0}),

with y-Ah >0 on dDNB\{0}, W(0)=0 and AR >0 on DN B\ {0}.
Then, for 75 = inf{t > 0: w(¢) & B} and for any solution P, of the submartin-
gale problem on D starting from x € D N B,

EPX[ITBAh(ZS)I(h(ZS) > 0) ds| < 2 sup |Al.
0 B

Proor. With a change of notation, this is a consequence of the proof of
Theorem 4.3 in DeBlassie and Toby (1993). O

LemMmA 3.5. Let P, be a solution of the submartingale problem on S(§),
0 < &< 2w, starting from x, with angle of reflection 6(x), x € dS(&). Sup-
pose sup|0| < 7/2, the functions 6, = 0,5, 0, 05 = 05, 0y are continuous
and, for some &> 0,

_ SUP | y<e 0y(x) — inf|x|s,s 0,(x) <

2
&
(supremum on 3S,, infimum on 4S,). Then, for |x| < ¢,
P (0, <x) =1

Proor. Let 6 > 0 be so small that if

&=l for o # 0,
a+8, fora=0,
then (taking suprema on ¢S,) the following hold:
(3.2) 0+a<2;
a
(3.3) sup 0,(x) + 6¢ < 3
|xl<e
(3.4) sup [sup 0,(y) — Oy(x) + 8¢ | < .
lxl<e [lyl<e

The last two are possible because sup, |6(z)| < 7/2. Define
B = inf 6,(x) (infimum on 4S;),

lx|<e
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and for z = rexp(ig) € S(&) \ {0} set
®(z) =r%cos(ad + B).
Then ® € C2(S(¢) \ {0}), A® = 0 on S(&¢) \ {0},
inf cos(ab+ B) >0
0<60<¢
(3.5)
by (3.3) and that B = sup 6,(x)if a =0

lx|<e
and, in polar coordinates {r, 6,

a6 V& = ar* {cos(ab + B), —sin(ad + B)),
(36) =ad' " Vcos(a@f + B)] V¥ {cos(ab + B), —sin(ab + B)).

Here and below, the notation { , ) denotes the components of a vector
relative to the rotating orthogonal unit vectors e, = Vr and e, = r V6, in that
order. Moreover (normalizing |y| = 1),
(sin 6,(x),cos 6,(x)>, x € dS; \ {0},
v(x) = ( —sin 0y(x), —cos 0,(x)>, x € S, \ {0}.

By choice of 8 and a,

0.(z) —B[0,m), ze€dS; \ {0}, |zl < e,

(3.7) af+ B —0y(2) €[0,m), zedS,\{0},lz]<e.

Hence ay-V® > 0 on 4S(£) N B,(0) \ {0}. If

&2

g =555 ¥*0
then g « ® € C(S(£)) N CAS(&) \ {0) and on 9S(&¢) N B_(0) \ {0}, by (3.2),
v-Vlg o ®] > 0. Moreover, on S(&) \ {0},
Alg o @] = [g" » @]IVOP
= &2 /D[&20? %/ (cos(a0 + B)) 2 )
= &2[cos(@f + d)] 2 "¥¢
>C>0 [by(35)].
Applying Lemma 3.4 with D = S(§)°and h =g - D,

CEPX[fOUEI(g o d(Z,) >O)ds} < o, lx|] < &.

However,
P(g>®(Z,)>0,s<0,)=P(Z,+#0,s<0,)
=P, (s<o0,), ae.(ds),
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by property (2.3) of a solution of the submartingale problem. Hence
EP:[0,] <> asdesired. |

LEMMA 3.6. With the same hypotheses and notation as in Lemma 3.5, for
anyp > aV 0 and |x| < g,

EPx[[%|Zu|P21(Zu # 0) du| < .
0

ProOF. We use the notation in the proof of Lemma 3.5, with & chosen as
there and with the additional requirement

p>aVvo.
Define

h(y) =y?’%,  y#0.
Then 2 o ® € C(S(£)) N C*(S(&) \ {0}),
y-V[ho®] >0 on dS(&)nBL0) {0},
and, for z = rexp(i9) € S(¢) N B_(0) \ {0},

p(p— &)

A[h o @] = — q)—2+p/&[&2q)2—2/&[cos(&9+ B)]72+2/d]
a

=p(p — @)®P 2/ %cos(af + B)] >"*¢
> cr?~?%, where ¢ > 0by (3.5).
By Lemma 3.4 applied to & o ®,

Epz[f”‘]zsv’—zz(zs +0) ds} < o,
0
as desired. O

4. Extension of the submartingale property to other functions.
Throughout this section, P, will be a solution of the submartingale problem
on D starting from z. We will assume the hypotheses of Theorem 2.3 are in
effect.

For 6 = sup,|6(x)|, choose

1 T

4.1 —<p<— .
(4.1) 2 P 20+ =

This is possible since § < /2. Next choose

(4.2) B e —g+pé,g—p(w+6~)).
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Note that this interval is nonvoid since p < /(26 + 7). Define

) T 3

Ws(z) =rPcos(pb + B), z =rexp(if), —§<0< 5
We now show that
(4.3) inf{cos(p9+B):—és 0 < 7T+é}>0
and
(4.4) y-V¥; >0 on dD \ {0}.

Since p > 1,
T ~ T ~ ~ ~

(4.5) (—5 +p0,§—p(77+ 6))g((1—p)6—p77,—(1—p)0).
Set

dD, = {rexp(iﬂ) €D\ {0}):—6<6< 5},
D, = {rexp(i@) €dD\N{0):m—O<O<m+ 0}.
Since Cqoyr € D¢ and C € D,
dD \ {0} = 9D, U dD,.
Expressing y(z) = (0,1) in polar coordinates,
y(z) = (sin 6, cos 6, z=rexp(if) € D, U dD,,
where {a, b) = ae, + be,. Then since
VW, = pr?~*cos(pf + B), —sin( pb + B)),
we end up with
y: VO, = prP~'sin[(1 - p)6— B], z=rexp(if) € dD, U dD,.
If r exp(i6) € dD,, then —6 < 6 < 6 and so
(1-p)o—pe|[-(1—p)oi—p,(1-p)o—p]
c (0, pm) [by(4.2) and (4.5)]
c[0,7] (since p <1).

Hence
v V¥ >0 on dD,.

If r exp(if) € dD,, then 7 — 6 < < 7 + 6 and
(1-p)0-Be[(1-p)(m—8)-B,(1-p)(=+0) -]
c(m(1—-p),w) [by(4.2) and (4.5)]
clo,n],

and so we have
Y- Vs> 0 ondD,.
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For each K > 0, set
7 = inf{t > 0: W, (w(t)) = K}.

The next result extends the submartingale property to a certain class of
functions.

THEOREM 4.1. Let p be from (4.1). Then, for some K > 0, if B ={x € D:
Wy(x) <K} and h€ C(DNB) and f€ C(DNB)NC*DnNBN{0) are
such that

SAf=h inD N B\ {0},
y-VFf>0 on D N B \ {0},

If(x) — f(0) =o(lxI") asx — 0.
Then

tANTK
Flo(t nme)) = [ (ph)((s)) ds
is a P,-submartingale, z € B.

The proof will be given at the end of this section. For it, we need the
following result.

_ THEOREM 4.2. For some K > 0, if B ={x € D: V3(x) <K} and z € Dn
B \ {0}, then for Ty = Ty A T,

(46)  aW(2)[K 1P =W, (2) | < BProk] < a, K¥,
where a; and a, are independent of z.

Proor. Define

0, for y =0,
gi(y) = y[K‘“Z/”—y_1+2/"]/(2—p), for0 <y <K,
p 'K?*?[1-y/K], for y > K.

First we prove that
(4.7) EP:[rox] = algl(\l’ﬁ(z)),
which is the desired lower inequality. Since
A¥, =0 on D \ {0}
and
IVW,(2)1* = p?(W,(z) /cos( pb + ,8))272/17, z=rexp(if) # 0,

using (4.3)—(4.4) we can proceed as in the proof of Theorem 2.3 in Varadhan
and Williams (1985), to obtain (4.7). This yields the lower inequality in (4.6).
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To prove the upper inequality, it is enough to show that
(4.8) EP:(1yx) <a,K¥?, zeDnB\J{0}.
Define
gy(y) =y¥".

Then g, o ¥, Cc(D) ﬂ_Cz(l_) N {0}) and, by (4.4), vy Vg, > ¥;1>0 on
dD \ {0}. Moreover, on D \ {0} for some constant a5 > 0,

Algy o W] =85 ° ‘I’B]W\I’BF

2(2—

= _(—p)\I;B—2+2/p[p2\PBZ—2/p(COS(p0+ B))—2+2/p]
p p

—2(2 - p)[eos(po + )] 27

> a,

by (4.3) and the fact that 2 — p > 0.
By Lemma 3.4 with & = g, o Vg,

Epz[fTKaLsI(g2 o Wy(Z,) > 0) ds} < 2suplg, o Y,
0 B
which is the same as
Epz[/TKa?)I(ZS # 0) ds} < 2K?2/P,
0

Then, using property (2.3) of the submartingale problem,
EP:[74] < 2a;'K?/P.
Since EF-[7,x] < EP[1], (4.8) holds with a, = 2a;!. O

Now we can prove Theorem 4.1. Let 0 < < K, where K is from Theorem
4.2, and define the following for n = 0,1,2,...:

T, = 0;
Ty,ir =inf{t > T,,: w(t) = 0};
Tyoin = inflt > Ty, 11 Vs (w(2)) = 1}

By Theorem 4.2, once we show T, — » a.s. P, as n — %, we can modify the
proof of Theorem 3.5 in Varadhan and Williams (1985) in the following
manner, to yield the desired conclusion.

First replace ¢ by ¢ A 7, and ¢ by K throughout their proof.

Their expression (3.32) remains valid if the initial “¢ = ” is replaced by
“t > EP[t A 7] =" and the T,, ., appearing in the last equality in the
expression is replaced by T,,,; A 7. In (3.33)-(3.35) replace T,,,; by

Ty,+1 N ¢ and 74 by 79k
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To show T, — « a.s. P,, choose 6 and M, both positive, such that
— ] 31 —
Bs;(0) N D c{z:VYy(2) < 3 Ciz:Y(2) < - c By (0) N D.

Then, by Lemma 3.2 and the remark after Lemma 3.1,
P,(Ty,,, <t) < EP-[I(T,, < t)Bln(o, < t)]
< EP-[I(Ty, < t) Bl (05 A 0y < 1))
<P,(Ty, 1 <t)ps(6, M),

where S ={z € D: Wy(2) = ). Then P/(T,, ., <t)<pg(s, M)" >0 as
n — ». Hence P,(lim T,<t)=0,giving T, > ©as. P, as n = o,

n— z

5. Identification of the martingale part of a submartingale and
proof of Theorem 2.3. Throughout this section, P, will be a solution of the
submartingale problem on D starting from x. As in Section 2, D is a domain
such that 0 € 9D, D is Lipschitz and ¢D \ {0} is C2.

LEMMA 5.1. Suppose, for some ¢ >0, fe C3(D n B,(0)) is such that
Z,,) - 308" Af(Z,)ds can be written as a P -submartingale M(¢) +
A(t), where M; is a P,-martingale and A is a continuous adapted increasing
process. Then A, can change only when Z(-) € dD:

fOMUSID(Z(S)) dA;(s) =0 a.ss.P,.

The proof can be modeled on the arguments in Stroock and Varadhan
[(1971), pages 161-162].

In what follows, we use the notation and terminology of Ikeda and
Watanabe (1989). A stochastic process X(-) on (Q,Z, P) is called a local
{(F}-martingale if it is adapted to a filtration {#} and if there exists a
sequence of {#}-stopping times o, < «© such that o, 1 and X,(¢) = X(¢ A a,)
is an {%}-martingale for each n. If X, is a square integrable martingale for
each n, then X is called a locally square integrable {%}-martingale. Write
A5 for the space of a.s. continuous locally square integrable martingales
with X(0) = 0 a.s., and .Z5 for the space of a.s. continuous square integrable
martingales.

LEMMA 5.2. Suppose, for some § > 0, h € C*(D n B,(0)) with y-Vh =0
on B;(0) N dD \ {0}, ~(0) =0 and Ah > 0. If I(Z,, ,) — Litr o AMZ,) ds
is a P-submartingale with square integrable martingale part M,, then

[ "1(2(s) € aD) d(M,, M,)(s) = 0.
0

ProoF. For each integer n > 1 there is a continuous function £,: R —
[0, ) [see the proof of Lemma 2.5 in DeBlassie (1990)] such that £, = 0 in a
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neighborhood of 0, 0 <k, <1, k) >0, k(t) > I,.(t) as n - © and, for
some C > 0,

|k, (t) =tV Ol< Cn~1t.
Write

(5.1) G(t) = h(Z,,,,) = h(x) + My(t) + Ay (t) + 3 [ "An(Z,) ds,
0

where M, € #§ and A,(t) is a continuous adapted increasing process. Then,
forn > 1,

ka(G(£)) = k,(G(0) + [ (G)[dM, + dA,]
(5.2) 0
+1 [ 7R(G,) AR(Z,) ds + § [Ri(G) d(M,, M),
0 0

By dominated convergence and the Burkholder—-Davis—Gundy inequalities,
as n — « the martingale part in (5.2) converges in L?, uniformly for ¢ in
compact sets to [¢ I(G > 0) dM,,. By dominated convergence, the dA, and ds
parts converge in L!, uniformly for ¢ in compact sets, to

[1(G>0)dA, and L[""I(G>0)An(Z,)ds,
0 0

respectively. The remaining integrand on the right-hand side of (5.2) is
nonnegative and, as n — «, k,(G,) converges in L', uniformly for ¢ in
compact sets, to 0 V G(¢). Then the last term on the right-hand side of (5.2)
converges in L' to a continuous adapted increasing process %, . Thus (5.2)
becomes

0V h(Z,,)=0VG(t)
(5.3) =0V A(x)
+/0“”g1(G > 0)[dM, + dA, + L Ah(Z,) ds] +.57; .
This argument also works for k,(—G), giving
0V (=h(Z,.,,))
0V (—h(x)) - fOtM'SI(G <0)[dM, + dA, + L AR(Z,) ds| +.;

where %, is a continuous adapted increasing process. Subtracting this from
(5.3) gives

h(Z,, ) =h(x) + fo”"“I(G #0)[dM, + dA, + 1 AR(Z,) ds]

(A ) (8).
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Comparing martingale parts with (5.1), we see that
(5.4) /()“"‘*I(h(zs) = 0)d{(M,, M,)(s) = 0.

Given vy > 0, define a sequence of stopping times (n = 0,1,2,...)
T, =0
Ty, 1 = inf{t = Ty,:1Z,1 = v},
Typip = inf{t > Ty, 1:1Z,] = v/2}.

Now, on [T,, ,,T,,], Z(-) stays away from D N B, /5(0), so the theory of
Stroock and Varadhan [(1971), Theorem 2.5] applies and yields

/UEATzn I(Z(S) c m“’ N (?D) d(Mh, Mh>(8)

05ATgn 1

= [*""" 1(2(s) € B,{0)  aD)IVA(Z,)I" ds
0sATg, 1
=0
and
fUSATZn I(Z(.S') emc N aD) dS = 0
o5ATy, 1
(using 2 and 5 of that theorem). Also, since |Z| < y for s € [T, Ty, ], we
have

[7" "1 (2(s) € BO) 0 aD) (M, M,)(s) = 0,

osA Ty,
05\ Ty, 41 B AeC
I(Z(s) € B,(0)° N aD)ds = 0.
asA Ty,

Thus, by Lemma 3.3,
[""1(2(s) € B{O)* N D) d(M,, M,)(s) = 0,
0

[ "1(2(s) € B,(0)° n oD) ds = 0;
0
and upon letting vy — 0 we obtain

/OMU‘SI(Z(S) € dD \ {0}) d{M,,, M;)(s) =0,

[ "1(2(s) € aD \ {0}) ds = 0.
0
Combined with (5.4) [using A(0) = 0] and (2.3) we get

[ "1(Z(s) € 9D) d(M,, M,)(5) = 0,
0

[ "Lo(2,) ds = 0. O
0
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COROLLARY 5.3.
(1) With h as in Lemma 5.2,

/()“"‘*I(h(zs) = 0)d{(M,, M,)(s) = 0.
(i) We have [(" % 1,,(Z,) ds = 0.

THEOREM 5.4. Let P, be a solution of the submartingale problem in D
starting from x.

() Suppose, for some &> 0, h € C2(D N By(0)) with y-Vh >0 on
B;(0) N dD \ {0}, 1(0) = 0 and AR > 0. If M(Z,, ) — 5[¢" *AWZ) ds is a
submartingale with square integrable martingale part M,, then

(M, M,)(t A o) = /0“"5|Vh(zs)|2 ds.

(i) Suppose, for the same 8, g < C2(D N Bs(0)) with y-Vg >0 on
B;(0) N 9D \ {0}, g(0) =0 and Ag =0. If h is as above with
y:Vh =0 on B;(0) N dD \ {0} and Ah = 0 and if g(Z,, ,) is a submartin-
gale with square integrable martingale part M, then

(M, M))(t A 03) = /:A%(Vh-Vg)(ZS) ds.

Proor. By the submartingale property applied to %k, o & and &, o (—h),
kn ° h(Zt/\(rS) = kn ° h(x) + Mi(Ln)(t) +A(hn)(t)

(5.5) +%f“"5[[k; ° R]IVR® + [k}, o h] AR|(Z,) ds
0

and
ky o (=h)(Z,,..)
(5.6) =k, o (—h)(x) + MU)(t) — A")(¢)
+%foms[[k’,; o (=h)]|IVAI® = [k}, o (—h)] AR](Z,) ds,

where M) € #5 and A}, are continuous, adapted, increasing processes.
By Lemma 5.1,

(5.7) [ "15(2(s)) dAD,(s) = .
0

Step 1. Computation of {M{™, M{™) and (M), M™)). An application of
It6’s formula using (5.5) gives

kZ o h(Z,,,)="k2e h(x)+ ftM‘S2kn o h(Z(s))[dM{™(s) + dAP(s)]
0

(5.8) + [y o BY{[ k) = R]IVAE + [, = k] ARY](Z,) ds
0

+ (M, MY(E A ay).
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On the other hand, by the submartingale property applied to f = kfl o h,
k’zl ° h(Zt/\trB) = erL °h(x) + M}(Ln)(t) +A'(hn)(t)

(5.9) +f0“"5{[[k; o h]* + [k, o A][K) o R]|IVA?
+[k, ° Bk, © R]ARY(Z,) ds

where M\ € .#{ and A{" is a continuous, adapted, increasing process.
Moreover, by Lemma 5.1,

(5.10) fO“"SID(Z(s)) dAI(s) = 0.

Comparing finite variation parts of (5.8) and (5.9),
"2k, o h(Z(s)) dAY(s) + (MM, MEY(E A o)
(5.11)
{(n) tA oy 2 2 2
= APt A ay) +/0 [k, o R]*IVRI*(Z,) ds.

By (5.7) and (5.10), the A?” and A} pieces are supported on {s: Z, € dD}. By
Lemma 5.2 and Corollary 5.3(ii), the ds and (M}™, M{™) parts do not change
on this set. Hence by (5.11),

(512) (M, MYt A ) = [ 7R, © hIPIVAP(Z,) ds.
0
A similar argument shows
tA oy 2 2
(5.13) (M@, MU)(t A 0y) =f [k, o (=m)]*IVRI*(Z,) ds.
0

This completes Step 1.
Step 2. Proof of part (). Since h(Z,,,) — [ih 73 AR(Z,)ds is a sub-
martingale, we can write

(514 h(Z,,,) = hx) + Mt A 6) + At A ) + 5 [ "AR(Z,) ds,
0

where M, € #5 and A, is a continuous adapted increasing process. By Ito’s
formula,

kn o h(Zt/\aa) = kn ° h(x)
+/’t/\<fsk;1 o h(Z(S))[th(s) + dAh(S) + %Ah(zs) ds]
0

+%LtAgﬁk2 o h(Z(s)) d{M,, M,)(s).
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Comparing martingale parts with (5.5),
M A 0y) = [k, o h(Z(s)) dMy(s).
By (5.12) this gives
[Tk e RI(2(5) dCMy, M) (s) = [Tk, o RTIVRI(Z(s)) ds.
Letting n — o yields

[ "1((Z(5)) > 0) dy, M,)(s) = [ I(h(Z(s)) > 0)V(Z,) P ds.

Similarly,
ﬁA%I(h(z(s)) < 0) d{(M,, M,)(s) = fotA%I(h(Z(s)) < 0)IVA(Z(s))I" ds.
Adding,

[0“"51(;1(2(3)) £ 0) d(M,, M,)(s) = f(:MBI(h(Z(s)) + 0)|VA(Z(s))I? ds.
By Corollary 5.3(1), this is the same as
(M, M,)(t A 0y) = fo“"“z(h(Z(s)) +# 0)|VA(Z(s))I? ds.

Much like the proof of Lemma 5.2, we can show [also using (2.3)] that
(5.15) /0“"51(;1(2(3)) = 0)|VA(Z(s))I? ds = 0.
Hence

(M, M}))(t A 0y) = fo“"*"|Vh(Z(s))|2 ds,
completing the proof of part (i).

Step 3. Computation of (M), M{"))(t A oy). For the rest of the proof, we
assume the hypotheses of part (ii) are in force. Write

(5.16) 8(Z, ) ,,) =8(x) + M(t) +A,(t),

where M, € #; and A, is a continuous adapted increasing process with
(using Lemma 5.1)

(5.17) [ p(2(5)) dAy(s) = 0.
0
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By It6’s formula and (5.14)—-(5.16),
[kn ° h][kn ° g](Zt/\(rs)
= [k, ° h][k, ° g](x)

[ o g]lk, @ BI(Z())[dM(s) + dA(5)]
5[k o @)k RI(Z(S)) M, M) ()

—‘,—ftA(rS[kn . h][k/n o g](Z(S))[dMg(s) +dAg(S)]
0

1

+3 [Tk o IR @ g](2(5) dCM,, M, )(s)

(5.18) + [Ty = h][K,  g1(2(s)) d<M,, M) (s)
— [, ][, ° g](x)

-l-/:AUS[kn o g][k, o h](Z(S))[th(s) +dAh(S)]
+/Otmrs[kn o R][E,, o g](Z(s))[dMg(S) +dAg(3)]

+éf0“"5{[kn o g][k} o h]IVA[?
+[k, o hI[E, © g]IVel?}(Z(s)) ds

+£)tAUa[k; o h][k’n o g](Z(S)) d<Mh’Mg>(S)’

where we have used the identities

(M, M, (¢ A ;) = fOM%IVh(Z(s))Ist,

(M, M))(t A 03) = /0“"‘*|Vg(Z(s>)|2 ds

from part (1).
On the other hand, on ¢D,

v-V{[k, ° 2][%, - g1}

(5.19) = v {lk, > hI[k, = g] Vg + [k}, ° R][k, = g] VA
= [k, o h][k}, > 2]y V=0
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since y-Vh =0 on JD. By the submartingale property applied to
[k, o hllk, > gl(Z),

[kn ° h][kn ° g](Zt/\(TB)
= [k, ° h][k, ° g1(x) + M) (t A 05) + AS(t A o)
+§ftw‘3{[k’,; o h][k, o glIVRI®> + %" - g][k, o h]IVg|®
0

+2[ %), o h][%, > g] Vh-Vg}(Z(s)) ds,

where M A2 € 45 and A~(h"3g is a continuous adapted increasing process with

tA oy ~
(5.20) [ 1o(2(5)) dA, 1 (5) = 0,

by Lemma 5.1.
Comparing finite variation parts with (5.18),

AP (t A gy) + f "k, o h][E, o g] Vh-Va)(Z(s)) ds
= [Tk o gllky @ BI(Z(s)) dAy(s)
+ [k, o g1k, © B](Z(s)) dA,(s)
0

+fmrr§[k,n o h][E, o g](Z(s)) d<Mh,Mg>(S).

By (5.17) and its analogue for A and (5.20), the A(”; A, and A, parts are
supported on {s: Z(s) € dD}. By Corollary 5.3(ii), Lemma 5.2 and the Ku-
nita—Watanabe inequalities, the remaining finite variation parts do not
change on {s: Z(s) € dD}. Thus

[Tk e Bl o g] VR Va(Z(s) ds

- fo“”*’[k; o R][k, * g] d{M,, M,)(s).
Let n — o, to get

[ "1(h(Z,) > 0)1(2(Z,) > 0)Vh-Va(Z,) ds
(5.21)
_ fOM%I(h(ZS) > 0)I(g(Z,) > 0)d{M,, M,)(s).

We can repeat this argument for [k, o hllk, o (—g)], [k,  (—h)] X
[k, e (=g)]land [k, - (=Rl %k, o g]; the key is that in any of these cases, the
analogue of (5.19) is always nonnegative or always nonpositive. In any event,
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we can show the following:

f()“"ﬁz(h(zs) > 0)I(g(Z,) <0)Vh-Vg(Z,)ds

- fOM”SI(h(ZS) > 0)I(g(Z,) < 0)d{M,, M,)(s);
fOMUSI(h(Zs) <0)I(g(Z,) <0)Vh-Vg(Z,)ds

- /0“”81(;1(23) <0)I(8(Z,) <0)d{M,, M,)(s);
fo”"*‘z(h(zs) <0)I(g(Z,) > 0)Vh-Vg(Z,) ds

_ fM”SI(h(ZS) <0)I(g(2,) > 0)d{M,, M,)(s).
0
Adding these to (5.21), we get

fOtAzrsI(h(Zs) " O)I(g(Zs) +* 0) Vh-Vg(Z(s)) ds

_ /(‘)“"Sz(h(zs) # 0)I(g(Z,) # 0) d{M,, M,)(s).
By Corollary 5.3(1) and (5.15) and its analogue for g, this is the same as
[ VR -Ve(Z(s)) ds = (M,,, M)(t A 03).
0

This gives the conclusion of part (ii), and the proof of Theorem 5.4 is
complete. O

Now we can easily prove Theorem 2.3. Assume the hypotheses of Section 2
and Theorem 2.3 are in effect. Let h(y,, y,) =y; and g(y,, y,) = y,. Let K
be from Theorem 4.1, and let B be as in Section 4. Choose & so small that
{(x €D: |x| <8} c{x €D: \IfB(x) < K}. Then g5 < 7 and so, by Theorems
4.1 and 5.4,

Z(t N 05) = (R(Z(E A 55)), 8(Z(t A 7))

(5.22) — 2+ (My(t A 0), My(t A ;) + (0, A(t A 03)),

where (M, (t A 03), M(¢ A 03)) is two-dimensional Brownian motion stopped
at time o; and A, is a continuous adapted increasing process. Moreover, by
Lemma 5.1, Ag changes only on {s: Z, € dD}.

As pointed out in Section 2, this is enough to imply Theorem 2.3.

THEOREM 5.5. Suppose h € C(D) N C*(D \ {0}) with h(0) =0, y-Vh > 0
on dD \ {0} and Ah bounded and nonnegative on D \ {0}. Then, for each
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m > |x| with o, = inf{t > 0: |w(t)| = m},
/OU'"IVh(Zu)IQI(h(Zu) >0)du <= a.s.P,.
Proor. By the submartingale property,
By o h(Z) =k, o h(x) + M, (1) + A, (1)
+§/Ot[[k’,; o R]IVRI + [k, o h] AR)(Z,) du,

where M, is a P, local martingale and A,(¢) is a continuous adapted
increasing process. By Theorem 5.4, for each m > | x|,

q,

(M, M)(t A a,) = [ ™[k, > B]VR(Z)[ ds.
0

By 1t6’s formula,
E™([k, - 11 (Z. )]
= [k, ° h]*(x)
! pr[f()tAU’"2[kn > h](2,){dA,(w) + §[[} = h]IVAI’
+[k, o h] AR](Z,) du}}
# B[k IR du

tA oy,
zEPx[f
0

By dominated convergence on the left and Fatou’s lemma on the right,

[k, o h]IVAIX(Z,)| du].

o > pr[[o v h(Z, )]2] > pr[/”’"z(h(zu) > 0)IVA(Z,)I? du|.
" 0

Thus

[ 1(h(2,) > 0)IVA(Z,) du <= as.P,,

0
giving the desired conclusion. O

6. Conformal invariance of RBM. Let D and & be domains in R2

with 0 € dD N 99. Suppose F: D - is a homeomorphism such that
F)=0, F: D\ {0} >2 \ {0} is a C? diffeomorphism and F: D > is

holomorphic with a holomorphic inverse. Denote by Z(-) and Z(:) the coordi-
nate processes on (15 and (), respectively.



BROWNIAN MOTION WITH VARIABLE REFLECTION 171

Given an angle of reflection 0(x), x € dD \ {0}, F induces an angle of
reflection 6, on /2 \ {0} via

(6.1) 0p(y) =0 F ' (y), y<€z\{0}.
Let |x| < 6 and write
oy, = 0y(Z) = inf{¢ > 0: |Z(¢)| = 8}.

Suppose P_ is a solution of the submartingale problem on D stopped at time

03, starting from x. Define

(6.2) AZ(t) = [0“"5|F'(zu)|21(zu £ 0) du.
If

(6.3) P (0;(2) <) =1

and

(6.4) P.(A%(0y(Z)) < =) =1,

then, since F is conformal away from 0 and Z(-) spends 0 Lebesgue time at 0
a.s. P, AZ is a.s. continuous and strictly increasing on [0, 05(Z)] with an a.s.
continuous strictly increasing inverse aZ on [0, A?(g;)]. Setting

(6.5) Z%(t) = F(Z(a*(t N A%(0y)))), t=0,

it is not hard to show that the law of 2% on (Q 5, .#) solves the submartin-
gale problem on Z stopped at time AZ(o;), starting from F(x). Note that
here the angle of reflection is 6.

Conversely, for # = F~1 and

5 = 15(Z) = inf{t > 0: |.F(Z)| = &},

given a solution % ., of the submartingale problem on & (with angle of
reflection 65) stopped at time n,, starting from F(x), set

(6.6) RZ(t) = fo’f”&ly'(zu)ﬁz(zu £ 0) du.
If

(6.7) ‘@F(x)(nﬁ(z) < °°) =1

and

(6.8) *@F(x)(Rz(”’la(z)) < OO) =1,

then R¥ is a.s. continuous and strictly increasing on [0, ;(2)] with an a.s.
continuous and strictly increasing inverse rZ on [0, RZ(n,)]. Moreover,

(6.9) Z7(t)y =7 (Z(r"(t AR"(m)))), t=0,

solves the submartingale problem on D stopped at time RZ(,), starting
from x.

THEOREM 6.1. The mappings (6.5) and (6.9) give rise to a one-to-one
correspondence between solutions P, of the submartingale problem on D
stopped at time oy satisfying (6.3)-(6.4) and solutions P, of the submartin-
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gale problem on 9 stopped at time ms satisfying (6.7)-(6.8). The angles of
reflection for D and 9 are 6(-) and 6y(-), respectively.

The proof is left to the reader [cf. DeBlassie and Toby (1993), Proposi-
tion 4.1].

7. Half-space: S = S§_. In this section we prove Theorem 1.1 for ¢ = .
For S? ={z € S_: Im z > 0} define

o X 1 X
(7.1) t/f(z)=exp{f 0()[x _

R -z 1+ x2

dx}, z e S,

Then iy is known as a Pick function [Donoghue (1974)]: it is analytic from
S into S?.

LEMMA 7.1. The function  has an extension in C*(S_ \ {0}) and Re ¢y > 0
on S, \ {0}.

Proor. The proof of smoothness is almost exactly like the first part of
Step 2 in the proof of Theorem 1.1 in Burdzy and Marshall (1992). The major
difference is that they use local Holder continuity of the first partials of 6(-)
on 45, and on JS,, whereas we require local Dini continuity of those partials.
This causes no trouble because the theorem of Zygmund [(1979), page 54]
they use applies in this context too.

The last assertion of the lemma is a consequence of our hypotheses on 6. O

LEmMA 7.2. For x € dS, \ {0}, arg ¢/(x) = 0(x). Moreover, for some posi-
tive C,, C,, & and p, with p < 1,

Cm? <ly(2)l<Cym™®?, z={¢(+ineS,NnB,(0)\ {0}.
Proor. This follows from (1.3) and is left to the reader. O

A smooth path in S, from 0 to z € S_ is a C”-mapping /: [0,a] = S,
with Z(0) =0, Z/(a) =z and |Z'(¢)| > 0 for ¢t € [0, a]. If Z’(0) is not horizon-
tal, then we say / is nontangential at 0. Define

\If(z)='/021,[f(w)dw, z€S,,

where the integral is over any simple smooth path in S_ from 0 to z that is
nontangential at 0.

LEMmMA 7.3. The function V¥ is well defined on S,., a homeomorphism onto
its image, a C?-diffeomorphism from S_\ {0} onto ¥(S_ \ {0}), holomorphic
on S, \ {0} with a holomorphic inverse on V(S_\ {0}), and ¥(0) = 0. More-
over, for x € S, \ {0}, arg ¥'(x) = arg ¢(x) = 6(x).
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Proor. Let / be any simple smooth path in S_ from 0 to z € S_ \ {0}
that is nontangential at 0. It is no loss to assume / is parameterized by arc
length s, say, /:[0,L] = S,, /= (/,,/,). Since / is nontangential at 0,
/3(0) # 0 and so, for & from Lemma 7.2, there exist § > 0 and C > 0 such
that

|/(s)l <& fors <3,
|7(8)] <z,
|/5(s)| > Cs fors < 6.

Now / is simple, so the image of /|5 1 is contained in S, \ {0}. Then since
€ CY(S_ \ {0} and ¢ is holomorphic on S?,

)

for any smooth path y in S, N B, ,5,(0)° connecting /(8) to z. From this it is
clear that

Y(w) dw = fyzp(w) dw,

s,z

< oo,

f/ Y(w) dw

s,z

As for the other part of /,

'//I[oﬁ]dl(w) dw‘ - “/;)Sw(/(s))/,(s) ds

= [l (£ (s))lds
< j:CZI/2(s)|7p ds (by Lemma 7.2)

< C,[(Cs) " ds < =,
0
since p < 1. Thus,

(72) [ du| <=

and so [,¢(w) dw exists.

To show WV is well defined, let m be a path satisfying the same properties
as / and let 8 > 0 be small. Now B;(0) will cut each of / and m into two
pieces: the parts /" and m® starting at 0 until 9B,(0) is hit, and the parts
/® and m® from then on. Then the closed path determined by #®, m® and
the arc y of dB;(0) determined by the first intersections of / and m with
dB5(0) is contained in S_ \ {0}, since / and m are simple. However, ¢ is
holomorphic on S? and in C(S_ \ {0}), so the integral of (w) along this
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path must vanish. Hence, to prove ¥ is well defined, it suffices to show, as
6— 0,

/ y(w) dw — 0,
D

Y(w)dw — 0

m®

and
fl[/(w) dw — 0.
Y

The first two are immediate consequences of (7.2). For the last, observe for
p < 1 from Lemma 7.2, for some a, b € [0, 7],

fylp(w) dw‘ - ‘/;blp(Sexp(iO))iSexp(iO) 6

< 6/:C2(8 sin ) " d#o

<Cslr

-0 aso6—0.
Thus ¥ is well defined on S_ \ {0}, holomorphic on S? and, by setting
¥(0) = 0, continuous on S_. By Lemma 7.1 and arguments from Burdzy and
Marshall (1992), ¥ € C%(S, \ {0}) and ¥'(z) = (2). Since Re y > 0 on S \
{0}, ¥ is one-to-one on S_ \ {0} [cf. Rogers (1991), Lemma 1]. To show ¥ is

one-to-one on S_, it suffices to show ¥(z) =0 only if z = 0. So suppose
W(z) =0.If z € S?, then taking /(¢) = tz, ¢t €[0,1],

0=VY(z2) = z/ldf(tz) dt # 0, a contradiction.
0

If z € S, \ {0}, then taking / to be the path consisting of the line segments
from 0 to i6, id to &, then & to z (where 6§ > 0, £ € R \ {0}),

0= lim lim w) dw.
50 860[/1#( )

By the estimates in Lemma 7.2, the integrals over the first two pieces of /
converge to 0, so we get

0 = lim fz¢(t) dt.

-0

Hence

0 = lim fZRe Y(t)dt # 0, acontradiction.
e—>07¢
Thus z = 0, as desired.
It is now easy to see that ¥: S_\ {0} - S_\ {0} is a C2-diffeomorphism,
that ¥ on S? has a holomorphic inverse on ¥(S?) and that ¥ is a homeo-
morphism from S_ onto ¥(S_). O
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The mapping ¥ was used in Rogers (1991) because it twists around the
direction of reflection in S_ so that the reflection in W(S_) is always upward.

LEMMA 7.4. For each 6 > 0,

sup{l¥'(2)l: z € S,,lz| = 8} < o,
sup{(¥ 1) "(w)l: w € ¥(S,), lw| > 8§} < .

Proor. Choose ¢ € (0, §) such that

lzl <e = [|¥(2)l<8.
Then

sup{l(¥Y" 1) (w)l: w € ¥(S,), lwl > 8}
= sup{l\I”(‘Iffl(w))Iflz wev(s,),lw > 6}
< sup{l\lf’(z)lfl: zeS_,lzl= s}.
Consequently it is enough to show that, for each a > 0,

0 < inf |¥'(2)| < sup|¥'(z)] < .

lzlza lz|>a
Since, for z = £ + in € 82,

W'(2)l=lg(2)l
=exp{fx G(x)[ x— & x

e o | (x—€)YP 42 1+a

]

and since ¥ € C%(S_ \ {0}), it suffices to show that

su foo 6(=) ¥ ¢ — dx|: |[éE+inl=2,7>0) <
PV .= (x—§)2+1)2 14 x2 ' =S '
However, 0(x) = 01if |x| > 1, so
© 6(x) x— & x
f 5 - 5 | dx
e T (x— &) + n? 1+x
0(x x — 0(x x
—fl Sfl (%) 25 dx+f1 (=) 5 | dx.
-1 -1 s (x—g) -|-7]2 -1 w 1+x

Thus it is enough to prove that

sup{fl1 e(x) -

T (=8

dx: |§+in|22,n>0} < oo,
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If |£ + inl > 2, then

fl b(x) *— ¢ dxsf_llw(x)'éldx

—1| (x_§)2+n2 T
1 7T/2
< —-4d
<f_1 - x
= 4.

This does the trick. O

LEMMA 7.5. The set W(dS,) is the graph of a Lipschitz function and
W(S?) is above this graph. Moreover, for 6 = sup |60(x)|, the inner and outer
cones for W(S?) at {0} are, respectively,

C = {(y1> Y2)i ¥o = |y ltan é}
Cour = {(yl’ ¥2): ¥2 < —ly;ltan é}

Proor. Note that Re¥: R \ {0} » R is increasing because Re ¥'(¢) =
Re ¢s(t) > 0, for ¢ + 0. Hence W(R) is the graph of a function, say, y = f(x).
Writing

x(t) = ReW¥(t), y(t) = ImW¥(2), teR,
gives a parametric representation of V(R), and
, ImW'(t) Imy(t)
f'(x) = ey
ReV'(t) Rey(t)

exists and is continuous for x # 0. Hence, to prove f is Lipschitz, it is enough
to show that [Im ¢(¢)]/[Re s(¢)] is bounded for ¢t € R \ {0}. For z = ¢ +
ine S?,

Im 4 (2) - 0(x) m
IE) | | :
Rev(z) T Gt
Upon letting /=t € R \ {0} and 75 | 0, since
© 6
lim (x) 772 dx =0(t),
=07« T (x—1¢t) +n?
we have
Im ()
m = tan G(t).

This is bounded since sup |0| < 7/2, by hypothesis. The last equality also
proves the statement about inner and outer cones at {0}. O

Now we apply the results of Dupuis and Ishii (1993) to (S ).
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THEOREM 7.6. Let
(@) = inf{t > 0: |‘I’_1(wt)| = 5}.
There is a pathwise unique solution to the SDER up to time n for W(S?) with

direction of reflection (0,1), initial condition ¥(x) € V(S ) and Brownian
motion {B,: ¢t > 0}.

Proor. We verify the Case 1 hypotheses of Dupuis and Ishii (1993). Once
this is done, we get the desired conclusion from their Corollary 5.2.

Since the direction of reflection is (0,1), the Case 1 hypotheses reduce to
finding b € (0, 1) such that

U {y:lx—¢ty(x) —yl <tb} Q\I’(Sg)C for x € ¥(R),

0<t<b

which is equivalent to finding a truncated cone
C={z=(z1,2y): 25 < —mlz4l, |2l < 1}

for some m > 0, such that, for each x € P(R),

x+Cc¥(8?).

This is an immediate consequence of the fact that [Im (#)] /[Re ¢(#)] =
tan 6(¢). O

Combined with Theorem 2.3 and Lemma 7.5, this yields the following
result.

THEOREM 7.7. Reflecting Brownian motion in V(S,) stopped at time
exists uniquely in law. O

Now we prove Theorem 1.1 for ¢ = 7. First we show uniqueness for RBM
stopped upon exiting a small neighborhood of the origin. More precisely, there
is some & > 0 such that there is exactly one solution of the submartingale
problem on S? stopped at o, starting from |x| < . This follows from
Theorem 6.1 (with D = S? and F = ¥) and Theorem 7.7 once we find & > 0
such that, for [x| < & and any solutions P, and £, of the submartingale
problem on S? and ¥(S?), respectively, stopped at times o, and 7,, respec-
tively,

(7.3) P(0, <) =1,
(7.4) ywm(”’lg <w) =1,
(7.5) Px(fo%l‘lf’(Zu)FI(Zu #0)du <o =1,
and

(7.6) %u)(fo"gl(w-l)'(%)l?l(zu #0)du <o) =1.
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With & from Lemma 3.5, (7.3) holds. Make this & smaller (if necessary) so
that it is smaller than the 6 from Theorem 2.3. By the proof of Theorem 2.3,
the law of the first component of the coordinate process Z(-) stopped at =,
under #y,,, is one-dimensional Brownian motion stopped at time 7,. Then
since 7, is the first exit time from a bounded neighborhood of 0, it is clear
that, for some y < ¢,

Py(y(m, <®) =1 for |yl < v.
Then replace ¢ by this y to get (7.4).

Next we verify (7.5)—(7.6). By Lemma 7.3,

V'(z) =|V'(2)lexp[if(2)], z € dS, N\ {0},

(T H(w) = I(\Pfl)’(w)lexp[—ie o ‘I”l(w)], w e Iv(S,) \ {0}.
Then, for ~ = Re ¥ and g = Im ¥~ !, we have the following:

h € C(S,) NnC3(S, \ {0}), h(0) =0,
g€ C(¥(S,)) nC*¥(S,) N {0}), g(0)=0;
Vh(z) =|¥'(z)l(cos 6(z), —sin 0(z)), z €4S, \ {0},

Ve(w) =I(¥ 1) (w)l(—sin 6 e ¥ (w),cos 6 = ¥~ '(w)),
w e Iv(S,) \ {0},
Ah =0 onS_\ {0},
Ag=0 on¥(S,) \ {0}.
Hence
(y-Vh)(z) = (sin 0(z),cos(z)) - Vh(z) =0 on dS, \ {0},
(0,1) - Vg(w) =0 on d¥(S,) \ {0}.
Apply Theorem 5.5 to A, —h and g. Then, since g > 0,

(7.7) [ IVR(Z)PI(1(2,) # 0)du < = as. P,
0

Mg
(7.8) fo Vg(Z)I’I(g(Z,) # 0)du <= as. Py,

However, by Lemma 7.5, {(y;, y,): y; =0, y, > 0} € W(S?). In particular,
under P,, Z() is Brownian motion inside S? and spends 0 Lebesgue time on
{u: (Z,) =0, Z, # 0}. Then (7.7) becomes

[ IV(Z,) (2, # 0)du < = as. P,
0

and, since |¥'| = [Vh|on S_ \ {0}, (7.5) holds.
Note {w € W(S,) \{0}: g(w) = 0} = 9W(S,) \ {0}. Then, under 2,
Z(-) spends 0 Lebesgue time there, and so (7.8) becomes

[FIVe(Z)P1(Z, #0)du <= as. Py,
0
Since |Vg| = (¥ "1)'| on ¥(S, \ 0), (7.6) holds.
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Hence we have verified (7.3)-(7.6), and so RBM stopped upon exiting a
small neighborhood of the origin exists uniquely. Then, by localization, RBM
in S? stopped at the first exit time from any bounded set exists uniquely. To
complete the proof, it is necessary to show tht no explosion occurs. However,
the process cannot explode because of the results of Varadhan and Williams
(1885) and the fact that the reflection is normal outside B;(x). O

8. Arbitrary wedges: existence and uniqueness. Given & € (0,27),
define

F(2)=Z‘§/”, ZES‘IT’

so that F: S_ - S,, D =S, and 9 = S, satisfy all the hypotheses in Sec-
tion 6.

Also, just as in Section 7, we need only prove existence and uniqueness for
the submartingale problem stopped upon exiting a small neighborhood of the
origin. Then, by Theorem 6.1, it is enough to find &; > 0 such that, for
|x | < &y,

(8.1) P,(a, <) =1,

(8.2) @F(x)(ngl < OO) = 1’

(8.3) Px(f%llzu|2(§/w—1>1(zu #0) du < w) .y
0

(84) r@F(x)('/7781|=2.,u|2(71'/§—l)I(D%«’u + 0) du < OO) _ 1’
0

for any solutions P, and %, of the submartingale problem on S, and S,
respectively. Recall that the angle of reflection in S, is 6(-) and the angle of
reflectionin S is 6 o F.

With ¢ from (1.4), for some ¢; > 0,

ma, = §a,,
where
1
a, = ;[sup{@ o F(w): w e dSy(m) \ {0}, lw| < &}
—inf{0 o F(w): w € S,(7) \ {0}, |w| < &,}]
1
a, = E[sup{@(z): z € 3S,(€) N\ {0},lz] < &}
—inf{0(2): z € 9S;( &) \ {0}, 2] < ¢}].
Then
a, < 2
and, by (14),
26 g

o aw
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Applying Lemmas 3.5 and 3.6 to P, on S, gives (8.1) and (8.3). Also, since
2m/¢> ma, /&= a;, by (1.4) and Lemmas 3.5 and 3.6 applied to #,, on S;,
(8.2) and (8.4) hold.

Acknowledgments. The author thanks the referee for a careful and
detailed reading of the paper, in which a serious flaw in an earlier version
was discovered. The proof of Lemma 2.2 is due to the referee.
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