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Kaimanovich and Vershik described certain finitely generated groups
of exponential growth such that simple random walk on their Cayley graph
escapes from the identity at a sublinear rate, or equivalently, all bounded
harmonic functions on the Cayley graph are constant. Here we focus on
a key example, called G1 by Kaimanovich and Vershik, and show that
inward-biased random walks on G1 move outward faster than simple ran-
dom walk. Indeed, they escape from the identity at a linear rate provided
that the bias parameter is smaller than the growth rate of G1. These walks
can be viewed as random walks interacting with a dynamical environment
on Z. The proof uses potential theory to analyze a stationary environment
as seen from the moving particle.

1. Introduction. The study of random walks and harmonic functions on
finitely generated groups has a long history. For a random walk supported
by a finite generating set, Avez (1974) showed that a necessary condition for
the existence of non-constant bounded harmonic functions is the positivity of
a quantity called the entropy of the random walk. Kaimanovich and Vershik
(1983) and Derriennic (1980) showed that this condition is sufficient as well
and extended it to more general random walks. A more natural quantity for
probabilists is the speed (or rate of escape) of the random walk. By speed of a
random walk �Xn� on the Cayley graph of a group, we mean limn→∞ �Xn�/n
(if the limit exists), where �Xn� denotes the distance of Xn from the identity
element. It follows from the result of Avez that the existence of nonconstant
bounded harmonic functions implies positive speed. Varopoulos (1985) estab-
lished that, for finitary symmetric random walks, this is an equivalence. In
particular, Varopoulos showed that the speed is zero on any group of subex-
ponential growth. It is perhaps surprising that the converse is false; a par-
ticularly illuminating example of a Cayley graph of exponential growth on
which simple random walk has zero entropy (and zero speed) was described
by Kaimanovich and Vershik (1983). Random walks on this Cayley graph with
bias toward the identity element will be the focus of the present article. These
are not group-invariant random walks, but they do capture the growth rate of
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the group: Lyons (1995) showed that such biased random walks on any Cayley
graph are transient for all values of the bias less than the exponential growth
rate of the group. Here, we prove the surprising result that this inward biasing
can change the speed from zero to a positive number.

More precisely, for λ > 0, define the λ-biased random walk RWλ on a
connected locally finite graph with a distinguished vertex 2 as the time-
homogeneous Markov chain �Xny n ≥ 0� with the following transition prob-
abilities. The distance �v� from a vertex v to 2 is the number of edges on
a shortest path joining the two vertices. Suppose that v is a vertex of the
graph. Let v1; : : : ; vk (k ≥ 1 unless v = 2) be the neighbors of v at distance
�v� − 1 from 2 and let u1; : : : ; uj (j ≥ 0) be the other neighbors of v. Then
the transition probabilities are p�v; vi� = λ/�kλ+ j� for i = 1; : : : ; k and
p�v; ui� = 1/�kλ+ j� for i = 1; : : : ; j. This is a reversible Markov chain with
edge weights (or conductances) λ−n on edges at distance n from 2. Note that
simple random walk, when all neighbors are equally likely, is the particular
case λ = 1. In the special case of a Cayley graph, we take 2 to be the identity
element. Define the growth rate of a finitely generated group G, denoted grG,
to be the limit as n→∞ of the nth root of the number of vertices in its Cayley
graph at distance n from 2. The result of Lyons (1995) mentioned above is
that RWλ is transient for λ < grG and recurrent for λ > grG. This may not
be surprising if we think of the Cayley graph of G as being something like
spherically symmetric; after all, it is vertex transitive. However, this point of
view is not well justified. For example, there are amenable groups of exponen-
tial growth; thus, the balls in these groups do not form Følner sets. For one
such group, called G1 by Kaimanovich and Vershik [(1983), Section 6.1], we
show that the speed of RWλ is positive for 1 < λ < grG1 = ϕ x= �1 +

√
5�/2,

although it vanishes for λ = 1. This demonstrates how far this Cayley graph is
from being spherically symmetric since on any spherically symmetric graph,
the speed of RWλ is monotone decreasing (when it exists).

The group G1, also known as the lamplighter group, is defined as a semidi-
rect productG1 x= Z h

∑
x∈Z Z2 of Z with the direct sum of copies of Z2 indexed

by Z; for m; m′ ∈ Z and η; η′ ∈∑x∈Z Z2, the group operation is

�m;η��m′; η′� x= �m+m′; η⊕S −mη′�;
where S is the left shift, S �η��j� x= η�j + 1�, and ⊕ is componentwise ad-
dition modulo 2. We call an element η ∈ ∑m∈Z Z2 a configuration and call
η�k� the bit at k. We identify Z2 with �0;1�. The first component of an el-
ement x = �m;η� ∈ G1 is called the position of the marker in the state x,
denoted M�x�. Generators of G1 are �1;0�, �−1;0� and �0;10�. The reason for
the name of this group is that we may think of a streetlamp at each integer
with the configuration η representing which lights are on, namely, those where
η = 1. We also may imagine a lamplighter at the position of the marker. The
first two generators of G1 correspond to the lamplighter taking a step either
to the right or to the left (leaving the lights unchanged); the third genera-
tor corresponds to flipping the light at the position of the lamplighter. See
Figure 1.
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Fig. 1. A typical element of G1; the flags are defined in (1.1).

Simple random walk on G1 thus corresponds to the marker moving accord-
ing to simple random walk on Z with delays one-third of the time when it
changes the bit at its location. However, RWλ is quite different in that the
configuration influences the transition probabilities of the marker as a ran-
dom walk on Z. Namely, for λ > 1, there is a tendency for the walk to return
to the initial state 2, which means that the marker has a greater tendency to
change bits to 0 than to 1. In order to do so, rather than head for the origin,
the marker heads for the bit equal to 1 that is on the same side of the origin
as the marker and is most extreme since this is a shortest path back to 2.

Theorem 1.1. Whenever 1 < λ < ϕ, the speed of RWλ on G1 is a.s. a strictly
positive constant. In fact, a lower bound for the speed is given by

lim
n→∞

�Xn�
n
≥ lim

n→∞
�M�Xn��

n
≥ �λ− 1��

√
λ+ 1− λ�

3λ�2+ λ��1+ λ−
√
λ+ 1�

> 0 a.s.

See Figure 2 for a graph of the lower bound. As a corollary, we see that for
RWλ with 1 < λ < ϕ, there are nonconstant bounded harmonic functions on
G1, for example, the function whose value at x is the probability that the bit
at the origin is eventually 0 given that the random walk starts at x.

A crucial element in the proof of Theorem 1.1 is the one-dimensionality
of the underlying space Z. This allows an easy determination of the shortest
paths from 2 to any element ofG1, so that the transition probabilities for RWλ

admit simple expressions in terms of the configuration; see below. In contrast,
the higher-dimensional analogues of G1 require the solution of a traveling-
salesman problem to determine the transition probabilities of RWλ and it is
unknown whether the speed is still positive.

Coming back to the one-dimensional situation, consider outward-biased
random walks on G1, that is, RWλ for 0 < λ < 1. Surprisingly, these escape
from the identity even more slowly than simple random walk.

Proposition 1.2. Whenever 0 < λ < 1, the speed of RWλ on G1 is a.s. 0. In
fact,

lim inf
n→∞

�Xn�
log n

> 0 and lim sup
n→∞

�Xn�
log n

<∞ a.s.
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Fig. 2. The lower bound for speed in Theorem 1.1.

This is much easier to prove than Theorem 1.1; see Section 4. Also, it fol-
lows from standard shift-coupling techniques that the only bounded harmonic
functions are the constants when 0 < λ < 1.

To make explicit the distances and transition probabilities on G1, define

flagR x= sup�k ≥ 0y η�k� = 1� and flagL x= inf�k ≤ 0y η�k� = 1�:(1.1)

We call these the right and left flags; note that when η�k� = 0 for all k ≥ 0,
we have flagR = −∞ and similarly for flagL. When m ≥ 0, we have

��m;η�� = 2�flagL ∧ 0� +m+ 2�flagR −m�+ +
∑
k∈Z

η�k�(1.2)

and similarly when m < 0. The transition probabilities are as follows for the
case m ≥ 0; the case m < 0 is symmetric. First, we have p�2;x� = 1/3 for
all the generators x of G1. If �m;η� 6= 2 and flagR < m, then p��m;η�; �m−
1; η�� = λ/�λ+ 2� and

p��m;η�; �m+ 1; η�� = p��m;η�; �m;η⊕ 1m�� = 1/�λ+ 2�:
If flagR = m, then p��m;η�; �m;η ⊕ 1m�� = λ/�λ + 2� and the other tran-
sition probabilities are 1/�λ + 2�. Finally, if m < flagR and η�m� = 0, then
p��m;η�; �m + 1; η�� = λ/�λ + 2� and the other transition probabilities are
1/�λ+ 2�, while if η�m� = 1, then

p��m;η�; �m+ 1; η�� = p��m;η�; �m;η⊕ 1m�� = λ/�2λ+ 1�
and p��m;η�; �m− 1; η�� = 1/�2λ+ 1�.

Thus, RWλ on G1 can be studied directly as a random walk interacting with
a dynamical environment on Z, without any reference to the group structure.
However, the only proof we know that establishes positivity of speed for all λ ∈
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�1; ϕ� uses explicitly the structure of the Cayley graph. Simpler comparison
arguments are available to show positivity of speed for λ in the smaller range
(1, 1.5).

2. The Fibonacci tree and semitightness. In this section, we begin our
analysis of the dynamics of RWλ. We first obtain a lower bound on the escape
probability from 2 by using a subtree of the Cayley graph. This is then given
a ‘stationary’ version. Next, we prove that the marker is unlikely to be much
closer to the origin than are the flags and, finally, that when the marker is at
a flag, the expected time until a flag separates the marker from the origin is
finite.

We first define a subgraph of G1 which is a tree rooted at 2. The vertices
consist of states x = �m;η� for which m ≥ flagR�x� and η�k� = 0 for all k < 0.
Each vertex �m;η� with flagR�m;η� = m has the single child �m+ 1; η� and
each vertex �m;η� with flagR�m;η� < m has the two children �m+ 1; η� and
�m;η⊕1m�. This is called the Fibonacci tree (see Figure 3). Since the number
of vertices at distance n from the root of the Fibonacci tree is asymptotically
a constant times ϕn, this shows that gr G1 ≥ ϕ. From this, it is not hard
to see that an upper bound for the number of vertices at distance n from 2
in the Cayley graph of G1 is a constant times

∑
k≤n ϕ

k, which, again, is just
asymptotically a constant times ϕn. Hence, gr G1 = ϕ.

Transience of RWλ implies that lim sup �M�Xn�� = ∞, but it does not im-
mediately imply that lim �M�Xn�� exists. In fact, this limit does exist when
1 < λ < ϕ, so that the marker tends either to ∞ or to −∞. These cases are
clearly symmetric and it is convenient to deal with them separately by re-
moving a half line. Thus, define the subset G+1 ⊆ G1 to be the set of �m;η�
such that m ≥ 0 and η�j� = 0 for all j < 0. Observe that for any x ∈ G+1 ,
the shortest paths connecting x to 2 in G1 are contained in G+1 . Thus RWλ

on G+1 has the same transitions as RWλ on G1 except that transitions where
the marker moves to −1 are suppressed. We use the method of Lyons (1995)
to show that RWλ is transient on G+1 .

Fig. 3. The Fibonacci tree.
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Lemma 2.1. Assume that 1 < λ < ϕ. The probability that RWλ on G+1 ,
started from 2, never returns to 2 is at least h�λ�, where

h�λ� x=
√
λ+ 1− λ

2�1+ λ−
√
λ+ 1�

> 0:

In particular, RWλ is transient on G+1 .

Proof. Observe that the Fibonacci tree is also a subgraph of G+1 . Let C�λ�
denote the effective conductance of the Fibonacci tree from the root to infinity.
Observe that if v in generation n has two children, then the effective con-
ductance from v to infinity in the descendant subtree rooted at v is λ−nC�λ�.
Since the edges incident to 2 have conductance 1, the obvious recursions of
the Fibonacci tree and the usual series-parallel laws give the equation

C�λ� = 1
1+ λ/C�λ� +

1
1+ λ+ λ2/C�λ� :

Since the Fibonacci tree is subperiodic, C�λ� > 0 for λ < ϕ by Lyons (1990),
whence the unique positive solution is

C�λ� =
√
λ+ 1− λ

1+ λ−
√
λ+ 1

:(2.1)

By Rayleigh’s monotonicity principle [see Doyle and Snell (1984)], the effec-
tive conductance from 2 to infinity in G+1 is at least the conductance on any
subgraph, hence at least C�λ�. The escape probability of RWλ on G+1 from 2,
that is, the probability that the random walk never returns to 2, is at least
C�λ� divided by the total conductance incident to 2 (see Doyle and Snell); the
latter is 2, which proves the lemma. 2

We are interested in looking at the configuration from the viewpoint of the
marker in order to find a stationary measure and thus be able to use ergodic
theory. Now, after a long time, RWλ onG+1 will be far right of the root and many
bits will be 1. In order to allow (in the limit) infinitely many 1’s to the left of
the marker, define the space 0 ⊇ G1 ⊇ G+1 to be the set of �m;η� ∈ Z×�0;1�Z
such that

∑
j>0 η�j� <∞. Let RW �−∞�

λ denote the Markov chain on 0 obtained
by ignoring the left flag and not assigning any special status to the origin of
Z. More precisely, define flag x= sup�k ∈ Zy η�k� = 1�. The transitions give
relative weights 1 for the marker moving away from the flag, λ for the marker
moving toward the flag and λη�m� for flipping the bit at the marker.

Lemma 2.2. For k ∈ Z, let

Ak x= �x ∈ 0y flag�x� <M�x� ≤ k�:
Suppose that �Y0;Y1; : : :� is the Markov chain RW

�−∞�
λ started from any initial

state with flag�Y0� <M�Y0�. Then

P�Yn /∈ AM�Y0� for all n > 0� ≥ 2
2+ λh�λ�:



RANDOM WALKS ON THE LAMPLIGHTER GROUP 1999

Proof. Without loss of generality, we may assume that M�Y0� = 0. Define
the map Qx 0→ G+1 by

Q�m;η� x= �max�m;0�; η1�0;∞��:

Observe that Q�Yn� will sometimes remain constant, but that the (possibly
finite) sequence of successive changes of state will have the distribution of
RWλ.

It is evident that if Yn ∈ A0, then Q�Yn� = Q�Y0�. Therefore, the event
�Yn /∈ A0 for all n > 0� contains the event �Q�Yn� 6= Q�Y0� for all n > 0�.
Conditional on �Q�Y1� 6= Q�Y0��, the probability of �Q�Yn� 6= Q�Y0� for all
n > 0� is at least h�λ� by Lemma 2.1. Thus

P�Yn /∈ A0 for all n > 0� ≥ h�λ�P�Q�Y1� 6= Q�Y0��

= 2
2+ λh�λ�: 2

We now establish the semitightness property that the marker is unlikely
to be far to the left of the flag. Let Fn x= σ�Y0; : : : ;Yn�.

Lemma 2.3. Let �Yn� be the Markov chain RW
�−∞�
λ and Dn x= flag�Yn� −

M�Yn�. If D0 = 0, then for any n;k ≥ 1 and 1 < λ < ϕ,

P�Dn = k� ≤ λ−�k−1�/2 1+ 2λ

�
√
λ− 1�2

:

Proof. For any r ≥ 0, let τr x= min�n ≥ ry Dn ≤ 0�. Set β x= �1+2λ�/�λ+
2
√
λ� > 1 and define

Vn x= �
√
λ�Dnβn:

We show that �Vn∧τr y n ≥ r� is a supermartingale. Observe that �Dn+1−Dn� ≤
1 as long as Dn > 0. Let p�n�+ and p�n�− denote the conditional probabilities of
Dn, respectively, increasing by one and decreasing by one conditional on Fn.
Then for r ≤ n < τr,

E�V�n+1�∧τr � Fn� = E�Vn+1 � Fn� = βVn

[
1+ �
√
λ− 1�p�n�+ +

(
1√
λ
− 1

)
p�n�−

]

≤ βVn

(
1+
√
λ− 1+ ��1/

√
λ� − 1�λ

1+ 2λ

)
= Vn = Vn∧τr;

since the numerator is negative and the only possibilities for the vector
�p�n�+ ; p�n�− � are �1+ 2λ�−1�1; λ� or �2+ λ�−1�1; λ�.

It follows that on the event Dr = 1 and for n ≥ r,

E�Vn∧τr � Fr� ≤ Vr =
√
λβr
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and therefore by Markov’s inequality,

P�Dn = k; τr ≥ n � Fr� ≤ P�Vn∧τr = λ
k/2βn � Fr� ≤ λ−�k−1�/2β−�n−r�(2.2)

on �Dr = 1�. Now decomposing the event �Dn = k� according to the last r
such that Dr = 1, we get

P�Dn = k� =
n∑
r=1

P�Dn = k; max�j ≤ ny Dj = 1� = r�:

The rth summand is at most the right-hand side of (2.2), and summing over
r yields the desired bound since 1/�1− β−1� = �1+ 2λ�/�

√
λ− 1�2. 2

Finally, we show that when the marker is at the flag, the time until the
marker is to the right of the flag has finite mean.

Lemma 2.4. Let �Yn� be the Markov chain RW
�−∞�
λ withM�Y0� = flag�Y0�.

If τ is the first time that M�Yτ� > flag�Yτ�, then

E�τ� ≤ 1+ 2λ
λ− 1

:

Proof. Set D̂n x= max�flag�Yn� −M�Yn�;−1�. Note that for n < τ, we
have

E�D̂n+1 � Fn� ≤ D̂n −
λ− 1

1+ 2λ
:

Let

Wn x= D̂n +
λ− 1
1+ 2λ

n:

Then �Wn∧τy n ≥ 0� is a supermartingale. By the optional stopping theorem
[see Durrett (1991), Theorem 7.6], we get that

0 ≥ E�Wτ� = E�D̂τ� +
λ− 1

1+ 2λ
E�τ� = −1+ λ− 1

1+ 2λ
E�τ�: 2

3. Proof of Theorem 1.1. We are now in a position to look at the config-
uration from the viewpoint of the marker. Recall that S denotes the left shift
operator on �0;1�Z. Let 0∗ x= �ηy ∑j>0 η�j� < ∞� and flag∗�η� x= sup�k ∈
Zy η�k� = 1�. Define S ∗x 0→ 0∗ by

S ∗�m;η� x= S m�η�
and set ξn x= S ∗�Yn�. Define

1n x=M�Yn� −M�Yn−1� ∈ �−1;0;1�
for n ≥ 1 and 10 x= 0, say. Observe that ��ξn; 1n�y n ≥ 0� is a Markov chain.
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The transition probability kernel for ��ξn; 1n�� is denoted K∗λ�·; ·� and may
be described as follows. When ξn�0� = 0,

1n+1 =





sign�flag∗�ξn��; with probability λ/�2+ λ�,
−sign�flag∗�ξn��; with probability 1/�2+ λ�,
0; with probability 1/�2+ λ�.

When ξn�0� = 1 and flag∗�ξn� = 0,

1n+1 =





1; with probability 1/�2+ λ�,
−1; with probability 1/�2+ λ�,
0; with probability λ/�2+ λ�,

and when ξn�0� = 1 but flag∗�ξn� > 0,

1n+1 =





1; with probability λ/�1+ 2λ�,
−1; with probability 1/�1+ 2λ�,
0; with probability λ/�1+ 2λ�.

Finally,

ξn+1 =
{

S 1n+1ξn; if 1n+1 = ±1,
ξn ⊕ 10; if 1n+1 = 0.

(3.1)

Note that S ∗ takes the set �flag�x� <M�x�� to the set �flag∗ < 0�. Suppose
that flag∗�ξ0� < 0. Let n�k� be the kth return time of the sequence �ξj� to
�flag∗ < 0� and

Zk x=
n�k�∑
j=1

1j =M�Yn�k�� −M�Y0�:

If Zk ≤ 0, then Yn�k� ∈ AM�Y0�. It follows from Lemma 2.2 that from any
initial state with flag∗ < 0,

P�Zk > 0 for all k > 0� ≥ 2h�λ�
2+ λ :(3.2)

Now assume that flag∗�ξ0� = 0. Equip 0∗ × �−1;0;1� with the metric

d��η; δ�; �η′; δ′�� x= �δ− δ′� +
∞∑

j=−∞
2j�η�j� − η′�j��:

With this metric, for any j0, the set ��η; δ�y ∀ j > j0; η�j� = 0� is compact.
By Lemma 2.3, it follows that the laws of �ξn; 1n� are tight. Thus, the Cesàro
averages n−1∑n

j=1 law�ξn; 1n� are tight and have a subsequential weak∗ limit
π0. Since the transition probabilitiesK∗λ are continuous, π0 must be stationary
for K∗λ. Passing to an ergodic component yields a stationary ergodic Markov
chain �K∗λ; π� [Rosenblatt (1971)]. Inducing the Markov system �K∗λ; π� on the
subset �flag∗ < 0� of the state space [see Petersen (1983)] yields a measure π ′

for which the increments Zk+1 −Zk form a stationary ergodic sequence.
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A little thought shows that Zk+1 −Zk is either −1, 0 or 1. Let Rk denote
the cardinality of the range �Z1; : : : ;Zk�. From (3.2), it follows that

lim
k→∞

Zk/k = lim
k→∞

Rk/k = Pπ ′ �Zk 6= 0 for all k > 0� a:s:;(3.3)

where the second equality uses Theorem 6.3.1 of Durrett (1991). Hence by the
ergodic theorem and (3.2),

Eπ ′ �Z2 −Z1� ≥
2h�λ�
2+ λ :(3.4)

By the tower proof of Kac’s lemma [Petersen (1983)], we have

Eπ�11� = π�flag∗ < 0�Eπ ′ �Z2 −Z1�:
By Kac’s lemma itself, the reciprocal of π�flag∗ < 0� is the expected return
time to �flag∗ < 0�. If the return time is not 1, then flag∗�ξ1� = 0 and the
expected additional time needed to return to �flag∗ < 0� is, by Lemma 2.4,
at most �1+ 2λ�/�λ− 1�. Hence the total expected return time is bounded by
1+ �1+ 2λ�/�λ− 1� = 3λ/�λ− 1�. Combined with (3.4), this yields

sλ x= Eπ�11� ≥
2�λ− 1�

3λ�2+ λ�h�λ�:(3.5)

Note that this is the lower bound in the statement of Theorem 1.1.
Let p0 be the probability that RWλ inG+1 started from �1;0� does not return

to the infinite set of states where the marker is at the origin. By the obvious
coupling to G+1 , the probability that the partial sums

∑n
j=1 1j remain positive

is p0, starting from any state in �flag∗ < 0�. To see that p0 > 0, let

T x= inf

{
n ≥ 1y

n∑
j=1

1j ≤ 0

}
;

which corresponds on 0 to the first time that the marker is not to the right of
its starting point. According to the maximal ergodic lemma [Durrett (1991),
Theorem 6.2.2],

Eπ

[
111�T<∞�

]
≤ 0;

whence p0 = P�T = ∞� > 0 by (3.5).
We use this to transfer the bound (3.5) to G1 by coupling RWλ on G1 to the

Markov chain K∗λ on 0∗ with initial distribution π conditioned on �flag∗ < 0�.
Let �X0;X1; : : :� be the Markov chain RWλ on G1 starting from any state with
M�X0� > flagR�X0� ≥ 0, and define

T̃ x= inf�n ≥ 1y M�Xn� ≤M�X0��:
Let �ξ0; 10� have the conditional distribution �π � flag∗�ξ0� < 0�. For 1 ≤
n < T̃, define 1n x=M�Xn� −M�Xn−1�. This produces by (3.1) a sequence
�ξny 0 ≤ n < T̃�; if T̃ is finite, then continue the chain �ξn; 1n� independently
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by using the kernel K∗λ. Note that with this coupling, T = T̃, and in particular,
P�T̃ = ∞� = p0. Thus, on the event �T̃ = ∞�, the speed of the marker equals

lim
n→∞

M�Xn�
n

= lim
n→∞

1
n

n∑
j=1

1j = Eπ�11� = sλ a.s.(3.6)

by the ergodic theorem.
Let N�k� be the first n > k such that

M�Xn� > flagR�Xn� ≥ 0 or M�Xn� < flagL�Xn� ≤ 0:

ThenN�k� <∞ a.s. and by the coupling argument of the preceding paragraph,

P
[

lim
n→∞
�M�Xn��/n = sλ

∣∣X0;X1; : : : ;XN�k�

]
≥ p0:

Therefore the speed of the marker equals sλ almost surely by the Lévy 0–1
law.

We calculate the speed s′λ of RWλ by using (1.2) and the above coupling. Let

Un x= �ξn�0� − ξn−1�0��1�1n=0�:

Let Xn = �M�Xn�; ηn� be the Markov chain RWλ on G1 starting from any
state with M�X0� > flagR�X0� ≥ 0. On the event �T̃ = ∞�, the coupling gives

1
n

∑
k∈Z

ηn�k� =
1
n

∑
k∈Z

η0�k� +
1
n

n∑
i=1

Ui→ Eπ�U1� a.s.(3.7)

as n → ∞ by the ergodic theorem. The bound in Lemma 2.3 and the Borel–
Cantelli lemma imply that

1
n
�flagR�Xn� −M�Xn��+→ 0 a.s.(3.8)

Combining equations (1.2), (3.6), (3.7) and (3.8), we arrive at

lim
n→∞
�Xn�/n = sλ +Eπ�U1� =x s′λ(3.9)

a.s. on �T̃ = ∞�. Using symmetry and the Lévy 0–1 law as before shows that
this equation holds a.s. and completes the proof. 2

Remark. An alternative expression for Eπ�U1� is Eπ�ξ0�0�1�T=∞��, which
shows that this expectation is strictly positive. We omit the argument.

4. Continuity of speed and outward-biased random walks.

Proposition 4.1. Both almost sure limits

sλ = lim
n→∞
�M�Xn��/n and s′λ = lim

n→∞
�Xn�/n

are continuous for λ ∈ �1; ϕ�. As λ ↑ ϕ, both speeds tend to 0.
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Note that by the criterion of Nash-Williams (1959), RWϕ is recurrent.

Proof. The continuity at λ = 1 follows from the trivial bounds

s′λ ≤ 2sλ = 2Eπ�M�X1� −M�X0�� ≤ 2
λ− 1
1+ 2λ

:

For the continuity at points in �1; ϕ�, we need to make explicit the depen-
dence of π on λ, so denote the stationary measures by πλ. It follows from the
positivity of sλ that these measures are unique, but we do not need that fact.
Instead, we may rely simply on the fact that sλ and s′λ are the same for all
stationary measures, since they have the values determined on G1. By Lemma
2.3, any collection �πλy 1 < λmin ≤ λ < ϕ� is tight. Since K∗λ is continuous
in λ, it follows that as λ → λ0 ∈ �1; ϕ�, the measures πλ have a weak∗-limit
point πλ0

on 0∗ which is K∗λ0
-stationary. Therefore, sλ → sλ0

and s′λ → s′λ0
by

the definitions (3.5) and (3.9).
The proof that the speeds tend to 0 as λ ↑ ϕ requires another approach.

As above, it suffices to show that the speed of the marker sλ → 0 as λ ↑ ϕ.
Now this speed can be estimated in 0∗ by inducing on the set �flag∗ < 0�.
Recall that Zk denotes the change in position of the marker after k visits to
�flag∗ < 0�. From (3.3), we have

sλ ≤ lim
k→∞

Zk/k = Pπ ′ �Zk 6= 0 for all k > 0�:

Checking the definitions shows that this last probability equals the probabil-
ity for RWλ to escape from 2 in G+1 . By Doyle and Snell (1984), this escape
probability is the ratio of the effective conductance from 2 to infinity divided
by the sum of the conductances incident to 2. We bound the effective conduc-
tance by shorting all vertices at the same distance from 2 [see Doyle and Snell
(1984), Chapter 6]. The shorted graph is equivalent to a graph on N with the
edge conductance between n and n+1 equal to λ−n times the number of edges
in G+1 at distance n from 2. Since this last number is at most cϕn for some
constant c, the effective resistance is at least

∑
n≥0

�λ/ϕ�n
c
= ϕ

c�ϕ− λ� :

This finally gives the bound

sλ ≤
c�ϕ− λ�

2ϕ
: 2

We now turn to outward-biased random walks on G1 and show that they
escape at a logarithmic rate from the identity.

Proof of Proposition 1.2. It suffices to show this on G+1 . Let Lk be the
position of the marker after it has moved k times. This stochastically domi-
nates an asymmetric simple random walk on N, where the latter has proba-
bility λ/�1+ λ� of moving to the right. The expected time for the asymmetric
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walk to reach l is O�λ−l� [see Chung (1960), page 65]. Therefore, the same is
true for �Lk�, whence the Borel–Cantelli lemma shows that

lim inf
k

max�Ljy j ≤ k�
log k

> 0 a.s.

Since the flag grows linearly in max�Ljy j ≤ k�, the lower bound of the
proposition follows.

For the upper bound, note that from an initial state �0; η� with η�j� = 1
and j ≥ 1, the number of visits of the marker to 0 before the first visit to j is
geometric with mean at least cλ−j for some positive constant c. Therefore, from
any state �j;η�, the time until the marker is at j + 1 is at least cλ−j with
probability bounded below by some α > 0, since the probability is bounded
below that the next state has η�j� = 1 and subsequently the marker visits 0
before returning to j.

Consequently, the probability that the marker reaches k from k −
√
k in

less than cλ−�k−
√
k� steps is at most �1−α�

√
k. The Borel–Cantelli lemma then

yields that

lim sup
n→∞

M�Xn�
log n

<∞ a.s.

This completes the proof (on G+1 ). 2

Remark. The above argument shows that lim sup
n→∞

M�Xn�/ log n = 1/

� log λ� a.s.

Questions : The groups Gk, defined like G1 but with Zk in place of Z, also
play an important role in Kaimanovich and Vershik (1983): for k ≥ 3, these
yielded the first examples of a symmetric finitary measure on an amenable
group which admits nonconstant bounded harmonic functions. The speed of
simple random walk on Gk is 0 iff k ≤ 2. Is it true that the speed of RWλ

is positive on Gk for 1 < λ < grGk? What can one say about the asymptotic
shape of the configuration onGk? Is the speed of RWλ positive for 1 < λ < grG
when G is an arbitrary finitely generated group?
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