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THE RANDOM MINIMAL SPANNING TREE
IN HIGH DIMENSIONS

BY MATHEW D. PENROSE

University of Durham

For the minimal spanning tree on n independent uniform points in
the d-dimensional unit cube, the proportionate number of points of degree
k is known to converge to a limit a as n ª `. We show that ak , d k , d
converges to a limit a as d ª ` for each k. The limit a arose in earlierk k
work by Aldous, as the asymptotic proportionate number of vertices of
degree k in the minimum-weight spanning tree on k vertices, when the
edge weights are taken to be independent, identically distributed random
variables. We give a graphical alternative to Aldous’s characterization of
the a .k

Ž .1. Introduction. The minimal spanning tree MST on a set of n ran-
d Ž .dom points in R say, the measurements of d variables on each of n objects

has been used by statisticians as a means of imposing a structure on the
observations. The structure is summarized by the lengths of the edges of the
MST and the degrees of the vertices. A probabilistic literature on this
structure has been growing, especially for the case where the n points are
independent and identically distributed, and this is the setting of the present
paper.

Consider the Euclidean MST on a set of points h , . . . , h in Rd, i.i.d. with1 n
Ž .common density f. Let V n be the number of vertices in the tree withk

w x Ž .degree k. Steele, Shepp and Eddy 23 showed that V n rn converges almostk
surely to a number a that depends on d, but not otherwise on f. Aldousk , d

w x Ž .and Steele 2 showed that a , k G 1 can be interpreted as the probabilityk , d
mass function of the degree of 0 in a sort of ‘‘MST’’ on a homogeneous Poisson
process in Rd. This characterisation is elegant, but does not lead immediately

w xto any simple formula for a . According to 23 , ‘‘it is unreasonable to expectk , d
any determination of a for large k and d.’’ One aim of the present paper isk , d
to make some progress in this direction by describing the behaviour of ak , d
in the limit d ª `. In physics terminology, this is a ‘‘mean-field limit.’’

One may also be interested in the lengths of the edges of the MST. For
example, much work has been done on the sums of various powers of these

w x w xlengths. For a discussion and references, see 22 and 13 . Our second main
result is concerned with the asymptotic empirical distribution of these lengths

w xin high dimensions. It is consistent with the result of 6 on the high-dimen-
sional behavior for the growth rate of the total length of the MST.
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Our limits for high dimension are described below in terms of a mean-field
Ž .weighted tree. This limiting system described somewhat differently has

w xarisen in 1 , which is concerned with large-n asymptotics for the MST on n
npoints when the ‘‘interpoint distances’’ are taken to be independent,ž /2

identically distributed random variables. A further reason for this study is to
demonstrate an explicit link between the Euclidean MST, which generally
tends to be less tractable, and the MST for independent edge weights, in the

w xspirit of 4 .
One concrete application of our results is in the study of the multivariate

nonparametric two-sample problem: given samples of size n and n from1 2
d-dimensional distributions with densities f and f , respectively, suppose1 2
one wishes to know if it is reasonable to assume the distributions are the

w xsame. The multivariate runs test of Friedman and Rafsky 9 goes as follows:
construct the MST on the pooled sample, and let R denote the number of
edges in this MST which have one endpoint from sample 1 and one endpoint
from sample 2. If R is small, reject the null hypothesis H that f ' f .0 1 2

Ž . w xUsing 14 of 9 or otherwise, one can obtain a distribution-free large-sample
asymptotic formula for the variance under H of R, in terms of the numbers0

Ž .a we omit the details . Other nonparametric test statistics based on thek , d
w xMST were proposed by Friedman and Rafsky 10 , and similar formulae for

their asymptotic variance can be derived.
w xAnother statistical application of the MST is given in 19 . The minimal

spanning tree also has applications in computer science, the physical sciences
w x w x w xand in biology. See, for example, 5 , 12 , 8 and other papers referred to in

w x23 .
In the next section we describe our main results in detail. In Section 3 we

describe detailed properties of the limiting mean-field tree. Sections 4 and 5
contain the proofs of the main results.

There are connections between the MST on random points and continuum
w xpercolation. More details of this relationship are given in 17 , which contains

Ž .complementary but distinct results on the high-dimensional behavior of
continuum percolation. Section 6 describes some analogues to the results of
the present paper, which are likely to be true for invasion percolation, a
lattice growth model which has some similarities to the construction of the
‘‘MST’’ on the points of the Poisson process.

2. The main results. The MST on the random points h , . . . , h is the1 n
� 4tree with vertex set h , . . . , h and edges e , . . . , e chosen to minimize1 n 1 ny1

< < < < Ž .Ý e , where ? denotes Euclidean length. Recall that V n denotes thei i k
number of vertices of degree k in this tree.

Žw x.PROPOSITION 1 23 . There exist numbers a depending on d but notk , d
otherwise on f, such that

lim V n rn s a a.s.Ž .k k , d
nª`
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For a countably infinite connected graph GG with distinct finite weights
defined on its edges, the following analogue of the MST has been proposed by

w xAldous and Steele 2 . An initial vertex x of GG is specified, and an increasing
Ž . Ž . Žsequence t of trees in GG is then generated as follows we identify eachn

.tree with its set of edges . Let e be the edge with minimal weight out of1
� 4those edges of GG with one end at x, and let t be the single-edge tree e .1 1

Then recursively, given t , let e be the edge of GG of minimal weight withn nq1
� 4 Ž . `just one endpoint in t , and set t s t j e . Set t x, GG s D t , then nq1 n nq1 ` ns1 n

union of all the trees t generated in this way starting from x.n
Ž .Consider now the subgraph of GG obtained by including every edge x, y

Ž . Ž . Ž .that is either in t x, GG or in t y, GG or both . The component of this` `

Ž .subgraph containing x is a tree, which we denote g GG, x . See Lemma 1 of
w x2 .

Let PP denote a homogeneous Poisson process in Rd of density 1, with ad
w xpoint added at 0. The construction above was applied in 2 to the complete

graph with the points of PP as its vertex set and edge weights given by thed
Euclidean interpoint distances; we shall denote this graph PP as well. Defined

< <1 D d s card X g PP : X F t , 0, X g g PP , 0 ,� 4Ž . Ž . Ž . Ž .t d d

Ž . Ž .where card denotes cardinality. Set D d s lim D d , the degree of 0 int ª` t
Ž .g PP , 0 .d

Žw x. dPROPOSITION 2 2 . When f is the uniform density on the unit cube in R ,
w Ž . x w Ž . xE V n rn ª P D d s k as n ª `.k

w Ž . xIt is immediate from Propositions 1 and 2 that a s P D d s k .k , d
We turn now to the empirical distribution of the lengths of the edges of the

Ž .MST on n points. For t G 0 let the random variable F t; f denote then
� 4 < <proportion of edges e of the MST on h , . . . , h with e F t.1 n

PROPOSITION 3. For t G 0,

1y1r d
2 1r d2 F n ; f ª E D d f x dx as n ª `,Ž . Ž . Ž .Ž . Hn L t f Ž x .2

dR

where ª 2 denotes convergence in mean square. In particular, in the specialL
Ž y1r d . 2case where f is the uniform density on the unit cube, F n t; f ªn L

w Ž .xE D d r2 as n ª `.t

w xThe proof of this result is an extension of the methods of 2 , and is given
in the Appendix.

Ž .The above results indicate why a and ED d might be of interest.k , d t
However, these quantities seem to be hard to evaluate; thus we consider their
limiting behavior for large d. To describe the limits, consider the complete

� 4rooted N-ary tree TT, where N s 1, 2, 3, . . . . We identify the vertex set of TT
` n Ž . Žwith the set D N of finite sequences words of natural numbers includ-ns0

. n ming the empty word . If w g N and v g N are words of length n and m,
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respectively, let w) v denote the concatenation of w and v, a word of length
Ž .n q m e.g., 244)43 s 24443 . We make TT into a tree by including an edge

` n Žbetween w and w) i, for each word w g D N and i g N viewed as ans0
.one-letter word . The root of TT is the empty word, denoted B. For each word

Ž . Ž .w other than B, let e w denote the unique edge of TT which has w as its
endpoint further from the root.

We give random weights to the edges of TT as follows. On a suitable
Ž . ` nprobability space let PP w , w g D N , be independent homogeneous Pois-ns0

Ž . ` nson processes of rate 1 on 0, ` . For each w g D N , label the arrivalns0
Ž . Ž . Ž . Ž .times of PP w in increasing order as G w , G w , G w , . . . . For each i g N,1 2 3

Ž . Ž . Ž .give the edge e w) i from w to w) i the weight W w) i [ G w . Withi
Ž . ` nprobability 1, the weights W w , w g D N , are all distinct.ns1

Ž .Our limits are described in terms of the weighted tree g TT, B , defined by
applying the construction above to the randomly weighted graph TT. For t G 0,

Ž . Ž .let D ` denote the total number of edges from B in g TT, B whose weightst
are at most t. That is,

3 D ` s card i g N: e i g g TT , B , W i F t .� 4Ž . Ž . Ž . Ž . Ž .t

Ž . Ž . Ž . Ž .Set D ` q 1 [ lim D ` , the degree of the root B in g TT, B . So D ` q 1t ª` t
Ž . Ž . Žis the number of one-letter words i such that i g t B, TT or B g t i, TT or` `

.both .
We now state our two main results.

w Ž . xTHEOREM 1. For each k g N, setting a s P D ` q 1 s k , we havek

4 lim a s a .Ž . k , d k
dª`

Ž .As we shall see in the next section, the structure of g TT, B is equivalent to
w x Ž . w xthat described in different terms by Aldous 1 , and D ` is the same as in 1

Ž .this is why 1 was added in the definition . Aldous derives a formula for the
a and evaluates it numerically; we have a s 0.408, a s 0.324, a s 0.171,k 1 2 3
a s 0.022, a s 0.006 and a s 0.001.4 5 6

Ž . dLet v s denote the volume of a Euclidean ball of radius s in R , and letd
Ž . dr t denote the radius of a Euclidean ball of volume t in R . That is,d

5 v s s p sd , v r t s t ,Ž . Ž . Ž .Ž .d d d d

d r2 ŽŽ . . dwhere p [ p rG dr2 q 1 , the volume of the unit ball in R . It turnsd
out to be natural to measure lengths on the ‘‘volume scale,’’ that is, to
transform edge lengths by the monotone function v .d

Ž .Let c t denote the extinction probability for a Galton]Watson branching
w Ž .x Ž .process denoted G , n G 0 with a Poisson t offspring distribution andn

with G s 1, that is, the smallest solution to0

6 c t s exp t c t y 1 ,Ž . Ž . Ž .Ž .Ž .
Ž . Ž .and let c t s 1 y c t .
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THEOREM 2. For each t G 0,

7 lim E D d s E D `Ž . Ž . Ž .r Ž t . tddª`

t 2
8 s 1 y c s ds.Ž . Ž .Ž .H ž /

0

Here is a brief explanation of why the graph TT might be expected to arise
in the large-d limit. Define points Y of PP for each w g D` Nn as follows.w d ns0
Set Y s 0, and let Y be the ith nearest neighbor of 0 in PP . Let Y be theB i d i j
jth nearest neighbor of Y , not counting 0, and let Y be the kth nearesti i jk
neighbor of Y , not counting its ‘‘parent’’ Y , and so on. For each word w andi j i
i g N, set X s Y y Y . Then, for any finite collection WW of words w,w ) i w ) i w

Ž .for large d the vectors X , w g WW are very likely to be approximatelyw
Ž . Ž .i mutually orthogonal and ii all the same length. This means there is
unlikely to be much ‘‘interference’’ between different vectors of the form X .w

� Ž < <. 4Also, v Y , i G 1 are the arrival times of a Poisson process of rate 1 ond i
Ž .0, ` . If we identify each Y with the vertex w of TT and give a weightw

dŽ . Ž < <. Ž .W w [ v X to the edge e w of TT, it can be shown that the finite-d w
� dŽ .4 � Ž .4dimensional distributions of W w converge to those of W w given by

independent Poisson processes as above. This suggests that the weighted
Ž . w Ž < <.xgraph g PP , 0 with each edge e given weight v e might converge weaklyd d

Ž . Ž .in an appropriate topology on weighted rooted trees to g TT, B . This conjec-
Ž . Ž .tured convergence would immediately give us 4 and 7 , which are con-

cerned with particular aspects of these trees. The main source of difficulty in
proving this sort of result is the long-range dependence in the MST.

ŽThis interpretation can be used to understand and presumably to re-
. w x w xderive other results on large-d limits, found in 21 and 15 . For example,

w xTheorem 4.1 of 21 is concerned with the large-d limit of the probability that
0 is the r th nearest neighbor of its sth nearest neighbor in PP , and the aboved
discussion suggests that this limit ought to be the probability that there are

Ž . Ž Ž ..s y 1 points of PP r in the interval 0, G B . By considering the pooledr
Ž . Ž .Poisson process PP B j PP r , it is easily verified that this probability is

w xindeed the limit in Theorem 4.1 of 21 .

Ž .3. The limiting tree. The graph g TT, B is closely related to a tree
w xdescribed via a tree-valued Markov process in 1 , as we shall now show. For

Žany vertex w of TT, let TT be the subtree of TT rooted at w i.e., the fullw
� ` n4.subgraph on w) v: v g D N . Clearly, TT is isomorphic to TT.ns0 w

For s ) 0, let GG denote the tree obtained from TT by deleting all edges ofs
weight strictly greater than s, then taking the component of the resulting
graph that includes the root. Let GG w be the tree obtained in the same ways

Ž .from TT . Since the number of edges w, w) i of weight at most s from aw
given vertex w is Poisson with mean s, the graph GG is the family tree of as

Ž .Galton]Watson branching process with Poisson s offspring distribution,
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Ž . Ž .with one progenitor. The graphs GG , s G 0 with labels and weights ignoreds
w xform a realization of the tree-valued Markov process described in 1 , page

Ž .388, and also denoted GG there. This is because, given GG , each vertex w ofs s
w Ž . Ž .GG has probability ds of acquiring a new arrival say G w , where i s i w, ss i

x Ž .here before time s q ds. Such an arrival will add an extra edge e w) i to
GG , together with the whole of GG w ) i, which is an independent copy of GG .sqd s s s

w xAs in 1 , define the random variable L by

< <9 L s inf s : GG s ` s sup W w : e w g t B, TT ,� 4 � 4Ž . Ž . Ž . Ž .s `

Ž .where the second equality follows from the definition of t B, TT . Then GG is` L
infinite by the second definition of L, and thus

< <w x10 P L F s s P GG s ` s 1 y c s s c s .Ž . Ž . Ž .s

w xThus P 1 - L - ` s 1.
w x ŽAs argued in 1 , page 389, with probability 1, GG is infinite but GG theL Ly

. Ž .union of all GG , s - L is finite. Therefore, since the edge weights W w ares
Ž . Ž .a.s. distinct, there is a single random edge, e w say, of GG , with weight0 L

Ž . Ž . Ž . Ž .W w s L. Moreover, GG ; t B, TT ; GG and e w g t B, TT .0 Ly ` L 0 `

For each vertex w of TT, define L analogously to L on TT byw w

11 L s sup W w) v : e w) v g t w , TT .� 4Ž . Ž . Ž . Ž .w ` w

Clearly, L has the same distribution as L, and the supremum is achieved atw
a unique edge of TT .w

Ž . Ž .Since GG ; t B, TT ; GG , the rooted trees GG and t B, TT , with theLy ` L L `

Žbranch containing w deleted i.e., with the first edge of the path from B to0
w deleted, along with the component of the resulting graph that does not0

. 0 w x Ž .contain B , are the same tree, denoted HH in 1 and here .L
Ž .To see which edges of weight greater than L are included in g TT, B , let

0 Ž .HH denote the component containing B of the graph g TT, B with all edges ofs
weight greater than s removed and with the branch containing w removed.0

0 0 Ž .Then HH is as defined above. For s ) L, if w g HH and W w) i s s, thenL sy
Ž . Ž . Ž . Ž .e w) i f t w, TT , so e w) i will be included in g TT, B if and only if`

Ž . 0w g t w) i, TT , which happens if and only if L ) s. Thus, if w g HH and` w ) i sy
Ž .W w) i s s,

0 < w ) i <HH , if GG s `,sy s0HH ss 0 w ) i w ) i½ < <HH j e w) i j GG , if GG - `.� 4Ž .sy s s

Ž .But if labels except at the root are ignored, this is equivalent to the
Ž 0.transition mechanism after time L of the tree-valued process denoted HH ins

w x 0 w x1 ; thus the processes denoted HH here and in 1 are equivalent. Therefore,s
Ž . Ž . w xthe degree of B in g TT, B is the same as D ` q 1 in 1 , and the calculation

w xin 1 , page 395, of its distribution is also valid for the present interpretation.
Also, the limit a of Theorem 1 is the same as the large-n limit established ink
w x1 for the proportion of vertices of degree k in the minimal-weight spanning

ntree on the complete graph on n points when all edge weights are takenž /2
w xto be independent and uniform on 0, 1 .
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Ž .We now prove 8 of Theorem 2.

PROPOSITION 4.

t 2
12 E D ` s 1 y c s ds.Ž . Ž . Ž .Ž .H ž /t

0

Ž .PROOF. We view PP B as a marked Poisson process in which each arrival
Ž . Ž . ŽG B is marked by the value of L given by 11 so the marks are indepen-i i

.dent copies of L . For each i g N, define

13 L s inf max G B , LŽ . Ž .Ž .Ž .yi j j
j/i

Ž .note that L is given by the same formula with the infimum taken over all j .
Ž . Ž .The statement ‘‘e i g t 0, TT ’’ means that, starting from 0, one cannot`

Ž .continue indefinitely adding edges of length less than W i , that is, L ) W .yi i
Ž . Ž . Ž . Ž . Ž .Similarly, e i g t i, TT if and only if L ) W i . Thus e i g g TT, B if and` i
Ž . Ž .only if max L , L ) W i , and soyi i

14 D ` s 1 .Ž . Ž . Ýt �maxŽL , L .)W Ž i.4i y i
Ž .i : G B Fti

Ž .If L9 is an independent copy of L, then, by 10 , for s ) 0,
215 P max L, L9 ) s s 1 y c s .Ž . Ž . Ž .

Ž . w Ž .xThe formula 12 for E D ` is now a routine application of Palm theory fort
the marked Poisson process. A proof from first principles goes as follows.

Ž . Ž .Condition on the number N of points of PP B in the interval 0, t . Givent
that N s k, this point process consists of k unordered points, denotedt

Ž x XU , . . . , U say, independent and uniform on 0, t . Let L denote the mark at1 k i
X Ž X . Ž X .U , and let L s inf max U , L when k s 1 take L s q` . Then,i yi j: i/ jF k j j yi

Ž .by 14 and exchangeability, for k G 1,
k

< X XE D ` N s k s E 1Ž . Ýt t �maxŽL , L .)U 4i y i i
is1

t X X y1s k P max L , L ) s t ds.Ž .H 1 y1
0

Since LX and LX are independent for k ) 1, with LX having the samey1 1 1
distribution as L, and LX having the conditional distribution of L giveny1
Ž .N t s k y 1, we have that

`
tyt k y1<E D ` s e t rk! k P max L9, L ) s N s k y 1 t dsŽ . Ž .Ž .Ý Ht t

0ks1

t
s P max L9, L ) s ds,Ž .H

0

Ž . Ž .and 12 now follows from 15 . I
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Ž .In connection with this proof, note that, by 15 and symmetry,
216 1r2 1 y c s s P L ) max s, L9 ,Ž . Ž . Ž . Ž .Ž .

Ž . Ž .which is the Palm probability, given that there is an arrival of PP B at time
ws, that the corresponding edge of TT is part of the path from 0 to w defined0

Ž . xafter 10 above . Setting J to be the weight of the first edge from B in this
t 2w x Ž Ž . .path, we obtain P J - t s H 1 y c s dsr2, which was obtained by other0

Ž . w xmeans in 33 of 1 .

4. Preliminaries. Before proving Theorem 1 we introduce some nota-
tion. For r ) 0 and x g Rd, define

d < <17 B x s y g R : y y x F r ,� 4Ž . Ž .r

Ž .the closed ball of radius r centred at x, and set B s B 0 .r r
d ŽFor any point process X in R , define an r-path in X to be a possibly

. Ž . < <infinite sequence X of distinct points of X with X y X - r for eachn n nq1
d � 4n. For x and y in R , let x l y in X denote the event that either there is ar

Ž . < < < < < <finite r-path X , . . . , X in X with x y X - r and y y X - r, or x y y1 m 1 m
� 4 Ž .- r. Let x l ` in X denote the event that there is an infinite r-path X inr n

< < < < d dX with x y X - r and X ª ` as n ª `. For any sets A ; R , B ; R ,1 n
define the event

� 4 � 4A l y in X [ x l y in X ,Dr r
xgA

� 4 � 4and define A l ` in X and A l B in X likewise.r r
w xThe next two lemmas are slight modifications of Lemmas 3 and 4 of 17 .

The proofs are virtually unchanged, and are omitted.

Ž .LEMMA 1. Let U d be a uniform random variable on the d-dimensional
unit ball B . Then1

< <18 lim P U d ) 3r4 s 1Ž . Ž .
dª`

and
d< < < <19 lim sup P U d y x F 1.1 : x g R , x G 3r4 s 0.Ž . Ž .� 4Ž .

dª`

d 2 'Ž . Ž .LEMMA 2. Define L: R ª R by L x , x , . . . , x s d x , x . The two-1 2 d 1 2
Ž Ž ..dimensional random vector L U d converges in distribution to the bivariate

normal with mean 0 and the identity matrix I as covariance matrix.

We shall use the technique of comparison with oriented site percolation on
the lattice

2 < <20 LL [ i , j g Z : i G 0, j F i , i q j r2 g Z ,� 4Ž . Ž . Ž .
Ž . Ž . Ž . Ž .with oriented edges from i, j to i q 1, j " 1 . For p g 0, 1 , let u pLL

denote the probability that, for oriented site percolation on LL with parame-
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Ž .ter p the probability each site is occupied , there is an infinite path of
Ž . Ž w x .occupied sites from 0, 0 . By a contour argument see 7 , page 86 , there

exist constants c ) 0 and q ) 0 such that0

21 1 y u 1 y q F 3ny1q n r4 F cq for all q - q .Ž . Ž . ÝLL 0
nG4

We shall use procedures in which states of LL are examined in turn in the
Ž . Ž . Ž . Ž . Ž .order 0, 0 , 1, y1 , 1, 1 , 2, y2 , 2, 0 , . . . . Each site will be deemed ‘‘oc-

cupied’’ or ‘‘vacant’’ by a random mechanism that may depend on the earlier
sites but gives conditional probability of ‘‘occupied,’’ given the status of the
earlier sites, uniformly exceeding some value p. The probability of an infinite

Ž . Ž .path from 0, 0 of occupied sites will then exceed u p . See, for example,LL
w x11 , Lemma 1.

Ž . Ž . 2For i, j g LL , let B i, j be the closed disk of diameter 1 in R centered1r2
Ž .at i, j , and set

22 A s Ly1 B i , j ,Ž . Ž .Ž .i , j 1r2

with L as in Lemma 2. The A are disjoint regions of Rd.i, j
Let PP t denote a homogeneous Poisson process of rate trp on Rd. Noted d

that PP1 / PP . The point process PP t arises naturally as a result of scaling;d d d
see below. Our first use of oriented percolation is to obtain the following
uniform bound.

LEMMA 3. There exist constants c ) 0, c ) 0 such that, for some t ) 01 2 0
and d g N,0

t1 y P 0 l ` in PP F c exp yc t for all d G d , t G t .Ž .1 d 1 2 0 0

PROOF. It follows from Lemma 2 that there is a constant h ) 0 and some
d such that, for d G d ,0 0

inf P x q U d g A ) h and P U d g A ) h .� 4Ž . Ž .1, y1 0, 0
xgA0, 0

Put another way, the first of these inequalities says that, for d G d and0
Ž .x g A , the proportion of the ball B x lying in A is at least h, andi, j 1 iq1, j"1

therefore, for t ) 0 and d G d ,0

23 trp dy G ht and trp dy G ht .Ž . Ž . Ž .H Hd d
Ž .B x lA B lA1 iq1, j " 1 1 0, 0

Ž . Ž . Ž .Let A be the union of those A with i9, j9 g LL and i9, j9 preceding i, ji j i9 j9
in the ordering described above. That is, either i9 - i or i9 s i and j9 - j. Let
FF be the s-field generated by the positions of those particles of PP t lying ini, j d

A , and define the eventi, j

t tE s ' X g PP l A with 0 l X in PP l A .½ 5i j d i j 1 d i j

Ž . w c x yh t Ž . �Ž .4By 23 , P E F e . For i, j g LL _ 0, 0 , the events E are in0, 0 iy1, j"1
Ž .FF , and it follows from 23 thati, j

c yh t<24 P E FF F e on E j E .Ž . i j i j iy1, jy1 iy1, jq1
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Ž . tIf E occurs for infinitely many i, j g LL , then 0 l ` in PP . The result nowi, j 1 d
Ž . Ž .follows from 24 by comparison with oriented percolation and 21 . I

The following application of Lemma 3 says that edges of large length
Ž . Ž .measured on the volume scale are unlikely to contribute to the degree D d

Ž .of 0 in g PP , 0 , regardless of d.d

LEMMA 4. There exists d ) 0 such that0

25 lim sup P D d - D d s 0.Ž . Ž . Ž .r Ž t .dtª` dGd0

Ž .PROOF. The probability on the left-hand side of 25 is bounded above by
the expression

< <E card X g PP : X ) r t , 0, X g g PP , 0� 4Ž . Ž . Ž .d d d

� 4s P 0, y g g PP j y , 0 dyŽ . Ž .H d
d < < Ž .ygR : y )r td

cF P 0 l ` in PP , y l ` in PP dy� 4H < y < d < y < d
< < Ž .y : y )r td

26Ž .
cF 2 P 0 l ` in PP dy� 4H < y < d

< < Ž .y : y )r td

` c
s 2 P 0 l ` in PP ds.� 4H r Ž s. dd

t

Ž .The image of PP , under the scaling transformation x ª xrr t , is a Poissond d
d Ž Ž ..d Ž .process on R of rate r t , that is, of rate trp by 5 . With this scaledd d

t Ž .Poisson process denoted PP , the upper bound in 26 is equal tod

` cs2 P 0 l ` in PP ds,� 4H 1 d
t

which converges to 0 uniformly in d by Lemma 3. I

The next lemma is based on the following idea. Given a point x g R,
t Ž .viewed as ‘‘generation 0,’’ let the points of PP in B x be thought of as itsd 1

‘‘offspring,’’ a Poisson number of points with mean t. Each offspring would
Ž .itself have a Poisson t number of offspring and so on, were it not for the

overlap of the balls centered at x and at its offspring. However, this effect
becomes negligible for large d, and the sequence of offspring, grandchildren
and so on of x resembles a branching process with a single progenitor at x.
The result here says the same is true if one considers an initial set of k
progenitors, provided they are not too close together.

Ž . dFor K ) 0 and d, n g N, let UU d, n , K denote the set of subsets u ; R , of
< < < Ž . <cardinality n , such that u ) 3r4 and L u F K for each u g u and such

< <that u y u9 ) 1 for all distinct u, u9 in u.
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Ž Ž . .LEMMA 5. Let t ) 0, n g N and K ) 0. Let r d , d G 1 be a sequence of
Ž . tnonnegative numbers with lim sup r d F 1. Then, with PP as in Lemmadª` d

Ž . Ž .3 and c t as in 6 ,
nt27 sup P u l ` in PP _ B F 1 y c t for all d ,Ž . Ž .1 d r Žd .

Ž .ugUU d , n , K

while, conversely,
nt28 lim inf P u l ` in PP _ B s 1 y c t .Ž . Ž .1 d r Žd .

dª` Ž .ugUU d , n , K

w xREMARKS. In 17 we proved the special case of this result with n s 1,
Ž .r d s 0. The proof here is based on a similar argument. The result is also

true with K s `, but the proof is then more involved.

Ž .PROOF OF LEMMA 5. The first inequality 27 follows from the continuum
Ž w x. w xFKG inequality see 14 and Proposition 1 of 17 .

Ž . w Ž .xTo prove 28 , it suffices by 27 to prove that, for « ) 0,
nt29 inf P u l ` in PP _ B G 1 y c t y 2« , d large.Ž . Ž .1 d r Žd .

Ž .ugUU d , n , K

Ž .Assume t ) 1 else there is nothing to prove . Define the lattice LL and the
Ž . Ž . Ž . Ž .regions A as in 20 and 22 . Choose d g 0, «r3 such that u 1 y 3d )i, j LL

Ž .1 y « ; this can be done by 21 .
Ž d . Ž . dLet Z , n s 0, 1, 2, . . . be a branching random walk BRW in R , inn

which each particle gives birth to a Poisson number of offspring with mean t
and the positions of the offspring of a particle at x are uniformly distributed

Ž . dover the ball B x . According to context, we shall regard Z either as a1 n
random subset of Rd or as the corresponding point measure: for A ; Rd, let

dŽ .Z A denote the number of particles of the nth generation of this BRW in A.n
Ž `. 2 Ž .Let Z denote a BRW in R , also with a Poisson t offspring distributionn

and the offspring of a particle at x having a normal distribution with mean x
2 `Ž .and variance matrix I. For A ; R , let Z A denote the number of particlesn

of the nth generation of this BRW in A.
Ž d .By Lemma 2, the image under L of Z has approximately the distribu-n

Ž `. w xtion of Z . Since t ) 1, by the proof of Lemma 2 of 16 , there exist m ) 0n
and k ) 0 such that, for sufficiently large d,1

d d d30 P Z A ) m l Z A ) m ) 1 y d if Z A G m.Ž . Ž . Ž . Ž .� 4 � 4k 1, 1 k 1, y1 0 0, 01 1

` Ž d . `Write P for probability referring to the BRW Z or Z with Z consist-x n n 0
w xing of a single progenitor at x. The proof of Lemma 3 of 16 can be used to

2 < <show that there exists k ) 0 such that, for any x g R with x F K,0

1rn` `31 P Z L A - m j Z L A - m - 1 q d c t .Ž . Ž . Ž . Ž . Ž .Ž . Ž .� 4 � 4x k 1, 1 k 1, y10 0

w xThe argument in 16 refers to a BRW with bounded offspring distribution. To
use it here, truncate the two-dimensional BRW Z` by removing any child at an
distance greater than M, say, from its parent. This gives a BRW with a
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bounded offspring distribution, and, by the choice of M, the survival probabil-
ity of the underlying branching process for this truncated BRW can be taken

Ž . Ž . w xto be close to 1 y c t by the continuity of c . The argument in 16 applies
Ž .directly to the truncated BRW, and if the statement 31 is true for the

Ž `.truncated BRW it is also true for Z because it dominates the truncatedn
BRW.

Ž .By 31 , for large enough d,

d dP Z A G m l Z A G mŽ . Ž .� 4 � 4k 1, 1 k 1, y10 032Ž .
n d) 1 y c t y d if Z g UU d , n , K .Ž . Ž .0

Ž . Ž .Let G , n G 0 denote a Galton]Watson process with a Poisson t offspringn
Ž .distribution. We can and do assume that k is so large that0

n
<33 P G ) 0 G s n - 1 y c t q « .Ž . Ž .k 00

Choose R to be so large that

Ž .max k , k1 0
` c34 P Z B ) 0 - drm.Ž . Ž .Ý0 n Ry1

ns0

This implies that, for large enough d, if Zd consists of m points in A , then0 i, j
Ž d .the probability that any of the first k or the first k generations of Z lies1 0 n

y1Ž Ž .. Ž .outside L B i, j is at most d , where B i, j is the two-dimensional diskR R
Ž .of radius R centered at i, j .

Ž .Choose k so large that, for the Galton]Watson process G ,2 n

k k1 0

< <35 max P G ) k G s m , P G ) k G s n - d .Ž . Ý Ýn 2 0 n 2 0ž /ns0 ns0

We now describe an algorithm consisting of a sequence of steps, indexed by
Ž .the sites i, j of LL , taken in the same order as in the proof of Lemma 3. In

Ž . dstep i, j , first define finite sets S and z in R ; we set S s B, the emptyi j i j 00
set, and z s u, and define subsequent S and z later on. The set S00 i j i j i j

Ž .includes all points which have already been ‘‘examined’’ before step i, j ;
roughly, the ‘‘examination’’ of a point corresponds to the observation of all

t Žpoints of PP in its 1-neighborhood by which we mean the translate of Bd 1
. dcentered at that point . Using Z s z as the set of progenitors in generation0 i j

d Ž . Ž .0, run the BRW Z , n s 0, 1, . . . , k i , for k i generations, where we setn
Ž . Ž . Ž .k i s k defined above for i G 1, and k 0 s k as defined above. Order the1 0

particles of the BRW as follows: the particles of an earlier generation precede
those of a later one, siblings are ranked in order of increasing modulus and
particles in the same generation with distinct parents inherit the ordering of

Ž .their parents a procedure analogous to the class system in British society .
Points of z are ordered by modulus.00

Modify the BRW as follows. Consider successively each particle X after
Žgeneration 0 of the BRW, in the ordering given above starting with the
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. Žparticle of smallest modulus of generation 1 . Remove X along with its
.descendants if it lies in the 1-neighborhood of any point of S , or in thei j

1-neighborhood of any unremoved particle of the BRW that precedes X in the
y1Ž Ž ..ordering, or if X lies inside B or outside L B i, j . Finally, if thererŽd . R

Ž .are more than k remaining particles in generations 0, 1, 2, . . . , k i , remove2
all but the first k remaining particles in the ordering.2

Let s denote the set of all unremoved particles in generationsi j
Ž .0, 1, 2, . . . , k i . By construction, this set has cardinality at most k . The set2

Ž .s includes the set of points examined in the course of step i, j and alsoi j
unexamined points from the final generation, some of which may be exam-
ined later on.

Ž . Ž . d Ž .Step i, j is deemed to be ‘‘successful’’ if i Z A G m andk Ž i. iq1, jq1
d Ž . Ž . Ž .Z A G m; ii no particle has cause to be removed; and iii nok Ž i. iq1, jy1

Ž .particle of the final generation k i lies within a distance of 3r4 of its parent
or siblings.

Ž .We need to initialize step i, j by defining the initial sets S and z fori j i j
Ž .i ) 0 we defined S s B and z s u earlier on . These definitions will00 00

� 4depend on the outcomes of earlier steps. Define S to be the union of 0 andi j
Ž . Ž .all sets s with i9, j9 preceding i, j in the ordering on LL . Assume therei9, j9

Ž . Ž . Ž .is an oriented path in LL from 0, 0 to i y 1, j y 1 or to i y 1, j q 1 of sites
Ž . wi9, j9 for which steps i9, j9 were all successful if not, nothing happens in step

Ž . x Ž .i, j , and s is empty . If there is a successful path to i y 1, j y 1 , let zi j i j
be the set of m points of smallest modulus which are both in A and in thei, j

Ž . Ž .last generation of the successful BRW run at step i y 1, j y 1 . If there is a
Ž . Ž .successful path to i y 1, j q 1 but not to i y 1, j y 1 , define z similarlyi j

Ž .using the last generation from step i y 1, j q 1 . Note that z consists of mi j
points in the region A , each of which is distant at least 3r4 from all otheri j
points in S .i j

Ž .For sufficiently large d, the probability that step 0, 0 is ‘‘successful’’
Ž .n Ž . Ž . Ž . Ž .exceeds 1 y c t y 3d , by 32 , 34 , 35 and Lemma 1. For each i, j other

Ž . Ž . Ž . Ž .than 0, 0 in LL , the probability that step i, j satisfies conditions i ] iii to
Ž .be ‘‘successful,’’ given that it is attempted at all, exceeds 1 y 3d . Indeed, i is

Ž .likely to hold by 30 . Also, the rule that each step has particles outside
y1Ž Ž ..L B i, j discarded means that only a finite number of previous stepsR

w Ž . <Ž . Ž . < xnamely, those i9, j9 with i9, j9 y i, j F 2 R can possibly affect step
Ž . Ž . Ž . Ž . Ž .i, j , and all such i9, j9 satisfy card s F k . By this fact, 34 , 35 andi9, j9 2

Ž . Ž .Lemma 1, the probability that ii or iii fails can be shown to be small for
large d.

Ž .Let S denote the set of all points created and not removed during the`

course of the algorithm, together with the initial set of points u. Then, for all
x, y g S , x l y in S . The algorithm is equivalent to the observation of the` 1 `

t d Ž w xpoints of PP in successive disjoint regions of R _ B see 17 , Section 4 ford r Žd .
. tmore details , so S _ u may be viewed as a subset of PP _ B , and` d r Žd .

Ž . tcard S s ` implies u l ` in PP _ B . A comparison with oriented perco-` 1 d r Žd .
lation with parameter 1 y 3d shows that the probability that there are

Ž Ž .n .infinitely many successful steps in the algorithm exceeds 1 y c t y 3d
Ž . Ž .1 y « ; therefore, we have 29 . I
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Ž . Ž . Ž .Let UU9 d, n , K denote the set of pairs u, x with u g UU d, n , K and
� 4 Ž . Ž .u j x g UU d, n q 1, K . The next result says that, for such a u, x , if there

is a 1-path from u to x there is also likely to be an infinite 1-path from u,
when d is large.

Ž Ž . .LEMMA 6. Let t ) 0, n g N and K ) 0. Let r d , d G 1 be a sequence of
Ž . Ž .positive numbers with lim sup r d F 1. Let E resp. E denote thedª` u, x u, `

Ž . tevent that u l x resp. u l ` in PP _ B . Then1 1 d r Žd .

w x36 lim sup P E _ E s 0.Ž . u , x u , `
dª` Ž . Ž .u , x gUU 9 d , n , K

PROOF. Let « ) 0. Consider the same algorithm as in the proof of Lemma
t Ž .5, again viewed as generating a random subset S of PP _ B . Step 0, 0 of` d r Žd .

Ž d d d .this algorithm is a BRW running for k steps, here denoted Z , Z , . . . , Z ,0 0 1 k 0d Ž .with Z s u. Let E be the event that step 0, 0 is ‘‘successful’’ in the sense0 0
of the earlier proof. Then

w xP E _ Eu , x u , `

d d w xF P E _ Z / B q P Z / B _ E q P E _ E .� 4 � 4u , x k k 0 0 u , `0 0

37Ž .

Ž .It suffices to show that each of the three terms on the right-hand side of 37
Ž . Ž .is bounded by 2« for large d, uniformly on u, x g UU9 d, n , K . First, by

Lemma 1, for d large,

k y10
d38 P E _ Z / B F P x g B y - « .Ž . Ž .� 4 D Du , x k 10

dns0 ygZn

Ž . Ž . Ž .As in the proof of Lemma 5, by 32 , 34 , 35 and Lemma 1, for large d we
w x Ž .n Ž .have P E G 1 y c t y « ; therefore, by the choice of k to satisfy 33 ,0 0

d d w x39 P Z / B _ E s P Z / B y P E - 2« .Ž . � 4k 0 k 00 0

The comparison with oriented percolation in the proof of Lemma 5 shows
Ž .that, for large d, if step 0, 0 is successful, then, with probability exceeding

1 y « , there are infinitely many successful steps, in which case E occurs;u, `

w xthus P E _ E - « , which completes the proof. I0 u, `

� 45. Proof of main results. List the points of PP _ 0 in order of in-d
creasing modulus as Y , Y , Y , . . . . Fix k g N and numbers 0 - t - t - ???1 2 3 1 2
- t F s - `. Let Q , . . . , Q be d-dimensional random variables, indepen-k 1 k
dent of one another and of PP , uniformly distributed on the unit sphere ind

d X Ž .R . Define the d-dimensional variables Y s r t Q and the point processesi d i i

� X X 440 YY s Y , . . . , Y , 1 F i F k .Ž . i 1 i

Define the modified point process
X � 441 PP s 0 j YY j PP _ B .Ž . Ž .d k d r Ž s.d
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� < <The conditional distribution of PP , given that card X g PP : 0 - X Fd d
Ž .4 < < Ž . Xr s s k and that Y s r t for 1 F i F k, is that of PP .d i d i d
For 1 F i F k, define the events

42 E s 0 l ` in PPX , F s Y X l ` in PX� 4 � 4Ž . i r Ž t . d i i r Ž t . dd i d i

and

43 H s 0 l Y X in PX .� 4Ž . i r Ž t . i dd i

Ž X. Ž .If E l F occurs, then 0, Y is an edge neither of t 0, PP nor ofi i i ` d
Ž X . �Ž X. Ž X .4t Y , PP ; in other words, E l F ; 0, Y f g PP , 0 , and we now show` i d i i i d

Ž X .that the probability that the inclusion is strict vanishes as d ª `. If 0, Y fi
Ž X .g PP , 0 but E l F does not hold, then necessarily H holds; therefore,d i i i

X XP 0, Y f g PP , 0 _ E l F� 4Ž . Ž . Ž .i d i i

w x w xF P H _ E q P H _ Fi i i i

F P YY l YY _ YY in PP _ BŽ .� 4iy1 r Ž t . k iy1 d r Ž s.d i d

_ YY l ` in PP _ B� 4iy1 r Ž t . d r Ž s.d i d

44Ž .

X X� 4q P Y l YY _ Y in PP _ BŽ .� 4i r Ž t . k i d r Ž s.d i d

X_ Y l ` in PP _ B .� 4i r Ž t . d r Ž s.d i d

We shall prove that this vanishes by using Lemma 6. First we introduce more
notation; define the numbers

45 r d s r s rr t ,Ž . Ž . Ž . Ž .i d d i

the vectors

46 W i [ Y Xrr t s r t rr t QŽ . Ž . Ž . Ž .Ž .j i d i d m d i j

and the sets

47 ui s W i , . . . , W i .Ž . � 4j 1 j

X Ž . t iSince the image of PP under x ¬ xrr t is a Poisson process PP of rated d i d
Ž .t rp , the upper bound in 44 is equal toi d

i i i t i ti iP u l u _ u in PP _ B _ u l ` in PP _ B� 4� 4Ž .iy1 1 k iy1 d r Žd . iy1 1 d r Žd .i i

48Ž .
i i i t i ti iqP W l u _ W in PP _ B _ W l ` in PP _ B .� 4 � 4Ž .½ 5i 1 k i d r Žd . i 1 d r Žd .i i

Ž . Ž . Ž .As d ª `, all ratios r t rr t converge to 1. In particular, r d ª 1. Also,d i d j i
Ž .Lemmas 1 and 2 still hold with the vector U d taken to be uniform on the

� d < < 4 Ž .unit sphere x g R : x s 1 . Therefore, for K g 0, ` ,

ki < <w x49 P u g UU d , k , K ª P Z - K ,Ž . Ž . Ž .k
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where Z is a two-dimensional standard normal. This limit can be made
arbitrarily close to 1 by choice of K. Therefore, by Lemma 6, the expression in
Ž .48 converges to 0 as d ª `, and so

X X50 lim P 0, Y f g PP , 0 ^ E l F s 0,� 4Ž . Ž . Ž . Ž .i d i i
dª`

where ^ denotes symmetric difference.
Clearly, E ; E ; E ; ??? . Define the random variable1 2 3

� 451 I s max i F k : E does not holdŽ . i

and the random set

� 452 S s i g I q 1, I q 2, . . . , k : F occurs .� 4Ž . i

Ž . � 4By 50 , except on an event of small probability, the set 1, 2, . . . , k _ S is the
Ž X. Ž X .set of i F k for which 0, Y is an edge of g PP , 0 .i d

� 4 � 4Let i g 1, 2, . . . , k and s ; i q 1, i q 2, . . . , k with cardinality denoted
< < c � 4s . Write s for the set i q 1, i q 2, . . . , k _ s . Then

w xP I s i , S s s

c cs P E l E l F l FF Fiq1 i j jž / ž /
cjgs jgs53Ž .

c cs P E l F l F y P E l F l F .F F F Fiq1 j j i j jž / ž /ž / ž /
c cjgs jgsjgs jgs

Ž .By the inclusion]exclusion formula, the second of the two terms in 53 is
given by

< <tc54 P E l F l F s y1 P E l F .Ž . Ž .F F Ý Fi j j i jž / ž /ž /
c cjgs jgsjtjgs t;s

Consider one of the terms in this sum. By the FKG inequality, writing Q for
Ž .the vector Q , . . . , Q ,1 k

< < <55 P E l F Q G P E Q P F Q .Ž . F Łi j i jž /
jgsjtjgsjt

Ž . dBy using the definition of E and applying the map x ¬ xrr t to R , wei d i
have

< <P E Q G P YY l ` in PP _ B Qi iy1 r Ž t . d r Ž s.d i d

i t i <s P u l ` in PP _ B Q .iy1 1 d r Žd .i

56Ž .

Therefore, Lemma 5 gives us, for all K ) 0,
iy1<57 lim inf inf P E Q G 1 y c t ,Ž . Ž .i i

idª` � Ž .4Q : u gUU d , k , Kk

and, similarly,

<58 lim inf inf P F Q G 1 y c t s c t .Ž . Ž . Ž .j j j
idª` � Ž .4Q : u gUU d , k , Kk
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Ž . Ž . Ž .Therefore, by 55 , integrating over Q and using 49 ,

iy159 lim inf P E l F G 1 y c t c t .Ž . Ž . Ž .Ž .F Łi j i jž /dª` jgsjtjgsjt

w Ž .x dTo get an upper bound on P E l F F , first rescale R by a factor ofi jg s jt j
Ž . Ž .1rr t as in 56 to obtaind i

P E l FFi jž /
jgsjt

i t iF P u l ` in PP _ B� 4iy1 1 d r Žd .i
60Ž .

i t il W l ` in PP _ B j H9 ,F ½ 5j r Ž t .r r Ž t . d r Žd .d j d i iž /
jgsjt

where H9 is the event that ui l ui _ ui in PP t i _ B , or, for someiy1 1 k iy1 d r Žd .i
� 4 � 4 i i t ij g s j t and m g 1, 2, . . . , k _ j , W l W in PP _ B .j 1 m d r Žd .i

ŽŽ j . � 4 .Let G , n G 0 , j g i j s j t be independent Galton]Watson branch-n
Ž j . Ž .ing processes, such that each G , n G 0 has a Poisson t offspring distribu-n j

tion, with initial values G i s i y 1 and G j s 1 for each j g s j t . Let « ) 0.0 0
Take k so that0

j iy1i61 P G ) 0 l G ) 0 - 1 y c t c t q « .Ž . Ž . Ž .� 4 Ž .F Ł½ 5k k i j0 0ž / jgsjgsjt

� 4 j j t iFor j g i j s , define ‘‘generations’’ GG , . . . , GG of PP _ B as follows:1 k d r Žd .0 i

initially set

GG i s ui , GG j s W i , j g s j t .� 40 iy1 0 j

Then, recursively for n s 1, 2, . . . , k , let GG j be the set of points of PP t i _ B0 n d r Žd .i
Ž . jwhich lie in B y for some y g GG , but which are not in any ofr Ž t .r r Ž t . ny1d j d i

GG j, . . . , GG j .0 ny1
If ui l ` in PP t i _ B , it must be the case that GG i is nonempty;iy1 1 d r Žd . ki 0

similarly, for each j g s j t , if W i l ` in PP t i _ B , it must bej r Ž t .r r Ž t . d r Žd .d j d i i
j Ž .the case that GG is nonempty. Thus, by 60 ,k 0

j w x62 P E l F F P G / B q P H0 ,Ž . F F ½ 5i j k 0ž /
jgsjt � 4jg i jsjt

where we define H0 to be the event that the connection in the definition of H
occurs before the k th generation, that is,0

k¡ ¦0
i i~ ¥H0 [ u _ u l B y / BŽ .Ž . D Dk iy1 1¢ §ž /ims0 ygGGm

k0
i ij u _ W l B y / B .Ž .� 4D D Dž /k j r Ž t .r r Ž t .d j d i½ 5ž /jjgsjt ms0 ygGm
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We can generate a sequence of sets with the same distribution as the
Ž j . � 4generations GG , n F k by branching random walks. For j g i j s j t , letn 0

Ž d, j . dZ , n s 0, 1, 2, . . . , k be a BRW in R , in which each particle gives birthn 0
to a Poisson number of offspring with mean t and the offspring of a particlej

Ž .at x are uniformly distributed over the ball B x . Let the initialr Ž t .r r Ž t .d j d i

value Zd, j of this BRW be given by the set uiy1 for j s i and by the single0 i
� i4point W for j g s j t . These BRW’s are to be run independently up toj

generation k .0
Ž d, j.If these BRW’s Z are modified by removing some of the particles, in an

similar manner to the modification of the BRW’s in the proof of Lemma 5,
they generate sets with the same distributions as the generations GG j de-n
scribed above, we omit the details. Thus each GG j has the distribution of an

d, j Ž .subset of Z , and so, by 62 , we haven

d , j w x63 P E l F F P Z / B q P H - ,Ž . � 4F Fi j k 0ž /
jgsjt � 4jg i jsjt

where we define the event H - in the same manner as H0, but with each set
of the form G j replaced by the set of points of Zd, j.n n

Ž d, j.Since each BRW Z runs for a fixed number of generations, the proba-n
bility approaches 0 that it visits any given ball of radius close to 1, by Lemma

w x1; thus P H - ª 0 as d ª `. Also, the population sizes of these BRW’s are
Ž .independent simple branching processes, so, by 61 , for large enough d,

iy164 P E l F - 1 y c t c t q 2« .Ž . Ž . Ž .Ž .F Łi j i jž /
jgsjtjgsjt

Ž . Ž .Since « ) 0 is arbitrary, 59 and 64 together yield

iy165 lim P E l F s 1 y c t c t .Ž . Ž . Ž .Ž .F Łi j i jž /dª` jgsjtjgsjt

Ž . Ž .By applying 65 to each term in 54 , we obtain

clim P E l F l FF Fi j jž / ž /dª` cjgs jgs

< < iy1ts y1 1 y c t c tŽ . Ž . Ž .Ž .Ý Łi j
c jgsjtt;s

66Ž .

iy1s 1 y c t c t 1 y c t .Ž . Ž . Ž .Ž . Ł Ł ž /i j jž / cjgs jgs

Ž .By arguing similarly for the other term in 53 and using the fact that
Ž . Ž .1 y c t s c t , we may conclude

iy1 iw x67 lim P I s i , S s s s c t y c t c t c t .Ž . Ž . Ž . Ž . Ž .Ž . Ł Łi iq1 j j
cdª` jgs jgs
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Ž . Ž .Let Q denote the event that e 1 , . . . , e i are the edges incident on B ofi, s

Ž . � Ž . 4 Ž .t B, TT and e j : i q 1 F j F k, j f s are the remaining edges up to e k`

Ž . Ž . � kŽ . 4incident on B in g TT, B . Write t for t , . . . , t and write G B s t for the1 k 1
Ž . Ž .event that, for 1 F j F k, the weight G B of edge e j is equal to t .j j

Recall from Section 3 that L is the maximum edge weight in the graphi
Ž . Ž .t i, TT and the L are independent and identically distributed. By 10 and` i i

Ž .67 ,

w xlim P I s i , S s s
dª`

s P min L ) t l min L - t½ 5 ½ 5j i j iq1
1FjFiy1 1FjFi

68Ž .
l L - t l L ) t� 4 � 4F Fj j j jž / ž /

cjgs jgs

k<s P Q G B s t .Ž .i , s 1

Ž . w Ž .x Ž . w Ž .x Ž .Recall from 1 resp. 3 that D d resp. D ` is the degree of 0 resp. Bt t
Ž . w Ž .x Ž .in the graph g PP , 0 resp. g TT, B with all edges of length weight greaterd

than t removed.
Ž � 4.The variable card PP _ 0 l B is Poisson with mean s; conditional ond r Ž s.d

Ž Ž < <. Ž < <..its taking the value k, the distribution of v Y , . . . , v Y is uniform ond 1 d k
Ž . � Ž . 4D s [ t s t , . . . , t : 0 - t - ??? - t F s . Therefore, by the remark fol-k 1 k 1 k

Ž . Xlowing the definition 41 of PP ,d

P D d s mŽ .r Ž s.d

` ys ke s dt
w xs P I s i , S s sÝ ÝHk! k!Ž .D skksm �Ž . < < 4i , s : kyiy s sm

69Ž .
` ys ke s dt

k<ª P Q G B s tŽ .Ý ÝH i , s 1k! k!Ž .D skksm �Ž . < < 4i , s : kyiy s sm

s P D ` s m .Ž .s

Ž . ŽThus D converges weakly to D ` as d ª `. Also, D F card PP lr Ž s. s r Ž s. dd d

. w xB , a Poisson variable with mean s; thus P D G k is uniformlyr Ž s. r Ž s.d d
` ys m w Ž .xbounded by Ý e s rm!, which is summable in k. Therefore, E D dms k r Ž s.dw Ž .xª E D ` , and Theorem 2 is proved.s

Ž .The proof of Theorem 1 is completed by taking s ª ` in 69 , using Lemma
4 and a routine argument.

6. Invasion percolation. In invasion percolation on the integer lattice
d ŽZ made into a graph by including bonds between all nearest-neighbor

. w xpairs , independent random weights, uniformly distributed on 0, 1 , are
Ž .assigned to the bonds of the lattice. A random sequence of subgraphs C ofn

d Ž . � 4Z the ‘‘invaded cluster at time n’’ is defined as follows. Initially, C s 0 .0
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Given C , define C by adding the edge of Zd with smallest weight out ofny1 n
those edges not in C with at least one end at a vertex of C . If the addedn n
edge has an end in Zd _ C , it is denoted a breakout bond; otherwise, theny1

w xedge added is denoted a backfill bond; the terminology is from 3 . Let
C s D` C , and let CX denote the subgraph of C obtained by deleting` ns1 n ` `

w xbackfill bonds. As pointed out by Alexander 3 , this model is related to the
X Ž d .MST; indeed, C is precisely t 0, Z , as given by the algorithm in Section 2,` `

applied to the graph Zd with the given edge weights.
Ž .Let b denote the probability that 0 has degree k in C , and let D dk , d ` s

denote the number of edges of weight at most s in C . It seems likely that the`

methods of the present paper can be adapted to prove the following state-
Ž .ments about weak convergence of the structure of C to that of t B, TT ; let` `

yŽ . yD ` q 1 denote the degree of 0 in that graph, and let D denote thes
Ž . Ž . Ž .number of i g N with e i g t B, TT and w i F s.`

w yŽ . xCONJECTURE 1. For each k g N, lim b s P D ` q 1 s k . Also,dª` k , d
yw Ž .x w Ž .xlim E D d s E D ` for each s ) 0.dª` 2 d s s

To prove this, one might first consider CX . Arrange the 2 d sites of Zd
`

adjacent to 0 in order of increasing associated weight as Y , Y , . . . , and let1 2
Ž .R denote the weight of edge 0, Y . It is a standard result in extreme valuei i

Ž w x . � 4theory see, e.g., 18 , Proposition 3.21 that the point process 2 dR , i G 1i
Ž .converges in distribution to a homogeneous Poisson process of rate 1 on 0, ` .

The edges from 0 of CX are the I edges of smallest weight for some`

Ž .random I; for fixed k g N, I G k if and only if there is no infinite path from
0 in Zd of edges of weight less than R . By a similar argument to Lemma 5, iti
should be possible to prove

ky1<lim P I G k 2 dR s s s c s ,Ž .k
dª`

Ž . Ž .and this is the probability that e k is an edge of t B, TT , given that`

Ž . wG B s s. Finally, it should be possible to prove that lim P ' backfilln dª`

xbond from 0 s 0.
The limits in the above conjecture are given by the formulae

ty70 E D ` s c s dsŽ . Ž . Ž .Ht
0

and

1 ky yhŽu.71 P D ` s k s e h u rk! du,Ž . Ž . Ž .Ž .Ž .H
0

where we set

1 y u 1
h u s log .Ž . ž / ž /u 1 y u
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Ž .We omit the details of the proofs, but 70 follows from Palm theory for the
Ž .marked Poisson process, and 71 follows from the fact that, given L s s,

yŽ . Ž . w xthe conditional distribution of D ` is Poisson with mean sc s ; see 1 ,
Lemma 10.

APPENDIX

Ž .PROOF OF PROPOSITION 3. First we prove 2 in the special case of the
uniform distribution on the unit cube, with probability density function

� 4denoted f . Let M denote the number of edges in the MST on h , . . . , h ofU n, i 1 n
length at most ny1r dt with h as an endpoint. Theni

n
y1y1r d72 F n t ; f s 1r2 n y 1 M .Ž . Ž . Ž .Ž . Ýn U n , i

is1

Taking expectations, using the exchangeability of h , . . . , h and applying1 n
w xProposition 9 of 2 , we obtain

n
y1r d73 EF n t ; f s EM ª 1r2 ED d .Ž . Ž . Ž .Ž .n U n , 1 t2 n y 1Ž .

Ž .By 72 and exchangeability,

Var F ny1r dt ; fŽ .Ž .n U

n n1 2w xs E M M y E MÝ Ý ž /n , i n , j n , 124 n y 1Ž . is1 js174Ž .
n n

w xs Var M q Cov M , M .Ž .n , 1 n , 1 n , 22 4 n y 1Ž .4 n y 1Ž .
w xBy Lemma 2 of 2 , the degrees of the edges of the MST are uniformly

bounded by a constant depending only on d, so the first term on the
Ž .right-hand side of 74 vanishes as n ª `. We now show that the second term

also vanishes.
d Ž .Let MM denote the space of locally finite subsets of R , with the metrizable

w x w xtopology of vague convergence as given in 2 or 18 , Proposition 3.13. A point
process is a random element of MM. Consider now the random element
Ž .NN , NN of the product space MM = MM, where, for i s 1, 2, we define NN sn, 1 n, 2 n, i
� 1r dŽ . 4n h y h , 1 F j F n , the rescaled empirical point process of the n pointsj i
centered at h . Let PP and PP denote independent copies of the Poissoni d, 1 d, 2

Ž .process with a point added at 0 PP . By an easy generalization of Lemma 8d
w xof 2 ,

75 NN , NN ª PP , PP as n ª `,Ž . Ž . Ž .n , 1 n , 2 d d , 1 d , 2

where ª denotes weak convergence in MM = MM. Using the Skorohod repre-d
Ž . Ž .sentation theorem, one may take versions of NN , NN and PP , PP suchn, 1 n, 2 d, 1 d, 2

Ž . Ž .that NN , NN converges almost surely to PP , PP .n, 1 n, 2 d, 1 d, 2
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Ž . w x dLet C L denote the cube yL, L . By a simple adaptation of the proof of
w xProposition 9 of 2 , given any increasing sequence n of positive integers,

Ž .there is a subsequence n such that, as n ª ` along the subsequence, fork
each rational L and L ,1 2

d j , g NN , d j , g NNŽ . Ž .Ž . Ž .Ý Ýn , 1 n , 2ž /
Ž . Ž .jgNN lC L jgNN lC L1 2n , 1 n , 2

ª d j , g PP , j ,Ž .Ž .Ý d , 1ž
Ž .jgPP lC L1d , 1

76Ž .

d j , g PP , j a.s.,Ž .Ž .Ý d , 2 /
Ž .jgPP lC L2d , 2

Ž . Ž .where d j , GG denotes the degree of j in a graph GG and g NN is then, i
Ž . w xminimal spanning tree on the finite point process NN . By Lemma 6 c of 2 ,n, i

Ž . Ž .it follows from 76 that with these realizations the graphs g NN andn , 1k
Ž . Ž . Ž .g NN converge a.s. to g PP , 0 and g PP , 0 , respectively. Therefore,n , 2 d, 1 d, 2k

M M ª D d , 1 D d , 2 a.s.,Ž . Ž .n , 1 n , 2 t tk k

Ž .where, for i s 1, 2, we set D d, i to be the number of edges of length at mostt
Ž .t from 0 in the graph g PP , 0 . Since the quantities M and M ared, i n , 1 n , 2k kw x Ž .2uniformly bounded, it follows that E M M ª ED d , so that then , 1 n , 2 tk k

Ž .second term on the right-hand side of 74 converges to 0. Therefore,
Ž y1r d . w Ž .xF n t; f converges in mean square to E D d r2, as asserted.n U t

Ž .The proof of 2 for general f is similar. With probability 1, X lies at a1
Ž . w xLebesgue point x of f with f x ) 0; see, for example, 20 , Theorem 7.7. For

� 1r d Ž .1r dŽ . 4any such x, the point process n f x h y x , 2 F i F n converges ini
d w xdistribution to a Poisson process of rate 1 on R ; see, for example, 18 ,

w < x w x1r dProposition 3.21. Therefore, E M X s x ª E D as n ª `, and son, 1 1 f Ž x . t

w x 1r dE M ª E D f x dx .Ž .Hn , 1 f Ž x . t
dR

Ž . Ž .Also, for distinct Lebesgue points x, y of f with f x ) 0 and f y ) 0, the
� 1r d Ž .1r dŽ . 4 � 1r d Ž .1r dŽ .point processes n f x h y x , 3 F i F n and n f y h y x , 3 Fi i

4i F n converge in distribution to independent Poisson processes of rate 1 on
Rd. Therefore,

< 1r d 1r dE M M X s x , X s y ª E D E D .n , 1 n , 2 1 2 f Ž x . t f Ž y . t

Ž .Integrating over possible values of X and X , we find that Cov M , M1 2 n, 1 n, 2
Ž .ª 0, so that the expression in 74 vanishes as before. I
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