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The concentration of measure phenomenon in product spaces is a far-
reaching abstract generalization of the classical exponential inequalities
for sums of independent random variables. We attempt to explain in the
simplest possible terms the basic concepts underlying this phenomenon,
the basic method to prove concentration inequalities and the meaning of
several of the most useful inequalities.

1. Introduction. What is the most important theorem of probability? The
following statement could be a reasonable candidate:

In a long sequence of tossing a fair coin, it is likely

(1.1) that heads will come up nearly half of the time.

This rather imprecise statement could serve as an introduction to the study
of laws of large numbers. These are limit theorems. A commonly heard piece
of conventional wisdom (which certainly should not be hastily dismissed) as-
serts, however, that the “age of computing” coming upon us will shift much of
the focus of mathematics from the infinite to the discrete. A precise discrete
statement of (1.1) is as follows:

Consider an independent sequence of Bernoulli random variables (&;)i<n
[i.e., P(g; =1) = P(g; = —-1) = %]. Then for all ¢ > 0 we have the following
inequality [which will be proved in (4.7) below:

D -
&; zt) §2exp<——).
o ! 2N

To relate (1.2) to (1.1), we simply observe that if By is the number of 1’s in
the sequence (&;);<n, then ) ;_y&i =2By — N, so that (1.2) is equivalent to

N >t) <2ex 2t
> = p N /)

(1.3) P(’BN* 5

(1.2) P(

Inequality (1.2) is possibly the simplest occurrence of the concentration
of measure phenomenon that will be explored in the present paper. Upon
evoking generalizations of (1.2), the words “exponential inequalities” and the
names of Chernoff, Bennett, Prokhorov and Hoeffding (and more) come to
mind. The generalizations of (1.2) we have in mind, however, require a change
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2 M. TALAGRAND

of perspective: simply to think of the random variable X = ) ,_y&; as a
function of the individual variables &; and to state (1.2) [or rather (1.1)] as

(1.4) X is essentially constant (= 0).

This statement seems pretty offensive, since the fluctuations of X are of
order /N, which is hardly zero. This impression is misleading and is simply
created by the fact that we do not look at X on the proper scale. As X can take
values as large as N, this should be the scale at which one should measure
X, in which case (1.4) is indeed true (i.e., X/N is essentially zero).

In words, the form of the concentration of measure phenomenon we will
study could be stated as follows:

A random variable that depends (in a “smooth” way)
(1.5) on the influence of many independent variables (but
not too much on any of them) is essentially constant.

This statement will of course be quantified by inequalities such as (1.2).
Most of these inequalities will be of exponential type, so another (shameless
...) way to advertise the results of the present paper is by the following:

A random variable that smoothly depends on the
(1.6) influence of many independent random variables
satisfies Chernoff-type bounds.

It should be self-evident why a statement such as (1.6) is important. Of spe-
cial interest is the case where the random variable is defined in an indirect
or a complicated way and where explicit computations are all but impossible.
A typical situation is the case where the random variable is the solution of a
(stochastic) optimization problem, in which case it is sometimes rather hard to
say anything at all about it. The body of inequalities underlying the imprecise
statement (1.6) has by now been applied to a variety of such optimization prob-
lems and has in each occurrence improved and streamlined previous results.
These problems include, in particular, stochastic versions of famous questions
such as bin packing, the traveling salesman problem and, not surprisingly,
models for randomness in physics, such as percolation theory and models for
disordered matter in statistical mechanics. (Many applications have also been
given to more classical areas of probability such as probability in Banach
spaces [9] and empirical processes theory [27].) While going through a large
number of applications would have been a fair attempt at impressing upon the
reader the importance of the present material, I have resisted the temptation.
The main reason is that the abstract inequalities that form the core of the
paper (and, in particular, the one presented in Sectign 6) are sufficiently pow-
erful so that once the basic mechanism of their application is understood, this
application becomes mostly a routine matter. The two examples presented in
Section 6 should be a sufficient illustration. Numerous other applications are
presented in [29], and I hope that the reader will be interested enough by the
present essay to ask for more and will be immediately at ease while plunging
into this considerably more detailed work.
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While the topic of giving a meaning to (1.6) has now become almost a theory
in itself, it is a rather pleasant fact that the proof of the main results is
very simple. However, how can such simply obtained results have such drastic
consequences? The answer lies, of course, in using a good point of view. This
requires several layers of abstraction. While the key ideas are again very
simple once understood, this is not necessarily the case beforehand. Therefore,
these ideas will be explained in considerable detail, and I must apologize
should I insist too much on trivialities; triviality is apparently in the eye of
the beholder [32]. The true motivation for insisting upon the abstract ideas
is that it is while pursuing abstract principles that the main discoveries have
been made, and thereby this appears to be the best way of fostering further
advances.

The idea of concentration of measure (which was discovered by V. Milman)
is arguably one of the great ideas of analysis in our times. While its impact on
Probability is only a small part of the whole picture, this impact should not
be ignored. The present paper represents my best attempt to explain in the
simplest way I can achieve what this is all about, without ever doing anything
technical. Due to this exacting requirement of simplicity (and even more to
space limitation), the present work is very far from being a complete account
of what is known. (We refer for this to [28-30]). I hope, however, that it will
be informative for the casual reader and will even possibly induce him/her to
learn more about this ever-fascinating topic.

2. The Gromov-Milman formulation. The Gromov-Milman [4, 17] for-
mulation is rather simple and very effective. It is also our first step toward
increased abstraction and the opportunity to stress a number of key features.

First of all, to examine (1.5) it will be convenient, in contrast with a long-
standing tradition, to specify the underlying probability space. The proba-
bilistic notion of independence is intimately related to the notion of product
measure, and product measures will be the focus of our interest.

Consider a probability space (,3, u) and a power (Q¥, P), where P =
1®N. One could consider different factors, but it would not truly increase the
generality. The coordinate functions are probabilistically independent, and any
sequence of probabilistically independent functions can be realized as above.
Thus to study (1.5), we will study functions defined on a product of probability
spaces provided with a product measure.

How should we define the fact that a function depends smoothly on the
argument? A reasonable answer seems to be that a small variation of the
argument produces a small change in the value of the function. The most
natural way to define a small variation of the argument is to assume that the
underlying space is provided with a distance. Fortunately, a product space QY
is provided with a natural distance: the Hamming distance given by

©(2.1) d(x,y) =card{i < N; x; # y:},

where x = (x;)i<y and ¥y = (y;)i<n- This initial success should not hide a
basic limitation: unless the factor () is provided with some kind of structure,
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it seems difficult to define a genuinely different distance than (2.1). Much of
Sections 6—8 will be devoted to showing how to bypass this limitation.

The basic object in the Gromov-Milman formulation of the concentration
of measure phenomenon is a (Polish) metric space (X,d) provided with a
(Borel) probability P. It is not required here that X be a product space, so
that this formulation is considerably more general than the special case of
product spaces. Quite naturally, in view of the preceding discussion, the class
of well-behaved functions will be the class of 1-Lipschitz functions, that is,
functions f from X to R that satisfy

(2.2) Vx,yeX, If(x) - f(¥) <d(x,y),

and the object is to find situations where the Lipschitz functions are essentially
constant. How do we identify the value of the constant? It turns out that the
most convenient choice is through a median My of f, that is, a number such
that

P(f < My) =1, P(f=My)= 1.
The statement that f is essentially constant is then quantified by a bound for

for t > 0.
Consider the set A = {f < M;}. Thus P(A) > L. Consider the set

(2.3) Ay ={xe X; inf{d(x,y); ye A} <t} ={x; d(x,A) < t}.
It follows from (2.2) that

xeA; = f(x)<t+ My,
so that

P(f > My +1) < 1- P(A,).

This simple observation has accomplished a key fact: it has reduced the
study of functions f to the study of sets, which are genuinely simpler objects,
and the central concern now is to show that when P(A) > %, the “enlargement”
of A defined by (2.3) has probability close to 1. This question (in the setting
of product spaces) will be the central objective of the paper. To quantify this
phenomenon in their setting, Gromov and Milman introduce the concentration
function a(P,t) (depending also on X, d) as the smallest number such that

P(A)>3 = 1-P(A) <a(P,t).
The above discussion should then make clear that, for any 1-Lipschitz func-
tion f,
(2.4) P(|f —M¢| > t) <2a(P,t).

lI‘f we define the Lipschitz constant ||f||Lip of any function f on X as the
smallest number such that

Va,ye X,  [f(x) = f(DI = fllupd(x, y),
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homogeneity and (2.4) imply
t
(2.5) P(|f — My| >t)§2a(P,——).
I £ llLip

The point of these definitions is that, in a variety of situations, the func-
tion a(P,t) decreases very fast as ¢ increases. We will summarize this in a
somewhat imprecise manner by the statement that concentration of measure
holds in that case. The origin of this terminology is that, whenever one con-
siders a set A with P(A) > %, most of the points of X are close to A; thus P
“concentrates” around each such set A.

In Section 5, we will prove somewhat more than the following proposition.

PROPOSITION 2.1.  If X is the product of N probability spaces, P is a prod-
uct measure and X is provided with the Hamming distance d, the concentra-
tion function satisfies

2
(2.6) a(P,t) < 2exp<—%/,—>.

In order to compare this with (1.2), on the space X = {—1,1}¥, we consider
the function f that is the sum of the coordinates and we observe that [when
X is provided with the Hamming distance given by (2.1)] ||f llLip = 2. Since
My = 0 by symmetry, combining (2.4) and (2.6) yields

£2
Z gl > t) < 4exp<—m).

i<N
This is not quite as good as (1.2), but still captures its main features.

A prime example of a space where concentration of measure holds is the
sphere Sy of R¥*! equipped with its geodesic distance d and normalized Haar
measure Q. In that case, P. Lévy proved in 1919 that for any (regular) set
A of Sy we have

(2.8) Qn(Ay) = @N(Cy),

where C is a cap of the same measure as A. (This is a true isoperimetric
inequality.) It follows, in particular, through a simple computation that

1/2 _
a(Ppy,t) < (%) exp(—(ﬂ2—1)t2>.

Keeping in mind that in (2.6) the diameter of X is N, while in (2.8) it is 1,
one sees a great similarity between these inequalities. Around 1970, Milman
understood that (2.8) was the key to the famous theorem of Dvoretzky on
almost Euclidean sections of convex bodies [15, 16]. Subsequently, Milman
most vigorously promoted the concept of concentration of measure (see, e.g.,
[1] for early thoughts about product spaces), and his ideas had a considerable
influence. This concept now plays an important role in the local theory of
Banach spaces and the dominant role in probability in Banach space. (This

2.7 P(
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author is, in particular, pleased to acknowledge that his contributions in this
direction have their ultimate source in Milman’s philosophy.)

More in line with the topic of the present paper is the case where X = RY
is provided with the Euclidean distance and where P = yy is the canonical
Gaussian measure. Thus yy is a product measure when each factor is provided
with the canonical Gaussian measure y; on R, of density (27)~ 12 exp(—t2/2).
The importance of this situation stems from the fact that all Gaussian mea-
sures (such as Wiener measure) can be suitably approximated by yy and that
inequalities proved for yy can rather trivially be transferred to them.

The Gaussian measure on RY can be seen as the limit of the projection
of the dilatation of @ by a factor v/M on RY as M — oo, a fact known as
Poincaré’s lemma. It can then be deduced from (2.8) that

(2.9) ( t)</oo . ex <_u2)du< L <_t2>
. a(yn,t) < —_ < —expl — ),
w  or P\ 2 P 3

a fact of considerable importance [8, 9].

3. Classical isoperimetry and rearrangements. Inequalities such as
(2.6) will be called concentration inequalities, and it is instructive to discuss
the relationship of such an inequality with classical isoperimetry. The most
recognized isoperimetric inequality is likely to be the following statement.

(3.1) Of the bodies of a given volume in RY, the Euclidean
ball is the one with the smallest surface area.

This formulation needs the notion of surface area, which in the present case
can be defined (when JA is smooth enough) as
Voly(A;\ A)

t
where A, is the set of points within Euclidean distance ¢ of A.

As it turns out, (3.1) is equivalent to a lesser-known formulation that does
not require the notion of surface area.

(3.2) Voly_-1(dA) = }in(}

’

Among the bodies A of a given volume in R", the
(3.3) ones for which A; has minimum volume are the
~ Euclidean balls.

It should be clear through (3.2) that (3.3) implies (3.1) as ¢ — 0. Conversely,
bounding below d Voly(A;)/dt through (3.1) and (3.2) and integrating yield
(3.3). The topic of Section 2 connects with (3.3) for the large values of ¢. This
is uninteresting when N = 3, but it would be disastrous to stop there because
our intuition does not function beyond the case N < 3.

In the Gaussian case, the statement corresponding to (3.3) is as follows:

. Among the sets A of given measure (for yy),
(3.4) the ones for which yx(A;) are minimal are
the half-spaces

(cf. [8, 9] and the references therein).
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Using this when the half-space is orthogonal to a basis vector yields
(3.5) YN(A) = yi((-00,a]) = yn(A:) > yi((—00,a +t]),

from which (2.9) follows in the case a = 0.

An inequality such as (3.5) is extremely satisfactory. It is optimal and points
to the so-called extremal sets on which equality occurs (here the half-spaces).
It apparently is impossible to obtain a very simple proof of (3.5), or indeed
of any inequality with the same quality of precision. The only known ap-
proach is based on rearrangements. Starting with A, one constructs a set
T'(A) which is somewhat more regular than A, such that yx(A) = yn(T(A)),
while yNy(T(A);) < yn(A;). One then iterates the construction in such a way
that the iterates “converge” to an extremal set. [See [3] for a proof of (3.5)
in this spirit.] This is somewhat delicate. More important, it seems that the
method is bound to failure unless the extremal sets have a reasonably simple
structure. This does not appear to be the case in a number of situations of
crucial interest. Therefore, it is of primary importance to find other methods.

To finish this section, we will describe a result which, while not in the main
line of the paper, is connected by several key features. This result is of the
same nature as (3.1), but in a setting where it was not obvious how to define
“surface area.” The space is ) = {—1,1}" provided with the uniform mea-
sure Py.

Given x € () and i < N, we define the point 7';x obtained by changing the
sign of the ith component of x. Given a subset A of () and x € A, we define

ha(x)=card{i < N; T;(x) ¢ A}.
Thus ha(x) counts “the number of directions along which one can leave A

from x.” The following theorem was motivated by a result of Margulis [10].

THEOREM 3.1 [25]. For some universal constant K and all subsets A of (),
we have

) 1
(3.6) [ Vha(x)dPx(x)= 2 Pu(A)(1- PN(A))\/l"g Pn(A)(1- Py(A))

The philosophy of the result is that the left-hand side is a measure of the
“surface area” of A.

Thus, (3.6) provides a lower bound for the surface area of A, given the
“volume” Py(A) of A. To understand better the nature of this lower bound,
we first state the Gaussian version of (3.1), which follows from (3.5) the way
(3.1) follows from (3.3). We have

1 g2
3.7 YN(A) = 'yl((—oo,a]? = sy-1(A) > mexp(_;_)’

{

where the “Gaussian surface area” sy_1(A) is defined as

sn-1(A) = lim t~lyn(A\A).
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If we remember that, for a < —1, y;1([—o00,a]) is of order (1/|a|) exp(—a?/2),
we see that (3.7) implies

1
yn(A)(1-vNn(A))

The similarity between (3.6) and (3.8) is no accident. It arises from the fact
that (RY, yy) is essentially a “quotient” of ({—1,1}"', Px/) when N’ > N (so
that isoperimetry in the latter cannot be better than in the former). To see
this, we simply observe that when M is large, y; is close to the image of Py,
under the map (x;);<yy — M~1/2 Y i<m %i, by the central limit theorem, so that
yn is close to an image of Pyjs. Thus, (3.6) can be seen as extending some
aspects of (3.7).

One important feature of (3.6) (proved by induction over N) is that while
it provides a bound of the correct order, it avoids the considerably more dif-
ficult “extremal” problem of determining the infimum of the left-hand side
given Py(A). As already mentioned, this feature is shared by many of the
inequalities we will present.

As should be expected from the discussion relating (3.6) and (3.8) and as is
easy to see, both sides of (3.6) are of the same order when A is a set of the

type

(3.8) sn-1(4) = %'YN(A)(I - YN(A))\/IOg

App = {(xi)isN; Doxi < k}
<n

An important feature of (3.6) is that it is “dimension independent,” that is, does
not depend on N (a feature already present in the original result of Margulis).
Combinatorialists have considered the problem of finding which subsets of
{—1,1}¥ have the smallest boundary JA [defined, e.g., as the set of points of
A for which Az (x) > 0], but their measure of the size of /A is simply Py(dA).
This formulation, however, is not dimension independent. In particular, the
sets A, n/2, for n < N, play essentially the same role with respect to (3.6), and
for each of them both sides of (3.6) are of the same order. However, the size
of their boundaries, when measured with the “dimension dependent” quantity
Pn(dA) is very different, and only Ay n/2 has a boundary of the smallest
possible order among all sets of measure about % This matter of independence
of dimension will be a crucial feature of the result of Section 5, where it will
be discussed again.

4. Martingales. The martingale method has been important in exploring
concentration of measure in cases that are not accessible to the rearrangement
methods described in the previous section. It is elegant, robust and simple.
Even when rearrangement could be used, the martingale method sometimes
gives comparable results in a much simpler fashion.

_ In contrast with the approach of the previous sections, which concentrate
on “enlargements” of large sets, the martingale method deals directly with
functions. The basic idea is that if (¥;);<, is an increasing sequence of
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o-algebras, such that 3 is trivial, and if f is 3, measurable, then

(4.1) f-Ef= ) d,

1<i<n

where d; = E(f|2;) — E(f|3;-1). Thus (d;) is a martingale difference se-
quence, that is, d; is 3;-measurable, and E(d;|2;_1) = 0. The next step is to
get bounds on

> t).

(4.2) p(
This could be the time to observe that the martingale will give bounds for
P(f —Efl>1),

in contrast with (2.4), which involves My. In practice, it is easier to deal with
Ef rather than M. However, it must be pointed out that, under (2.4),

2 di

i<n

M;—EfI <EIf ~-Mj <2 a(P,u)du,
0
so that (2.4) implies
P(|f— Ef| > t+2/ a(P,u)du) <2a(P,t)
0

and the occurrence of My in (2.4) is only a secondary nuisance when a(P,t)
is very small.

While there is an extensive and deep theory of martingale inequalities,
the inequalities required to bound (4.2) are simple martingale adaptations of
classical exponential inequalities for sums of independent random variables.
Namely, one bounds E exp(A};_, d;) in order to use Chebyshev’s exponential
inequality -

4.3) P(Z = t) < inf (exp(—At) E exp AZ).

To do this, we observe that

E(exp)\Zdi) = E((exp/\ Z di)E(exp )\dn|2n_1))
i<n i<n-1

4.4)
< E(exp)\ 3 di)HE(eXp AdnlZn 1),

i<n-1
so that, by iteration,
(4.5) Eexp)\Zdi < l—[ HE(exp /\diIEi_l)”oo.
i<n 1<i<n .

The key of the success of this method lies in an efficient control of d;.
_ Probably the most important case is when one controls ||d;|l«. In that case, it
is a simple matter to show that

A
| Eexp Adil2i1)]|,, < exp 5 ld:lE,
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which, when combined with (4.3) and (4.5), yields

2t
Teze) s2e0 (- 5 )

i<n
a result usually referred to as Azuma’s inequality. In the case where d; =
a;e; [(&;)i<n are independent Bernoulli random variables], (4.6) specializes to
the so-called sub-Gaussian inequality

t2
Y aisi| = t) < ZeXP(—zz—z),
i<n @;

1<n
a very important fact that contains (1.2) as a special case.

The use of martingales in the spirit above was apparently first made
by Yurinskii [33] in the case f = ||Y;,., Y;l, where Y; are independent
Banach space-valued r.v’s. In this case, taking for 3; the o-algebra generated
by Y1,...,Y;, the key observation is that d; is estimated by

(4.6) P(

(4.7) P(

di <Yl + E(IY;ll1Zi-1)-

An important step was performed by Maurey [13], who discovered how to use
(4.5) in a situation where neither the choice of 2; nor the control of d; is
obvious. The generality of the method was understood by Schechtman [21]. It
yields concentration of measure in several important situations (cf. Chapter 1
of the beautiful book [17]).

In more applied fields, (4.6) was used independently by Shamir and Spencer
[22] in studying the chromatic number of random graphs, by Rhee and Tala-
grand [20] in studying stochastic bin packing and the stochastic traveling
salesman problem and later by Pastur and Shcherbina [19] in statistical me-
chanics. Since then, it has literally swept the world (see, e.g., [14]).

For all its qualities, the martingale method has a great drawback: it does not
seem to yield results of optimal order in several key situations. In particular,
it seems unable to obtain even a weak version of concentration of measure
phenomenon in Gaussian space, as described in Section 3, and does not allow
the main inequalities of the present paper to be obtained. For this reason, a
new method needed to be invented. It will be explained and demonstrated in
the rest of the paper.

5. Approximation by one point. In this section we will prove (2.6). The
reason for the title of the section is that (2.6) means that when P(A) > % most
points of QO belong to A; for ¢ not too large, which in turn means they can
be well approximated by at least one point of A.

. Inequality (2.6) can (essentially) be obtained using (4.6). A special case,
with identical proof, is obtained in [17]. In fact, given a set A with P(A) > %,
it suffices to apply (4.6) to the function f(x) = d(x, A), where d denotes the

Hamming distance and where 3; is generated by the first i coordinates. Then
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one can show that |d;| < 2, so that by (4.6),
t2
P(If -Ef1=¢) < 2€Xp<—ﬁ)‘

Now, when ¢ = Ef, the left-hand side is at least %, since P(f <0) = P(A) > %
and we get t = Ef < (2N log4)'/2 so that

2
P(f>t+ (2N10g4)1/2) < 2exp<—t—),
2N
a weak form of (2.6) that is of comparable strength.

Somewhat weaker statements than (2.6) were also discovered indepen-
dently through a completely different approach in information theory; see,
for example, [11]. The reason for which we choose (2.6) to explain our basic
approach is simply that because the meaning of what we try to prove is easy to
understand, the reader should be better able to concentrate on the mechanism
of the proof.

The most natural way to prove (2.6) seems to be by induction over N.
Thus, starting with A ¢ QV, one should try to define sets in OV~ to which
the induction hypothesis can be applied. These sets will not necessarily be of
measure greater than or equal to %, so that it is necessary to use as induction
hypothesis a statement valid whatever the value of P(A). In view of what
is done for martingales, it is natural to try to bound E exptd(x, A), where
d(x,A) is the Hamming distance of x and A. [One might object that d(x, A)
need not be measurable, but measurability questions are irrelevant here and
will be ignored.] It is remarkable that about the simplest bound one can expect
for E exp td(x, A) turns out to be suitable.

PROPOSITION 5.1.

1 2N
(5.1) Eexptd(,A) < mexp T.
In particular,
(5.2) P, A) > k) < -2 exp-F
. SA)> k) < P(A)e Pl—% )

We observe that (5.2) follows from (5.1) by the Chebyshev exponential in-
equality, and that (5.2) implies (2.6).

The first key feature of the method of proof (which we will simply call the
induction method) is that it will reduce the proof of a statement such as (5.1)
concerning QV to the proof of a statement concerning only functions on (.
Most of the time the proof of this statement is easy; sometimes it is a bit
, ha'rder, but its very elementary.nature ensures success with sufficient effort.

 The second key feature is that (as of today) the method of proof has turned
out to be almost miraculously sharp in every situation. The reasons for this
success are not entirely clear at present.
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In the present case, the induction method reduces the proof of Proposi-
tion 5.1 to the following lemma.

LEMMA 5.2. Consider a measurable function g on Q). Then we have
(5.3) / mln( )d/.L(w)f gw)du(w) < exp —
) g(w) 4

PRrROOF. We observe that
mm( 2(o )> <1+e(1- g(w)),

so that the left-hand side of (5.3) is at mos_t
a(1+e€(1-a)),

where a = [ g du. The maximum over a is

et/2+e—t/2 2
(=)

_ 2 . . .
Now (e“ +e7%)/2 < e“/2, as is clear from a power series expansion. O

The proof of Proposition 5.1 goes by induction over N. The case N = 1
follows from the application of (5.3) to g = 14.

Suppose now that the result has been proved for N, and let us prove it for
N +1. Consider A c QN+l = QN x Q. For w € Q, we set

(5.4) A(w) ={x c QY; (x,0) € A}
and
B={xcQV;30ecQ, (x,0) € A}.
With obvious notation, we have
d((x,0),A) < d(x, A(w)).

Indeed, if y € A(w), then (y,w) € A, and the number of coordinates where
(y,0) and (x,w) differ is the number of coordinates where x and y differ.
Thus, by the induction hypothesis, we have
exp(t2N/4)
(5.5) /QN exp(td((x,0), A)) dP(x) = TRESE.
We also observe that
d((x,w),A) <d(x,B)+1.

Ihdeed, if ¥ € B, then for some o’ € () we have (y, ') € A, and the numbers
of coordinates at which (x,w) and (y, ') differ is at most one more than
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the number of coordinates at which x and y differ. Thus, by the induction
hypothesis, we have

exp(t2N/4)

/QN exp(td((x, ), A)) dP(x) = ZPp=,

and combining this with (5.5) we get

2N\ . (t) 1
/QN exp(td((x,w),A)) dP(x) < eXP( 4 )mm(e;fB) ’ P(A(w))>'

Integrating with respect to w, we have

/QNH exp(td((x, w), A)) dP(x) du(w)

< ex (tzN)f min( e 1 )d (w)
—_ R w).
=P\ ) o P(B) P(A(w))) "
To complete the induction, it suffices to show, by Fubini’s theorem, that

. et 1 exp(tt/4) exp(tt/4)
/nmm<P<B>’ P(A(w») du) = B o i(A) = Jo P(A(w) dp(e)’

This follows from Lemma 5.2 applied to the function g(w) = P(A(w))/P(B).

One way to express the fundamental difference between the induction
method of Proposition 5.1 and the martingale method is that the martingale
method looks “forward” while the induction method conditions with respect
to the last coordinate and looks “backward,” taking full advantage of the fact
that the measures obtained after conditioning are identical product measures.

An interesting extension of (5.2) is obtained by allowing a term P(A)%, a >
1, rather than P(A) in (5.2); that is,

1 2k «
.6 Pd(,A)>k)< —— e .
(5.6) (d(-,A) = )SP(A)anP( N1+a)
The proof is similar to that of (5.2), but requires more calculus. The point of
(5.6) is that, as @ — 0o, we obtain almost the best possible exponent —2k2?/N.
[The claim that this is the best possible follows from the analysis of the situ-
ation of (1.2) that will be done in the next section.]

6. Approximation by many points. In order to evaluate the result of
Section 5, let us analyze a situation equivalent to that of (1.2). We take QN =
{0,1}¥, provided with the uniform measure, and

A= {x = (x;)i<N; Z X < ‘]!}
~ i=N 2
and we assume for simplicity that N is even.
“Consider x € {0,1}, m = m(x) = Y_;-y %; and assume that m > N/2. We
claim that d(x, A) = m — N /2. To prove that d(x,A) > m — N/2, we observe
that the function y — Y;_ y; is 1-Lipschitz. On the other hand, if y € A is
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such that for all i, y; < x; (which we summarize by the statement y < x), we
have d(x,y) = m — N/2. Thus, if £ > 0,

(a4 =k =fa Ywzhe g

i<N 2
The central limit theorem shows that, for & = t/2+/N,

2 2k2
P(d(-,A) = k) ~ y1((t,00)) ~ exXp — 5 ~ eXp ——-

(neglecting polynomial terms in front of the exponential), so that (5.2) is sharp
(except for the factor 2 in the exponent). The previous discussion could seem
redundant since the derivation of (2.7) from (2.6) already shows that (2.6)
(except for the numerical factor in the exponent) is sharp. There is, however,
a detail of crucial importance. The definition of A only means that if x € Ay,
there is one y in A for which d(x, y) < k. However, in the preceding example
every y in A with y < x satisfies d(x,y) = k.

Given x € {0,1}", y € A, it is rather natural to measure the “failure” in
approximating x by y by the set {{ < N, x; # y;} or, equivalently, by the
element A(x,y) of RY such that

L

To take into account the fact that the elements y of A that approximate x
well do not “miss” the same coordinates of x, it is natural to investigate how
small an average of points A(x, y) can be. In the present case it is natural to
average over all y < x, with equal weight. This average is clearly equal to

h(x) = m—_N/2 x.
m

We now observe that the Euclidean norm ||A(x)||2 of A(x) satisfies

N\ 1 N\ [2

since m(x) ~ N /2 (with overwhelming probability). Now (1.2) implies that

“

so we get that (essentially)
P(||h(x)ll2 > t) < exp(—2?).

Quite remarkably, the dimension N has disappeared from this formula. Well,
maybe there is some kind of coincidence there, so let us now investigate a
more general example, where 0 is provided with the probability P such that
the law of the coordinates is independent and has expectation p,0 < p < 1.
In jargon,

m_N
2

> t) < 2exp(—2t2),

P = ((1 — p)éo + p31)®N.
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Assume again for simplicity that pN is an integer and that p < %, and
define

A= [x =(x)i<N; )% < PN}-
i<N

For x € {0,1}¥, m = Y i<N %i, we again have d(y, A) = m — pN. We should
observe that (1.2) is now very inaccurate. Indeed, by the classical bounds on
the tails of the binomial law [5] we have something like

2
6.2 P(m-pN =) < eXP(_zp(l — p)N + smaller term)

(for t < 2pN), which is much better than (5.2) as p — 0.
On the other hand, proceeding as in the case p = %, we get

h(x):wx

b

so that
|A(x)llz = (m — Np)y/m >~ (m — Np)\/%,

and combining with (6.2) yields

t2 2
(6.3) P(|h(x)ll2 > ¢t) < eXP<—m) < eXp<—§).

Quite remarkably, not only N, but also p has vanished from this inequality:
it can no longer be an accident, but only a special case of a general fact.

Consider now a probability space Q. For x,y € QV, we define A(x,y) € RY
by

17 ifxl i
my=lo HHZ

For a subset A of OV, we define
Ui(x) = {h(x,y); y € A} cR".

Define V;(x) as the convex hull of U;(x), and define f(A, x) as the Euclidean
distance from zero to V;(x). Thus f(A, x) measures “how far x is from A.”

Consider a product measure P on Q%.
THEOREM 6.1. We have
1 1 -
6.4 Zf? P e,
6.4) [ exp 3144, 2)dP@) < 505

'In particular,

1 —
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Compared with (6.3), we observe a loss of a factor of 2 in the exponent.
This loss can, however, be almost recovered when one replaces in (6.4) the
term P(A)~! by P(A)~@ [as in (5.6)].

Theorem 6.1 shares several important features with Theorem 3.1. [Some-
how I feel that when QY = {0,1}¥, provided with the uniform probability,
Theorem 6.1 is to Theorem 3.1 what (3.3) is to (3.1), although I do not know
how to make this idea precise.] The most important feature is that it is dimen-
sion independent so that (in contrast to Proposition 5.1) it is useful to study
(e.g.) infinite series.

The key to the proof of Theorem 6.1 is the following lemma. The proof is
elementary calculus and need not be reproduced here.

LEMMA 6.2. Consider 0 <r < 1. Then

(1-a)" _

(6.6) inf r~*exp <2-r.

Before we start the proof of Theorem 6.1, we need an equivalent way to
define f(A, x). This way is less transparent, but technically more convenient.
We set

Ua(x)={(si)i=v € {0,1}Y; Ay € A, ;=0 = x; = y;}
= {(si)ifN € {07 l}N; 3 Y € A’ Vi =< N7 Si = h(x’y)i]'
For convenience, if s; > h(x, y);, for each i < N, we say that y witnesses that

s € Ua(x). Thus, viewing U z(x) as a subset of RV, we have U 4(x) D U (x).
We denote by V 4(x) the convex hull of U 4(x). It should be clear that

Y z € Va(x), 32 e Vy(x), Vi<N, zi > 2},

so that f(A, x) is also the distance from 0 to V 5(x).

We now prove Theorem 6.1 by induction upon N. We leave to the reader
the easy case N = 1. For the induction step from N to N +1, consider a subset
A of QN+1 and its projection B on QV. For w € ), we set as usual

Alw) ={x € QOV; (x,w) € A}.
Consider x € OV, w € O and z = (x, w). The basic observation is that
seUaw(x) = (50)eUalz),
teUp(x) = (t,1)eUa(x).

For the first claim, if y € A(w) witnesses that s € U 4(,)(x), then (y,0) € A
and witnesses that (s,0) € U 4(z). For the second claim, if y € B witnesses
that ¢ € Ug(x), then for some v’ we have (y,w’) € A, and this point witnesses
that (¢,1) € Ua(x). Thus, for s € V4(,)(x) and t € Vp(x), 0 < A < 1, we have
(')\s +(1=2A)t,1 — A) € V4(z). The convexity of the function u — u? shows
that

6.7 f2(A,2) < (1 =22+ Af2(A(w), x) + (1 — A)f?(B, x).
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The main trick of the proof is to resist the temptation to optimize now over A.
By Hélder’s inequality and the induction hypothesis, we have

[ exp 114, (x,0)) dP(x)
A
< exp 3 (1 A>2( [ exp%fz(Amx)dP(x))

1-A
« (/QN exp %f2(B,x) dP(x))

1 9 1 A 1 1-A
sexpz(1=4) (P(Am») (p<3>)

1 P(A(0))\™*
~ P(B) P(B) )

This inequality holds for all 0 < A < 1. Using (6.6) with r = P(A(w))/P(B) <
1, we get

exp — (1 - /\)2<

[, exp 374, (x,0) dP() < 1 (Z_P(Aw)))

P(B) P(B)
Integrating with respect to w and using Fubini’s theorem yields
1 ( 9_ P u(A)
~ P(B) P(B)
1
< _————’
~ P u(A)

[exp g f2<A Vd(P®p) <

since x(2 — x) < 1 for all x real.

While Theorem 6.1 turns out to be a principle of considerable power, it takes
some effort to realize this. One efficient way to use Theorem 6.1 is through
the following observation.

LEMMA 6.3. Consider x € QV. Then given any sequence (a;)i<n, we can
find y in A such that

(6.8) Y {ai; xi # yit < f(Ax) | ol
isN i<N
ProOOF. The linear functional @: s — ) ;. ya@;s; on RY, provided with

the Euclidean norm, has a norm ./}, Na Since V,(x) contains a point
at distance f(A,x) to the ongm the infimum of @ on V,(x) is at most

’ f(A x)\/2i<N a2 but since V’(x) is the convex hull of U; (x), the infimum of

@ on Uj(x) is also at most f(A,x),/> ;N ai, which is the statement of the
lemma. O
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Theorem 6.1 has proved efficient in stochastic combinatorial optimization,
so we describe a typical application. Consider a sequence Xi,..., Xy of in-
dependent r.v’s, uniformly distributed over [0, 1]. We are interested in Ly =
Ly(X4,...,XnN), where Ly(X1,...,Xn) denotes the longest increasing sub-
sequence of the sequence X,..., Xy of numbers. To reduce to the setting of
sets in product spaces, we consider Q = [0,1] and, for x = (x;);<ny € QV, we
set L(x)=Ln(x1,...,%XN).

For a > 0, we set

A(a) ={x € QV; Ly(x) < a}.

The basic observation follows:

LEMMA 6.4. For all x € QN we have
(6.9) a > Ly(x) — f(A(a),x)v/ Ln(x).

In particular,

v
(6.10) Ly(x)>a+v = [f(A(a),x)> NCETh

PrROOF. For simplicity, we write & = Ly(x). By definition, we can find a
subset I of {1,..., N} of cardinality b such that if i, j € I, i < j, then x; < x;.
By Lemma 6.3 (taking a; = 1, if i € I, and «; = 0, otherwise), there exists
y € A(a) such that cardJ < f(A(a),x)V/b, where J = {i € I, y; # x;}.
Thus (x;)icr\s is an increasing subsequence of y. Since y € A(a), we have
card(I\J) < a, which proves (6.9).

To prove (6.10), we observe that by (6.9) we have

Ly(x)—a
vLn(x)

and that the function u — (u — a)//u increases for u > a. O

f(A(a),x) =

We denote by M (= My ) a median of Ly.

THEOREM 6.5. For all u > 0, we have

2
(6.11) P(LN2M+u)§2exp<—4(7u_;—uj),
u?
(6.12) P(LNsM—u)§2exp<—m). :

., PrOOF. To prove (6.11), we combine (6.12) with M = a and (6.5). To prove
(6.12), we use (6.10) with a = M — u,v = u, to see that

Ly(x)>M = f(A(M—u>,x>z7“—M,
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so that
(6.13) P(f(A(M— u),x) > — ) -1
) )z =)z g
On the other hand, by (6.5),

u 1 u?
6.14) P(f(A(M—u),x)Zm)SP(A(M_u))exp(—m).

Comparing (6.13) and (6.14) gives the required bound on P(A(M —u)). O

It is known (and very easy to see) that My is of order +/N, so that Theorem
6.4 proves that the fluctuations of Ly are not larger than N'/4. Simulation
[18] suggests, however, that the correct order of magnitude is smaller. Such a
phenomenon cannot occur from a deficiency of Theorem 6.1, but rather from
the specifics of the situation. We would like to suggest a plausible explanation
of what happens.

We conjecture that (in most situations) a random sequence (Xi,..., Xn)
has many subsequences of (nearly) maximal length. To see the relevance of
this, let us go back to the proof of (6.9). Consider & < Ly(x). Consider the
family # of subsets I of {1,..., N} of cardinality b such that i,j e I,i < j
implies x; < x;. Consider the family & of functions on {1,..., N} that consists
of the indicators of sets of #. Consider an element (a;);<x in the convex hull

of # and let ¢ = (Zis N a?)l/ % When the family # is “rich,” we can expect

that there is an averaging-out effect and that the sequence (a;);<y can be
chosen such that o2 « b. Using Lemma 6.3 we can find y in A with

Y Aai; i # yit < of(Ala), x).

i<N
Thus, we can find I in # such that
card{i € I, x; # yi} < of(A(a), x).

As in the proof of (6.9), this shows that b — o f(A(a), x) > a. Thus, if b is close
to L(x) and o2 « b, this allows us to improve upon (6.9). Deciding whether
the phenomenon described above occurs or not is unrelated to the methods of
the present paper and would certainly require a better understanding of the
specifics of random sequences.

The reader must have observed that in Lemma 6.4 we do not use the full
power of Lemma 6.3; rather, instead of using (6.8) for all sequences of num-
bers (a;), we used it only for sequences of 0’s and 1’s. It seems reasonable to
assert that Theorem 6.4 uses Theorem 6.1 at the very limit of its area of com-
petence. This can also be seen by the fact that martingale methods can prove
an inequality almost as good as (6.11) and (6.12) [2]. By contrast, martingale
methods seem powerless to approach the applications where Theorem 6.1 is
used at full power, such as in the following theorem.
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THEOREM 6.6. Consider a real-valued function f defined on [—1,1]N. We
assume that, for each real number a,
(6.15) the set {f < a} is convex.

Consider a convex set B c [—1,1]N, consider ¢ > 0 and assume that the
restriction of f to B has a Lipschitz constant at most o; that is,

(6.16) Vx,y€eB, If(x) = f(y) <olx—yl,

where | x| denotes the Euclidean norm of x.
Consider independent random variables (X ;);<n valued in [ -1, 1], and con-
sider the random variable

h=f(Xy,...,Xn).
Then, if M is a median of h, we have, for all t > 0, that

4 t2
where we assume

b=P((X1,...,XN)¢B)<%.

Certainly the reader should first consider the special case B = [-1,1]V,
where b = 0 and where (6.17) reads

/2
(6.18) P(lh— M| zt)§4exp(—m).

To understand this inequality better, we will compare it with the Gaussian
case. Let us now assume that f is defined on all RY and has Lipshitz constant
o.Set h' = f(Y1,...,Yn), where the sequence Y,...,Y y is independent
standard normal. Combining (2.5) and (2.9), we have

2
(6.19) PO M| >t) < exp<—2—2—2—),

where M’ is of course a median of #'. Thus, what (6.18) does is to prove an
inequality similar to (6.19) for random variables that need no longer be Gauss-
ian (but rather are bounded) and this under only the pretty mild restriction
(6.15).

PrROOF OF THEOREM 6.6. Let us fix a € R, and eonsider the set A(a) =
{f < a} N B. The key observation is that, for any x in [—1,1]", we have

(6.20) d(x,A(a)) < 2f(A(a), x).
Indeed, if y € A(a), we have
Yi<N, |2 — yil <2h(x,y);
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[where A(x, y); is defined in (6.1)] because the left-hand side is at most 2 and
is zero when the right-hand side is not 2. Thus, for any points (y*) r<m of A(a)
and convex coefficients (az)r<um, we have, for each i < N, that

xXi— Z Olkyfe
k

so that, since A(a) is convex,
k
x=) ary
k

from which (6.20) follows by definition of Vy.
Now, if x € B, it follows from (6.16) that .
f(x) <a+od(x,A(a)) <a+20f(A(a),x).

Thus, if we denote by P the law (X1,...,Xy) on QY =[—1,1]¥, (6.5) implies

<2) aph(x, y*);,
k

2\ 1/2
d(x, Aa)) < 52(2<Zakh<x,yk>i)) ,
k

i<N

1 £
P(fZa—Ft)Sb—i—m)—)exp(—W).

Taking a = M, we get P(A(a)) > % — b, so that

1 t2
P —— ).
(sz+t)§b+%;bexp< 160'2)

Taking a +t = M, we get

2 ="TPAM —1) TP\ " 1602 )

so that

2
p(A(M—t>>=P<fsM—t)szb+2exp(*1e’s:7)' )

COMMENTS. (i) Certainly the reader has observed the similarity of this

proof with the proof of Theorem 6.5.
(ii) We have not been very cautious with the coefficients of b. This is not

needed because in applications b is extremely small.
Here is an important corollary.

THEOREM 6.7. Consider independent (real) random variables (X;);<n val-
- ued,in [—1,1] and vectors (v;);<i in a Banach space Y. Define

o? = sup{z ¥ ()% ¥y e Y, |yl < 1],
i<N
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where Y* is the dual of Y. Then, if M denotes a median of | 3_;<n X;v;ll, we
have

ZXiUi

tZ
- M' > t) < 4exp(—————).
= 1602

REMARK. The most important case is where the r.v’s X; are Bernoulli, that
is, (X;=1)=P(X; =-1) = 3.

(6.21) P(

PROOF. We observe that || 3,y X;vill = f(X1,...,Xn), where, for x =
(xi)i<n in RN we set

flx) =Y xiv;

i<N

By the Hahn—Banach theorem,

> x| = sup{y*< > xivi); yeYs Iyl < 1].

i<N i<N

Now, by Cauchy—-Schwarz,

y*( > xivi) =Y xiy*(v) < (Z x?)m( > y*(vi)2>1/2 < olx|.

i<N i<N i<N i<N
Thus, by the triangle inequality,
If(x) = fF(WI < flx—y) < ollx—yl
and thus (6.21) is a specialization of (6.18). O

We now give another application of Theorem 6.6 to the Hopfield model of
associative memory [6]. Consider two integers M, N. For x = (x;2)i<N, k<M €
RMN and for £ = (&;)i<y € {—1,1}V, we set

( Z xi,ké‘i)z

1
H(x,6)=== 3
2N P

k<M

(the factor 1/2N is customary but unimportant).
Given a subset A of {—1,1}", we set

()= Fr(x) = 5 log( X exp BH(x.0)).
B ceA N
The quantity of interest is the random variable Ay = fn(n), when
N = (Mir)i<n, k<y and when (n;r)i<n, r<m are independent Bernoulli r.v’s
) [P(m,k = 1) = % = P(ni,k = —1)] In the case A = {—1, 1}N,hN is the
free energy of the Hopfield model (at temperature 7' = 1/8) and its study is
extremely difficult, yet one has the following general result.
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THEOREM 6.8.  Denoting by my a median of hy, for some universal con-
stant K and all 0 <t < (N + M), we have

/2
P(lhy —mp|>1t) < 126XP<— m)

PROOF. The proof relies on Theorem 6.6, applied to the function f on
[-1,11¥M Tt is not clear whether f is convex, but certainly exp Bf is con-
vex, and this implies (6.15). Consider a parameter L and set

B={xe[-1,11";Veec A, H(x,e) <L}

so that B is convex. Consider now x and y in B. We try to prove (6.16). We
observe that, given ¢ € A,

2N(H(x,e) — H(y,8)) = Y_ ( > (xip— yi,k)ei)( Y xipsit+ Yy, yi,ké‘i)-
k<M \i<N i<N i<N

Thus, by Cauchy—-Schwarz,

\H(x, &) — H(y, 8)| < —2iva,

where

2
U= Y ( D (xin— yi,k)8i> ,

k<M \i<N
2
vi=3Y" ( Do xipsit )y yi,ké‘i) .
k<M \i<N i<N
Using the inequality (a + b)? < 2(a? + b?), we see that
V2 < 4N(H(x,¢) + H(y, &)) <8NL.
Using Cauchy—Schwarz, we see that
U? <N ) (xip — yip)* = Nlix - yl?,
k<M
i<N
so that, finally, for each ¢ in A we have
|H(x,e) — H(y, &)l < llx — yllv2L.
It is then very simple to see that this implies
[f(x) = f(y)l < vV2L|x — y|.

Thus, by (6.17) we have

‘ 4 t?
6.22) P(lhy —myl 2 1) < b+ T exp(_B_zf),
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where b = P(n ¢ B). To choose L, we note that by (4.7) we have, for each £,

1 2
E exp m( Z Th‘,ké‘i) < Kj,
i<N

where K is a universal constant, so that, by independence,
EexpiH(n,e) < KY
and, by Chebyshev’s inequality,
P(H(n,&) > L) < KMe™L/2,
Thus, if L =4N +2M(1 +log K1), we have
P(H(n,s)> L) <M,
so that
PEee{-1,1}¥; H(n,e)> L) < e NtM),

Thus b = P(n ¢ B) < e~ ¥*+M)_ Since b < 1, we get from (6.22) that

2
P(]hN — mN] > t) < 4eV(M+N) +8€Xp(—m),

where K is a universal constant. The result follows. O

7. Approximation by very many points. Let us go back to the discus-
sion at the beginning of Section 6. Given x € {0,1}", what we have used is
that the functions A(x, y) (y € A) have a small average A(x) = (1— N/2m)x,
where m = Y_;_y x;. The existence of this average, however, does not fully re-
flect the multitude of points of A that approximate x. Indeed, to obtain such
an average it would essentially suffice to have about m/(m — N/2) elements
y < x in A such that the sets {i; x; # y;} are disjoint.

The result we will present in this section is a considerable strengthening
of Theorem 6.1; it, however, requires a further leap into abstraction.

The basic idea is identical to that of Theorem 6.1. Given x,y in O, we
associate an object v, , and we express that x is close to A if there is a convex
combination of the objects v, ,,y € A, that is “small.” In Section 6, the object
v,y was the indicator of the set {i; x; # y;}. In the present section, we use
a higher dimensional object so that it is harder to make averages of objects
vy,y “small” and so that, in turn, the existence of such small averages yields
stronger information. '

Consider a number 0 < 6 < 1 and the probability measure

v=((1-0)8+ 6561)%N

on {0, 1}". Thus v is the law of an independent sequence (7;);<y wWith En; = 6,
n; € {0,1}. Given x,y in QV, we consider the measure v, , on {0,1}¥ such
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that v, , is the image of v by the map T of {0,1}" that “flips the coordinates”
i for which x; # y;, that is,

u;, if x; =y,

Tu)i = { 1-u;, if % # yi

In other words, v, , is the law of an independent sequence 7; € {0,1} such
that En; = 0,if x; = y;, and En; =1 — 0, if x; # y;. Thus, if 60 # %, the more
coordinates of x and y are different, the more different v, , is from v.

To measure how far a probability u on {0,1}" is from v, we will use the

quantity
du\?
— ) d
/ (d) ”

where the integral is over {0, 1}". We observe that since [(du/dv)dv = 1, by
Cauchy-Schwarz, we have [(du/dv)?dv > 1.
For a subset A of Q¥ we set

2
m(A,x) = inf{f(%’%) dv; peconviv,,; y€ A}}.

THEOREM 7.1 [29]. Assume that B = |0 — %| < % and define

327
“= 1 36p%

Then for all subsets A of OV we have
1
(7.1) /QN m(4,x)dP(x) < v

Certainly the condition |0 — %l < % looks strange. The previous result is,

however, a good illustration of the wonders of the induction method. Analysis
of the canonical example presented at the beginning of Section 6 allows one to
show that the left-hand side of (7.1) can stay bounded when P(A) > % inde-
pendently of (), A, N only when |0 — %| < %. We have no intuitive explanation
to offer as the reason for this “phase transition.”

As will be demonstrated later, Theorem 7.1 is in many respects a consid-
erable strengthening of Theorem 6.1. However, it would have been hard to
discover Theorem 7.1 this way, and the motivation came from the convolution
problem of [24], that we recall now. Consider, on the group Gy = {-1,1}¥,
the Haar measure A and the measure

. v={(1-0)6_1 +08,}°V.

Consider the convolution operator T: f — f % v from L'(A) to L(A). The
conjecture means that T displays some regularization properties, as follows.
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CONJECTURE 7.2. Consider f € LY(G), f > 0and [f dA = 1. Then, for all
t > 0, we have

(7.2) A{Tf = t}) <

K
t/log(e + 1)

where K is a universal constant.

The logarithmic factor in (7.2) is apparently related to the logarithmic factor
in (3.6).

The idea of Theorem 7.1 was simply that T'f(x) = v.(f), where the proba-
bility v, is the translation of » by x. Thus, if A = {x; v,(f) > ¢}, it should help
to know that for many y we have v, close to the set {v,, x € A} (a fact whose
formulation led to Theorem 7.1). We have, however, been unable to carry out
the idea. ’

The progress that Theorem 7.1 represents over Theorem 6.1 is exemplified
by the following result, where we set

Ik = {i=(i1,...,ik); 1<ii<ig<---<ip < N}
PROPOSITION 7.3. Let us fix 0 with |6 — %l < %. Assume that m(A,x) < ée.
Then for each k > 1 and each family (a;)ici, there exists y in A such that if
Jr=Jp(x,y)={iely YLk, x; # yi,},
then
1/2

Zaifcktk/z(za?> s

iEJ/, iely
where C depends on 0 only.

To understand this result better, let us specialize to the case & = 1. Thus,
given numbers («;);<n, we can find y € A such that

1/2
(7.3) Y {ai; % # ¥i} < Cy/log m(A,x)( > a?) :
i<N i<N

To compare (7.3) with (6.8), we have to compare the set where C/logm(A,-)
is large with the set where f(A,-) is large. We note that from (7.1) we have

1 u?
(7.4) P(Cylogm(A,-)>u) < WeXP(_@)’

whereas from (6.4) we have
1 u?
57.5) P(f(A,;) > u) < ?(T()exl)(_?)'

Thus (6.8) and (7.3) are comparable [with the exception of worse constants
in (7.4) versus (7.5)], but the conclusion of Proposition 7.3 holds for any & > 1.
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8. Control by several points. Let us start by providing motivation. Sup-
pose that we are given a sequence (Y;);<y of nonnegative r.v’s and that we
know that

P<ZYi < M) > 1
i<N

We attempt to find bounds for the tail probabilities P(}Y;<n Y; > t). The basic
observation is as follows. Set A = {2i<nYi < M}. Consider o' and w in A.
Set

I = {l < N; Yi(w) = Yi(wl)}

so that
8.1) YY) =) Yi(w) <M

iel iel
by positivity of Y;. Consider now wl,...,®? in A and set
(8.2) J={i<N;3£<q,Y(o) = Yi(o%)}.
Thus, by (8.1) and the positivity of Y;, we have
(8.3) DY) <qM+) Y,

i<N i¢d

One then hopes that if card{i ¢ J} is small, we will be able to control the last
term. This discussion should provide motivation for the following discussion.

Consider an integer g > 2. For x € OV and subsets Ay, ..., A, of OV we define
f(Al’“ -,Aq,x)
(8.4)
=inf{card{i < N; x; € {y},...,y?}}: yleAy,. .. ,yle Agl
What we are really interested in is the case A; = Ag = --- = A, but the

proof by induction requires considering different sets. Later we will prove the
following basic fact about f(Ay,..., Ay, x).

THEOREM 8.1. If P is a product measure, we have

1
f(A1,...,Aq,x)
(8.5) /q dP(x) < M=y P(AD)
and, in particular,
(8.6) P(f(A A )>k)< 1
. geeey ') = __qu(A)q.

Combining with (8.3) we see that if S, denotes the sum of the largest k
terms of the sequence (Y;);<n, we have

. q
(8.7 P( Y. Yi=qM+ t) < % + P(Sk > t).
i<N
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Hopefully the last term can be controlled by classical methods, and it remains
only to optimize (8.7) over the various parameters.

Certainly the previous method seems an overkill to study the tails of
>i<n Yi. Suppose, however, that we now have a function f on QY and
functions (Y;);<n such that if A = {f < M}, where M is the median of f, the
following holds. Given x € OV, y',...,y? € A and

J={i<N;3t<q, x; =y}
then
(8.8) f(x) < qgM + Si,
where &k =card{i < N; i ¢ J} and S is the sum of the & largest terms of the
sequence (Y;(x;))i<n. Then

(8.9) P(f>qM+1t) < ; + P(Sy > t).

To give the most important example of this situation, let us consider the
case where

f(x)=E.|Y &Zi(x)|,

i<N

for functions Z; from ) to a Banach space, and where (¢;);<n are independent
Bernoulli r.v’s. The key observation is that the function

E.|> &iZi(x)

el

is an increasing function of I, as is seen by taking the expectation with respect
to certain ¢;’s inside rather than outside the norm. Thus, when J = U,<, I,
by the triangle inequality we have

Y eiZi(x)| <D E.|Y &
ied {<q ied
and thus
f(x)<Y E.|Y & + D 1 Zi(x)
t<q ied igd

This implies that (8.8) holds for Y; = ||Z;||. An important contribution of
Ledoux [7] made clear that controlling f is the main step in controlling
| Yi<n €iZi(x;)ll. This approach using inequality (8.9) has been very success-
ful, as demonstrated in [9], -and it is remarkable that its proof is now so
. simple.
The key fact of the proof of Theorem 8.1 is the following simple statement
about functions.
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LEMMA 8.2. Consider a function g on Q, such that 1/q < g < 1. Then

(8.10) f du(/ gdp,) <1

PROOF. Observing that logx < x — 1, to prove that ab? < 1 it suffices to
show that a + ¢gb < g + 1. Thus, it suffices to show that

1
f —du+q/ gdu<qg+1,
g Q

but this is obvious since x 1 +qgx <g+1forqg ' <x<1. O

COROLLARY 8.3. Consider functions g; on Q, 0 < g; < 1. Then

8.11) /(min( ')dun/gl du < 1.

) i<q i<q

PROOF. Set g = (minisq(q,gi_l))_l, observe that g; < g and use (8.10). O

We now prove Theorem 8.1 by induction over N. For N = 1, the result
follows from (8.11) taking g; = 14,.

We assume now that Theorem 8.1 has been proved for N and we prove it
for N + 1. Consider sets Ay,..., A, of Q¥*!. For w € (), we define the sets
A;(w) as in (5.4) and we consider the projection B; of A; on QV. The basic
observation is that

(8.12) f(A1,...,Ay, (x,0)) <1+ f(By,...,Bg,x)
and that, whenever j < g,
(8'13) f(Al,H-;Aqy(x,w)) =< f(Cly"-,qux)v

where C; = B; for i # j, Cj = Aj(w).
To prove Theorem 8.1, we observe that, using (8.12) and induction hypoth-
esis, we have

1
f(A1,..,Aq,(x, w))dp(x - -
/q )= l_[isq P(B;)
while using (8.13) we get
1
f(Ay,.,Aq (xw))dp x)<qg——=— .
Ja *) =9, Py

Thus, setting g;(w) = P(A;(w))/P(B;), we have

1 1
f(Ay,..., Aq(x,w))dp < —_— /min( ,min )d w).
./q (x) < [li<q P(Bi) ? isq gi(w) we)
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Using now the Fubini theorem and (8.11), we have

[ af A=) aP(z) duu(o) < !
[li<q

P(B;) [gidp’
which finishes the proof since [g; du = P(A;)/P(B;).

9. Penalties. Roughly speaking, the Hamming distance measures how
far x is from A by counting the smallest number of coordinates of x that cannot
be captured by a point of A. Thus we get one penalty for each coordinate we
miss. A natural extension of this idea is to consider a nonnegative function A
on Q x  and, for x € Q¥, A c Q¥ to consider

9.1 Fi(A ) =inf] " hxi 0% v e Al
i<N -
as a way to measure the “distance” from x to A.
It is reasonable to require

(9.2) Yowe(d, h(w, w) = 0.

Thus, the case of the Hamming distance is simply A(x, y) = L{xty}-

We observe that, since x, y do not play the same role, we will not require -
to be symmetric. In constrast with the work of Sections 5-8 that requires no
structure on (), Definition 9.1 does require a minimum of structure, namely,
the existence of the function A. On the other hand, this opens the door to a
theory whose complexity certainly would not have been suspected beforehand.

Certainly one needs some control on the size of A. The most obvious way to
achieve this is through moment conditions on 4. A typical result is as follows.

THEOREM 9.1. Set
hllo = sup{h(x, y); x,y € O},

101 = [ [ 10,0 dplw) dp(a).

Then, for each subset A of QN , we have

1 ex (—min( u? u ))
P(A) P 8N|AIE 20Rlw ) )

We do not know how to obtain sharp numerical constants in (9.4). Inequality
(9.4) generalizes Bernstein’s inequality the way Theorem 9.1 generalizes (1.3).
If g is a function on (), setting h(x,y) = |g(x) — g(y)|, it is an interesting
exercise to recover from (9.4) a qualitatively correct version of Bernstein’s
inequality (i.e., only the numerical constants are different).

It is arguable that Theorem 9.1 does not represent a truly new phenomenon.

' It turns out, however, that in Theorem 9.1 what matters is not really A, but
rather the following functional, defined for all subsets B of ():

(9.5) h(w, B) = inf{h(w, w'); o' € B}.

(9.3)

(9.4) P(fu(A,)) 2 u) <
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THEOREM 9.2. Assume that for each subset B of Q) we have

9.6) /Q exp2h(x, B) dp(x) < ﬁ.

Then for t < 1 and each subset A of QY we have

©9.7) /QN exptf4(A, x) dP(x) < %((—i)i).

In particular, if u < 2N we have

©.8) P(fa(A,) = u) < 5 exp(—”—z).
(A) 4N

The point of (9.6) is that taking the infimum in (9.5) has a dramatic effect
and that condition (9.6) is less stringent than the control of

[ ,exp2h(x, 3) dpu(x) du(y)

one would expect would be required in order to obtain something like (9.8).

We illustrate this in the case where Q is itself a product of m spaces and
where A(x,y) = ad(x, y), where d is the Hamming distance on ) and a is a
parameter. It follows from (5.1) that (9.6) holds for @ = 2m~1/2. On the other
hand, if [|A]|2 is given by (9.3), then for this value of a, ||A]|2 is of order /m, so
that there is a loss of a factor ./m in the exponent in (9.4) compared to (9.8).

To give a vivid illustration of what Theorem 9.2 can prove, consider a prod-
uct space QF. Consider a subset A of QV, P(A) > % Then for most elements
x of OV, we can find an element y of A such that the set I = {i < N; x; # y;}
has a cardinal of order ~/N. This is the content of Proposition 5.1; but now
if we view N as built from N; blocks of length Ny (N = N;N,), we can
moreover require that I meets only about +/N; blocks.

One of the most interesting phenomena related to the theory of penalties
occurs under a condition somewhat stronger than (9.6). However, rather than
stating the most general theorem (it requires some effort to understand the
hypothesis), we will only state the most important case. In that case, ) = R,
« has a density %e"x' with respect to Lebesgue measure, and the function A
is given by

h(x,y) = min(|x — yl, (x — y)?).

THEOREM 9.3. For some universal constant K and each subset A of RN, we
have .
9.9) ~a(A,x)) dP(x) <
©9 /QNexp 7 fn(A,x = BA)

The most obviously remarkable feature of this theorem is that (9.9) does
not depend on N. The depth of Theorem 9.3 can, however, better be measured
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by the fact that it does constitute a kind of improvement upon what was previ-
ously known about Gaussian measure. To see this, consider the nondecreasing
map ¢ from R to R that transforms u into the one-dimensional Gaussian mea-
sure 1. It is a simple fact to see that, for some universal constant K, we have

(9.10) (o(x) — o(y))? < Kh(x, ).

On the other hand, the map ¢ from RY to RV given by ¢((x;)i<n) =
(¢(x1))i<n transforms P into yy.
Consider now B c RY. Thus

yn(B) = P(y~'(B))
Now, by (9.10), we have
d(Y(A), ¥(x))* < Kfn(A,x),
where d(B, y) is the Euclidean distance from B to y and thus from 9.9),

1 1 2 < _1_
/QN exp(? d((,l’((;l’ (B)), l//(35)) )dP(x) ~ yn(B)’

so that (for a new constant K)

1 \ 1
fowexe( 2B ?) drw) = i

Therefore, for ¢ > 0,

2
(9.11) yn(d(B,-) > ¢) < ﬁexp(—%).

In the case yn(B) = %, this is a weak form of (2.9).

It turns out that, for many applications, (9.11) rather than (2.9) suffices.
In particular, it is now clearly understood that (9.11) is one of the central
facts that allows us to characterize continuity and boundedness of Gaussian
processes [23]. The importance of Theorem 9.3 is that it allows extending these
characterizations to more general processes [26].

One of the most intriguing further aspects of the theory of penalties is that
the roles of x and y in the penalty function A(x,y) are highly asymmetric.
This is particularly apparent when the idea of penalty function is combined
with the method of Section 6, a topic for which we must refer to [29].

In conclusion, we have tried to make the reader aware that there are un-
expectedly subtle phenomena related to concentration of measure in product
spaces. That such a rich theory should exist at all with such minimal structure
is certainly remarkable, as is remarkable the width of its applications. It is
not clear to me at present where the potential for future advances, if any, lies.
A worthy project would be a systematic development of the “transportation
method” that very recently arose from the work of Marton [12]. This method
is a potentially serious competitor to the induction method presented here.
It allows, in some cases, an easier computation of the best constants and an
easier approach to Theorem 9.1 [30], but whether it can lead to genuinely new
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results in the independent case is unclear at present. In a different direction,
an obvious research question is whether there exists at all a usable theory
beyond the case of product measures; see, for example, [29] for the case of the
symmetric group (that resembles a product) and of [12] for certain Markov
chains.

Acknowledgment. The author is indebted to Michel Ledoux and Gilles
Godefroy for many useful comments.

Note added in proof. After this paper was written, further progress was
made, in particular on the material of Section 7 [31].
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