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ON UNIQUENESS OF SOLUTIONS TO STOCHASTIC EQUATIONS:
A COUNTER-EXAMPLE1

BY H. J. ENGELBERT

University of Jena

We consider the one-dimensional stochastic equation

Xt = X0 +
∫ t

0
b(Xs)dMs

where M is a continuous local martingale and b a measurable real function.
Suppose that b−2 is locally integrable. D. N. Hoover asserted that, on a
saturated probability space, there exists a solution X of the above equation
with X0 = 0 having no occupation time in the zeros of b and, moreover, the
pair (X,M) is unique in law for all such X. We will give an example which
shows that the uniqueness assertion fails, in general.

Let (
,F ,P ,F) be an arbitrary filtered probability space. We consider a
continuous local martingale (M,F). The square variation process of M is denoted
by 〈M〉. This is the unique continuous increasing process such that 〈M〉0 = 0
and (M2 − 〈M〉,F) is a local martingale. To exclude the trivial case, we assume
P ({〈M〉∞ > 0}) > 0 where 〈M〉∞ = supt≥0〈M〉t .

In this note, we deal with the stochastic equation

Xt = X0 +
∫ t

0
b (Xs) dMs, t ≥ 0,(1)

where b : R → R is a measurable function and R denotes the real line. Let us
introduce the notation

Eb =
{
x ∈ R :

∫ x+ε

x−ε
b−2(y) dy = +∞, ∀ ε > 0

}

and

Nb = {x ∈ R : b(x) = 0}.
In the case if M is a Brownian motion, it is known (cf. [1], [2]) that equation (1)
possesses, for all initial values X0 = x0 ∈ R, a weak solution (X,F) satisfying∫ ∞

0
1Nb∩Ec

b
(Xs) d〈M〉s = 0, P -a.s.(2)
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if and only if the condition

Eb ⊆ Nb(3)

holds. Moreover, the solution (X,F) of equation (1) satisfying (2) is unique in law.
If b−2 is locally integrable then Eb = ∅ and (3) trivially holds. Hence, for every
initial condition X0 = x0 ∈ R, there is a unique solution (X,F) of equation (1)
satisfying ∫ ∞

0
1Nb

(Xs) d〈M〉s = 0, P -a.s.(4)

This solution is nontrivial in the sense that

P ({Xt = X0, ∀ t ≥ 0}) < 1

(cf. [1]). (In fact, this probability is equal to zero.) If, additionally, b(x) �= 0 for
all x ∈ R then, for all initial conditions X0 = x0 ∈ R, equation (1) has a unique
solution (X,F) which is, moreover, nontrivial. Conversely, the local integrability
of b−2 is also necessary for the last statement being true.

Hoover ([3], Theorem 3.3) has considered the stochastic equation (1) for
general continuous local martingales (M,F). His principal existence result is
only stated for X0 = 0 but it is certainly true for arbitrary initial values. The
first part of Theorem 3.3 of [3] states the following: If b−2 is locally integrable
then for every given continuous local martingale (M,F) defined on a saturated
filtered probability space (see [3]) there exists a solution (X,F) of equation (1)
satisfying (4). This result is remarkable because it is more than the usual concept
of weak solutions requires: For a weak solution (X,F) we only have to find a
filtered probability space and a continuous local martingale (M,F) on it with
prescribed distribution law (e.g., that of Brownian motion) such that equation (1)
holds. But this stronger result relies on the fact that saturated filtered probability
spaces together with their filtrations are “very large.”

The second part of Theorem 3.3 in [3], however, asserts that the law of the pair
(X,M) is uniquely determined if (M,F) is a given continuous local martingale
on a saturated filtered probability space and (X,F) is a solution of equation (1)
satisfying (4). By giving a counter-example we will show that this is not true. As
we shall see, even the law of X is not unique, in general.

To construct the counter-example, we consider a filtered probability space
(
,F ,P ,F). For keeping the frame put by Hoover, we assume that (
,F ,P ,F)

is saturated. However, this is not important for our construction and the only thing
we use from saturated filtered probability spaces is that they are large enough
to carry a Brownian motion (cf. [3]). So, let (W,F) be a Brownian motion on
(
,F ,P ,F). We now define

Xt =
{

Wt, if t ≤ 1 or if t > 1 and W1 ≥ 0,

W1 + √
2(Wt − W1), if t > 1 and W1 < 0,
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for all t ≥ 0. Then (X,F) is a continuous martingale such that

〈X〉t = t + (t − 1)+ · 1(−∞,0)(X1), t ≥ 0.

Furthermore, we set

sgn(x) =
{

1, if x ≥ 0,

−1, if x < 0,

for all x ∈ R and introduce the continuous martingale (M,F) by

Mt =
∫ t

0
sgn(Xs) dXs, t ≥ 0,

which, obviously, has the same square variation process as X, that is, 〈M〉 = 〈X〉.
Integrating sgn(X) by M yields

Xt =
∫ t

0
sgn(Xs) dMs, t ≥ 0.(5)

This means that (X,F) is a solution of equation (1) for b = sgn with respect to the
driving continuous martingale (M,F).

Next we show that (X̃,F) with X̃ = −X is also a solution of (5). Indeed, this
immediately follows from −sgn(x) = sgn(−x), x �= 0, and the property∫ t

0
1{0}(Xs) dMs = 0, P -a.s.

for all t ≥ 0: Using the definition of M , the isometry of the stochastic integral and
the occupation time formula we get

E

(∫ t

0
1{0}(Xs) dMs

)2

= E

(∫ t

0
1{0}(Xs)sgn(Xs) dXs

)2

= E

(∫ t

0
1{0}(Xs) d〈X〉s

)

= E

(∫
R

1{0}(a)LX(t, a) da

)

= 0

where LX(t, a) denotes the local time of X in a up to time t .
Obviously, the laws of the continuous martingales X and X̃ are different.

Finally, relation (4) for both X and X̃ is satisfied because sgn is defined such that
sgn(x) �= 0 everywhere. Thus the counter-example is complete.

For better understanding the situation let us add a few remarks. We define the
F-time change T as the right inverse of the increasing process A := 〈X〉 = 〈M〉,

Tt = inf{s ≥ 0 : As > t}, t ≥ 0,
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and put

Yt = XTt , Bt = MTt , Gt = FTt , t ≥ 0.

Then (Y,G) and (B,G) with filtration G = (Gt )t≥0 are continuous local martin-
gales such that 〈Y 〉t = 〈B〉t = t for all t ≥ 0 and, using the martingale character-
ization of Brownian motion by P. Lévy, we conclude that both processes (Y,G)

and (B,G) are Brownian motions. Now, by time change in the stochastic integral,
from (5) we get

Yt =
∫ t

0
sgn(Ys) dBs, t ≥ 0.(6)

The solution to equation (6) exists and is always a Brownian motion, hence it
is unique in law. But it is well-known that the solution to equation (6) is neither
pathwise unique (with Y is −Y a second solution) nor there exists a strong solution
of it. This observation is due to H. Tanaka and depends on the fact that F B

t � F Y
t

for all t > 0. Here FZ = (F Z
t ) denotes the filtration generated by the process Z

and completed in F . More precisely, it is well known (cf., e.g., Revuz and Yor [5],
Corollary 2.2) that

F B
t = F |Y |

t � F Y
t , t > 0,

for any solution (Y,F) of equation (6) and any driving Brownian motion (B,F). It
is also an easy exercise to verify that, for any fixed u ≥ 0, sgn(Yu) and the process
|Y |, and hence sgn(Yu) and the Brownian motion B , are independent.

Now the square variation A can also be written as

At = t + 1
2 (t − 1)+[1 − sgn(Y1)], t ≥ 0,(7)

and, in view of the independence of sgn(Y1) and B,A is an FY -time change
independent of B . Furthermore, we have

Xt = YAt , Mt = BAt , t ≥ 0.(8)

In particular, the continuous martingale (M,F) results from the randomized
time change A of the Brownian motion (B,G): There is needed an additional
experiment independent of B to decide whether sgn(Y1) = +1 or −1. This
randomization, however, disturbs the representation property for the continuous
martingale (M,FM) (cf. Jacod [4]). Indeed, using relations (7) and (8) and the
independence between A and B we can easily compute the distribution PM of M

on the space C([0,+∞)) of continuous functions x : [0,+∞) → R as

PM = 1
2 (P1 + P2)(9)

where P1 is the Wiener measure and P2 is the distribution of a continuous
Gaussian martingale with expectation zero and variance function v defined by
v(t) = t + (t − 1)+, t ≥ 0. This shows that PM is not extremal in the convex



ON UNIQUENESS OF SOLUTIONS 1043

set of martingale measures on C([0,+∞)) and hence (M,FM) does not satisfy
the representation property (cf. Jacod [4]).

It can easily be seen that we have FX = FW . From this and the well-known fact
that (W,FW) possesses the representation property (cf. [4] or [5]), it is not difficult
to derive that (M,FX) possesses the representation property, too. Since (M,FM)

does not satisfy the representation property, we can conclude FM �= FX . On the
other side, FM ⊆ FX. This yields that X is not adapted to FM and hence X is not
a strong solution to equation (5).

It is also interesting to notice that in the definition of X we can replace the time
1 by any time u > 0. Let X(u) be the resulting process and introduce M(u) by

M
(u)
t =

∫ t

0
sgn(X(u)

s ) dX(u)
s , t ≥ 0.

Examining the above procedure we observe that the distribution of the continuous
martingale (M(u),F) is given by (9), the same as of M(1) = M , and hence does
not depend on u. However, the distributions of (X(u),F) are pairwise different and
every (X(u),F) represents a (weak) solution of equation (5). Thus we have found
a lot of (weak) solutions of equation (5) all with different laws.

In conclusion, we state the following conjecture: Let (M,F) be a continuous
local martingale. Then the solution (X,F) of equation (1) satisfying (2) is unique
in law for every real function b such that Eb ⊆ Nb holds if and only if (M,FM)

possesses the representation property for continuous local martingales.
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