
The Annals of Probability
1997, Vol. 25, No. 2, 812–854

BROWNIAN EXCURSIONS, CRITICAL RANDOM GRAPHS
AND THE MULTIPLICATIVE COALESCENT1

By David Aldous

University of California, Berkeley

Let �Bt�s�� 0 ≤ s <∞� be reflecting inhomogeneous Brownian motion
with drift t − s at time s, started with Bt�0� = 0. Consider the random
graph � �n�n−1+tn−4/3�, whose largest components have size of order n2/3.
Normalizing by n−2/3, the asymptotic joint distribution of component sizes
is the same as the joint distribution of excursion lengths of Bt (Corollary
2). The dynamics of merging of components as t increases are abstracted
to define the multiplicative coalescent process. The states of this process
are vectors x of nonnegative real cluster sizes �xi�, and clusters with sizes
xi and xj merge at rate xixj. The multiplicative coalescent is shown to
be a Feller process on l2. The random graph limit specifies the standard
multiplicative coalescent, which starts from infinitesimally small clusters
at time −∞; the existence of such a process is not obvious.

1. Introduction.

1.1. A stochastic process. We start by describing more carefully the sto-
chastic process mentioned in the abstract. For readers with a background in
random graphs, we should emphasize that this process is a comparatively sim-
ple instance of the kind of process that the modern martingale-based theory
of stochastic calculus, treated in, for example, [26, 27] or [25], is designed to
study. Conversely, for readers with a background in modern process theory, we
should emphasize that our results open up challenging problems in rederiving,
via process techniques, existing random graph asymptotics formulas.

Fix −∞ < t < ∞. Let �W�s�� 0 ≤ s < ∞� be standard Brownian motion.
Then

Wt�s� =W�s� + ts− 1
2s

2� s ≥ 0(1)

defines the (inhomogeneous) Brownian motion with drift t − s at time s. We
wish to study this process restricted to the range 	0�∞� by reflection at 0.
As the inhomogeneous analog of the classical “Lévy presentation of reflecting
Brownian motion” ([27], I.14), this reflecting process Bt may be constructed
via

Bt�s� =Wt�s� − min
0≤s′≤s

Wt�s′�� s ≥ 0(2)
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Now append a point process of “marks” of intensity Bt�s� at time s. Informally,

P�some mark during 	s� s+ ds��Bt�u�� u ≤ s� = Bt�s�ds(3)

Precisely, the number Nt�s� of marks in 	0� s� is characterized as the counting
process for which

Nt�s� −
∫ s

0
Bt�u�du is a martingale,

though we shall use the more intuitive “infinitesimal” notation. An excursion
γ of Bt is a time interval 	l�γ�� r�γ�� such that Bt�l�γ�� = Bt�r�γ�� = 0 and
Bt�s� > 0 on l�γ� < s < r�γ�. The excursion has length �γ� = r�γ� − l�γ� and
contains some number µ�γ� ≥ 0 of marks. Write �t for the set of excursions
of Bt. A stochastic calculus calculation (Lemma 25, which like other such
calculations is deferred to Section 5) implies that we can order excursions by
length, that is, write �t = γj� j ≥ 1� so that the lengths �γj� are decreasing.
This in turn specifies a joint distribution

���γj�� µ�γj��� j ≥ 1�
of lengths and mark counts of excursions.

1.2. Critical random graphs. The random graph model � �n�P�edge� =
p�n�� and its variants are perhaps the most studied model in probabilistic
combinatorics, and the n→∞ asymptotics of component sizes are a classical
object of study. A fundamental result going back to Erdős and Rényi [11, 12]
says that when p�n� = a/n for fixed 0 < a <∞, then the following hold.

1. For a < 1, the largest component size is ��log n�.
2. For a > 1, the largest component has size ��n�, while the second largest

component size is ��log n�.
3. For a = 1, the largest and second largest components both have size ��n2/3�.

Much attention has been paid to “the emergence of the giant component”
as p�n� increases through 1/n; see [7] for results up to 1984 and [16] and [19]
for references to subsequent work. The following folk theorem is implicit in
this recent work, though apparently it has never been proved explicitly in the
form we state. Define the number of surplus edges in a component as

surplus = (number of edges)− (number of vertices− 1� ≥ 0

Fix −∞ < t <∞.

Folk Theorem 1. Let Ct
n�1� ≥ Ct

n�2� ≥ · · · be the ordered component sizes
of � �n�n−1 + tn−4/3�, and let σt

n�j� be the surplus of the corresponding com-
ponent. Then as n→∞,(

n−2/3(Ct
n�j�� σt

n�j�
)
� j ≥ 1

)→d

((
Ct�j�� σt�j�)� j ≥ 1

) = �Ct��t�� say�

for some limit �Ct��t� with 0 < Ct�j� < ∞ and 0 ≤ σt�j� < ∞ a.s. for each
j ≥ 1.
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(For the moment regard “convergence” as convergence with respect to prod-
uct topology, that is, convergence of initial segments of arbitrary fixed length.)
It is well known that the n−4/3 scaling is “correct” for the emergence of the
giant component, in that

Ct�1� →d 0 as t→−∞�

Ct�1� →d ∞ but Ct�2� →d 0 as t→+∞

Our main result, Theorem 3, has the following corollary. Define l2
↘ to be the set

of infinite sequences x = �x1� x2�   � with x1 ≥ x2 ≥ · · · ≥ 0 and
∑

i x
2
i < ∞,

and give l2
↘ the natural metric d�x�y� = √∑

i�xi − yi�2. We may regard the
finite sequence Ct

n = �Ct
n�j�� j ≥ 1� as a random element of l2

↘ by appending
entries of size zero.

Corollary 2. Folk Theorem 1 is true, and the convergence n−2/3Ct
n →d Ct

holds with respect to the l2
↘ topology. Moreover the limit ��Ct�j�� σt�j��� j ≥ 1�

is distributed as the sequence ���γj�� µ�γj��� j ≥ 1� of lengths and mark-counts
of excursions of Bt.

We now start to describe how this result arises.

1.3. The breadth-first walk. We first describe a deterministic construction,
illustrated in Figure 1. Consider a graph on vertices 1�2�    � n�. We shall
specify the breadth-first ordering �v�1��    � v�n�� of the vertices, and an as-
sociated integer-valued sequence �z�i�� 0 ≤ i ≤ n� we shall call breadth-first
walk. The first of these notions is of course a well-known algorithmic proce-
dure. In brief: order components �1��2�    so that the smallest-labeled vertex
w1�w2�    in each component has w1 < w2 < · · · (and call wj the root of �j);
within each component, order by levels (equal distance from root); within each
level, use the original order of labels.

We now elaborate this construction. Given v�1��    � v�i��, define the neigh-
bor set � i to be the set of vertices outside v�1��    � v�i�� which are neighbors
of some vertex inside v�1��    � v�i��. We can also define the set of children of
v�i� to be the set � i \� i−1. Order the components �i as described above, and
consider the first component �1. Define v�1� = w1 and let v�2��    � v�1+�� 1��
be the neighbors of v�1�, in increasing order. Inductively for i = 2�    � ��1�, list
the children (if any) of v�i� in increasing order as v�i+�� i−1���    � v�i+�� i��.
After exhausting the first component, we set v���1� + 1� = w2, the root of the
second component. List the children of w2 as v���1� + 2�� v���1� + 3��    and
continue the induction through the second component. Repeat for subsequent
components.

Write c�i� = �� i \ � i−1� for the number of children of v�i�. Now define
breadth-first walk via

z�0� = 0� z�i� − z�i− 1� = c�i� − 1� i = 1�    � n(4)
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Fig. 1.

An equivalent definition is provided by (5) below. Write

ζ�j� = ��1� + · · · + ��j�
ζ−1�i� = minj� ζ�j� ≥ i�

so that ζ−1�i� is the index of the component containing v�i�. We assert

z�i� = �� i� − ζ−1�i�� i = 1�2�    � n(5)

To verify by induction that (5) and (4) are equivalent, we need to show

�� i� − �� i−1� = c�i� − 1+ ζ−1�i� − ζ−1�i− 1�� i = 2�3�    � n
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Suppose v�i−1� is not the last vertex in its component. Then ζ−1�i� = ζ−1�i−1�
and because v�i� ∈ � i−1 we have �� i� − �� i−1� = c�i� − 1. If on the other
hand v�i− 1� is the last vertex in its component, then ζ−1�i� = 1+ ζ−1�i− 1�
and, because �� i−1� = 0, we have �� i� − �� i−1� = c�i�, as required.

Because �� i� = 0 only if v�i� is the last vertex of its component, (5) implies

z�ζ�j�� = −j� z�i� ≥ −j for all ζ�j� < i < ζ�j+ 1�(6)

It follows that we can reconstruct component sizes and indices from the walk
via

ζ�j� = mini � z�i� = −j��
��j� = ζ�j� − ζ�j− 1��

ζ−1�i� = 1− min
j≤i−1

z�j�
(7)

Our first main result says what happens when we apply this construction
to the near-critical random graph.

Theorem 3. Let �Zt
n�i�� 0 ≤ i ≤ n� be the breadth-first walk associated

with � �n�n−1 + tn−4/3�. Rescale by defining

Z̄t
n�s� = n−1/3Zt

n��n2/3s��
Then Z̄t

n →d Wt as n→∞.

Interpret Zt
n��n2/3s�� as Zt

n�n� for s > n1/3. Recall that convergence of
processes on the infinite interval 0 ≤ s < ∞ (see, e.g., [13]) is “uniform on
finite intervals” rather than uniform over the infinite interval. We in fact
need an extension (31) of Theorem 3 in which surplus edges are indicated as
“marks” on the breadth-first walk. This (easy) extension in stated and proved
in Section 2.2.

The proof of Theorem 3 (Section 2.1) uses standard methodology from sto-
chastic process theory (the functional CLT for continuous-time martingales)
but does not require any nontrivial facts about random graphs. Essentially,
one just has to compute first-order asymptotics for the conditional mean and
variance of increments of Zt

n�·�; see (20) and (21). Details of how Corollary 2
follows are given in Section 2.3 but should be intuitively clear from property (6)
of breadth-first walk. The point is that component sizes are coded as lengths
of path segments above past minima; these converge to lengths of excursions
of Wt above past minima, which are just lengths of excursions of Bt above 0.

Martin-Löf [22] and Spencer [28] have independently given results relat-
ing to random graphs and Brownian-type processes which may be viewed as
aspects of Theorem 3; see Section 6.

1.4. A nonuniform random graph model. It turns out that the “component
size” part of Corollary 2 can be extended to a nonuniform random graph model.
This extension, Proposition 4, will be proved in Section 3 by modifying where
needed the proofs of Theorem 3 and Corollary 2.
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For a positive real vector x = �x1�    � xn� and q > 0, define a random graph
� �x� q� on vertices 1�2�    � n� as follows. Each pair �i� j� of vertices is an
edge with probability 1− exp�−qxixj�, independently for distinct pairs.

Interpret xi as the size of vertex i, and therefore say a component � of
� �x� q� has size C =∑

i∈� xi. Given x, define

σr =
∑
i

xr
i � r ≥ 1�

x∗ = maxi xi

Proposition 4. For each n, let x�n� be a finite positive vector and let q�n� >
0. Let �C�n��j�� j ≥ 1� be the ordered component sizes of � �x�n�� q�n��. Suppose
that, as n→∞,

σ
�n�
3

�σ �n�2 �3
→ 1�(8)

q�n� − 1

σ
�n�
2

→ t�(9)

x
�n�
∗

σ
�n�
2

→ 0(10)

for some −∞ < t <∞. Then

�C�n��j�� j ≥ 1� →d �Ct�j�� j ≥ 1�
with respect to the l2

↘ topology defined in Section 1.2, where �Ct�j�� j ≥ 1� are

the ordered excursion lengths of Bt.

Discussion. We have built the scaling into the hypotheses rather than the
conclusion. For any constant a > 0, the component sizes of � �ax� a−2q� are a
times the component sizes of � �x� q�, so we can always assume (8) by scaling,
and then (9) is the “essential” hypothesis. Note that after scaling, the classical
model � �n�n−1 + tn−4/3� corresponds to the case

x
�n�
i = n−2/3� σ

�n�
2 = n−1/3� σ

�n�
3 = n−1� q�n� = n1/3 + t(11)

Assuming (8), hypothesis (10) is equivalent to (dropping the n’s) x3
∗/σ3 → 0,

that is, the requirement that the contribution to σ3 from individual terms be
asymptotically negligible. Clearly some such asymptotic negligibility condition
is necessary, to eliminate cases �x�n�� q�n�� = �x� q� ∀n, but it is not clear
whether (10) itself is necessary.

Since σ3 ≤ x∗σ2, hypotheses (8) and (10) imply

σ
�n�
2 → 0(12)
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Then

max
i� j

qxixj ≤ qx∗
√
σ2

= O

(
x∗
σ2

√
σ2

)
by (9), (12)

→ 0 by (10), (12)

So under the hypotheses of Proposition 4, the individual edge probabilities
tend to zero and are asymptotic to qxixj.

1.5. The multiplicative coalescent. There is a natural process describing
� �x� q� as q varies, which we now describe with somewhat different notation.
Fix x ∈ l2

↘. For each pair i < j, create an exponential (rate 1) r.v. ξij, inde-
pendent for different pairs. Given t, consider the graph where there exists an
edge �i� j� iff ξij ≤ txixj; this is a construction of � �x� t�, simultaneously for
all 0 ≤ t < ∞. Let Xi�x� t� be the size of the ith largest component of this
� �x� t�, and let

X�x� t� = �Xi�x� t�� i ≥ 1�(13)

Picture the typical state y = �yi� as a collection of “clusters” of sizes y1� y2�    
For an initial vector x of finite length, X�x� t� is a continuous-time finite-state
(the state space depending on the initial x) Markov chain whose dynamics are
described by the following:

each pair of clusters of sizes �x�y� merges at rate xy into a
cluster of size x+ y.

(14)

The construction (13) makes sense for an infinite initial vector x, if we allow
individual cluster sizes to be infinite. In Section 4.2 we shall prove that the
natural state space for this process is l2

↘, in the following sense.

Proposition 5. For each x ∈ l2
↘ the construction (13) yields a Markov pro-

cess �X�x� t�� t ≥ 0� on l2
↘. This process has the Feller property: for each t,

if x�n� → x then X�x�n�� t� →d X�x� t�

In other words, there is a well-defined continuous-time Markov process on
l2
↘ whose dynamics are informally described by (14). We call this process the

multiplicative coalescent and write it as X�t�. See Section 6.4 for some back-
ground on general stochastic coalescence models. Note that there exists a “con-
stant” version of the multiplicative coalescent

X�t� = �y�0�0�0�   �� −∞ < t <∞(15)

for constant y ≥ 0. Corollary 2 and the Feller property imply (see Corollary
24) there exists a process �X∗�t�� −∞ < t < ∞�, the standard multiplicative



RANDOM GRAPHS AND MULTIPLICATIVE COALESCENT 819

coalescent, such that for each t we have X�t� =d Ct, where Ct is the asymptotic
joint distribution of rescaled component sizes (equivalently: the distribution
of excursion lengths of Bt) appearing in Folk Theorem 1 and Corollary 2. In
a companion paper [4], it is shown the constant process, the standard process
and certain processes derived from the standard process are (up to scaling
and mixtures) the only versions of the multiplicative coalescent which exist
for time −∞ < t < ∞. The basic idea is that, for a nonconstant version
�X�t�� −∞ < t <∞�, the distribution of X�0� is by construction just the vector
of component sizes of � �X�−n�� n�, so to prove it is the standard version it
suffices to verify the hypotheses of Proposition 4, and this can be done via
stochastic calculus.

Intuitively, a typical state for the multiplicative coalescent is an unordered
collection of cluster sizes. The convention of defining the multiplicative coales-
cent as an l2

↘-valued process by using the decreasing ordering was intended
as the most elementary way to specify an explicit state space. But, as will be
discussed in Section 3.3, there are advantages in using the more sophisticated
notion of size-biased random order. The representation in terms of Bt shows
that for each t the standard multiplicative coalescent X∗�t� has infinite total
size, so that our l2

↘ set-up is not just generalization for its own sake.

1.6. Summary. In case this introduction seems disjointed, we summarize
the three main points.

i. Theorem 3 and Corollary 2 link the excursion lengths of Bt to the asymp-
totic component sizes in the near critical random graph process.

ii. The multiplicative coalescent process is defined, and shown (Proposition
5) to be a Feller process. As an immediate consequence of this and point (1), we
deduce the existence of the standard multiplicative coalescent on−∞ < t <∞.

iii. Proposition 4 extends point (1) to certain nonuniform random graph mod-
els; this extension is a key ingredient in the proof in [4] that the standard
process is essentially the only version of the multiplicative coalescent which
starts at time −∞ with infinitesimally small clusters.

One could give much more discussion of background material and known
results, but it is time to start proving the new results, so we defer further
discussion until Section 6.

2. Weak convergence arguments.

2.1. Proof of Theorem 3. We start with a technical point. Recall from Sec-
tion 1.3 the construction of breadth-first walk �z�i�� 0 ≤ i ≤ n� in the de-
terministic setting. We need to interpolate between integer times, and one
always available way to do this is via z�s� = z��s��. Motivated by our later
extension to the nonuniform case, we make a slightly different definition
which is tailored to our specific setting. Take independent uniform �0�1� r.v.’s
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�Ui�j� 1 ≤ i ≤ n� 1 ≤ j ≤ c�i�� and then for each i set

z�i− 1+ u� = z�i− 1� − u+∑
j

1�Ui�j≤u�� 0 ≤ u ≤ 1(16)

So z�i� = z�i− 1� − 1+ c�i� as required.
Here is a mental picture of the construction. After step i − 1 we have

a list �v�1��    � v�j�� of length j = i − 1 + �� i−1� consisting of vertices
v�1��    � v�i − 1�� and their neighbors. In Section 1.3 we envisaged adding
the children of v�i� to this list at time i, but now we envisage adding them at
uniform random times over 	i− 1� i�.

We shall prove Theorem 3 for Zt
n�s� defined using this interpolation, with

the rescaling

Z̄t
n�s� = n−1/3Zt

n�n2/3s�(17)

This obviously implies the stated form of the theorem.
To ease the notation, let us drop the superscript t from random variables.

We may write (by general theory; we calculate explicit expressions later in
Lemma 6)

Zn =Mn +An�(18)

where Mn�·� is a martingale and An�·� is a continuous, bounded variation
process. Then write

M2
n = Qn +Bn�(19)

where Qn�·� is a martingale and Bn is a continuous increasing process. (All
these processes start with value 0 at s = 0.) We shall show that as n → ∞
with s0 fixed,

n−1/3 sup
s≤n2/3s0

∣∣An�s� + n−1s2/2− n−1/3st
∣∣→p 0�(20)

n−2/3Bn�n2/3s0� →p s0�(21)

n−2/3E sup
s≤n2/3s0

�Mn�s� −Mn�s−��2→ 0(22)

Rescaling as at (17) to define Ān� M̄n� B̄n, these assertions become

sup
s≤s0

∣∣Ān�s� − ρ�s�∣∣→p 0 where ρ�s� = st− s2/2�

B̄n�s0� →p s0�

E sup
s≤s0

�M̄n�s� − M̄n�s−��2→ 0
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The latter two conditions are the hypotheses of the functional CLT for
continuous-time martingales [e.g., [13] Theorem 7.1.4(b)], whose conclusion is
M̄n →d W, standard Brownian motion. Then the former condition implies

Z̄n = M̄n + Ān →d W+ ρ�·� =Wt�

which is Theorem 3.
By construction, the jumps of Zn�·�, and hence of Mn�·�, have size exactly 1,

and so (22) is obvious. So the issue is to prove (20) and (21). We now calculate
the explicit form of the decompositions (18) and (19). Following (7), write

ζ−1
n �i� = 1− min

u≤i−1
Zn�u�(23)

Lemma 6.

An�u� =
∫ u

0
�an�s� − 1�ds�

Bn�u� =
∫ u

0
an�s�ds�

where

an�s� = �n− s− ζ−1
n ��s�� −Zn�s��

p�n�
1− �s− �s��p�n� 

Proof. From the definition of Zn as a process with drift −1 and with
jumps +1 when a new edge appears, it is clear that the formulas for An and
Bn hold for an�s� defined by

an�s�ds = P�some new edge appears during 	s� s+ ds��Zn�u�� u ≤ s�
An elementary calculation shows that if an event occurs with probability p�n�
and, conditionally on occurrence, it occurs at a random time uniform on �0�1�,
then

P�event occurs during 	s� s+ ds� � does not occur before s�

= p�n�
1− sp�n� ds

(24)

So by construction of breadth-first walk,

an�s� = �n− νn�s��
p�n�

1− �s− �s��p�n� �(25)

where νn�s� is the number of vertices at time s which are ineligible to be
children of v��s��. When we start looking for children of v�i� at time i−1, the
number of ineligible vertices is

νn�i− 1� = i− 1+ �� i−1� + �ζ−1�i� − ζ−1�i− 1���
where the final term takes care of v�i� itself. By (5) we can rewrite this as

νn�i− 1� = i− 1+ ζ−1
n �i� +Zn�i− 1�(26)
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So at time i− 1+ u (for 0 < u < 1) the number ineligible is

νn�i− 1+ u� = i− 1+ ζ−1
n �i� +Zn�i− 1� +∑

j

1�Ui�j≤u�

= �i− 1+ u� + ζ−1
n �i� +Zn�i− 1+ u�

by our interpolation convention. In other words, νn�s� = s+ ζ−1
n ��s�� +Zn�s�,

establishing Lemma 6. ✷

The expressions for An and Bn in Lemma 6 allow us to rewrite (21) as

n−2/3An�n2/3s0� →p 0�

which is plainly weaker than (20). So it suffices to verify (20). Consider a′n�s�
defined as “an without the denominator.” That is,

a′n�s� = �n− s− ζ−1
n ��s�� −Zn�s��p�n�

It is straightforward to see that �a′n�s�−an�s�� = O�1/n�, uniformly in s. Now

a′n�s� − 1 =
(

1− s+ ζ−1
n ��s�� +Zn�s�

n

)(
1+ t

n1/3

)
− 1

and this leads to the bound (for n1/3 > �t�)
∣∣∣∣a′n�s� − 1+ s

n
− t

n1/3
+ st

n4/3

∣∣∣∣ ≤ 2
ζn��s�� + �Zn�s��

n
(27)

Integrating over s and using (23),
∣∣∣∣An�s� +

s2

2n
− st

n1/3
+ s2t

2n4/3

∣∣∣∣ ≤ 4smaxu≤s �Zn�u��
n

+O

(
s

n

)


So the proof of (20) reduces to proving

n−2/3 sup
s≤n2/3s0

�Zn�s�� →p 0

In fact we shall prove the stronger result

n−1/3 sup
s≤n2/3s0

�Zn�s�� is stochastically bounded as n→∞(28)

This requires a routine argument using truncation and the martingale op-
tional sampling theorem. Fix a large constant K and define

T∗n = mins� �Zn�s�� > Kn1/3��
Tn = min�T∗n� s0n

2/3�
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Then

EM2
n�Tn� = EBn�Tn� by the optional sampling theorem

= E
∫ Tn

0
an�s�ds

≤
∫ s0n

2/3

0

np�n�
1− �s− �s��p�n� ds by (25)

≤ 2s0n
2/3�

the final inequality for n sufficiently large. Then

E�Zn�Tn�� ≤ E�Mn�Tn�� +E�An�Tn��

≤ �2s0�1/2n1/3 +E
∫ Tn

0
�an�s� − 1�ds

Using (27) and (23),

E
∫ Tn

0
�an�s� − 1�ds ≤ E

∫ s0n
2/3

0
�a′n�s� − an�s��ds

+
∫ s0n

2/3

0

∣∣∣∣ sn −
t

n1/3
+ st

n4/3

∣∣∣∣ds+ �s0n
2/3�4Kn1/3

n


This leads to a bound for large n:

E�Zn�Tn�� ≤ αn1/3 + 4s0K�

where α depends on �s0� t� but not on �n�K�. Then

P
(

sup
s≤s0n

2/3
�Zn�s�� > Kn1/3

)
= P��Zn�Tn�� > Kn1/3� ≤ α

K
+ 4s0

n1/3

establishing (28).

2.2. Surplus edges. Along with the breadth-first walk �Zt
n�s�� 0 ≤ s ≤ n�,

we may associate with � �n�n−1+tn−4/3� a counting process �Nt
n�s�� 0 ≤ s ≤ n�

which increases by 1 at each occurrence of an excess edge. To analyze this
process, recall that (26) gave an expression for the number νn�i−1� of ineligible
vertices when we start looking for children of v�i�. Of these, i vertices (that is,
v�1��    � v�i�) cannot have edges to v�i�, and the remaining νn�i−1�−i vertices
are candidates for having an excess edge to v�i�. Each of these candidates will
have an excess edge with probability p�n� = n−1 + tn−4/3. Representing each
excess edge as a “mark” at a uniform random time on 	i − 1� i�, then the
counting process Nt

n has rate (i.e., conditional intensity)

p�n�
1− �s− �s��p�n��νn��s�� − �s��(29)
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(This rate is in fact a slight overcount, but we argue later that the error is
asymptotically negligible.) Using (23) and (26) this rate becomes

p�n�
1− �s− �s��p�n�

(
Zt

n��s�� − min
u≤�s�

Zt
n�u�

)
(30)

Now rescale the counting process via

N̄t
n�s� =Nt

n�n2/3s�
The rate for this rescaled process, in terms of the rescaled walk Z̄t

n, is the
rate in (30) multiplied by n2/3 × n1/3 = n, and since np�n� → 1 the rate is
asymptotic to

Z̄t
n�s� −min

u≤s Z̄t
n�u�

However, by Theorem 3 this process converges to Wt�s� − minu≤s Wt�u� =
Bt�s�. By routine weak convergence theory, such convergence of rates is
enough to extend Theorem 3 to give joint convergence of processes:

�Z̄t
n�s�� N̄t

n�s�� s ≥ 0� →d �Wt�s��Nt�s�� s ≥ 0�(31)

for Nt defined at (3).
Equation (29) slightly overestimates the chance that a vertex v�i� has two

or more surplus edges, but even this overestimated chance that some one of
the first O�n2/3� vertices has two or more excess edges must tend to zero,
otherwise the limit Nt in (31) would have multiple coincident points.

2.3. Proof of Corollary 2. We shall prove the part of Corollary 2 dealing
with component sizes; the full result incorporating component surpluses is
just the same argument, invoking the joint convergence (31).

Recall that the reflecting process Bt is derived from Wt via (2); excursions
of Bt above 0 are excursions of Wt above its past minimum. There are two
issues in deducing Corollary 2 from Theorem 3. The first is to check that
excursions of the limit process are matched by excursions of the breadth-first
walks (representing components of the random graph); the second is to check
that no components of size 1�n2/3� are overlooked by virtue of their positions
in the walk going off to +∞.

The first issue is mostly handled by the following deterministic lemma,
whose straightforward proof we omit.

Lemma 7. Suppose f� 	0�∞� → R is continuous. Let � be the set of non-
empty intervals e = �l� r� such that

f�r� = f�l� = min
s≤l

f�s�� f�s� > f�l� for l < s < r

Suppose that, for intervals e1� e2 ∈ � with l1 < l2 we have

f�l1� > f�l2�(32)



RANDOM GRAPHS AND MULTIPLICATIVE COALESCENT 825

Suppose also that the complement of ∪e∈� �l� r� has Lebesgue measure zero. Let
5 = �l� r − l�� �l� r� ∈ � �. Now let fn → f uniformly on bounded intervals.
Suppose �tn� i� i ≥ 1� satisfy the following:

(i) 0 = tn�1 < tn�2 < tn�3 · · · and limi→∞ tn� i = ∞;
(ii) fn�tn� i� = minu≤tn� i fn�u�;

(iii) maxi� tn� i≤s0
�fn�tn� i� − fn�tn� i+1�� → 0 as n→∞, for each s0 <∞.

Write 5�n� = �tn� i� tn� i+1 − tn� i�� i ≥ 1�. Then 5�n� → 5 as n→∞.

Here and below, we regard 5 and 5�n� as point processes on 	0�∞�×�0�∞�,
and convergence is the natural notion of vague convergence of counting mea-
sures on 	0�∞�× �0�∞�; see, for example, [17].

Define γ�n� i� by: v�γ�n� i�� is the last vertex in the i − 1st component of
the random graph encountered by breadth-first walk. Let Cn� i be the size of
this ith component.

Lemma 8. Let 5�∞� be the point process with points

�l�γ�� �γ��� γ an excursion of Bt�
Let 5�n� be the point process with points �n−2/3γ�n� i�� n−2/3Cn� i�� i ≥ 1�. Then

5�n� →d 5�∞� as n→∞.

Proof. Using (2), 5�∞� is just the 5 of Lemma 7 applied to Wt, and writing
tn� i = n−2/3γ�n� i�, the 5�n� in Lemma 8 is just the 5�n� in Lemma 7 applied to
Zn. Theorem 3 gave Z̄n →d Wt, and by the Skorohod representation theorem
([27], II.86.1) it is enough to verify the hypotheses of Lemma 7. It is standard
that the hypotheses on f hold a.s. for Brownian motion W, and hence they
hold a.s. for Wt by the absolute continuity given by the Cameron–Martin–
Girsanov theory. Conditions (i)–(iii) follow from construction of breadth-first
walk [recall (6)]. ✷

The subject of Corollary 2 is the decreasing ordering of n−2/3Cn� i� i ≥ 1�,
that is, of the second coordinates of the points in 5�n�. To deduce Corollary 2
from Lemma 8 requires some extra work. Consider

T�y� = mins� Wt�s� = −y��
Tn�y� = mini� Zn�i� = −�yn1/3��

Note that by step Tn�y� the breadth-first walk has encountered all ver-
tices labeled 1�2�    � �yn1/3�� in the original labeling. Theorem 3 implies
n−2/3Tn�y� →d T�y�. Since T�y� → ∞ as y → ∞, we have established a
restricted version of Corollary 2 in which we consider only excursions of
Bt starting before Ty0

and components whose minimal vertex label (in the
original labeling) are less than or equal to y0n

1/3, for some fixed y0. Now
Corollary 2 itself will follow from the next lemma.
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Lemma 9. Let p�n�y� δ� be the chance that � �n�n−1 + tn−4/3� contains a
component of size greater than or equal to δn2/3 which does not contain any
vertex i with 1 ≤ i ≤ yn1/3. Then

lim
y→∞ lim sup

n
p�n�y� δ� = 0 for all δ > 0

Proof. Fix δ > 0. For an interval I, define q�n� I� to be the mean number
of components of size greater than or equal to δn2/3 whose minimal vertex
is in n1/3I. Conditional on component sizes, the labels 1�2�    � n� of the
vertices of the random graph are in random order. For a component having
size vn2/3, write χn = n−1/3 (label of minimal vertex). Then χn →d exponential
(rate v), implying P�χn > y� ∼ �e−vy/�1− e−v��P�χn ≤ 1�. By summing over
components,

lim sup
n

q�n� 	y�∞��
q�n� 	0�1�� ≤ sup

v≥δ

e−vy

1− e−v
= e−δy

1− e−δ


Because p�n�y� δ� ≤ q�n� 	y�∞��, it suffices to prove

sup
n

q�n� 	0�1�� <∞(33)

However, results in the random graphs literature imply supn q�n� 	0�∞�� <∞.
[Boris Pittel (personal communication) observes that this follows from bounds
on the numbers of tree components, unicyclic components and complex com-
ponents given in [19], Theorem 2 and Lemma 2.1]. So by quoting that result,
we finish the proof of Corollary 2. Note that for the analogous part of the
proof of Proposition 4, the nonuniform case, we will need a novel argument
(see Section 3.4) and that argument could be used here to make our proof of
Corollary 2 independent of existing random graphs results.

3. The nonuniform case. In this section we give the proof of Proposi-
tion 4. The proof follows the general lines of the proofs of Theorem 3 and Corol-
lary 2, with modified definitions and extra technical lemmas where needed.

3.1. Breadth-first walk. In Section 1.3 we defined the breadth-first walk
for an arbitrary deterministic unweighted graph. In the current “weighted”
setting, it is more convenient to give a simultaneous construction of the ran-
dom graph � �x = x1�    � xn�� q� and its interpolated walk z�u� analogous
to (16). Figure 2 illustrates part of the construction. For each ordered pair
�i� j�, i != j let Ui�j have exponential �qxj� distribution, independent over
pairs. Choose v�1� by size-biased sampling; that is, vertex v is chosen with
probability proportional to xv. Let v� Uv�1�� v ≤ xv�1�� be the set of children of
v�1�, and order these children as v�2�� v�3��    so that Uv�1�� v�i� is increasing.
Start the walk z�·� with z�0� = 0 and let

z�u� = −u+∑
v

xv1�Uv�1�� v≤u�� 0 ≤ u ≤ xv�1�
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Fig. 2.

So

z�xv�1�� = −xv�1� +
∑

v child of v�1�
xv

Inductively, write τi−1 =
∑

j≤i−1 xv�j�. If v�i� is in the same component as v�1�,
then the set

v !∈ v�1��    � v�i− 1��� v is a child of one of v�1��    � v�i− 1���
consists of v�i��    � v�l�i�� for some l�i� ≥ i. Let the children of v�i� be v !∈
v�1��    � v�l�i���� Uv�i��v ≤ xv�i��, and order them as v�l�i�+1�� v�l�i�+2��   
such that Uv�i��v is increasing. Set

z�τi−1 + u� = z�τi−1� − u+ ∑
v child of v�i�

xv 1�Uv�i�� v≤u�� 0 ≤ u ≤ xv�i�(34)

After exhausting the component containing v�1�, choose the next vertex by
size-biased sampling; that is, each available vertex v is chosen with probability
proportional to xv. Continue.

This construction yields a forest on the vertices 1�    � n�, an ordering
v�1��    � v�n� of the vertices and a walk �z�u�� 0 ≤ u ≤ ∑

v xv�. Add extra
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edges �i� j� for each pair such that i < j ≤ l�i� and Uv�i�� v�j� ≤ xv�i�. It is easy
to check that the resulting random graph is � �x� q�. Briefly, for any pair of
vertices �i� j�, one (say i) appears first in the ordering, and then �i� j� is an
edge iff Ui�j ≤ xi, which happens with probability 1− exp�−qxjxi�. Note also
that by construction, the ordering �v�i�� is the size-biased random ordering
(see Section 3.3) of the vertices.

In Figure 2 the weight of vertex v�i� is given below the label v�i�. A helpful
way to think about the construction, illustrated in Figure 2, is to picture the
successive vertices v�i� occupying successive intervals of the “time” axis, the
length of the interval for v being the weight xv. During this time interval
we “search for” children of v�i�, and any such child v�j� causes a jump in
z�·� of size xv�j�. The time of this jump is the birth time β�j� of v�j�, which
in this case [i.e., provided v�j� is not the first vertex of its component] is
β�j� = τi−1 +Uv�i�� v�j�. These jumps are superimposed on a constant drift of
rate −1. If v�j� is the first vertex of its component, its birth time is the start
of its time interval: β�j� = τj−1.

The relationship between the walk and the graph is less simple than in the
uniform case. In the uniform case we could reconstruct the graph (up to vertex
labels) from the walk, but this is not true in the nonuniform case, because it is
not clear from the walk where one vertex’s time interval ends and the next
one’s begins. In particular, the relationship between the walk and the compo-
nents is less simple than (7). But we do have an analog of (6): a component
consists of vertices v�i�� v�i+ 1��    � v�j��, and the walk z�·� satisfies

z�τj� = z�τi−1� − xv�i�� z�u� ≥ z�τj� on τi−1 < u < τj

Note that by construction, the order in which the components appear in the
breadth-first walk is also size-biased order.

3.2. Asymptotics. We now apply the construction above to � �x�n�� q�n��
satisfying the hypotheses of Proposition 4. Write

Zn�s�� 0 ≤ s ≤∑
v

x
�n�
v

for the breadth-first walk. Rescale to define

Z̄n�s� =
√√√√σ

�n�
2

σ
�n�
3

Zn�s�

We use the same decompositions Zn =Mn+An; M2
n = Qn+Bn as at (18) and

(19), and analogous to (20)–(22) we seek to show that for fixed s0,
√√√√σ

�n�
2

σ
�n�
3

sup
s≤s0

∣∣∣∣An�s� +
q�n�σ �n�3

2σ �n�2

s2 − �q�n�σ �n�2 − 1�s
∣∣∣∣→p 0�(35)
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σ
�n�
2

σ
�n�
3

Bn�s0� →p s0�(36)

σ
�n�
2

σ
�n�
3

E sup
s≤s0

�Mn�s� −Mn�s−��2→ 0(37)

Then exactly as before we deduce the analog of Theorem 3.

Proposition 10. Z̄n →d Wt

Since the maximum jump is x∗, property (37) is immediate from hypotheses
(8) and (10). Using hypotheses (8), (9) and (12), we see that (35) and (36) reduce
to

sup
s≤s0

∣∣∣∣An�s�
σ
�n�
2

+ 1
2
s2 − ts

∣∣∣∣→p 0�(38)

Bn�s0�
�σ �n�2 �2

→p s0(39)

The rest of Section 3.2 is devoted to proving (38) and (39) and hence Proposi-
tion 10. Here are the explicit forms of An�Bn, analogous to Lemma 6. To ease
notation we shall mostly omit the superscripts n.

Lemma 11.

dAn�s� = −ds+ q�σ2 −Q2�s� − Q̃2�s��ds�
dBn�s� = q�σ3 −Q3�s� − Q̃3�s��ds�

where, for τi−1 ≤ s < τi,

Q2�s� =
∑
j≤i

x2
v�j�� Q3�s� =

∑
j≤i

x3
v�j��

Q̃2�s� =
∑

j>i�β�j�<s

x2
v�j�� Q̃3�s� =

∑
j>i�β�j�<s

x3
v�j�

Proof. The proof follows the proof of Lemma 6 but is simpler; the set of
ineligible vertices at s is exactly j� β�j� < s�. ✷

Because 1
2s

2 − ts = ∫ s
0 �u− t�du, showing (38) reduces to showing

sup
u≤s0

�d�u�� →p 0�

where

d�u� = −1+ q�σ2 −Q2�u� − Q̃2�u��
σ2

+ �u− t�
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Using hypotheses (8), (9) and (12) this convergence follows from Lemmas 12
and 13 below. Similarly, (39) reduces to showing

Q3�s0� + Q̃3�s0�
σ3

2

→p 0

Since Q3�s0� ≤ x∗Q2�s0� and Q̃3�s0� ≤ x∗Q̃2�s0�, this convergence also follows
from Lemma 12 and 13, using hypothesis (10).

Lemma 12. We have supu≤s0
Q̃2�u�/σ2

2 →p 0.

Lemma 13. We have

sup
u≤s0

∣∣∣∣σ2

σ3
Q2�u� − u

∣∣∣∣→p 0

We will see that Lemma 12 reduces to the analog of (28). Lemma 13 is
trivial in the uniform setting, and so will require a new argument.

Proof of Lemma 12. Q̃2�s� ≤ x∗Q̃1�s�, where for τi−1 ≤ s < τi,

Q̃1�s� =
∑

j>i�β�j�<s

xv�j�

So by hypothesis (10) it is enough to prove

1
σ2

sup
s≤s0

Q̃1�s� is stochastically bounded as n→∞

We assert

Q̃1�s� = Z�s� − �τi − s� − �Z�τµ−1� − xv�µ��� τi−1 ≤ s ≤ τi�(40)

where v�µ� is the first vertex of the component containing v�i�. Indeed, (40)
is true instantaneously after τµ−1, when both sides are zero. Traversing the
component, when vertex v�j� occurs as a child of some v�i�, both sides increase
by xv�j�, while at times s = τi−1, both sides decrease by xv�i�, and at other
times, both sides stay unchanged. This verifies (40). Using hypothesis (10)
again, proving the lemma reduces to proving

1
σ2

sup
s≤s0

�Z�s�� is stochastically bounded as n→∞

This can be established by following the proof of (28); we omit details.

Proof of Lemma 13. We exploit the fact that the �v�i�� are in size-biased
order. Introduce an artificial time parameter θ, let �Ti� be independent with
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exponential �xi� distribution and consider

D1�θ� =
∑
j

xj1�Tj≤θ� − σ2θ�

D2�θ� =
∑
j

x2
j1�Tj≤θ� − σ3θ�

D0�θ� =
σ2

σ3
D2�θ� −D1�θ�

Ordering vertices i according to the (increasing) values of Ti gives the size-
biased ordering. So the process

(
σ2

σ3
Q2�τi� − τi� i ≥ 0

)

is distributed as the process �D0�θi�� i ≥ 0�, where

θi = minθ� Tj ≤ θ for exactly i different j’s�
So the quantity featured in Lemma 13 can be rewritten as

D�s0� = sup�D0�θ��� D1�θ� + σ2θ ≤ s0�(41)

For u = 1�2 the process Du�θ� is a supermartingale, and so by a maximal
inequality ([27], Lemma 2.54.5), for ε > 0

εP
(

sup
θ′≤θ

�Du�θ′�� > 3ε
)
≤ 3E�Du�θ�� ≤ 3

(
�EDu�θ�� +

√
varDu�θ�

)


Now

�ED2�θ�� = −ED2�θ�
=∑

j

x2
j�xjθ− 1+ exp�−xjθ��

≤∑
j

x2
j �xjθ�2/2

= θ2σ4/2�

varD2�θ� =
∑
j

x4
jP�Tj ≤ θ�P�Tj > θ�

≤∑
j

x4
j �xjθ�

= θσ5

Similarly

�ED1�θ�� ≤ θ2σ3/2� varD1�θ� ≤ θσ3(42)
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Combining these bounds,

ε

3
P
(

sup
θ′≤θ

�D0�θ′�� > 6ε
)
≤ σ2

σ3

(
θ2σ4

2
+ θ1/2σ

1/2
5

)
+ θ2σ3

2
+ θ1/2σ

1/2
3 

Setting θ = 2s0/σ2 and using the bounds σ4 ≤ x∗σ3, σ5 ≤ x2
∗σ3, the bound

becomes

O

(
x∗
σ2
+ σ

1/2
2 x∗
σ

1/2
3

+ σ3

σ2
2

+ σ
1/2
3

σ
1/2
2

)

and this approaches 0 using (8), (10) and (12). So in view of (41) it is enough
to show that, for θ = 2s0/σ2,

P�D1�θ� + σ2θ ≤ s0� → 0

This follows from Chebyshev’s inequality and (42).

3.3. Size-biased ordering for random sequences in l2. Central to this paper
is the notion of convergence of random unordered sets of positive numbers,
where the index sets are not fixed. In this section we discuss representations
of unordered sets which permit discussion of convergence. In particular, a
general result on convergence of size-biased orderings (Proposition 15) will
enable us to complete the proof of Proposition 4 in Section 3.4.

For a countable index set �, write l2
+��� for the set of sequences x = �xγ� γ ∈

�� such that each xγ ≥ 0 and
∑

γ x
2
γ < ∞. Recall that l2

↘ denotes the set of
sequences x = �xi� i = 1�2�   � such that x1 ≥ x2 ≥ · · · ≥ 0 and

∑
γ x

2
γ < ∞.

Give l2
↘ the natural metric d�x�y� = √∑

i�xi − yi�2. Writing ord� l2
+��� → l2

↘
for the decreasing ordering map, it is elementary that

d2�ord x� ord y� ≤∑
γ

�xγ − yb�γ��2(43)

for any bijection b between the index sets of x and y, a fact we will use without
explicit mention in Section 4.

Given a random collection Y = Yγ� γ ∈ �� in l2
+���, where � may depend on

the realization, the most elementary way to represent Y without mentioning
� is to use ord Y to create a random element of l2

↘. However, an alternative, in
some ways more elegant and mathematically natural, is to use the notion of
size-biased order. As well as being classical in statistical sampling theory, size-
biasing in the l1 setting has been prominent in recent mathematical work in
probabilistic combinatorics; see [24] for an extensive list of references. Given
Y = Yγ� γ ∈ �� with each Yγ > 0, construct r.v.’s �ξγ� such that, conditional
on Y, the �ξγ� are independent and ξγ has exponential �Yγ� distribution. These
define a random linear ordering on �. That is, γ1 ≤ γ2 iff ξγ1

≤ ξγ2
. In the l1

case, that is, when
∑

γ Yγ <∞ a.s., this coincides with the elementary notion
of size-biased order; there is a first element γ�1� such that

P�γ�1� = γ�Y� = Yγ∑
γ′ Yγ′
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However, the ordering makes sense without any l1 assumption, although (as
with the ordering of the positive rationals) there will be no first element in
the ordering. Consider the following construction. For 0 ≤ a <∞ define

S�a� = ∑
γ� ξγ<a

Yγ(44)

Note that
E�S�a��Y� =∑

γ

Yγ�1− exp�−aYγ�� ≤ a
∑
γ

Y2
γ

So if Y ∈ l2
+��� then we have S�a� <∞ a.s. So we can define Sγ = S�ξγ� <∞

and finally define the size-biased point process (SBPP) associated with Y to
be the set 5 = �Sγ�Yγ�� γ ∈ ��. Thus 5 is a random element of � , the space
of configurations of points on 	0�∞� × �0�∞�, with only finitely many points
in each compact rectangle 	0� s0� × 	δ�1/δ�. Note that 5 depends only on the
ordering, rather than the actual values, of the ξ’s. Clearly 5 has the properties

if �s� y� ∈ 5 then
∑

y′ � �s′�y′�∈5�s′<s�
y′ = s�(45)

maxy� �s� y� ∈ 5 for some s > s0� →p 0 as s0 →∞(46)

Writing π for the “project onto the y-axis” map,

π��sγ� yγ��� = yγ��(47)

we can recover ord Y from 5 via ord Y = ordπ�5�.
We now turn to notions of convergence. On l2

↘, convergence x�n� → x shall
mean convergence with respect to the metric d, except when we explicitly
write x�n� →prod x to indicate convergence in the product topology: limn x

�n�
i =

xi ∀ i. The set � has its own natural topology: pointwise convergence, uniform
over compact subsets. These deterministic notions extend in the usual way to
notions of convergence in distribution for random elements of the spaces (see,
e.g., [17] for discussion of convergence in distribution for point processes).

The following straightforward lemma provides a connection between these
modes of convergence in distribution.

Lemma 14. Let Y�n� ∈ l2
+��n� for each 1 ≤ n ≤ ∞, and let 5�n� be the

associated SBPP. The following are equivalent:

(a) ord Y�n� →d ord Y�∞�;

(b) ord Y�n� d−→prod ord Y�∞� and

lim
δ↓0

lim sup
n

P

( ∑
Y
�n�
γ ≤δ

�Y�n�
γ �2 > ε

)
= 0 for each ε > 0�(48)

(c) 5�n� →d 5�∞�, and (48) holds.
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We need a subtle variation of these ideas. Suppose we know 5�n� →d 5�∞�,
but we do not know that 5�∞� is the SBPP of some Y�∞�, and we do not know
(48). Can we still deduce that the assertions of Lemma 14 hold, by imposing
only conditions on 5�∞�?

Proposition 15. Let Y�n� ∈ l2
+��n� for each 1 < n ≤ ∞, and let 5�n� be

the associated SBPP. Suppose 5�n� →d 5�∞�, where 5�∞� is a point process
satisfying (45) and (46) and

sups� �s� y� ∈ 5�∞� for some y� = ∞ a.s.(49)

Then Y�∞� = ordπ�5�∞�� is in l2
↘, and ord Y�n� →d ord Y�∞�.

The following three examples show that none of the three conditions (45),
(46) and (49) can be removed.

1. Let Y�n� consist of a fixed y ∈ l2 with
∑

i yi = ∞, together with n2 terms of
size 1/n. Here only (45) fails.

2. Let Y�n� consist of n terms of size 1. Here only (46) fails.
3. Let Y�n� consist of n2 terms of size 1/n. Here 5�∞� is empty, so (45) and (46)

are vacuously satisfied, and only (49) fails.

Proof of Proposition 15. We shall make several uses of the following
technical device. If Qn is some positive real-valued function of Y�n�, then we
may assume that one of the two cases

Qn →p ∞� �Qn� is tight

holds, because by considering subsequences the general case can be viewed as
a mixture of these cases.

First assume a boundedness condition:

K ≡ sup
n

max
γ

Y�n�
γ <∞(50)

Suppose

σ �n� ≡∑
γ

�Y�n�
γ �2 →p ∞(51)

From the definition of S�n��a� we have, for fixed λ > 0,

E�S�n��λ/σ �n���Y�n�� =∑
γ

Y�n�
γ �1− exp�−Y�n�

γ λ/σ �n���

Since
∑

γ Y
�n�
γ �Y�n�

γ /σ �n��2 ≤K/σ �n� →p 0 by (50) and (51), we have

E�S�n��λ/σ �n���Y�n�� − λ→p 0



RANDOM GRAPHS AND MULTIPLICATIVE COALESCENT 835

Furthermore,

var�S�n��λ/σ �n���Y�n�� = ∑
γ

�Y�n�
γ �2�1− exp�−Y�n�

γ λ/σ �n��� exp�−Y�n�
γ λ/σ �n��

≤ KE�S�n��λ/σ �n���Y�n��
→p Kλ

Using Chebyshev’s inequality, it is easy to deduce that, for arbitrary ran-
dom τn,

S�n��τn� →p ∞ iff τnσ
�n� →p ∞(52)

Now fix 1 > δ > 0, let Bn be the set Y�n�
γ � δ ≤ Y

�n�
γ ≤ δ−1� and write �Bn�

for its cardinality. Let τn�k be the kth smallest element of ξγ� δ ≤ Y
�n�
γ ≤ δ−1�.

If �σ �n�/�Bn�� is tight, then �Bn� →p ∞, and τn�k = O�1/�Bn�� for fixed k, so
�τn�kσ �n�� is tight. Then by (52) �S�n��τn�k�� n ≥ 1� is tight. However, the
convergence 5�n� →d 5�∞� implies that 5�∞� has an infinite number of points
in 	0�∞�×	δ� δ−1�, contradicting hypothesis (46). So we may suppose the other
case σ �n�/�Bn� →p ∞, but in this case τn�1σ

�n� →p ∞, so S�n��τn�1� →p ∞, and
so 5�∞� has no points in 	0�∞� × 	δ� δ−1�. This must hold for each δ > 0, so
5�∞� is empty, contradicting (49). This means (51) must be false, and so we
may assume the other case, that �σ �n�� is tight. Since

E�S�n��a��Y�n�� ≤ a
∑
γ

�Y�n�
γ �2 = aσ �n��

we see that, for fixed a, the sequence �S�n��a�� n ≥ 1� is tight. Together with
the hypothesis 5�n� →d 5�∞�, this implies ord Y�n� d−→prod Y�∞� ≡ ordπ�5�∞��,
and that Y�∞� is in l2

↘. Passing to a subsequence, we may assume

lim
k→∞

lim
n

∑�Y�n�
γ �2� Y�n�

γ ≤ 1/k� = σ̄

exists, where limits are in distribution. The convergence ord Y�n� d−→prod Y�∞�

then implies S�n��a� →d S�∞��a� + aσ̄ where S�∞� is defined in terms of Y�∞�

as at (44). However, the convergence 5�n� →d 5�∞� and hypothesis (45) on
5�∞� show that σ̄ = 0. In other words, (48) holds, and the conclusion follows
from Lemma 14.

This establishes the proposition under the boundedness assumption (50),
and the general case follows using a truncation argument; we omit the de-
tails. ✷

3.4. Proof of Proposition 4. We shall apply Proposition 15 to the compo-
nent sizes Y�n� of � �x�n�� q�n��. Let �Y�n�

u � u = 1�2�   � be the component
sizes of � �x�n�� q�n��, in the order of appearance in breadth-first walk. Write
S
�n�
u−1 =

∑u−1
j=1 Y

�n�
j . Let 5�n� be the point process on 	0�∞�×�0�∞� with points

at �S�n�u−1�Y
�n�
u �� u = 1�2�     Proposition 10 showed Z̄n →d Wt. Repeating

the argument for Lemma 8 shows 5�n� →d 5�∞�, where 5�∞� is the point
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process with points �l�γ�� �γ��� γ an excursion of Bt�. Standard qualitative
properties of Brownian motion establish properties (45) and (49). We observed
in Section 3.1 that components appeared in size-biased order in the breadth-
first walk. To apply Proposition 15, the only further hypothesis which needs
checking is (46), which is a consequence of Lemma 25. The conclusion of the
proposition now establishes Proposition 4.

Proposition 15 and Lemma 14 imply that excursions of Bt appear in size-
biased order, a fact we record as follows.

Corollary 16. The point process �l�γ�� �γ��� consisting of left end points
and lengths of excursions γ of Bt is distributed as the size-biased point process
�Sγ� �γ��� associated with �γ��.

4. Analysis of the multiplicative coalescent.

4.1. Preliminaries. Say x ∈ l2
↘ is finite length if xi = 0 ultimately. For

finite-length x, the process X�t� constructed in (13) as the decreasing ordered
component sizes of � �x� t� can clearly be regarded as a l2

↘-valued Markov
process, which we now call the multiplicative coalescent. [The Markov property
is a simple consequence of the “memoryless” property for the exponential r.v.’s
�ξij�]. In the next section we shall prove Proposition 5, which asserts that for
any x ∈ l2

↘ this construction of X�t� yields a l2
↘-valued process possessing the

Feller property.
When X�0� = x is finite length, the dynamics (14) of the multiplicative

coalescent can be expressed in martingale form as follows. Let x�i+j� be the
configuration obtained from x by merging the ith and jth clusters, that is,
x�i+j� = �x1�    � xu−1� xi + xj� xu�    � xi−1� xi+1�    � xj−1� xj+1�   � for some
u. Write � �t� = σX�u�� u ≤ t�. Then

E�Dg�X�t���� �t�� =∑
i

∑
j>i

Xi�t�Xj�t�
(
g�X�i+j��t�� − g�X�t��)dt(53)

for all g� l2
↘ → R (for all g because there are only finitely many possible

states). Of course, our infinitesimal notation E�DY�t��� �t�� = A�t�dt is just
an intuitive way of expressing the rigorous assertion that M�t� = Y�t� −∫ t

0 A�s�ds is a local martingale; similarly the notation var�DY�t��� �t�� =
B�t�dt means that M2�t� − ∫ t

0 B�s�ds is a local martingale. Following a
paradigm in modern stochastic process theory, one could seek to define the
multiplicative coalescent via such a martingale characterization, but that
requires technical discussion of the class of g’s where the formula should
hold. Our “constructive” definition of the multiplicative coalescent finesses
that issue, but requires us to give ad hoc justifications of uses of (53) in the
infinite-length setting.

4.2. Proof of Proposition 5. X�t� denotes the multiplicative coalescent
started from some initial state x, and S�t� = ∑

i X
2
i �t�. When we wish to

indicate explicitly the initial state we write X�x� t� and S�x� t�.
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Our proof involves coupling arguments to bound the effect on X�x� t� of
changing x, and martingale arguments to bound the effect of changing t. We
start with a deterministic coupling lemma. Recall that d denotes distance
in l2

↘.

Lemma 17. Let Ḡ be a graph with vertex weights �x̄i�. Let G be a subgraph
of Ḡ (that is, each edge of G is an edge of Ḡ) with vertex weights xi ≤ x̄i. Let
ā and a be the decreasing orderings of the component sizes of Ḡ and G. Then

d2�ā�a� ≤∑
i

ā2
i −

∑
i

a2
i

provided
∑

i a
2
i <∞.

Proof. By considering different components of Ḡ separately and using
(43), it is enough to treat the case where Ḡ is a single component. Then,
writing ā =∑

i x̄i,

d2�ā�a� = �ā− a1�2 +
∑
i≥2

a2
i 

We need to prove this is less than or equal to ā2−∑
i≥1 a

2
i , and after rearrang-

ing we need to prove

ā2 − �ā− a1�2 ≥ a2
1 + 2

∑
i≥2

a2
i 

The left side increases with ā, and since ā ≥ a ≡∑
i ai, it is enough to prove

a2 − �a− a1�2 ≥ a2
1 + 2

∑
i≥2

a2
i 

But this holds because the left side equals a2
1 + 2

∑
i≥2 a1ai, and a1 ≥ ai for

i ≥ 2. ✷

The construction (13) of � �x� t� [and hence X�x� t�] in terms of �ξij� 1 ≤ i <
j <∞� works simultaneously for all x. When we want to exploit a joint distri-
bution �X�x̄� t��X�x� t�� arising in this way, we call it the ξ-coupling. Lemma
17 often enables us to bound l2

↘-distances for the multiplicative coalescent in
terms of the real-valued r.v.’s S�t�. In particular, see the corollary.

Corollary 18.

(a) If t1 < t2 then d2�X�t1��X�t2�� ≤ S�t2� −S�t1� on S�t1� <∞�.
(b) If xi ≤ x̄i ∀i then the ξ-coupling satisfies d2�X�x� t��X�x̄� t�� ≤ S�x̄� t� −

S�x� t� on S�x� t� <∞�.
(c) For x ∈ l2

↘ write x�k� = �x1�    � xk�. For the ξ-coupling, S�x�k�� t� ↑
S�x� t� ≤ ∞ and X�x�k�� t� → X�x� t� on S�x� t� <∞�.
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A formally different use of the same idea is where we have a collection
ȳ = �yα� α ∈ Ā� and a subcollection y = �yα� α ∈ A ⊆ Ā�. In this setting
we can construct � �ord ȳ� t� jointly with � �ord y� t� by using the same family
�ξα�β�� α�β ∈ Ā�. Call this the subgraph coupling.

We now turn to martingale estimates. The full form of Lemma 19 will be
used in later sections, but for now we need only the submartingale assertion
for use in Lemma 20. Because a merge of clusters of sizes xi and xj causes
an increase in S of size �xi + xj�2 − x2

i − x2
j = 2xixj, (53) specializes to

E�Df�S�t���� �t��
=∑

i

∑
j>i

Xi�t�Xj�t��f�S�t� + 2Xi�t�Xj�t�� − f�S�t���dt(54)

Lemma 19. If x = X�0� has finite length then the process Y�t� = t+�1/S�t��
is a submartingale. In fact

E�DY�t��� �t�� =
(∑

X4
i �t�

S2�t� +A�t�
)
dt�(55)

where

0 ≤ A�t� ≤ 2�∑X3
i �t��2

S3�t� 

Moreover,

var�DY�t��� �t�� ≤ 2�∑X3
i �t��2

S4�t� dt(56)

Proof. Because

1
s+ 2xy

− 1
s
= −2xy

s�s+ 2xy� �

applying (54) gives E�DY�t��� �t�� = �1−Q�dt where

Q =∑∑
i<j

2Xi�t�Xj�t�
S�t��S�t� + 2Xi�t�Xj�t��

Xi�t�Xj�t�

=∑∑
i<j

2X2
i �t�X2

j�t�
S2�t�

−∑∑
i<j

2X2
i �t�X2

j�t�
(

1
S2�t� −

1
S�t��S�t� + 2Xi�t�Xj�t��

)

= 1−
∑

X4
i �t�

S2�t� −∑∑
i<j

2X2
i �t�X2

j�t�
(

2Xi�t�Xj�t�
S2�t��S�t� + 2Xi�t�Xj�t��

)
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This establishes (55). Similarly, var�DY�t��� �t�� equals dt times

∑
i

∑
j>i

Xi�t�Xj�t�
(

2Xi�t�Xj�t�
S�t��S�t� + 2Xi�t�Xj�t��

)2

and (56) follows. ✷

Lemma 20. For x ∈ l2
↘,

P�S�x� t� > s� ≤ tsS�x�0�
s−S�x�0� � s > S�x�0�

Proof. First assume x is finite length. Write b = S�x�0� and S�t� =
S�x� t�. From the submartingale property of Y�t� = t+ �1/S�t�� (Lemma 19),

1
b
≤ t+E

(
1

S�t�
)

≤ t+ 1
s
+E

(
1

S�t� −
1
s

)+

≤ t+ 1
s
+

(
1
b
− 1

s

)
P�S�t� ≤ s�

because S�t� is increasing and S�0� = b. Rearranging gives the stated inequal-
ity. If x is not finite length, consider [as in Corollary 18(c)] x�k� = �x1�    � xk�.
Since S�x�k�� t� ↑ S�x� t� ≤ ∞, the inequality extends from x�k� to x. ✷

Remark. The final “extension by truncation” argument finds similar uses
later.

For the remainder of Section 4.2, we fix t > 0 and study X�x� t� as the initial
state x varies.

Lemma 21. For z ∈ l2
↘ and u > 0, let �Vj� be the decreasing ordering of

the component sizes of the random graph on vertices 0�1�2�   � with vertex
weights u� z1� z2�   � for which

P��0� i� is an edge� = 1− exp�−tuzi�� i ≥ 1

independently as i varies. Then E
∑

j V
2
j <∞.

Proof. Write Ai for the event that �0� i� is an edge. Then∑
j

V2
j = u2 + 2u

∑
i≥1

zi1Ai
+∑

i≥1

∑
j≥1

zizj1Ai∩Aj
1�j !=i� +

∑
i≥1

z2
i

and so

E
∑
j

V2
j ≤ u2 + 2tu2 ∑

i≥1

z2
i + t2u2 ∑

i≥1

∑
j≥1

z2
i z

2
j +

∑
i≥1

z2
i <∞ ✷
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We can now show that for any x ∈ l2
↘ we have S�x� t� < ∞ a.s. and hence

X�x� t� is l2
↘-valued. Write x	k� = �xk� xk+1�   � and consider the subgraph

coupling of the random graphs � �x	k�� t�. Lemma 20 implies P�S�x	k�� t� <
∞� > 1 − t

∑
i≥k x

2
i and hence P�S�x	k�� t� < ∞ for some k� = 1. Lemma 21

shows

if S�x	j�� t� <∞ then S�x	j−1�� t� <∞ a.s.

and so by backwards induction for j = k, k−1�    �1 we have S�x� t� <∞ a.s.
We now start to prove the Feller property by recording a “Fatou-like” lemma.

Lemma 22. Suppose x�n� → x in l2
↘. Then, in the ξ-coupling,

lim inf
n→∞ S�x�n�� t� ≥ S�x� t� a.s.(57)

To prove X�x�n�� t� →d X�x� t� it suffices to prove there is some coupling for
which

lim
n→∞P�S�x�n�� t� −S�x� t� > ε� = 0 for all ε > 0(58)

Proof. Let A
�n�
ij (resp. Aij) be the indicator of the event “vertices i and

j are in the same component of � �x�n�� t�” [resp. � �x� t�]. Then, in the ξ-
coupling,

lim inf
n

A
�n�
ij ≥ Aij a.s.�(59)

because if i and j are in the same component of � �x� t�, then they are linked
by a finite path, each of whose edges �k� l� has ξkl ≤ txkxl. The only way (59)
can fail is if ξkl = txkxl for some edge, which has probability zero. Now let
� �n� be the class of modified components C of � �x�n�� t�, where i and j are in
the same modified component if they are in the same component of � �x�n�� t�
and are also in the same component of � �x� t�. Write B

�n�
ij for the indicator of

the event “i and j are in the same modified component.” Using (59),

B
�n�
ij ≤ Aij� lim

n→∞B
�n�
ij = Aij a.s.

So for fixed k,

lim
n→∞

∑
C∈� �n�

( ∑
i∈C� i≤k

xi

)2

= ∑
C∈�

( ∑
i∈C� i≤k

xi

)2

a.s.�

where � is the set of components of � �x� t�. Since x�n� → x, we get

lim
n→∞

∑
C∈� �n�

( ∑
i∈C� i≤k

x
�n�
i

)2

= ∑
C∈�

( ∑
i∈C� i≤k

xi

)2

a.s.

Letting k→∞,

lim inf
n→∞

∑
C∈� �n�

(∑
i∈C

x
�n�
i

)2

≥ S�x� t�
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Since the modified components are a refinement of the original components of
� �x�n�� t�,

∑
C∈� �n�

(∑
i∈C

x
�n�
i

)2

≤ S�x�n�� t�

and we have established (57). Now if (58) holds for some coupling, then, in view
of (57), it must hold for the ξ-coupling and then (by a standard subsequence
argument) we may suppose S�x�n�� t� → S�x� t� a.s. Now it is routine to see
that, for Y�n��Y in l2

+, to prove ord Y�n� → ord Y a.s. in l2
↘ it suffices to prove

∑
j

(
y
�n�
j

)2 →∑
j

y2
j a.s.�

lim inf
n→∞ y

�n�
i ≥ yi a.s. ∀ i

(60)

Thus the desired convergence X�x�n�� t� → X�x� t� a.s. will hold provided we
verify (60) for

y
�n�
j = size of component containing j in � �x�n�� t��

if j is the smallest labeled vertex in that component, and y
�n�
j = 0 if not.

[Define yj similarly in terms of � �x� t�]. However, this is clear from (59),
applied to each i in the component of � �x� t� containing j. ✷

The next lemma gives the key estimate we shall use in verifying (58).

Lemma 23. Let �zi� 1 ≤ i ≤ n� be strictly positive vertex weights, and let
1 ≤m < n. Consider the bipartite random graph � on vertices 1�2�    �m� ∪
m+1�    � n� defined by: for each pair �i� j� with 1 ≤ i ≤m < j ≤ n, the edge
�i� j� is present with probability 1 − exp�−tzizj�, independently for different

pairs. Write α1=
∑m

i=1 z
2
i � α2=

∑n
i=m+1 z

2
i  Let �Zi� be the sizes of components

of �. Then

εP

(∑
i

Z2
i > α1 + ε

)
≤ �2t�α1 + ε� + �t�α1 + ε��2�α2� ε > 0

Proof. For m ≤ k ≤ n let �k be the subgraph of � on vertices 1�    � k�
and let Qk be the sum of squares of component sizes of �k. So Qm = α1. Let
Ai� 1 ≤ i ≤m be the events that �i�m+ 1� is an edge of �. Then

Qm+1 −Qm = 2
m∑
i=1

zizm+11Ai
+

m∑
i=1

m∑
j=1

zizj1Ai∩Aj
1�j !=i�

and so

E�Qm+1 −Qm� ≤ 2t
m∑
i=1

z2
i z

2
m+1 + t2z2

m+1

m∑
i=1

m∑
j=1

z2
i z

2
j1�j !=i�

≤ �2tQm + t2Q2
m�z2

m+1
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Similarly,

E�Qk+1 −Qk��k� ≤ �2tQk + t2Q2
k�z2

k+1� m ≤ k ≤ n

In other words,

Mk ≡ Qk − α1 −
k−1∑
j=1

�2tQj + t2Q2
j�z2

j+1� m ≤ k ≤ n

is a supermartingale with Mm = 0. Given ε > 0, set T = mink� Qk > α1+ε�.
Then EMmin�T�n� ≤ 0 by the optional sampling theorem. So

E�Qmin�T�n� − α1� ≤ �2t�α1 + ε� + �t�α1 + ε��2�α2

But Qmin�T�n� − α1 > ε on Qn > α1 + ε�, establishing the lemma. ✷

To complete the proof of the Feller property, we need to prove (58). Let
x�n� → x in l2

↘. Write x�n�k� for the decreasing ordering of xi� i ≥ 1� ∪
x�n�i � i ≥ k�. Consider the subgraph coupling of � �x�n�k�� t� and � �x� t�. We
assert

lim
k→∞

lim sup
n→∞

P�S�x�n�k�� t� −S�x� t� > ε� = 0 for all ε > 0(61)

The point is that we can construct � �x�n�k�� t� from � �x� t� and � �y�n�k�� t�,
where y�n�k� = �x�n�i � i ≥ k�, via the procedure of Lemma 23. Now Lemma 23
extends by truncation to infinite graphs, and implies

εP�S�x�n�k�� t� −S�x� t� > ε�S�x� t�� S�y�n�k�� t��
≤ (

2t�S�x� t� + ε� + t2�S�x� t� + ε�2)S�y�n�k�� t�
Now we know S�x� t� <∞ a.s. Furthermore, because x�n� is convergent in l2

↘,

S�y�n�k��0� ≡∑
i≥k�x�n�i �2 satisfies limk lim supn S�y�n�k��0� = 0 and so Lemma

20 implies

lim
k→∞

lim sup
n→∞

P�S�y�n�k�� t� > s� = 0 for all s > 0

These estimates imply (61). Now write z�n�k� for the decreasing ordering of
xi� 1 ≤ i < k�∪x�n�i � i ≥ k�. In the subgraph coupling we have S�z�n�k�� t� ≤
S�x�n�k�� t� and so by (61),

lim
k→∞

lim sup
n→∞

P�S�z�n�k�� t� −S�x� t� > ε� = 0 for all ε > 0(62)

Now fix δ > 0. For given k, for all sufficiently large n we have x
�n�
i x

�n�
j t ≤

z
�n�k�
i z

�n�k�
j �t+ δ� ∀ i� j and therefore in the ξ-coupling we have

S�x�n�� t� ≤ S�z�n�k�� t+ δ� for all sufficiently large n

Combined with (62) with t+ δ, we have constructed a coupling for which

lim
n→∞P�S�x�n�� t� −S�x� t+ δ� > ε� = 0 for all ε > 0
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But Lemma 20 implies that as δ ↓ 0 we have S�x� δ� ↓ S�x�0� a.s. Applying
this to x = X�t� shows

S�t+ δ� → S�t� a.s. as δ ↓ 0

and (58) follows.

4.3. The standard multiplicative coalescent.

Corollary 24. There exists a version of the multiplicative coalescent
�X∗�t�� −∞ < t < ∞�, the standard multiplicative coalescent, such that for
each t we have X∗�t� =d Ct, where Ct is the joint distribution of rescaled
component sizes or of excursion lengths appearing in Folk Theorem 1 and
Corollary 2.

Proof. Fix t1 < t2. Consider the “classical” setting (11) of Proposition 4,
and let C�n�

t1
and C�n�

t2
be the component sizes obtained with q�n� = n1/3 + t1

and with q�n� = n1/3 + t2. Then C�n�
t2

is the distribution at time t2 of the mul-
tiplicative coalescent started at time t1 with distribution C�n�

t1
. Proposition 4

asserts that C�n�
ti
→d Cti with respect to the l2

↘ topology. The Feller property
then verifies that, if we start a multiplicative coalescent at time t1 with distri-
bution Ct1 , then the distribution at time t2 is Ct2 . The Kolmogorov extension
theorem now yields the existence of X∗.

5. Stochastic calculus computations with Bt. We shall study what
routine stochastic calculus reveals about certain questions concerning Bt and
the process Nt of marks. The work in this section is independent of results in
earlier sections, except that (i) Lemma 25, or rather the weaker fact that only
finitely many excursions are longer than δ > 0, was used in Section 3.4 in the
proof of Proposition 4, and (ii) the proof of Proposition 27 uses Corollary 16.

5.1. Excursion lengths. We set up our theory of the multiplicative coales-
cent as an l2-valued process, so it is nice to have a simple direct argument
that the limit process in Corollary 2 is indeed in l2.

Lemma 25. Let �t be the set of excursions of Bt, and let �γ� be the length of
excursion γ. Then E

∑
γ∈�t �γ�2 <∞.

Proof. For an excursion γ = �l� r�,

�γ�2 = 2
∫ r

l
�r− u�du

So, writing Hu = mins > 0� Bt�u+ s� = 0�,
∑
γ

�γ�2 = 2
∫ ∞

0
Hu du
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So we need to prove
∫∞

0 EHu du <∞. We first claim

E�Hu�Bt�u�� ≤ Bt�u�
u− t

� u > max�0� t��

because, for fixed u, the process �Bt�u + s�� s ≥ 0� can be coupled with re-
flecting Brownian motion �B̃�s�� s ≥ 0� with constant drift −�u − t�, started
at the same position Bt�u�, in such a way that Bt�u+ s� ≤ B̃�s� for all s. And
for B̃ started at x, the mean hitting time to 0 equals x/�u− t�.

Using (2), it is easy to show that EBt�τ� < ∞ for each τ. Taking τ >
max�0� t+ 1� we have, for all 0 ≤ u ≤ τ,

EHu ≤ τ − u+EHτ ≤ EBt�τ� + τ <∞

So it suffices to prove that for some τ,

∫ ∞
τ

EBt�u�
u− t

du <∞(63)

Using (2) and invariance of Brownian motion W under time reversal,

Bt�s� =d sup
0≤u≤s

(
W�u� + �t− s�u+ 1

2u
2)

≤ sup
0≤u≤s

(
W�u� + (

t− 1
2s
)
u
)

by convexity

≤ sup
0≤u≤∞

(
W�u� + (

t− 1
2s
)
u
)


Assuming s > 2t, the final quantity has an exponential �s − 2t� distribution,
and so EBt�s� ≤ 1/�s− 2t�, establishing (63).

Remark. A more elaborate argument (Vlada Limic, personal communica-
tion) shows EBt�u� ∼ 1/�2u� and 2uBt�u� →d exponential �1� as u→∞.

5.2. The excursion length measure. Associated with Bt is an (inhomoge-
neous) excursion law, analogous to the Itô excursion law for Brownian motion.
In particular there is a sigma-finite excursion length measure ρt

v�·�, whose
most intuitive interpretation is as follows. Write Ht

v = minu > 0� Bt�v+u� =
0�. Then

lim
b↓0

b−1P�Ht
v > s � Bt�v� = b� = ρt

v�s�∞�(64)

Clearly ρt
v = ρt−v

0 , so it suffices to consider ρt
0, that is, excursions starting at

v = 0. Recall the “marks” process defined at (3) for the measure ρt
0 restricted to

excursions with exactly l marks. Write ρt
0�·� l�. Lemma 26 below gives formulas

for the densities of these measures in terms of Brownian excursion W∗ of
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length 1. Write

I =
∫ 1

0
W∗�u�du�

al = EIl� l ≥ 0�

J�θ� = E exp�θI�� θ ≥ 0�

Ft�s� = 1
6��s− t�3 + t3�

(65)

Lemma 26. We have

dρt
0

ds
�s� = �2π�−1/2s−3/2 exp�−Ft�s��J�s3/2�(66)

dρt
0

ds
�s� l� = �2π�−1/2 exp�−Ft�s��s3�l−1�/2 al

l!
(67)

Proof. The Cameron–Martin–Girsanov formula ([26], IV.38.5) says that
the density of Wt with respect to W, on the set of paths �W�u�� 0 ≤ u ≤ s�, is

exp
(∫ s

0
γ�u�dW�u� − 1

2

∫ s

0
γ2�u�du

)
�

where γ�u� = t− u is the drift. On the set of excursions of length s, we have
1
2

∫ s
0 γ2�u�du = Ft�s� and

∫ s
0 γ�u�dW�u� = ∫ s

0 W�u�du = Is, say, and so the
density becomes

exp�−Ft�s�� exp�Is�
Moreover, conditional on the excursion �W�u�� 0 ≤ u ≤ s�, the number of
marks during the excursion has Poisson(Is) distribution, and so the corre-
sponding density on paths with exactly l marks is

exp�−Ft�s���Is�l/l!
For Brownian motion itself, the excursion length has density �2π�−1/2s−3/2,
and so

dρt
0

ds
�s� = �2π�−1/2s−3/2 exp�−Ft�s��E exp

(∫ s

0
W̃�u�du

)

dρt
0

ds
�s� l� = �2π�−1/2s−3/2 exp�−Ft�s��E

(∫ s

0
W̃�u�du

)l/
l!

where W̃ is Brownian excursion of length s. Now (66) and (67) follow from the
Brownian scaling property

∫ s
0 W̃�u�du =d s3/2

∫ 1
0 W∗�u�du.

5.3. The size-biased property. In the random graph � �n�n−1 + tn−4/3� we
have an obvious size-biasing relationship between the size Cn	1� of the com-



846 D. ALDOUS

ponent containing vertex 1 and the mean number [mn�c�, say] of components
of size c:

P�Cn	1� = c� = c

n
mn�c�(68)

There must be some analogous identity in the Brownian world, and here it is.
Write ψt for the mean occupation measure for excursion lengths of Bt:

ψt�·� = E�γ ∈ �t� �γ� ∈ ·��

Proposition 27. We have �dψt/dρt
0��s� = s−1, 0 < s <∞.

Though it is natural to seek to prove this from (68) and a weak convergence
argument, we do not see any such simple argument. Rather than start novel
weak convergence arguments, we shall combine stochastic calculus arguments
with the size-biased order result for excursions of Bt, Corollary 16.

Proof of Proposition 27. Write L�u� for local time at 0 for Bt. Con-
structing Bt from Wt as in (2), we may define

L�u� = − min
0≤s≤u

Wt�s�

(here and below we omit explicit dependence on t). Write Q�δ� s� = number of
excursions of Bt with length > δ which begin before s. Then

Q�δ� s�
n�δ� → L�s� a.s. as δ ↓ 0�(69)

where n�δ� = ∫∞
δ �2π�−1/2x−3/2 dx = �2/π�1/2 δ−1/2. This is standard for Brown-

ian motion ([27], equation II.37.9) and extends to Bt by absolute continuity.
Now consider the total number M�δ� of excursions of Bt with length > δ. For
reflecting Brownian motion with constant drift −u, the mean intensity per
unit time of excursions of length l is u�2π�−1/2l−3/2 exp�−u2l/2�. Routine but
tedious arguments, based on the analog of (69) in the constant drift case and
comparison arguments, verify that

M�δ�
m�δ� → 1 a.s. as δ ↓ 0�(70)

where

m�δ� =
∫ ∞

0

∫ ∞
δ

u�2π�−1/2l−3/2 exp�−u2l/2�dldu =
∫ ∞
δ
�2π�−1/2l−5/2 dl

Now consider the set �γ�� γ ∈ �t� of all excursion lengths of Bt. Apply the
size-biasing construction of Section 3.3; that is, introduce �ξγ� such that the
conditional distribution of ξγ given �γ� is exponential ��γ��, and set

S�x� = ∑
γ� ξγ<x

�γ�
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From (70) and the definition of the ξ’s, it is not hard to show that as δ ↓ 0,

�γ� �γ� > δ� ξγ < x�� ∼
∫ ∞
δ
�1− exp�−xl���2π�−1/2l−5/2 dl ∼ xn�δ� a.s.(71)

Now �L−1�x�� 0 ≤ x < ∞� is a pure jump process whose jump sizes are the
excursion lengths of Bt, in the order that excursions occur. The size biasing
property in Corollary 16 is that �S�x�� 0 ≤ x <∞� is also a pure-jump process
whose jump sizes are the excursion lengths of Bt, in the order that excursions
occur. So these two processes are random time changes of each other; that is,
�L−1�x�� 0 ≤ x < ∞� =d �S���x��� 0 ≤ x < ∞� for some random increasing
continuous function �. But now (69) and (71) identify ��x� = x, and so

�L−1�x�� 0 ≤ x <∞� =d �S�x�� 0 ≤ x <∞�(72)

By definition of the ξ’s, as x ↓ 0,

x−1E�γ� ξγ < x� a < �γ� < b�� →
∫ b

a
yψt�dy��

while the interpretation of the excursion length measure ρt
0 as the rate of

excursions with respect to local time implies that, as x ↓ 0,

x−1E�γ� l�γ� < L−1�x�� a < �γ� < b�� → ρt
0�a� b�

But the left sides are equal by (72), and the equality of the right sides is the
assertion of the proposition. ✷

In an attempt to downplay the abstract aspects of excursion theory, we have
not said what is really going on in terms of the space U (in the notation of [26],
Section VI.47) of excursion functions f. Our measure ρt

0 on excursion lengths
is induced from a certain measure ρ̃t

0 on U, whose density with respect to the
Itô measure on U can be obtained from the argument for Lemma 26. Writing
ψ̃t for the mean occupation measure on U for excursions of Bt, the proof of
Proposition 27 shows

dψ̃t

dρ̃t
0
�f� = 1

�f� �

where �f� is the length of excursion f. Since the distribution of the number of
marks during an excursion f depends only on f (i.e., not on the starting time
of the excursion) we may deduce the analogous size-biasing relationship for
the joint distribution of lengths and number of marks in excursions, which we
state as follows. Let ρt

0�·�m� be as in Lemma 26, and let ψt�·�m� be the mean
number of excursions of Bt with �γ� ∈ · and with exactly m marks.

Corollary 28. We have

dψt�·�m�
dρt

0�·�m�
�s� = s−1
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As an application, write

Mt�l� = number of excursions of Bt with l marks,

Qt�l� = total length of excursions of Bt with l marks

Then

EMt�l� =
∫ ∞

0
ψt�ds� l� =

∫ ∞
0

s−1ρt
0�ds� l� <∞� l ≥ 2�(73)

EQt�l� =
∫ ∞

0
sψt�ds� l� =

∫ ∞
0

ρt
0�ds� l� <∞� l ≥ 1�(74)

where in each case the first equality is by definition of ψt and the second by
Corollary 28. See Section 6.2 for discussion of the random graph asymptotics
interpretation.

5.4. t → −∞ asymptotics. Fix t < 0. For Brownian motion with constant
drift t, the excursion length measure νt analogous to (64) is

νt�ds� = �2π�−1/2s−3/2 exp�−t2s/2�ds
By coupling with Bt, it is easy to see that ρt

0 is stochastically smaller than νt;
that is,

ρt
0�x�∞� ≤ νt�x�∞�� x > 0(75)

On the other hand, in equation (66) we have J�s3/2� ≥ 1 and so

ρt
0�ds� ≥ �2π�−1/2s−3/2e−Ft�s� ds = νt�ds� exp

(
s2t

2
− s3

6

)
(76)

Consider the sum of rth powers of excursion lengths of Bt:

Sr�t� =
∑
γ∈�t

�γ�r� r ≥ 2

Write ψt�·� for the mean number of excursions γ of Bt with �γ� ∈ ·. Then

ESr�t� =
∫ ∞

0
srψt�ds�

=
∫ ∞

0
sr−1ρt

0�ds� by Corollary 28

∼
∫ ∞

0
sr−1νt�ds� as t→−∞ using (75) and (76)

= �t�3−2r�2r− 5�!! after a brief calculation�(77)

where for m odd, m!! =m�m−2��m−4� · · ·1 and �−1�!! = 1. The lower bound
in the ∼ is justified by changing variables in (76) to du = t2 ds and applying
dominated convergence.
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Finally, we can bound the maximal excursion length X∗�t� ≡ maxγ∈�t �γ� by
a similar argument, as follows.

P�X∗�t� > s� ≤ E�γ� �γ� > s��

=
∫ ∞
s

ψt�du�

=
∫ ∞
s

u−1ρt
0�du� by Corollary 28

≤ s−1ρt
0�s�∞�

≤ s−1νt�s�∞� by �75�

≤ �2π�−1/2s−5/2
∫ ∞
s

exp
(
−t2u

2

)
du

= �2π�−1/2s−5/2 2
t2

exp
(
−t2s

2

)


A crude consequence is

P�X∗�t� > �t�−2+ε� = o�exp�−�t�ε/2�� as t→−∞(78)

Remark. From (77) with r = 2, we have �t�ES2�t� → 1 as t→−∞, and it
is not hard to improve this to �t�S2�t� →p 1. Analysis of the standard multi-
plicative coalescent in [4] gives the stronger result:

t+ 1
S2�t�

→p 0 as t→−∞

but this seems hard to deduce from the definition of S2�t� in terms of Bt.

6. Further discussion.

6.1. Methodological discussion. Of course the point of this paper is to
exhibit the connection between critical random graphs and Brownian-type
processes, a connection not visible in the voluminous literature on either
subject. Whether this connection will reveal anything essentially new about
distributional asymptotics of random graphs is uncertain. The underlying
methodology—what the author terms the weak convergence paradigm—is to
separate the issue of convergence to some well-defined limit process from the
issue of doing explicit calculations, so that one can seek to do the calcula-
tions in the continuous world. In Section 6.2, we outline how the calculations
we have done with excursions of Bt relate to random graph asymptotics. Re-
deriving certain other known results, for example (80), provides an interest-
ing challenge for stochastic calculus. Weak convergence arguments typically
have some robustness under changes in model, as our proof of Proposition 4
shows; it is less clear whether the generating function arguments employed
in the random graphs literature can so naturally be extended to the setting
of Proposition 4. Of course the weak convergence approach has countervailing
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disadvantages: Theorem 3 is tied to p�n� = n−1 + tn−4/3 rather than a wider
range of p�n�; one loses error bounds in n; and imposing an artificial “time”
structure obscures symmetry properties (e.g., size-biasing, Section 5.3) of the
underlying random graph.

This paper continues a line of work which identifies limits in probabilis-
tic combinatorics with Brownian-type processes (random trees with Brownian
excursion [1, 2]; random mappings with Brownian bridge [5]). But these pre-
vious results (based on “depth-first search”) are not used here, and indeed
the weak convergence arguments in this paper are technically rather easier.
Pitman [23] discusses a similar kind of problem—numbers of excursions con-
taining j marks—for a different process (Brownian and Bessel processes and
bridges, with a rate 1 process of marks). Pitman and Yor [24] give combinato-
rial interpretations of ranked excursion lengths of different processes.

6.2. Formulas for random graph asymptotics. Carrying through the weak
convergence program of obtaining formulas for random graph asymptotics
from Theorem 3 requires verifications of technical side conditions, and this
is not the place to start such technicalities. But let us give one example of
how our stochastic calculus formulas match those in the random graphs liter-
ature. Write Mt

n�l��Qt
n�l� for the number and the total size of components of

� �n�n−1+ tn−4/3� with surplus l. Then Theorem 3, and verification of further
tightness and integrability conditions, would imply

Mt
n�l� →d Mt�l�� EMt

n�l� → EMt�l��
n−2/3Qt

n�l� →d Qt�l�� n−2/3EQt
n�l� → EQt�l��

where Mt�l� and Qt�l� were defined above (73). Lemmas 2.2 and 2.3 of [19]
contain formulas for the asymptotics of EMn�l� and n−2/3EQn�l�. These agree
with our stochastic calculus formulas (73) and (74), except that our constant
al defined by (65) is replaced by l!γl, where γl is defined by

γl = lim
k→∞

C�k� k+ l− 1�/kk−2+3l/2�(79)

where C�k� k+l−1� is the number of connected graphs with k labeled vertices
and k+ l− 1 edges. The implicit identity al = l!γl touches upon a large set of
ideas: see Section 6.5, problem (6).

6.3. Epidemic models. The number of vertices at successive heights in a
random component evolve essentially as a classical epidemic model. Martin-
Löf [22] proves a result in the epidemic setting which roughly translates to
the fact that rescaled breadth-first walk in the first component, conditioned on
reaching height δ > 0, subsequently evolves as Bt until returning to zero. In
principle one could seek to prove Theorem 3 by “stringing together” this fact
for successive components, but this is technically complicated due to the σ-
finite measure on excursion lengths. Carrying through the weak convergence
argument by first showing Z̄t

n →d Wt and then defining the reflecting process
Bt via (2) avoids these technical complications.
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6.4. General stochastic coalescent processes. The multiplicative coalescent
may be viewed as the special case K�x�y� = xy of the “general rate” coalescent
scheme with the following dynamics.

Each pair of clusters of sizes �x�y� merges at rate K�x�y�
into a cluster of size x+ y.

It turns out there is an extensive scientific literature on coalescence, mostly
for integer-valued cluster sizes. A survey will be given elsewhere [3], but here
are some highlights. Work through the 1960’s emphasized the deterministic
first-order approximation (Smoluchowski coagulation equation) in which the
concentrations cj�t� of size j clusters are assumed to satisfy the differential
equations

d

dt
cj�t� =

1
2

j−1∑
i=1

K�i� j−i�ci�t�cj−i�t� −cj�t�
∞∑
i=1

K�j� i�ci�t�� j = 1�2�    

The survey by Drake [10] has 250 references. The general stochastic model
was introduced by Marcus [21] and studied by Lushnikov [20] as a model
for gelation. Van Dongen and Ernst [31, 30] and references therein indicate
subsequent work from a statistical physics viewpoint. The case K�x�y� = xy
is essentially the classic random graphs process, and the case K�x�y� = 1
is essentially Kingman’s coalescent [9, 18], but other cases have not been
considered from a rigorous viewpoint until very recently. Evans and Pitman
[14] discuss foundational issues and the Feller property (in l1, rather than the
l2 setting of this paper) for general rate kernels K, and study the additive
case K�x�y� = x+ y.

6.5. Open problems. We collect some problems explicitly or implicitly men-
tioned, plus some further problems.

(1) The growth of percolation clusters in the usual bond percolation model
on the d-dimensional lattice, near the critical point, is loosely analogous to (but
much harder to analyze than) the near critical behavior of the random graph
process. See [8] for the latest results. It is unclear whether any continuous-
space limit process, analogous to the multiplicative coalescent, might be an-
ticipated in that context.

(2) Find exact necessary and sufficient conditions in Proposition 4. It is
clear that by truncating away a few large cluster sizes one can weaken (10),
but we have not tried to discover how far this idea can be pushed.

(3) Is there an explicit construction of the entire standard multiplicative
coalescent in terms of familiar stochastic processes, avoiding any weak con-
vergence argument? In other words, our results imply that there exists a two-
parameter process �Bt�s�� 0 ≤ s < ∞� −∞ < t < ∞� which for fixed t is
distributed as Bt and whose excursion lengths evolve as the multiplicative co-
alescent. But we do not know how to directly define such a process. Janson [15]
describes the two-parameter point process giving the times t and component
sizes where multicyclic components arise; we would like Janson’s process to
be included in a two-parameter process description. Using (1) and (2) with the
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same W for each t definitely does not work; we need the excursions to merge in
a much more complicated way. It seems intuitive that for a fixed pair t1 < t2
one cannot define a bivariate Markov process ��Bt1�s��Bt2�s��� 0 ≤ s < ∞�
such that the joint distribution of the excursion lengths is the distribution of
�X�t1��X�t2��. Specifically, if the construction of Zt

n is made simultaneously
for t = t1 and t2, then Theorem 3 has a bivariate version which leads to a joint
distribution ��Bt1�s��Bt2�s��� 0 ≤ s <∞�, but the joint process is not Markov
because coalescence of clusters between t1 and t2 leads to excursions of Bt1

becoming embedded within earlier (in terms of s) excursions of Bt2 , which is
incompatible with the Markov property.

(4) Our proofs of the size-biasing properties of excursions of Bt (Corollary
16 and Proposition 27) rely ultimately on weak convergence from the random
graphs setting. Can these be proved directly via stochastic calculus on Bt?

(5) Our results enable many random graphs results to be reformulated as
results about Bt: can one find stochastic calculus proofs? For example ([16],
Theorem 4): let M�l� be the number of excursions of Bt containing exactly l
marks. Then, for t = 0,

P�M�2� =m�M�l� = 0 ∀ l > 2� =
(

5
18

)m
√

2
3

1
�2m�! (80)

(6) Elucidate the implicit identity al = l!γl [recall (79) and (65) for defini-
tions]. Briefly, asymptotics of C�k� k+ l−1� have been studied in detail in the
combinatorics literature (for references see [7], page 114; [16], page 262; [19],
page 735). Distributional properties of I have been studied by probabilists: see
[29] for references and rederivation of formulas for the moments �al�. In [29]
it is noted that the classical depth-first search 1− 1 correspondence between
walk excursions and planar trees identifies I as the rescaled limit of the sum
of heights of all vertices in a random planar tree. But directly identifying �al�
with �l!γl� seems more subtle, and we do not see any explanation more sim-
ple than the following, which is (roughly speaking) implicit in the argument
for Theorem 3. Apply the breadth-first walk construction of this paper to the
random connected graph on k vertices and k+ l− 1 edges; the rescaled walk
converges to Brownian excursion; the vertices with extra edges asymptotically
appear as the process of “marks” analogous to Nt. The convergence of walks
holds because the spanning tree induced by breadth-first walk is asymptoti-
cally like the uniform random labeled unordered tree, and (analogous to the
general results of [2]) one expects a Brownian excursion limit for this and
other simply generated families of random trees (the particular case of planar
trees being obvious by another 1− 1 correspondence). Spencer [28] elaborates
this argument.

(7) Implicit in Section 5.4 is the following idea. For large negative t, the
sizes of the longer excursions of Bt, that is, the asymptotic rescaled sizes
of the larger components of � �n�n−1 + tn−4/3�, are approximately like the
positions s of the right-most points in an inhomogeneous Poisson process of
rate �2π�−1/2s−5/2 exp�−t2s/2�. This idea is also folklore in random graphs,
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and indeed can be viewed as a consequence of general facts about the tail of
the distribution of total population in a just subcritical branching process. It
would be interesting to use the modern Stein–Chen machinery [6] to obtain
explicit bounds on the error in this Poisson process approximation.

(8) From formulas in [22] one may derive complicated expressions for the
marginal distribution Bt�s� (Vlada Limic, personal communication). Can one
obtain expressions for, for example, the distribution of sups≥0 B

t�s�?
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[22] Martin-Löf, A. (1996). The final size of a nearly critical epidemic, and the first passage

time of a Wiener process to a parabolic barrier. J. Appl. Probab. To appear.
[23] Pitman, J. (1992). Partition structures derived from Brownian motion and stable subordi-

nators. Technical Report 346, Dept. Statistics, Univ. California, Berkeley.
[24] Pitman, J. W. and Yor, M. (1997). The two-parameter Poisson–Dirichlet distribution derived

from a stable subordinator. Ann. Probab. 25 855–900.
[25] Revuz, D. and Yor, M. (1991). Continuous Martingales and Brownian Motion. Springer,

Berlin.
[26] Rogers, L. C. G. and Williams, D. (1987). Diffusions, Markov Processes and Martingales:
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