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In this paper we consider ψ-irreducible Markov processes evolving
in discrete or continuous time on a general state space. We develop a
Liapounov function criterion that permits one to obtain explicit bounds on
the solution to the Poisson equation and, in particular, obtain conditions
under which the solution is square integrable.

These results are applied to obtain sufficient conditions that guarantee
the validity of a functional central limit theorem for the Markov process.
As a second consequence of the bounds obtained, a perturbation theory for
Markov processes is developed which gives conditions under which both
the solution to the Poisson equation and the invariant probability for the
process are continuous functions of its transition kernel. The techniques
are illustrated with applications to queueing theory and autoregressive
processes.

1. Introduction. In this paper we develop a “Foster’s criterion,” or
“Liapounov function,” approach to obtaining finite-valued solutions ĝ to the
Poisson equation, which in discrete time may be written as

g = ĝ −Pĝ;(1)

where g is a given real-valued function on the state space, g = g−π�g�, and
π is an invariant probability. In the special case where g ≡ 0, solutions to
the Poisson equation are precisely harmonic functions. In general, if ĝ1 and
ĝ2 are two solutions to the Poisson equation, then the difference ĝ1 − ĝ2 is
harmonic.

For continuous-time processes, the Poisson equation becomes

g = −Ã ĝ;(2)

where Ã is the extended generator of the Markov process F, formally defined
in (11) and (12) below.

The Poisson equation and the general potential theory of positive kernels
are developed in the seminal work of Neveu [28], Revuz [32] and Constanti-
nescu and Cornea [7]. The reader is referred to Nummelin [30] for some of the
most current results on the Poisson equation, to whom we owe much.
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The solution ĝ to the Poisson equation (1) is fundamental to the analysis
of the additive functional

Sn =
n−1∑
k=0

g�8k�; S0 = 0;(3)

and it is equally valuable in studying the analogous additive functional in
continuous time. The principal observation that underlies the analysis of Sn
is that the behavior of such an additive functional is closely related to that of
a certain martingale. Specifically, let

Mn = ĝ�8n� +Sn; n ∈ Z+:(4)

We note that since ĝ solves (1),

Mn = ĝ�x� +
n∑
k=1

�ĝ�8k� −Pĝ �8k−1��

= ĝ�x� +
n∑
k=1

�ĝ�8k� − E�ĝ�8k� � Fk−1��;

where Fn = σ�80; : : : ; 8n�. Hence, under suitable integrability conditions on
ĝ, the adapted process M = ��Mn; Fn�: n ≥ 1� is a square integrable martin-
gale.

It is evident that the asymptotic behavior of �Sn: n ≥ 0� will typically mimic
that of the martingale M. In particular, laws of large numbers, central limit
theorems and laws of the iterated logarithm can often be derived for �Sn: n ≥
0� by applying appropriate martingale theorems. This approach is taken in
Maigret [17] and Duflo [10] to obtain a functional central limit theorem (FCLT)
for Markov chains. In a related work, Kurtz [15] considers chains arising in
models found in polymer chemistry. Bhattacharaya [5] considers the Poisson
equation in continuous time to derive an FCLT and functional law of the
iterated logarithm for ergodic Markov processes.

Using a more classical approach based on the existence of atoms for a split
chain, Meyn and Tweedie [23] derive a central limit theorem and law of the
iterated logorithm for geometrically ergodic chains. The Liapounov function
approach of [23] is similar to that of the present paper, but the results reported
here require far milder assumptions than geometric ergodicity.

In order to successfully apply the Poisson equation to obtain an FCLT for
a given chain, one must basically show that the martingale difference se-
quence 1n = ĝ�8n� − �Pĝ��8n−1� is appropriately square integrable. The
Liapounov function criterion developed in this paper permits one to verify
that the solution ĝ ∈ L2�π�, where π is the (unique) invariant measure of F.
This guarantees that the martingale differences are well behaved, so that the
above-mentioned FCLT’s apply.

Before proceeding, we note that the solution ĝ is often unique in a certain
sense. The reader is referred to Shwartz and Makowski [36] for further results
in a discrete-time–discrete-space setting.
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Proposition 1.1. Suppose that F is an ergodic Markov chain with unique
invariant probability π, with discrete- or continuous-time parameter, and sup-
pose that ĝ and ĝ• are two solutions to the Poisson equation with π��ĝ�+�ĝ•�� <
∞. Then, for some constant c, ĝ�x� = c+ ĝ•�x� for a.e. x ∈ X �π�.

Proof. The proofs are similar, so we will consider only the continuous-
time case. We have already remarked that h x= ĝ − ĝ• is harmonic.

We apply the ergodic theorem for Markov chains: to do so, we consider the
skeleton chain 8n and the function H =

∫ 1
0 P

shds. From the Poisson equation
we have that Pth = h for all t. From the ergodic theorem

n−1
∫ n

0
Pthdt = n−1

n−1∑
k=0

�PkH��x� → π�h�

a.e. [π] (cf. [11]). Hence h = π�h� a.e. �π�. 2

2. Discrete-time processes. In this paper we consider a Markov process
F = �8t: t ∈ T� where T = R+ or Z+, evolving on a locally compact separa-
ble metric space X, whose Borel σ-algebra shall be denoted by B�X�. We use
Pµ and Eµ to denote probabilities and expectations conditional on 80 having
distribution µ, and Px and Ex when µ is concentrated at x. In the discrete-
time setting the conditions on the state space can be relaxed somewhat, but
it is convenient here to have the same set of assumptions for continuous- and
discrete-time processes.

In this section we will develop our main results for discrete-time processes.
In Section 3 we show how the results may be extended to the continuous-time
case.

A set a ∈ B+�X� is called an atom if transitions from distinct points in a
are identical: P�x; · � = P�y; · �, x; y ∈ a. When an atom exists, a solution to
the Poisson equation (1) can easily be found. Define the function ĝ by

ĝ�x� = Ex

[ σα∑
k=0

g�8k�
]
=
∞∑
k=0

�IαcP�kg(5)

when this is well defined. When F is positive Harris [25] and π�a� > 0, we
have

∫
α
π�dx�Ex

[ τα∑
k=1

�g�8k��
]
=
∫
α
π�dx�Ex

[ τα−1∑
k=0

�g�8k��
]
= π��g��:

Hence, when π��g�� < ∞, the expression (5) is well defined on a, and in fact
ĝ is defined and finite a.e. [π]. It follows from the second equality in (5) that
ĝ solves the Poisson equation (1).

Even when an atom does not exist, by considering a split chain one can
construct an atom ǎ on the split state space. Define then the kernel Gs; ν for
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functions f and states x by

Gs; ν�x; f� = Ěδ∗x

[ σα̌∑
k=0

f�8̌k�
]
:(6)

Then the function ĝ�x� = Gs; ν�x; g� solves the Poisson equation and is finite
a.e. if π��g�� <∞ (see [29] and [30]).

The split chain is defined through a generalization of atoms known as petite
sets. Let a be a probability distribution on Z+, and let Ka denote the Markov
transition function Ka =

∑∞
i=0 a�i�Pi. A set C ⊂ X is called νa-petite, where

νa is a nontrivial measure on B�X�, if, for the distribution a on Z+,

Ka�x; A� ≥ νa�A�; x ∈ C; A ∈ B�X�:
The distribution a is called the sampling distribution for the petite set C. If
the particular measure νa is unimportant, the prefix will be omitted so that
C is simply called petite.

Much of the development to follow is concerned with verifying a recurrence
condition for a Markov chain known as f-regularity. Let f ≥ 1 be a real-valued
function on X, and suppose that, for some finite-valued function V0 and any
B ∈ B+�X�, there exists c�B� <∞ such that

Ex

[ τB−1∑
k=0

f�8k�
]
≤ V0�x� + c�B�; x ∈ X:(7)

Then the chain is called f-regular (with bounding functionV0). This definition
is apparently stronger than similar notions of f-regularity given in [29] or [25],
but we will find that all of these definitions are essentially equivalent.

This condition may be verified by establishing a drift property for the chain
toward a single petite set.

For a function f: X → �1; ∞�, a petite set C ∈ B�X�, a constant
b <∞ and a function V: X→ �0; ∞�;

PV �x� ≤ V�x� − f�x� + b|C�x�; x ∈ X:(8)

The power of (8) largely comes from the following result.

Theorem 2.1 (Comparison theorem). Suppose that the bound

PV �x� ≤ V�x� − f�x� + s�x�; x ∈ X;

is satisfied. Then, for each x ∈ X, N ∈ Z+ and any stopping time τ, we have

N∑
k=0

Ex�f�8k�� ≤ V�x� +
N∑
k=0

Ex�s�8k��;

Ex

[ τ−1∑
k=0

f�8k�
]
≤ V�x� + Ex

[ τ−1∑
k=0

s�8k�
]
:
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Proof. By Dynkin’s formula (cf. [23]) and the bound on PV, we have

0 ≤ Ex�V�8τn�� ≤ V�x� + Ex

[ τn∑
i=1

�si−1�8i−1� − �fi−1�8i−1� ∧N��
]
;

where τn = min�τ; n; min�k: V�8k� ≥ n��. Hence, by adding the finite term

Ex

[ τn∑
k=1

�f�8k−1� ∧N�
]

to each side, we get

Ex

[ τn∑
k=1

�f�8k−1� ∧N�
]
≤ Ex

[ τn∑
k=1

s�8k−1�
]
≤ Ex

[ τ∑
k=1

s�8k−1�
]
:

Letting n→∞ and thenN→∞ gives the result by the monotone convergence
theorem. 2

We now characterize f-regularity using (8).

Theorem 2.2. If (8) holds, then

(i) the Markov chain F is positive Harris recurrent with invariant proba-
bility π;

(ii) π�f� <∞;
(iii) for any B ∈ B+�X� there exists c�B� <∞ such that

∞∑
k=0

�PIBc�kf �x� = Ex

[ τB−1∑
k=0

f�8k�
]
≤ V�x� + c�B�;

so that F is f-regular with bounding function V.

Proof. Results (i) and (ii) follow easily from (iii) and the structure of π in
terms of mean occupancy times: see Theorem 10.0.1 of [25].

To prove (iii), suppose that (8) holds. By Theorem 2.1, the strong Markov
property and the bound

|C�x� ≤ ψa�B�−1Ka�x; B�;

which follows from the fact that C is ψa-petite for some ψa, we have, for any
B ∈ B+�X�, x ∈ X,

Ex

[ τB−1∑
k=0

f�8k�
]
≤ V�x� + bEx

[ τB−1∑
k=0

|C�8k�
]

≤ V�x� + bEx

[ τB−1∑
k=0

ψa�B�−1Ka�8k; B�
]
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= V�x� + bψa�B�−1
∞∑
i=0

aiEx

[ τB−1∑
k=0

Pi�8k; B�
]

= V�x� + bψa�B�−1
∞∑
i=0

aiEx

[ τB−1∑
k=0

|B�8k+i�
]

≤ V�x� + bψa�B�−1
∞∑
i=0

iai:

Since we can choose a so that ma =
∑∞
i=0 iai < ∞, result (iii) follows with

c�B� = bψa�B�−1ma. 2

We may now present our main result which gives a specific bound on the
fundamental kernel Z x= �I − P + 5�−1, where the kernel 5 is defined as
5�x; · � ≡ π� · �. For any function g on X, the function ĝ x=Zg is a solution to
the Poisson equation whenever the inverse is well defined.

Let h ≥ 1 be a finite-valued function on X, and let L∞h denote the vector
space of all measurable functions g on X such that �g�x��/h�x� is bounded in
x. This vector space is a Banach space with the associated norm

�g�h x= sup
x∈X

�g�x��
h�x� :

We now give uniform bounds on solutions to the Poisson equation whenever
a solution to (8) exists.

Theorem 2.3. Suppose that F is f-regular, so that (8) holds with V every-
where finite, f ≥ 1 and C petite. Then the fundamental kernel Z is a bounded
linear transformation from L∞f to L∞h with h = V+1. That is, for some c0 <∞
and any �g� ≤ f, the Poisson equation (1) admits a solution ĝ satisfying the
bound �ĝ� ≤ c0�V+ 1�.

Proof. First consider the strongly aperiodic case. We can assume without
loss of generality that the function V is bounded on the set S used in the
definition of strong aperiodicity (for details, see [25], page 118).

For any function h on X we can define a “split” function also denoted h on
the split state space X̌ which is identical to h on the two copies X0 and X1 of
X. Similarly, we let A ⊂ X̌ denote the “split set” A = A0 ∪A1.

Since V is bounded on S, it is straightforward to check that when (8) holds
we have the following bound for the split chain:

P̌V �xi� ≤ V�xi� − f�xi� + d|C∪S�xi�; xi ∈ X̌;

where d is a finite constant and C is the petite set used in (8).
Hence we can apply Theorem 2.2(iii) to the split chain to find that, for some

constant c,

Ěxi

[ τα̌−1∑
k=0

f�8̌k�
]
≤ V�xi� + c; xi ∈ X̌:
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We then have the desired solution to the Poisson equation: for any �g� ≤ f,
we let ĝ�x� = Gs; ν�x; g�, which is defined in (6). Then ĝ solves the Poisson
equation with ĝ�x� ≤ c�V�x� + 1�, for a possibly larger constant c.

In the general case it is convenient to consider the Kaε
-chain, which is

always strongly aperiodic when F is ψ-irreducible. We first show that the
Kaε

-chain satisfies a version of (8) with the same function f and a scaled
version of the function V used in the theorem. We will on two occasions apply
the identity

Kaε
= εKaε

P+ �1− ε�I;(9)

whose derivation is straightforward. Hence, by (8) for the kernel P,

Kaε
V ≤ εKaε

�V− f+ b|C� + �1− ε�V:

Since f ≤ �1− ε�−1Kaε
f, it follows that with Vε equal to a suitable constant

multiple of V we have, for some b′,

Kaε
Vε ≤ Vε − f+ b′Kaε

|C:

Since C is petite for F and hence also for the Kaε
-chain, the set Cn x=

�x: Kaε
�x; C� ≥ 1/n� is petite for the Kaε

-chain for all n. Note that C ⊆ Cn
for n sufficiently large. Scaling Vε as necessary, we may choose n and bε so
large that

Kaε
Vε ≤ Vε − f+ bε|Cn

:

Thus the Kaε
-chain is f-regular. By strong aperiodicity there exists a constant

cε <∞ such that, for any �g� ≤ f, we have a solution ĝε to the Poisson equation

Kaε
ĝε = ĝε − g

satisfying �ĝε� ≤ V+ cε.
To complete the proof, let

ĝ x= ε

1− εKaε
ĝε =

ε

1− ε�ĝε − g�:

Writing (9) in the form

ε

1− εPKaε
= 1

1− εKaε
− I;

we have, by applying both sides to ĝε,

Pĝ = ε−1ĝ − ĝε = ε−1ĝ − �ε−1 − 1�ĝ − g = ĝ − g;
so that the Poisson equation is satisfied. 2

An important special case occurs when V is a constant multiple of f. In
this case (8) may be written as

PV ≤ λV+ b|C;(10)
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where λ < 1. Aperiodic chains for which (10) hold are called V-uniformly
ergodic in [25]. When V is bounded from above and below, the inequality (10)
is equivalent to uniform ergodicity as it is usually defined (see [32], [29] and
[25]).

By Theorem 2.3 we see that when (10) holds the fundamental kernel Z =
�I − P + 5�−1 is a bounded linear transformation from L∞V to itself. This
provides another important consequence of V-uniform ergodicity which is es-
pecially valuable in analyzing perturbations of the chain. We will return to
this after we consider the continuous-time case.

3. Continuous-time processes. We now show how the discrete-time re-
sults developed thus far may be “lifted” through the resolvent chain to obtain
analogous results for continuous-time stochastic processes. We assume that
F is a Borel right process (cf. Sharpe [35]) so that, in particular, F has the
strong Markov property. We also assume that the escape time for the process
is infinite. The reader is refered to [26] and [27] for the relevant theory of
Harris recurrence in continuous time.

For a measurable set A we let

τA = inf�t ≥ 0: 8t ∈ A�; ηA =
∫ ∞

0
|�8t ∈ A�dt:

The kernel Ka is defined exactly as in discrete time, where now a is a proba-
bility on R+. When a is an exponential distribution with unit mean, we let R
denote the kernel Ka: this is the usual resolvent for the process.

We denote by D�Ã � the set of all functions V: X×R+→ R for which there
exists a measurable function U: X→ R such that, for each x ∈ X, t > 0,

PtV �x� = V�x� +
∫ t

0
PsU �x�ds;(11)

∫ t
0
Ps�U� �x�ds <∞:(12)

We write ÃV x=U and call Ã the extended generator of the process F. The
function U is essentially unique (see Davis [8], page 32, for a discussion).

Davis [8] requires only a local martingale property in his definition of the
extended generator. If this weaker condition holds, then the results below are
still valid, although some additional steps are required in the proofs. This
more complicated situation may be treated as in [27].

We say that a function h: X→ R is in the domain of R if R�x; �h�� is finite
for all x ∈ X. From the definition (11) it is immediate that we have the identity

RÃ h = �R− I�h(13)

for any h in the domain of R. The following result, which together with (13)
states that R and Ã commute, is central to obtaining solutions to the Poisson
equation. For a proof see Down, Meyn and Tweedie [9].



924 P. W. GLYNN AND S. P. MEYN

Lemma 3.1. The extended generator satisfies the following identity for any
h in the domain of R:

ÃRh = �R− I�h:(14)

Equation (14) is a continuous-time analog of (9), which may be written as

�P− I� ε

1− εKaε
=Kaε

− I;

and the identity (14) will be applied exactly as in the proof of Theorem 2.3 to
obtain a solution to the Poisson equation in this continuous-time context.

The following Foster–Liapounov drift condition is taken from [27]. It is en-
tirely analogous to (8), and will yield analogous results.

For a function f: X → �1; ∞�, a petite set C ∈ B�X�, a constant
b <∞ and a function V: X→ �0; ∞�,

ÃV �x� ≤ −f�x� + b|C�x�; x ∈ X:(15)

Theorem 3.2. Suppose that F is ψ-irreducible and that (15) holds with V
everywhere finite, f ≥ 1 and C petite. Then F is positive Harris recurrent with
π�f� <∞. For some c0 <∞ and any �g� ≤ f, the Poisson equation (2) admits
a solution ĝ satisfying the bound �ĝ� ≤ c0�V+ 1�.

Proof. From (13) and the bound (15),

RV ≤ V−Rf+ bR|C:(16)

Since C is petite, the set Cn = �x: R|C �x� > 1/n� is also petite for any n.
Hence, as in the proof of Theorem 2.3, we see that, for a constant multiple V0
of V and some n, b′ sufficiently large,

RV0 ≤ V0 −Rf+ b′|Cn
:

Applying Theorem 2.2(iii), we obtain the bound, for any B ∈ B+�X�,
∞∑
k=0

�RICc�kRf ≤ V0 + c�B�;

and, adding f to both sides, we obtain

∞∑
k=0

�RICc�kf ≤ V0 + f+ c�B�:

Hence the R-chain is f-regular with bounding function V0 + f, and conse-
quently π�f� <∞.

From f-regularity of the resolvent chain, we may apply the discrete-time
result, Theorem 2.3, to conclude that, for some c1 < ∞ and any g ≤ f, there
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exists a function ĝ1 satisfying the bound �ĝ1� ≤ c1�V+ f+ 1� such that

ĝ1 −Rĝ1 = g:
We now let ĝ = Rĝ1, and apply (16) to obtain the bound

�ĝ� ≤ R�ĝ1� ≤ c1�V+V+ b+ 1� ≤ c0�V+ 1�;
where c0 = c1�3 + b�. Applying (14), we have that the Poisson equation is
satisfied:

Ã ĝ = ÃRĝ1 = �R− I�ĝ1 = −g;
which is the desired equality. 2

4. Applications. In the remainder of the paper we describe several ap-
plications of our main results.

4.1. The functional central limit theorem. We first present several ver-
sions of the functional central limit theorem (FCLT) for Markov chains and
processes; we begin with the discrete-time case. For such models, the FCLT
concerns the process obtained by interpolating the values of g�8k�:

Zn�t� =
1√
n

( �nt�∑
k=0

g�8k�
)
; t ∈ R+:

Typically, in applications, the moment condition on V used in Theorem 4.1
will be obtained through an application of Theorem 2.2, which gives necessary
and sufficient conditions for V2-regularity and hence a sufficient condition for
the finiteness of π�V2�.

Theorem 4.1. If the chain is f-regular with bounding function V and if
π�V2� <∞, then for any �g� ≤ f there exists a constant 0 ≤ γg <∞ such that
Zn ⇒ γgB, Pµ-weakly, as n→∞ in D�0;1� for any initial distribution µ.

Furthermore, the constant γ2
g can be defined as γ2

g = π�ĝ2 − �Pĝ�2�, where
ĝ is the solution to the Poisson equation given in Theorem 2.3.

Proof. This basically follows from Maigret [17]. Our theorem actually
requires a slightly strengthened version of her result, because Theorem 4.1
asserts that the weak convergence holds for any initial distribution µ.

This extension is given in the continuous-time case in the proof of Theo-
rem 4.3 below. To avoid serious repetition, we omit the proof of the discrete-
time result. 2

The generalization of the FCLT to arbitrary initial conditions can also be
carried out by applying the shift coupling property of positive Harris recurrent
Markov processes. This is established for discrete-time processes in Aldous
and Thorrison [1].
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An important special case occurs when (10) holds, in which case we obtain
a simpler criterion for the FCLT. Taking square roots in (10), we obtain by
Jensen’s inequality

PV1/2 ≤ λ1/2V1/2 + b1/2|C:

Since by (10) we have that π�V� <∞, the following corollary to Theorem 4.1
is immediate.

Theorem 4.2. If (10) holds for some V ≥ 1, λ < 1 and some petite set C,
then for any g2 ≤ V there exists a constant 0 ≤ γg <∞ such that Zn ⇒ γgB,
Pµ-weakly, as n→∞ in D�0;1� for any initial distribution µ.

The constant γ2
g can be defined as γ2

g = π�ĝ2 − �Pĝ�2�, where ĝ is the
solution to the Poisson equation given in Theorem 2.3.

The analogous continuous-time results may be obtained by applying the
main result of Bhattacharaya [5]. We now consider the sequence of stochastic
processes �Zn� defined for each n by

Zn�t� =
1√
n

(∫ nt
0
g�8s�ds

)
; t ∈ R+:

Theorem 4.3. If (15) holds and if π�V2� < ∞, then for any �g� ≤ f there
exists a constant 0 ≤ γg < ∞ such that Zn ⇒ γgB, Pµ-weakly, as n → ∞ in
D�0;1� for any initial distribution µ.

Furthermore, the constant γ2
g can be defined as γ2

g = 2
∫
ĝ�x�g�x�π�dx�,

where ĝ is the solution to the Poisson equation given in Theorem 2.3.

Proof. In the special case where F is stationary, or when a skeleton of
the process is Harris ergodic, this follows from Theorems 2.1 and 2.6 of [5]
together with Theorem 3.2. Note that we do not know if π�g2� is finite, a
condition of Theorem 2.1 of [5]. However, by (16) and the square integrability
of V, we do know that π��R�g��2� < ∞, and this is in fact enough to obtain
the FCLT using the proof of Bhattacharaya’s Theorem 2.1.

We now show how this result can be generalized to arbitrary initial condi-
tions 80 = x ∈ X; the result for an arbitrary initial distribution µ follows upon
integrating over all initial conditions with respect to µ.

Recall that from Theorem 3.2 the process F is positive Harris recurrent
under the assumptions of Theorem 4.3. To show that the FCLT holds for arbi-
trary initial conditions under the assumptions of Theorem 4.3, we will apply
the following two well-known consequences of Harris recurrence. First of all,
the law of large numbers holds for any initial condition x ∈ X and any positive
random variable H on sample space:

1
T

∫ T
0
θsHds→ Eπ�H� a:s: �Px�:(17)
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Second, the resolvent is Harris ergodic:

�Rn�x; · � − π� → 0; x ∈ X:(18)

This is a consequence of the fact that not only is the resolvent chain with
transition function R =

∫
e−tPt dt positive Harris recurrent when F has this

property, but the resolvent chain is necessarily also aperiodic since the mea-
sures R�x; · � and

∑∞
k=1 2−kRk�x; · � are equivalent for each x.

For any r and any n we let

Zn; r�t� x= θrZn�t� =
1√
n

(∫ nt+r
r

g�8s�ds
)
; t ∈ R+:

Using the law of large numbers (17), one may show that

sup
0≤t≤1

�Zn�t� −Zn; r�t�� → 0; n→∞ a:s:(19)

Letting φ be a bounded, continuous linear functional on C�0;1�, it follows from
(19) that we have

�Ex�φ�Zn�t��� − Ex�φ�Zn; r�t���� → 0; n→∞:
By the Markov property this limit may be expressed as

∣∣∣∣Ex�φ�Zn�t��� −
∫
Pr�x; dy�Ey�φ�Zn�t���

∣∣∣∣→ 0; n→∞:

Integrating over r ≥ 0, it follows by dominated convergence that, for any
m ≥ 1,

∣∣∣∣Ex�φ�Zn�t��� −
∫
Rm�x;dy�Ey�φ�Zn�t���

∣∣∣∣→ 0; n→∞;

where R denotes the resolvent. We can now apply (18). Let ε > 0, and choose
m so large that �Rm − π� < ε. Then the limit above with this m implies that

lim sup
n→∞

�Ex�φ�Zn�t��� − Eπ�φ�Zn�t���� ≤ ε�φ�∞:

Since by Theorems 3.2 and 2.1 of [5] the FCLT holds when 8 ∼ π, this estab-
lishes the FCLT when 80 = x. 2

When the exponential drift

ÃV ≤ −cV+ b|C(20)

holds for some V ≥ 1, c > 0, then we obtain a simpler criterion for the FCLT,
just as in the discrete-time case.

We can use (16) to obtain, for some λ < 1, b < ∞ and a petite set C, the
bound

RV ≤ λV+ b|C:

We then have, by Jensen’s inequality, RV1/2 ≤ λ1/2V1/2 + b1/2|C, and then,
following the proof of Theorem 3.2, we have, for some constant c0, that the
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Poisson equation (2) can be solved for any g satisfying g2 ≤ V, and the solution
satisfies the bound ĝ2 ≤ c0V. We immediately obtain from Theorem 4.3 the
following result.

Theorem 4.4. If (20) holds, then for any g2 ≤ V there exists a constant
0 ≤ γg < ∞ such that Zn ⇒ γgB, Pµ-weakly, as n → ∞ in D�0;1� for any
initial distribution µ.

The constant γ2
g can be defined as γ2

g = 2
∫
ĝ�x�g�x�π�dx�, where ĝ is the

solution to the Poisson equation.

In Section 4.3 we consider several models where moment conditions on the
disturbance process may be given explicitly to ensure that (8) or (20) holds so
that we can establish the FCLT.

4.2. Perturbations of Markov processes. The smoothness of solutions to the
Poisson equation is frequently assumed in applications to averaging and dif-
fusion approximations and, in particular, in establishing the convergence of
adaptive estimation algorithms of the stochastic approximation type (see [4]
and [19]). Furthermore, well-behaved solutions are required in the theory of
Markov decision processes (see [18] and [33]). An extensive bibliography of
applications may be found in [36].

Suppose that �Pθ: θ ∈ 2� is a family of Markov transition functions, where
2 denotes some open subset of Euclidean space. Assume that each of the
corresponding Markov chains is ψθ-irreducible and that, for some θ0 ∈ 2,
the chain with transition function Pθ0

satisfies the drift criterion (10). When
the Pθ0

-chain is aperiodic, this means that the chain is V-uniformly ergodic.
We assume that Pθ → Pθ0

as θ→ θ0 in the induced operator norm ��� · ���V,
defined as

���Pθ0
−5���V x= sup

h∈L∞V
�h�V=1

��Pθ0
−Pθ�h�V:

Since each of the kernels is ψθ-irreducible, it may be shown that the drift
criterion (10) holds and that the set C used in the drift criterion is petite for
the kernel Pθ for each θ in some open ball containing θ0. Assume that this
is the case for all θ ∈ 2, and let �Zθ� denote the corresponding collection
of fundamental kernels and �πθ� the associated invariant probabilities. From
Theorem 2.3 we know that each of the kernels �Zθ; Pθ; 5θ: θ ∈ 2� is a
bounded linear transformation from L∞V to itself.

Following [34], we define

Uθ0; θ
= �Pθ −Pθ0

�Zθ0
;(21)

Hθ0; θ
= �I−Uθ0; θ

�−1:(22)

The first kernel is well defined since each of the kernels on the right-hand
side of the defining equation maps L∞V to itself. The inverse in the definition
of Hθ0; θ

is well defined for θ sufficiently close to θ0.
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A straightforward generalization of Theorem 2 of [34] shows that

πθ = πθ0
Hθ0; θ

;(23)

Zθ = Zθ0
Hθ0; θ

−5θ0
Hθ0; θ

Uθ0; θ
Zθ0

Hθ0; θ
;(24)

where 5θ0
is the Markov transition function defined as 5θ0

�x; A� = πθ0
�A�,

x ∈ X, A ∈ B�X�. Hence the invariant probabilities converge in the V-total
variation norm, and whenever g ∈ L∞V the solutions ĝθ = Zθg to the Poisson
equation converge in norm in L∞V as θ→ θ0.

4.3. Specific models.
Random walks and queues. Consider the random walk on a half-line given

by 8n = �8n−1 +Wn�+. We will assume also that the increment distribution
0 has a finite fifth moment. The chain F can be viewed as the waiting-time
sequence of a single-server queueing system (see Asmussen [2]). It is well
known that if E��W1�� < ∞, then it is necessary and sufficient that E�W1� <
0 in order that F be a positive recurrent Harris chain. Furthermore, since
Kaε
�x; �0�� is positive everywhere and bounded from below on compacta, all

compact sets are petite, so that F is a T-chain (cf. [23]).
Let fp�x� = xp+1 and Vp�x� = cxp+1 with c > 0. We have that (8) holds for

some c, and p = 1; 4: by Theorem 2.2 the chain is f4-regular, and hence, by
definition, the chain is simultaneously f1-regular and V2

1-regular. We see from
Theorem 4.1 that the FCLT holds for any g satisfying �g� ≤ f1. In particular,
on setting g�x� = x we see that the FCLT holds for F itself. For further
discussion see Glynn [12].

These results also hold for some network models. See, for example, Meyn
and Down [20] and Kumar and Meyn [14], where V-uniform ergodicity of
generalized Jackson networks and certain re-entrant lines is established. In
these papers, the Liapounov function V may be taken as the exponential of a
norm.

Linear state space models. Consider the linear state space model which is
defined by an n×n matrix F and an n×p matrix G such that, for each k ∈ Z+,
the random variables Xk and Wk take values in Rn and Rp, respectively, and
satisfy inductively, for k ∈ Z+,

Xk+1 = FXk +GWk+1;

where X0 ∈ Rn is arbitrary. The random variables �Wk� are independent
and identically distributed (i.i.d.) and are independent of X0, with common
distribution 0�A� = P�Wj ∈ A� having finite zero mean and finite covariance
6W = E�WW>�.

We assume that 0 is nonsingular with respect to Lebesgue measure, so
that, in particular, 6W > 0, and we assume that the controllability matrix
�Fn−1G � · · · � FG � G� has rank n. In addition, we assume that the eigenvalues
of F lie in the open unit disk in C. Under these conditions, it follows as in [3]
that every compact set is petite and that the chain X is positive Harris.
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To construct a Liapounov function for the process, let M denote the solution
to the Liapounov equation

F>MF =M− I:
This is possible because of the eigenvalue condition imposed on F (cf.
Caines [6] and Duflo [10]). Letting V0�x� = x>Mx, we have the bound

PV0 �x� = V0�x� − x>x+ trace�M1/2G6WG
>M1/2� ≤ λV0�x� +L

for some λ < 1 and L <∞. It then follows that (10) holds for the chain with V
a constant multiple of

√
V0, so that the process is V-uniformly ergodic. Since

π�V0� and hence also π�V2� is finite, the FCLT holds for any �g�x�� ≤ c��x�+1�.
Clearly the approach used here may be extended to other models with a ba-

sically linear structure. A class of bilinear models is shown to be V-uniformly
ergodic in [22], and adaptive control models are treated in [21]. Hence the
FCLT holds for the processes of interest in each of these models.
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