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APPROXIMATION OF PARTIAL SUMS OF ARBITRARY
1.1.D. RANDOM VARIABLES AND THE PRECISION
OF THE USUAL EXPONENTIAL UPPER BOUND

By MaARJORIE G. HaHN! AND MicHAEL J. KLAss?

Tufts University and University of California, Berkeley

This paper quantifies the degree to which exponential bounds can be
used to approximate tail probabilities of partial sums of arbitrary i.i.d.
random variables. The introduction of a single truncation allows the usual
exponential upper bound to apply usefully whenever the summands are
arbitrary i.i.d. random variables. More specifically, let n be a fixed natural
number and let Z, Z,, Z,, ..., Z, be arbitrary i.i.d. random variables. We
construct a function F, ,(a), derived from the probability of occurrence of
one or more “large” summands plus an upper bound of exponential type,
such that for some constant C,, > 0 (independent of Z, n and a) and all
real a,

n
C.F2 . (a) < P( Yz > na) < 2F; ().
j=1

Furthermore, examples show that the upper and lower bounds are achiev-
able.

1. Introduction. Let Z, Z,, Z,,... be arbitrary i.i.d. random variables.
Consider the problem of approximating P(X]_, Z; > na) for all Z, n and a.
Historically, there is some question about whether an approximation of this
generality can be obtained. Moreover, issues arise as to the level of precision
that can be obtained as the level of generality increases. Most previous
results in this direction are asymptotic, in which case it makes sense to
replace na by na,. The first such classical result is the central limit theorem.
It provides the exact asymptotic magnitude of P(X]_, Z; > na,) for Z-distri-
butions having finite nonzero variance where na, = nEZ + c,/n with ¢,
bounded. When c, — o, the central limit theorem merely establishes that
P(X{_, Z; = na,) — 0, but does not identify the order of magnitude of the
rate at which it does so.

As an attempt to extend the range over which such asymptotic approxima-
tions could be obtained, large deviations theory was developed. Cramér’s
(1938) original large deviations theorem, for random variables with a finite
moment generating function, provides asymptotic bounds for the behavior of
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(1/mlog P(X{_; Z; = na,) where a, — a € (0, »). Recent improvements [e.g.,
a consequence of (i) and (ii) above the remark on page 594 of Ney and
Nummelin (1987)] culminate in a result that is valid in general, but gives the
relatively uninformative statements that the limit is zero if the tail-probabil-
ity decay is slower than exponential and the limit is —« if its decay is faster
than exponential. With some restrictions on a,, Theorem 4.1 of Jain and
Pruitt (1987) obtains the exact asymptotic magnitude of P(Z]_, Z; > na,) for
a large class of nonpositive distributions with stochastically compact normed
and centered partial sums. However, the exact order of magnitude of
P(X{_, Z; > na,) has not been obtained in general.

The objective of this paper is to introduce a technique for obtaining, for all
Z and n, nonasymptotic approximations for P(z?=lz,. > na) which apply
throughout the entire range of the distribution and which always specify the
correct order of magnitude of log P(X{_; Z; > na). Lemma 2.3 of Jain and
Pruitt (1987) is the only other result of which we are aware that attempts to
do this in substantial generality. Their result applies to nonpositive distribu-
tions for which a is not too close to 0.

The function we use to approximate the tail probability is obtained from a
simple truncation and use of exponential bounds, an idea dating back to at
least Fuk and Nagaev (1971). Let U, U, U,, ... be i.i.d. uniform (0, 1) random
variables. Let F denote the cumulative distribution function of Z. Define

F~1(u) =inf{z: F(2) > u}.
Then
L(Z) = L(F(V)).
Hence, we may let Z = F~*(U) and Z; = F~*(U)). Take a such that P(Z > a)
>0.Foranyreal0 <u<1landtz=0,

P(izjzna)sP(LﬂJ{szu}
N U<

j=1 j=1

n

N {Y; <u}

ji=1
<1-P"(U<u)

+P P

DX

{U < u}

n
Y. Z;=na
i=1

:

n
exp(t > (Z - a))
i=1
<1-P"(U<u)+P"(U<u)(E(@ @ U<u)).
A similar sort of upper bound can also be found in Fuk and Nagaev (1971).
For each 0 < u < 1 there exists a unique 0 < t, , < % such that

(1.2) E(exp(t, (Z—-a))lU<u)= ting E(exp(t(Z —a)) | U < u).

(1.1)

+P"(U<u)E

Now if there is a 0 < u, < 1 such that

(13)  Efexp(ty(Z—a)) U <u,)=(P"(U<u,) —-1)"",
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then for u = u, and t = t, ,the two terms in the upper bound in (1.1) would
be equal and consequently

n
P( Y Z > na) <2(1-P"(U<u,)
(1.4) i=1
n
= 2P"(U < u,)(E(exp(ty u(Z — @) [U < u,)) .
This suggests defining
F, (a)=1-P"(U<u,)
P"(U < ua)(E(exp(tayua(Z —a))lu< ua))
n
(Eexp(ta'ua(z —a))l(U < ua)) :
Moreover, since the left-hand side of (1.3) is at most 1, it follows that
(1.6) P"U<u,) >3

(1.5)

MAIN THEOREM. Fix any integern > 1. LetZ, Z,, Z,,... be arbitrary i.i.d.
random variables. Take a such that P(Z > a) > 0. There exist a unique u,
and t, , which simultaneously satisfy (1.2) and (1.3). Define F, (a) by (1. 5)
Then there exists a positive constant C,., independent of Z, n and a, such that

C.FZ . (a) < P( Y Z > na) <2F, ,(a).

j=1

Moreover, the upper and lower bounds are achievable.
REMARK 1. Observe that

F,.n(2) = P™(U < u,)(E(exp(t, ,(Z — @) 1 U < ua))n

P"(U < ua)(ting E(exp(t(Z —a)) U< ua))“ by (1.2)

(inf E(exp((2 - ) 1(U < u,)))’

< ((inf E(exp(t(Z - 2))) A P"(U<u,).

Therefore, F, (@) is never larger than the usual exponential upper bound,
although of course 2F, ,(a) may be larger. Notice also that in the degenerate
case Z=a, F, (a)=1/2 and so the upper bound for P(X{_,Z; > na) is
attained.

Upper bounds of various sorts are obtained in other papers, including
Arkhangel'skii (1989), Bennett (1962), Fuk and Nagaev (1971), Hoeffding
(1963), and Pinelis and Utev (1989), where some efforts at optimization were
made. Separate upper and lower bounds have been obtained with certain
restrictions on the distribution of Z and the range of a. See, for example,



1454 M. G. HAHN AND M. J. KLASS

Nagaev (1965), Osipov (1971) and Statulevicius (1966). Asymptotically exact
tail probability results for partial sums of i.i.d. random variables in the Feller
class may be found in Jain and Pruitt (1987). Also of related interest are the
strong large deviation theorems of Chaganty and Sethuraman (1993). For
general sequences of random variables (not necessarily restricted to partial
sums) having finite moment generating functions, they provide asymptoti-
cally exact “tail-probability-like” results under conditions imposed on the
moment generating functions. Of course, most large deviations theorems for
sums of i.i.d. random variables bear a kinship with the results of this paper.
That literature is vast. Consequently, we have tried to confine our citations to
works which help to place our results in their proper context.

The lower bound in the Main Theorem will be established in Section 2.
Section 3 provides examples to show that the upper and lower bounds are
achievable.

2. Proof of the lower bound. The first task is to verify the existence of
u, and t, , satisfying both (1.2) and (1.3).

LemmAa 1. For each real a, there exist a unique u, € (0,1] and a unique
t, . € [0,] which simultaneously satisfy (1.2) and (1.3).

Proor. If P(Z>a) =0, take u, =1 and t, = «. Now suppose P(Z > a)
> 0. Think of the right-hand sides of both (1.2) and (1.3) as functions of u
(instead of u,). It is obvious that the right-hand side of (1.2) is nondecreasing
in u, always at most 1, and positive for some u. Since the right-hand side of
(1.3) strictly decreases as u increases, varying from infinity to zero, whenever
P(Z > a) > 0 there exists a unique u = u, at which the left-hand side of (1.2)
and right-hand side of (1.3) cross. The two curves will actually intersect with
u=u, and t=t,, if the function of the left-hand side (equivalently the
right-hand side) of (1.2) is continuous in u. We consider two cases.

Case 1 (P(Z = a) =P(Z =a) > 0). In this case it is readily shown that
t,u=t,,, =>and

infE(e'“ @ |U<u)=P(Z=alU<u),
t>0

which is obviously continuous in u, varying between zero and P(Z = a).

Case 2 (P(Z > a) > 0). Put ¢ (u) =E(e"“"@ | U < u). So ¢,(u) is jointly
continuous in 0 <u <1 and 0 <t <« and nondecreasing in u for each t.
Therefore,

inf gy (u)

$o(u) = infe(u)(=  inf
t>0 {t>0: t is rational}

is upper semicontinuous (i.e., {0 < u < 1: ¢, (u) < w} is an open set for every

real w) and nondecreasing. As a result, ¢..(-) is right continuous. Continuity

of ¢, () will follow immediately upon establishing its left-continuity. Take
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any u, <u' <u” <lsuchthat F ' (u,)>alft' =t, , andt’" =t

b (U")
E(exp(t'(Z —a)) U <U")
B Eexp(t'(Z —a)) (U <u’) +exp(t'(F*(u") —a))P(u’ <U<u")

a, u”s

IA

- P(U<uU")
P(U<u) o exp(t'(F*(u)—a)) )
zwcﬁtr(u)—k P(U<U) P(u <U<u").

Since ¢,(u’) <1 implies exp(t'(F *(u,) —a)P(u, <U<u) <1, t' is
bounded as u’ ~ u”. Noting also that ¢,(u’) = ¢ (u’), it follows that
¢, (U") < limsup¢,(u'),
u’ ~u”
whence lim . , . ¢, (u") = ¢, (u"). Consequently, ¢ (u) is continuous. Hence,
the lemma holds. O

Our next objective is to establish that a multiple of the square of the upper
bound is in fact a lower bound. This is trivial for n = 1 and 2.
When n =1,
P(Zza)=P(U=>=u,) =F,,(a).

Moreover, when n = 2,

P(Z,+2Z,>2a) > P( rz] {z; = a})
j=1

> P2(U > u,)
>i1-a-PU= ua))2)2

= iFZ.(a).
Hence, the main theorem holds for n = 1,2 for any 0 < C,, < %. The verifi-
cation for n > 3 is more complicated.

Note first that if the lower bound in the main theorem holds for t, , > 0, a
S|mple monotonicity argument also gives it for t, , = 0. Furthermore when
t, u, = « [which happens iff P(Z > a) = 0], we may conclude from the proof
of Lemma 1 [mserted into the last line of (1.5)] that F, (a) = P"(Z =a,U <
u,); whence t, , = o implies that F} (a) < F, (&) < P(X]_,Z; = na). So it
suffices to consider 0<t,,, <~

For convenience, we first introduce some simplified notation and then
make a linear transformation in the random variables. Set t, = t, , . Sup-
pose 0 < t, < « and let 6, satisfy

(2.1) E(exp(t,Z) | U < u,) = exp(t,0,).
Define
(2.2) b, =F *(u,) =esssup L(Z|U < u,)
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and set

(2.3) L(Y)=L( — 2 lu<u,
b, —

and

(2.4) T, =t (b, — a).

Since t, > 0, property (1.2) ensures that exp(t,(, — @) < 1 so that 0, < a.
Moreover, since t, <, P(Z>alU <u,) > 0; whence a <b, and so Y is
nonconstant. Therefore,

(2.5) 0, <a<b,,
a Oa
(2.6) esssup Y = b, — (>1),
(2.7) Eexp(t,Y) =1,
~ a-— Ha
(2.8) EY exp(t,Y) = b —a’

Equation (2.8) follows from (1.2) using the quantities defined in (2.1)-(2.4),
since the t =t, that minimizes the right-hand side of (1.2) with u = u,
satisfies E((Z — a)exp(t,(Z — a)) | U < u,) = 0. Let

2.9 g_2"% 0

. a= >

(2.9) o —a O

and note that
n n n

(2.10) Pl X Z=na| N {U <u,} P( XY, zna),
j=1 k=1 j=1

where Y,,Y,,... are i.i.d.
Since Z > b, when U > u,,

n n n n
P szzna)zP(n{Uk<ua}P Y. Z;>na ﬂ{Uk<ua})
ji=1 k=1 j=1 k=1
n
+ Y (E)PK(U > u,)P" KU < u,)
k=1
n—k n—k
(2.11) XP|[ Y Z=na-kb,| N {U <u,}
j=1 i=1
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n n
>P"(U<u,)P| Y Z > ﬂ U, < u,}
=1 -
n
+ ¥ (E)Pk(u > u,)P" (U < u,)
k=1
n-1 -
Y Z;zna-
j=1 =
n
=P"(U<u,)P Z > na

+(1-P"(U<u,))P

n—-1
Y Y >(n-1)a- 1).
j=1

The objective is to show that this lower bound is at least a constant
multiple of the square of the upper bound in (1.4). Toward this end, we
introduce the Esscher transformed variate

(Eexp(tY ))71 E [exp(T,Y ) 1(Y <y)]
E [exp(T.Y ) 1(Y <y)],
by (2.7). Let Y, Y,, Y,,... be iid. with S, = Y, + --- +Y,.. Note that

(2.12) P(Y =)

(213) ( ©,5,)) " E [exp(~T.5,)1(8, > na)]

= (Ee ( (Y — "))) E [exp( (~ - n’é)l(§n > n’é)]
since E exp(—T,Y) = (Eexp(t,Y)) 1. By (2.8) and (2.9),
(2.14) EY = 4.
In addition, since Y takes the same values as Y, Y is nonconstant and
(2.15) esssup(Y —EY) =1

by (2.5), (2.6) and (2.8).
Before finding lower bounds for the terms in the last line of (2.11), we
prove a simple approximation lemma.

LEMMA 2. Let Y be a random variable and let > 0 satisfy Eel” = 1. Put
P(Y <y) = Ee™I(Y <y) and & = EY. Let Yo =1 and 0 < & < 1 satisfy

(2.16) 1-e—exp(—y,) >0.
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Let
(2.1 ___eten(-y)

' 1—&—exp(—Yo)
and
(2.18) d='5+5('5+ ?)
Then
(2.19) P(—?s\?sd)z;;

ProoF. First note that & > 0. To see this observe that
T = Etye™ = E((TY - 1)e? + 1) > 0
since (z — 1)e? + 1 > 0 for all z. Hence d > 0. Now let ¢ = —(y,/1).

a

EY >dP(Y>d) +cP(c<Y<d)+EYelI(Y <¢)
d(1 - P(Y <d))+cP(c<Y<d)+EYeYI(Y <c)
d—(d-c)P(c<Y<d)—E(d-Y)elMI(Y <c).

Hence

d-3a d-Y

P(c<Y<d)> o —Ed_cexp(i‘v)l(vsc)
d-2a d-vy -
“d-c _f,ligd—ce)(p(ty)
d-1a
= d_¢ — exp(—Yo)

Jd ~ ~
since a_y(d —y)exp(ty) >0forty < —land d > 0

~

&£
= 1132 exp(—VYo)

1
1—exp(—Yo) — 153

= ¢&. O

Now it is possible to construct lower bounds for the terms in the last line of
(211). Let y, > 1and 0 < ¢ <1 — exp(—y,). Set

F=(e+e ) /(1 —e—eY),
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Let g, =(—2y,/t,) and g, =3 + (8 + (2y,/t,)). Then by (2.11) and the
definition of F, (a) given in (1.5),

n

exp(2yo)(Fz,n(a))72 P( Y. Zj=na
j=1

> exp(2Y,)(F, o(2)) “P"(U < ua)P( Z Y, > na)
j=1

+ exp(2Y,)(Fz, n(2)) “(1 = P™(U < u,))P

n-1
YV > (n—1)5—1).
j=1

Bounding the first of these two terms from below, we obtain

exp(ZyO)(FZYn(a))_2 P"(U<u,P i Y; = n'é)
j=1

n
> exp(2Y,)(Fz.n(2)) P2(U<u, )P LY, = né‘)
i=1
n
= exp(2y,)exp(2t,n(a — 6,))P Y; = na| by (15)and(2.1)
j=1

exp(2yo)exp(?an§)Eexp(—Ta Y (\?] - 5)) I( Xn: Y, > né’)
i

>
i=1 =1
using (2.13)
n
> exp(t,(n& + 2y,t,;"))Eexp| T, X (\7J - a'))
(2.20) -1
n o - 2
X 1{0 < Z(Yj—5)<na+ ~y0)
j=1 ta
n o - 2
zP(Os Z(Yj—a) <n3 + ~yo)
=1 ta
J
ZF)(glS ~n592)
n-1__ - - 2
xPla-g, < ¥ (Yj—EY)s(n+1)EY—g2+?yo
j=1 a
2 n-1__ ~ ~ 2-2%
> eplas 20 < Y (Y -EY)<(n-%)EV + —=—y,
ta j=1 ta

by Lemma 2.
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Bounding the second of these two terms from below, we obtain

exp(2y,) Fz 7(a)(1 — P™(U < u,))P

r_lz_‘,lvj >(n-1)a - 1)

ji=1
n—-1

= exp(2yy)Fz h(a)P| 2 Y= (n—-1)a- 1) by (1.5)
j=1

=exp(2y, + t,n(a— 6,))P~"(U <u,)P

n-1
y sz(n—l)a—l)
j=1

(2.21) by (1.5) and (2.1)
=P "(U <u,)exp(2y, + t,3)

X E exp I

n-1 n-1
-T, ¥ (V- EY) Z(\'(]—E\?’)z—l)
j=1 j=1

using (2.4), (2.9), a variant of (2.14) and (2.13)

%

n—-1 - - _ 2y0
Pl-1< ¥ (V-EV) <&+ =
=1 ta

s ~ ~  2Yo .
eP|—-1< Z(Yj—EY)sa+ T since & < 1.
j=1

%

a

Therefore, summing the lower bounds obtained in (2.20) and (2.21),

n
P( Y. Z; = nalexp(2y,) F;%(a)
j=1

2y, "l . 2-2%
>eP|8+ =< ¥ (V-EV) < (n-5)EV+ —=—y,
ta j=1 ta
(2.22) .
~ ~ _2Y,
+eP|-1< ¥ (V-EY)<a+ =
j=1 ta

%

|’171~ - - 1_'5
eP|-1< ¥ (V- EV]<(n-2)EV+2 = Yo|.
i=1

a

We may therefore conclude that a constant times the square of the upper
bound gives a lower bound provided the probability content of the preceding
interval, [-1,(n — )@ + (2(1 — 2)/T,)y,], is bounded away from zero rela-
tive to the random variable =9~ (Y, — EY).

ProrosiTION 3. Take any y, > 2.2 and 0 < ¢ < 1 so that  from (2.17)
satisfies 0 < Z < . Then there exists a constant C = C(Z, y,) > 0 (indepen-
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dent of Y, n and a) such that for n > 3,

n-1 [ 2(1 —5)

(223) P| L (V-EV)e|-1(n-5)a+ —=y|| >C.

j=1 a

Proor. To simplify the verification by avoiding randomization at a possi-
ble atom on the boundary, it will be assumed that Y is continuous. The
proposition remains valid if Y is not continuous and can be derived by
representing Y as an inverse distribution function of a uniform (0, 1) variate.
The method by which this can be done is embedded in the proof of Lemma A.1
of the Appendix. _ _ ~

Step 1. Let §=sup{g=>0:(n—1DE(Y -3a|Y—-3a> —q)=>q}. Since Y
is assumed to have a continuous distribution,

(2.24) g-(n-1)(E(VIV=a-7)-3)
Since Y is non-constant, § > 0. Let W, VVl, VVZ, ... be i.i.d. with
(2.25) L(W) =L(YIV=7a-3)
and notice that
(2.26) A-G<W=<a+1 (sinceY <&+1),
(2.27) (n-1)E(W-Y) =47,
n ~ o~ q
(2.28) S T=W-EW<1- —
and
(2.29) nP(Y<&-4)<1.

Only (2.29) requires verification: Let § = P(Y < & — §). Then
(Y-a)1(Y>a-q)

d=(n-1)E =

= ( _1)E(§—Yil_(Yﬁs'aT—a') since E(Y — &) =0
(n—-1)ap

S —

Since § > 0 we have (n — 1)p < 1 — P, from which (2.29) follows.
Step 2. Take any y, > 2.2 and 0 < £ < 1 so that z from (2.17) satisfies
0 <% < . Thenfor n > 3,

2(1 -%)y,

a

(2.30) esssup(EW - W) < —§ + (n — 3)a +

Proor. By (2.28) it suffices to show that

2n -1 2(1-+¢
q‘s(n—z)5+—( _ Yo,

(2.31)

n-1 a
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If (2.31) fails, then

N -B3+2)n+1+7% 2(1 = Z)ye(n—1)

(-3 > T,na +
A(T-39) n(2n — 1) a 2n -1
3 1
(2.32) 0+ <Y, forn=30<%<,
V1. _ 9 1
—t,na+ —y,, forn>40<%z<—.
7 14 4

We will now obtain an incompatible upper bound of (G — a). Again, let
P=P(Y <3 —0@). Since E(Y — 3) = 0, (2.24) entails

q—a=1_5E(a—Y)I(Ysa—q)—a
np—1_ . -~ ~
(2.33) < 1_5a+nE(—Ye‘aY)I(Ysa—q) by (2.29)

A

nE(-Yeh")I(Y <& - §)
using (2.29) again and the fact that @ > 0.

From here we consider two separate upper bounds. Suppose first that
n=3and y, =22 Then

E[(—YefaY) (Y <& - ﬁ)] < sup —yexp(t,y)
y<a-g
(8- @exp(~T,(7 - 7))
since T,(§ — @ > 1 by (2.32). Consequently, cancelling § — & and using n = 3,
exp(t,(§ - 3)) < 3.
This contradicts (2.32) for y, > 2In3 > = 1.831 (to three significant digits)
and we are using y, = 2.2.
Next suppose n >4, 0<z< 7, and y, =22 Let f(2) = —z/(e* — 1+
z). Then

E((-Yexp(t,Y))I(Y <& 7))

El sup f(z)((TY — Dexp(t.Y) +1)I(Y < (2 -17))

a 2<T(E-)

<

Y

~+

since (z —1)exp(z) +1>0 Vz

(2.34) < %f(?a(?a“ — @) E((TaY — L)exp(TY ) + 1) I(Y < (& - 1))

a

since f(z) increasesin z

IA

%f(?a(a - @) E((T.Y — 1)exp(TY) + 1)

a

= af(t,(a - d)) since Eexp(t,Y)=1and EY exp(t,Y) = a.
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Inserting (2.34) into inequality (2.33) and cancelling @ — a > 0, it follows
that

exp(ty(§-23)) -1 -t,(d-3a) <t,na

(2.35) o,
<Tt(9-3) — 3y, by(2.32).

Let g(w) =e" — 1 — 8w. Since g is convex and g(t (G — @) < — 2y,,

-9.9> -3y, > g(T(§ - 3))
> inf g(w)

w=>0
=g(w*) wherew* =1In8
=7 —-8In8 = —9.636 (to three significant digits),

which gives a contradiction for y, > 2.2. Hence, (2.31) holds.
Step 3.

T,na(1 + 3)°
T(1+3d) —1+exp(—t,(1+7)

(2.36) (n—1)VarW <

PROOF OF (2.36). Let f(z) = z%/(z — 1 + e~?), with f(0) = 2. It is readily
shown that f(-) is increasing. As usual, let p = P(Y <@ — @ (< (1/n)). Then

(n —1)VarW
- EV2I(Y >3 -7
<(n—-1)EW?=(n-1) =
1-p
n ~
< .th?ngexp(taY)l(Y > & - 10)
a
n
< ,TZE( sup f(z))((i’av — Lexp(t,Y) + 1)I(Y > &~ @)
t z<T,(1+9)
sinceY <&+ 1
n
< t,Tzf(?a(l +@))E((t.Y — 1)exp(tY ) + 1)

a
a
= f.—f('t'a(l +d)) since EYexp(t,Y)=3a and Eexp(t,Y)=1
a
T,na(1 + a)°
T,(1+3) —1+exp(—T(1+3))
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Step 4. Fory,> 2,0<%< %, and n > 3,

T,na(1 + 3)°

237y (@ +@ —1+exp(-H1+D))(1+(n=5T+ (201 - Yo/ 1))’

<

~N| w

ProoF oF (2.37). Let w=T1,(1+3) and v="T,(n—1—%)3a Then the
left-hand side of (2.37) equals

n w?v
N—1-F(w-1+e")(w+v+21-3%)y,)"

The second factor can be bounded as follows:

w?v

(W—1+e ") (w+v+2(1-3)y,)

w?v
= 2
(w—=1+e ") (w+v+2)

2

w \

1
< since sup——— = — forallb>0
(W—1+e")4(w+2) V>‘3(V+b)2 4b

Observe that h(0) = h’(0) = 0 and h”"(w) = we™™ > 0 for w > 0. Hence, h(w)
> 0 for all w > 0, so 2w?/(w? + h(w)) < %. Thus, for 0 < < % and y, > 3,

T,na(1 + 3)°
(T(L+3) —1+exp(~T(L+3))(L+ (n-2)F+ (2(1 - 3)yo/T))

( n ) w?v
< =
N-1-%/(w-1+exp™)(W+V+2(1-73)y,)
n 1
<\ =|=
(n—l—a)4

3
— forn> 3. O
7

IA

Now let
2(1-%)y,

a

J=|-1-q, -+ (n—-%)a+
(2.38) [ q,-g+(n-7%)

=[—v1.72]
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and |J| = vy, + v,. By Steps 3 and 4

Var(Z?;ll(ij - EVV)) 3 4
(2.39) 7 <37 for y, > 3
By (2.30),
(2.40) ess sup( EW — VV) <vy, fory,=>22.
By (2.28),
(2.41) esssup(vv —EW) < y,.
Summing (2.40) and (2.41),
(2.42) Range (VV - EVV)I <7y, +v,=13| fory,>22.

By applying (2.40) and (2.41) to Lemma A.1,
n—-1
P( X (W, - EW) < yz) > 0.05i
i=1
and

n-1
P( Y (W, — EW,) > —yl) > 0.05.
i=1
Hence J intersects the interval between the lowest and highest 5% of the
distribution of X{_,(W; — EW,).

Combining these two facts with (2.3) and (2.42), Theorem (1.1) of Hahn and
Klass (1995) ensures the existence of a constant C > 0 independent of n, W,
v1, and vy, (but depending on 0.05) such that

>C.

(2.43) P(TZl (W, - EW) e J

Therefore, for y, > 2.2 and = 7,

P(nzl(\?"j ~EY)e|-1,(n-%)a+ 2(1,{—_3)%})
i=1

a

—p n21(\(,— EW eJ)
> P(noj{ﬂza—a})P(ngl(ij— EW) EJ)

%

(1 - %)Hé‘ by (2.29) and (2.43)

>e1C=C>0,
which completes the proof of the proposition. O
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3. Sharpness of the bounds. The following example shows that the
powers on the upper and lower bounds in the main theorem are sharp. The
constant multiplying the lower bound can be no bigger than 3((e + 1)/e)?. As
noted in Remark 1 (after the main theorem), the constant of 2 in the upper
bound is achievable.

ExampLE. For each n > 1, let X;, X,,5,..., X,, be i.i.d. random variables
with P(X,; =1)=p, =1—- P(X,, = 0), where 0 < np,, = 0. Let U be uni-
form on (0,1). We may assume that X, = I(1 — p, < U < 1). Take any
0 < &, < 1 such that (np,)*» - 1 and let «, = 1 + (—1)%,,. Observe that

np,, if k=1,
XnJ-Zan ~ 4 2 i
s(np,)°, ifk=0.

-

(3.1) P(
J

1

We compare the probabilities in (3.1) with the approximation we have
developed for them. Without loss of generality, we may assume (1 — p,)" > .
Then for any 0 < «a,, < n, the analogues of (1.2) and (1.3) can be simultane-
ously solved by unique 0 <t,=t,, ,<%«and u,=u,, ,€(@-p,D.
Equivalently, the following two equations hold for each such t, and u,:

(32) NE[ X,y exp(tyXpy) I(U < up)] = oy E [exp(ty Xp) 1(U < uy)]
and
(33) (B (exp(tyXn) 1(U < u,))) exp(—tya,) =1 = (u,)".

From (3.3), (1.5) and the main theorem, our approximation to (3.1) is
1 — (u,)". We claim that whether k = 0 or 1 in the definition of «,

3.4 1-— "~ ,
(34) (u)" ~ ="y
whence
P, X,;>1— e+1
(35/) ( j=1 nj - 8”) N
1-(u,) e

and

P, X..>1+ 1
(3.5//) ( j=1 nj 8“) N E

(1 - (un)n)2
To establish (3.4), put y,=e" and u, =
0<A,<1land

(3.6) 1-(u)"=1-(12-A,p,)" ~A,np,.
Since

(e+1)2
€ I
1

— A P, Note that y, > 1,

P(Xpyl(U<u,)=1)=u,—-1+p,=(1-21,)p,,
(3.2) becomes
(3'7) npn(l - /\n)yn = an(l — Pn + pn(l - /\n)yn)'
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From (3.7), (n — a,)p,(1 — Ay, = ¢,(1 — p,). Consequently,

an(l - pn) 1
(38) Exnlexp(tn an) I(U < un) = pn(l - /\n)yn = ﬁ ~ H
Since Eexp(t, X, I(U <u,) =1 - p, + EX,;exp(t, X,) (U < u,), inserting
(3.8) into (3.3),

n

(1 - pn) ~ (yn)an(l - (un)n)

@y

1-p,+
(3.9) A

~ (Yn) " AnnPy ~ An(NP, Yn) "
The left-hand side of (3.9) is asymptotically e. Hence

(3.10) (NP, Y, " o e
By (3.8), (1 — A )*(np,y,)* — 1, whence (L — A,)*/A,) — e~ *. A mono-
tonicity argument shows that A, must be bounded away from 1. Conse-
quently, (1 — A,)*~* - 1 which implies that (1/A,) —1=(1 — A,)/A, —
e !. Introducing the asymptotic value of A, into (3.6) yields

1 e
—n =
el+1 T et
which is precisely (3.4), and thereby (3.5’) and (3.5") follow.

1_(un)n~)\nnpn~ np,,

APPENDIX

Lemma Al. Let X, X,, X,,... be i.i.d. mean zero random variables with
X; < 1. Then

m
P( Y X = —1) > 0.05 > 0.
j=1

Proor. We first prove the result for m = 1 and m = 2.

1 1
P(Xz ——) =1—P(X> —)
m m
>1 - mEX™
=1 - mEX* since EX=0
1
zl—mP(Xz _E) since X < 1.

Hence, P(X > —(1/m)) = (m + 1)~*. Therefore,

Ao 5]

>(m+1) "> (9" form=1or2.

m
P( ij—l)zP
i=1
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Henceforth, assume m > 3 and define
(A.2) d, =sup{g >0 mE(X|X> —q) >q}.

It may be assumed that g, > 0 since if q,, = 0, then P(X = 0) = 1 and the
lemma obviously holds. Observe that

(A.3) ME(X|X> —0y) <0, <ME(XIX> —q,).

As mentioned before, L(X) can be written as L(F (U)) where U is
uniform on (0, 1), F denotes the cumulative distribution function of X, and
F~'(w =infly: F(y)>u}. Let u,,=P(X< —q,) and u,,=F(q,) =
P(X < —q,,). From (A.3) it follows that

(A4) mE(F*(U)IUx=uy,,)=<q,<mE(FYU)IU=u,,).
By continuity, there exists u,, ; < u, < u, , such that
(A5) mE(F Y(U) U >=u,) =q,.

Let (U,Y) be a random vector such that U is uniform on (0,1) and
L(Y)=L(F*(U)|U=>u,).Clearly, —q,, < Y < 1 so that

m+ 1
qmsY—EYsl—%’“.

(A.6) =

From (A.6) it follows that

qd, (Mm+1

ElY -EY]® < (VarY)max{l it

.

(A7) m
<(vVarY)(1+q,).
We claim that

(A.8) (m+1)P(U<u,) < 1.

PRrooF oF (A.8).
On = ME(F*(U) IU>=u,)
mEF~*(U)I(U > u,,)
1-P(U<uy,)
~mEF1(U)I(U < u,,)
1-P(U<uy,)
mEq,, (U < u)
1-P(U<u,)
mP(U < ug)dn
1-P(U<u,)’

2

since F~'(u) < —q,, for0 <u <u,

Cancelling g,, > 0 and solving for P(U < u,,) yields (m + DP(U < u,) < 1,
thereby establishing (A.8).
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Now introduce i.i.d. random vectors (U,Y), (U;,Y,),...,(U,,Y,). Putting
o?=Var(Y)and r,, = (1 + q,/ocVm),

P( ¥ X; > —1)
j=1
ZP( H {Ukzum})P inz —1)
k=1 i=1
—P™(U > um)P(ZEn:l(Y\j/% =) _(1Em)) by (A.5)

1 \" [Efy(Y; - EY))
2(1— m+1) P(Tz—rm) by(A.8)

>e P

(Y, — EY)) S —r
oym = m)
By the Berry—Esseen Theorem,
b Iita(Y; - EY)) -y
oVm -

1 (=y2/2) g mE|Y — EY®

== exXp(—Yy Y = Co—————3
V2w * (U‘/m)3

where the Berry—Esseen constant ¢, < 0.7975

2

I

—rn

\

1 rm 1

E +/;) Eexp(—yz/Z) dy
0.7975 n (M+1
ovm max{l - _’( m

m
! 0.7975 m 1 2/2)d
— — (0. + [ = - = :
5~ ( )Fm fo oo eXP(—y*/2) dy = 91(m)

) qm} by (A.7)

v

[See Van Beeck (1972) for the bound on the Berry—Esseen constant used
above.] Note that g,(r) decreases, g,(0) = 3 and g,(x) = —oe,
By Marshall’s inequality [Marshall (1960)],

(Y — EY)) (rm)?

Note that g,(r) strictly increases on 0 <r < «, g,(0) =0, and g,() = 1.
Consequently, there exists a unique 0 < r* < o such that g,(r*) = g,(r*).
In particular, this implies that

rlgr) max{g,(r), g,(r)} = Sl:g min{g,(r), g,(r)}.

= gz(rm)'
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Hence,
m
P( > Y > _1) > e ' max{g,(ry), 9,(rm)} =€ * ing max{gy(r), g,(r)}
i—1 r>
=e !t supmin{g,(r), g,(r)} = e * min{g,(0.4), g,(0.4)}
r>0
—e 1 g,(0.4) > 0.05> 0. O

REFERENCES

ARKHANGEL'skll, A. N. (1989). Lower bounds for probabilities of large deviations for sums of
independent random variables. Theory Probab. Appl. 34 565-575.

BENNETT, G. (1962). Probability inequalities for sums of independent random variables. J.
Amer. Statist. Assoc. 57 33-45.

CHAGANTY, N. R. and SETHURAMAN, J. (1993). Strong large deviation and local limit theorems.
Ann. Probab. 21 1671-1690.

CRAMER, H. (1938). On a new limit theorem in the theory of probability. In Colloquium on the
Theory of Probability. Hermann, Paris.

Fuk, D. KH. and NAGAEV, S. V. (1971). Probability inequalities for sums of independent random
variables. Theory Probab. Appl. 16 643-660.

HAHN, M. G. and KLass, M. J. (1995). Uniform local probabilities approximations: improvements
on Berry—Esseen. Ann. Probab. 23 446-463.

HoerFDING, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer.
Statist. Assoc. 58 13-30.

JAaIN, N. C. and PruitT, W. E. (1987). Lower tail probability estimates for subordinators and
nondecreasing random walks. Ann. Probab. 15 75-102.

MARSHALL, A. W. (1960). A one-sided analog of Kolmogorov's inequality. Ann. Math. Statist. 31

483-487.

NAGAEvV, S. V. (1965). Some limit theorems for large deviations. Theory Probab. Appl. 10
214-235.

NEy, P. and NUMMELIN, E. (1987). Markov additive processes Il. Large deviations. Ann. Probab.
15 593-6009.

Osipov, A. (1971). On asymptotic expansions for the distributions of sums of independent
random variables. Theory Probab. Appl. 16 333-343.

PINELIs, I. S. and UTEv, S. A. (1989). Exact exponential bounds for sums of independent random
variables. Theory. Probab. Appl. 34 340-346.

STATULEVICIUS, V. A. (1966). On large deviations. Z. Wahrsch. Verw. Gebiete 6 133-144.

VAN BEECK, P. (1972). An application of Fourier methods to the problem of sharpening the
Berry—Esseen inequality. Z. Wahrsch. Verw. Gebiete 23 187-196.

DEPARTMENT OF MATHEMATICS DEPARTMENT OF STATISTICS
TuFTs UNIVERSITY UNIVERSITY OF CALIFORNIA
MEDFORD, MASSACHUSETTS 02155 BERKELEY, CALIFORNIA 94720

E-maiL: klass@stat.berkeley.edu



