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Suppose that E is an arbitrary domain in R
d, L is a second order

elliptic differential operator in S = R+ ×E and Se is the extremal part of
the Martin boundary for the corresponding diffusion ξ. Let 1 < α ≤ 2. We
investigate a boundary value problem

�∗�
∂u

∂r
+Lu− uα = −η in S

u = ν on Se

u = 0 on 	∞� ×E
involving two measures η and ν. For the existence of a solution, we give
sufficient conditions in terms of a Martin capacity and necessary conditions
in terms of hitting probabilities for an �Lα�-superdiffusionX. If a solution
exists, then it can be expressed by an explicit formula through an additive
functional A of X.

An �Lα�-superdiffusion is a branching measure-valued process. A nat-
ural linear additive (NLA) functional A of X is determined uniquely by its
potential h defined by the formula PµA�0∞� = ∫

h�r x�µ�drdx� for all
µ ∈ � ∗ (the determining set of A). Every potential h is an exit rule for ξ
and it has a unique decomposition into extremal exit rules. If η and ν are
measures which appear in this decomposition, then �∗� can be replaced by
an integral equation

�∗∗� u�r x� +
∫
p�r x t dy�u�t y�α ds = h�r x�

where p�r x t dy� is the transition function of ξ. We prove that h is the
potential of a NLA functional if and only if �∗∗� has a solution u. Moreover,

u�r x� = − logPrxe
−A�0∞��

By applying these results to homogeneous functionals of time-
homogeneous superdiffusions, we get a stronger version of theorems
proved in an earlier publication. The foundation for our present in-
vestigation is laid by a general theory developed in the accompanying
paper.

0. Introduction.

0.1. Linear equation. Suppose that L is a second order elliptic operator
in R

d, D is a bounded domain with smooth boundary ∂D, ρ ≥ 0 is a Hölder
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continuous function in D and ϕ ≥ 0 is a bounded continuous function on ∂D.
The solution of the boundary value problem

Lh = −ρ in D

h = ϕ on ∂D
(0.1)

can be expressed by formula

h�x� =
∫
D
g�xy�ρ�y�dy+

∫
∂D
k�xy�ϕ�y�σ�dy�(0.2)

where g�xy� is the Green’s function of L in D, k�xy� is the Poisson kernel
and σ is the surface area on ∂D. For arbitrary finite measures η on D and ν
on ∂D, the function

h�x� =
∫
D
g�xy�η�dy� +

∫
∂D
k�xy�ν�dy�(0.3)

can be considered as a “mild” solution of a boundary value problem with mea-
sures

Lh = −η in D

h = ν on ∂D�
(0.4)

Formula (0.2) can be replaced by a probabilistic formula

h�x� =  x

[∫ τ
0
ρ�ξs�ds+ ϕ�ξτ�

]
(0.5)

where ξ = �ξs x� is the diffusion with generator L stopped at the first exit
time τ = inf	t� ξt /∈ D� from D. We can also write

h�x� =  xA�0∞�(0.6)

where A is a random measure on �0∞� concentrated on �0 τ�, equal to
ρ�ξs�ds on �0 τ� and charging the point τ by mass ϕ�ξτ� if τ < ∞. This is
an example of an additive functional of ξ. (In the Introduction we consider
only homogeneous additive functionals.) For certain classes of measures η
and ν, problem (0.4) can also be solved by (0.6) with A = Aη +Aν, where Aη
and Aν are additive functionals of ξ. We get Aη by the formula

Aη�0 t� = lim
λ→∞

∫ t∧τ
0

ρλ�ξs�ds(0.7)

where

η = lim
λ→∞

ρλ(0.8)

(we postpone an explanation of the exact meaning of “lim” in these formulas).
To define Aν, we consider a sequence of domains Dn such that D̄n ⊂ Dn+1 and
Dn ↑ D. We introduce Aν as a measure concentrated at τ and charging τ by

lim
n→∞f�ξτn�(0.9)
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where

f�x� =
∫
∂D
k�xy�ν�dy�(0.10)

and τn is the first exit time from Dn. This approach works only if η does not
charge sets of capacity 0 and if ν is absolutely continuous with respect to σ .

0.2. Nonlinear equation. Consider a boundary value problem involving a
nonlinear operator Lu− uα with α > 1:

Lu− uα = −ρ in D

u = ϕ on ∂D�
(0.11)

It is equivalent to the integral equation

u�x� +
∫
D
g�xy�u�y�α dy = h�x�(0.12)

where h is given by (0.2) (or (0.5)).
There is no way to express u by an explicit formula through diffusion ξ.

However, if α ≤ 2, it is possible to get an expression in terms of a superdiffu-
sion X.

A superdiffusion describes an evolution of a random cloud. It can be ob-
tained by a passage to the limit from a system of indistinguishable particles
which move according to the law of ξ. Suppose that each particle is frozen
at the first exit time from D. The state at time t is a finite measure Xt on
R
d. The restriction X̃t of Xt to D describes the mass distribution of particles

which are still in D at time t. We call X̃ the part of X in D. Denote by X′
t the

mass distribution of particles which are frozen during the time interval �0 t�.
We call X′ the absorption process on Dc.

Under the assumptions on Dρ and ϕ stated in Section 0.1, the solution of
(0.11) can be obtained by the formula

u�x� = − logPxe
−A�0∞�(0.13)

where Px is the law of the process started from Dirac’s measure δx and A is
given by the formula

A�0 t� =
∫ t

0
�ρ X̃s�ds+ �ϕX′

t��(0.14)

The boundary value problem with measures [similar to (0.4)]

Lu− uα = −η in D

u = ν on ∂D
(0.15)

is equivalent to an integral equation (0.12) with h given by (0.3). We prove
that, if a solution exists, then it can be expressed by (0.13) with A = Aη+Aν,
where

Aη�0 t� = lim
λ→∞

∫ t
0
�ρλXs�ds(0.16)
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and

Aν�0 t� = lim
n→∞�f �Xn�′

t��(0.17)

Here �Xn�′
t is the absorption process on Dc

n (Dn, ρλ and f are the same as in
Section 0.1).

It is remarkable that, in contrast to the linear case, the probabilistic formula
(0.13) works always when a solution exists.

0.3. Natural linear additive functionals. A random measure A�dt� is
called an additive functional of a superdiffusion X if the value A�I� on an
open interval I is determined by events observable during this interval. We
assume that A is homogeneous and natural. The potential of A is defined by
the formula

h�x� = PxA�0∞��(0.18)

We say that A is linear if

PµA�0∞� = �hµ� < ∞(0.19)

for a sufficiently large set � ∗ of measures µ. Put

u�x� = − logPxe
−A�0∞��(0.20)

According to [17], (0.19) implies that, if µ ∈ � ∗ and if∫
µ�dx�g�xy�h�y�α dy < ∞

then

Pµe
−A�0∞� = e−�uµ�

and u satisfies, µ-a.e., equation (0.12). Another implication of [17] is that all
natural linear additive functionals are continuous.

We characterize measures η and ν for which problem (0.15) has a solution,
both probabilistically (in terms of the range of process X) and analytically (in
terms of capacities associated with Green’s and Poisson’s kernels).

Substantial part of our results are extended to arbitrary domains D (with
the geometric boundary ∂D replaced by the Martin boundary associated
with L).

In the main part of the article, we consider diffusions and superdiffusions
in a time-inhomogeneous setting and we investigate related problems for
parabolic PDE’s. The results on elliptic PDE’s are implications of this more
general theory.

1. Statement and discussion of principal results.

1.1. General definition of additive functionals. A filtration � of a measur-
able space �*� � is a family of σ-algebras � �I� ⊂ � indexed by open inter-
vals I ⊂ R+ with the properties: � �I� ⊂ � �Ĩ� for I ⊂ Ĩ and � �I� = ∨

� �In�
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as In ↑ I. Let A�ω ·� be a measure on �0∞� which depends on parameter
ω ∈ *. Suppose that � is a filtration of �*� � and P is a class of probability
measures on � . We say that A is an additive functional of ��P� if it satisfies
the following conditions.

1.1.A. For every interval I, A�I� is measurable relative to the universal
completion of � .

1.1.B. For every open interval I and every P ∈ P, A�I� is measurable
relative to the P-completion of � �I�.

An additive functional A is continuous if we have the following.

1.1.C. There exists a P-negligible set *′ (i.e., P�*′� = 0 for all P ∈ P) such
that, for every ω /∈ *′, the measure A�ω ·� is diffuse (i.e., it does not charge
single points).

We say an additive functional A has only fixed discontinuities under the
following conditions.

1.1.D. There exists a P-negligible set *′ and a set ,, at most countable
and independent of ω, such that A�ω 	t�� = 0 for all ω /∈ *′ and all t /∈ ,.

Denote by �r the σ-algebra in �r∞� × * generated by functions F�tω�
which are left continuous in t and adapted to � �r t�. An additive functional
A is called natural if, for every r and every P ∈ P, the function A�r t� r < t
is P-indistinguishable from a �r-measurable function.

1.2. Additive functionals of a diffusion. Let ξ be a diffusion in a domain
E ⊂ R

d. For every interval I ⊂ R+, we denote by � 0�I� the σ-algebra gener-
ated by ξs, s ∈ I. For every finite measure µ on S = R+ ×E, we set

 µ =
∫
S
 rxµ�drdx�

[�ξt µ� is a stochastic process with a random birth time β and µ is the joint
distribution of the birth time and birth place]. We define an additive functional
of ξ as an additive functional of ��0P0� where �0 = 	� 0�I�� and P

0 = 	 µ�.
A simple example of an additive functional is given by the formula

A�I� =
∫
I
ρs�ξs�λ�ds�(1.1)

where ρs�x� = ρ�s x� is a positive Borel function on S and λ is a σ-finite
measure on �0∞�. The functional A can have only fixed discontinuities and
it is continuous if λ is diffuse.

Suppose thatQ is a finely open set [that is, for every �r x� ∈ Q, there exists,
 rx-a.s., t > r such that �s ξs� ∈ Q for all s ∈ �r t�]. Let ξ be a diffusion
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frozen at time τ = inf	t� �t ξt� /∈ Q�. [In the time inhomogeneous setting, it is
natural to stop keeping time after τ and not to consider combinations �t ξτ�
for t > τ.] For every positive Borel function ϕ on S, formula

A�I� = 1I�τ�ϕ�τ ξτ�
defines an additive functional of ξ.

1.3. Additive functionals of a superdiffusion. A system �0 can be defined
for an arbitrary Markov process. A superdiffusion X is such a process but it
can also be viewed as a collection of exit measures �XQPµ� from p-open sub-
sets of S. [The class of p-open sets described in Section 2.2 is an intermediate
class between the class of open sets and the class of finely open sets.] All exit
measures are defined on the same space �*� �. We denote by � �E� the space
of all finite measures on a measurable space E. For every µ ∈ � = � �S�, Pµ
is a probability measure describing the evolution with initial time-space dis-
tribution µ. We write Pµ = Prx if µ = δ�r x� is the unit measure concentrated
at point �r x�. We deal with a special class of subsets P of the set 	Pµ�. We
say that a set � ∗ ⊂ � is total if the following hold.

1.3.A. If µ ∈ � ∗ and if µ̃ ≤ µ, then µ̃ ∈ � ∗.

1.3.B. For every µ ∈ � ∗ and for an arbitrary Q, Pµ	XQ ∈ � ∗� = 1�
Moreover, Pµ	Xt and Xt− ∈ � ∗ for all t� = 1.

1.3.C. The set S∗ = 	�r x�� δ�r x� ∈� ∗� is the complement of a ξ-polar set.
(A set S̃ ⊂ S is called ξ-polar if  rx	ξt ∈ S̃ for some t>r� = 0 for all r x.)

1.3.D. Every µ ∈ � ∗ is concentrated on S∗.

Clearly, the intersection of any countable family of total sets is a total set.
Consider the Markov semigroup Trsh

s�x� =  rxh
s�ξs� corresponding to ξ.

We say that h is an exit rule for ξ if h is a positive Borel function on S such
that

Trsh
s ≤ hr and Trsh

s → hr as s ↓ r�
We say that h is a pure exit rule if, in addition, Trsh

s ↓ 0 as s → ∞. (Every exit
rule is a sum of a pure exit rule and an exit rule with the property Trsh

s = hr

for all r < s.) Denote by H the set of all pure exit rules h which are finite
a.e. [Writing “a.e.” means “outside a set of Lebesgue measure 0”. We use the
notation m for the Lebesgue measure drdx on S.] To every h ∈ H there
corresponds a total set � �h� = 	µ ∈ � � �hµ� < ∞�.

Additive functionals of a superdiffusion X with determining (total) set � ∗

are defined as additive functionals of ��0P� where P = 	Pµ� µ ∈ � ∗�. If ρ is
a positive Borel function and λ is a measure on �0∞�, then the formula

A�I� =
∫
I
�ρsXs−�λ�ds�(1.2)
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defines an additive functional with determining set � ∗ = � . [Formula (1.2)
with Xs− replaced by Xs also defines an additive functional. The difference
between these two functionals is a deterministic measure (see Section 2.3).]

Let A and Ã be two additive functionals of X with determining sets � ∗

and ˜� ∗. We say that A and Ã are equivalent if they are Pµ-indistinguishable
for all µ ∈ � ∗ ∩ ˜� ∗.

1.4. NLA functionals. Let h ∈ H. We say that A is a linear additive func-
tional with potential h if A is an additive functional with determining set
� ∗ ⊂ � �h� and if, for all µ ∈ � ∗,

PµA�0∞� = �hµ�(1.3)

and

Pµ	A�0 r� = 0� = 1 if µ�S<r� = 0�(1.4)

[Here S<r = �0 r� ×E. Notation S>tS≥t � � � has a similar meaning.]
We use an abbreviation NLA for natural linear additive functionals. It fol-

lows from [5], VII.8 and VII.21, that NLA functionals with equal potentials
are equivalent.

The log-potential of A is defined by formula

ur�x� = − logPrxe
−A�0∞� for �r x� ∈ S∗(1.5)

(the set S∗ is defined in 1.3.C). By Jensen’s inequality,

ur�x� ≤ hr�x� on S∗�(1.6)

1.5. Operator � and � -equation. The fundamental role in the theory of
superdiffusion is played by an operator which acts on positive Borel functions
on S by the formula

� �u��r x� =  rx

∫ ∞

r
u�s ξs�α ds =

∫ ∞

r
ds

∫
E
p�r x s y�u�s y�α dy(1.7)

where p�r x s y� is the transition density of ξ. The expression � �uµ� =
�� �u� µ� can be considered as a generalized energy integral. [A similar gener-
alization is introduced in nonlinear potential theory (see, e.g., [1], Section 2.2,
especially (2.2.6)).]

Let h ∈ H. We call

u+ � �u� = h(1.8)

the � -equation. We use the notation

S� �h� = 	�r x�� �h+ � �h���r x� < ∞�(1.9)

and

�� �h� = 	µ� �h+ � �h� µ� < ∞��(1.10)

For every total set � ∗, we put � ∗
� �h� = � ∗ ∩�� �h� and S∗

� �h� = S∗ ∩S� �h�.
All measures µ ∈ � ∗

� �h� are concentrated on S∗
� �h�.
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The following results on NLA functionals have been proved in [17] for a wide
class of superprocesses which contains �Lα�-superdiffusions (see Theorems
1.2, 1.4, 4.1 and 1.7 there):

1.5.A. Let A be an NLA functional with potential h and determining set
� ∗ ⊂ �� �h�. Then A can have only fixed discontinuities.

1.5.B. If A is an NLA functional with potential h, log-potential u and
determining set � ∗ ⊂ �� �h�, then

Pµe
−A�0∞� = e−�uµ� for all µ ∈ � ∗(1.11)

and u satisfies the � -equation (1.8) on S∗.

1.5.C. Put X<t = XS<t
. Let h be a pure exit rule for ξ and let � ∗ be a

total subset of � �h�. The following condition is necessary and sufficient for the
existence of an NLA functional A with potential h and determining set � ∗:
for every µ ∈ � ∗, the stochastic process ��hX<t�Pµ� belongs to class (D).

1.5.D. If h + � �h� ∈ H, then there exists an NLA functional A with po-
tential h and determining set �� �h�.

The following uniqueness result will be established in Section 3.

Theorem 1.1. If u û satisfy the � -equation on a set B ⊂ 	h < ∞� and if
m�Bc� = 0, then û = u on B.

Put h ∈ H∗ if h ∈ H and if the � -equation holds everywhere for some u.
Note that h ∈ H∗ if � -equation (1.8) holds a.e. for some u. Indeed, then

� �u� ≤ h a.e. and therefore � �u� ≤ h everywhere because � �u� and h are exit
rules. The function

ũ =
{
h− � �u� on 	h < ∞�
∞ on 	h = ∞�(1.12)

is positive and it satisfies (1.8) everywhere.
We say that h ∈ H is a NLA-potential and we write h ∈ Hp if h is the

potential of a NLA functional A. We write h ∈ Hp∗ if, in addition,

u+ � �u� = h on S∗(1.13)

where u is the log-potential of A. Clearly, Hp∗ ⊂ H∗ ∩ Hp. It follows from
1.5.B that Hp∗ contains all h ∈ Hp such that � �h� ∈ H. A much stronger
result is proved in Section 5.

Theorem 1.2. The three classes H∗Hp and Hp∗ coincide.

Remark. Clearly,Hp is a convex cone (i.d., c1h1+c2h2 ∈ Hp if h1 h2 ∈ Hp

and c1 c2 ≥ 0). It follows from 1.5.C that Hp is a face of cone H (i.e., if
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h1 h2 ∈ H and h1 +h2 ∈ Hp, then h1 h2 ∈ Hp). Theorem 1.2 implies that the
classes H∗ and Hp∗ have the same properties, which is difficult to see from
their definitions.

1.6. Spectral measures of NLA-potentials. We use the Martin representa-
tion of an exit rule h as an integral over the exit space of ξ. A construction of
the exit space in a very general setting is given in [7]. To apply the general
theory to our case, we choose a reference point c ∈ E and we put

k�r x s y� = p�r x s y�/p�0 c s y��(1.14)

There exist a continuous injective mapping from S to a compact metrizable
space S̄ and an extension of k�r x s y� to S× S̄ such that (1) for every z ∈ S,
k�zw� → k�z w̃� as w → w̃ ∈ S̄ \ S and (2) if k�·w1� = k�·w2�, then
w1 = w2.

We call S̄ the exit space of ξ. The set ∂S = S̄ \ S is called the Martin exit
boundary. For every �s y� ∈ S, hr�x� = p�r x s y� is an extremal element of
H (which means if h = h1 +h2 and if h1 h2 ∈ H, then h1 h2 are proportional
to h). We denote by Se the set of all w ∈ ∂S such that hr�x� = k�r xw� is an
extremal element of H (this is a Borel subset of ∂S.)

We use the name parabolic functions for solutions of the equation

ḣ+Lh = 0 in S�

Every positive parabolic function f has a unique representation

f =
∫
Se
k�r xw�ν�dw�(1.15)

where ν is a finite measure.
For every measure η on S, we put

Gη�r x� =
∫
S
p�r x s y�η�dsdy��(1.16)

An arbitrary element h of H can be represented uniquely in the form

h = Gη+ f(1.17)

where η is a measure on S and f is a positive parabolic function. Formula
(1.17) can be rewritten in the form

hr�x� =
∫
S∪Se

k�r xw�γ�dw�(1.18)

where γ = ν on Se and dγ = qdη on S with q�s y� = p�0 c s y�. Measure γ
is determined uniquely by h and we call it the spectral measure of h.

The Martin capacity CM is defined on compact subsets of S̄ by the formula

CM�;� = sup
{
γ�;��

∫
S
p�0 c r x�drdx

[∫
;
k�r xw�γ�dw�

]α
≤ 1

}
�(1.19)

The graph � of a superdiffusion is the minimal closed subset of S̄ which
contains the support of the exit measure XQ, Pµ-a.s., for every Q. A set ; ⊂ S̄
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is called � -polar if it does not contain any set S<t and if Prx	� ∩; = �� = 1
for all �r x� /∈ ;.

Before we prove Theorem 1.2, we establish in Section 4 the following result.

Theorem 1.3. Let γ be the spectral measure of h ∈ H. If γ�;� = 0 for all
compact sets ; with CM�;� = 0, then h ∈ Hp∗. If h ∈ Hp ∪H∗, then γ does not
charge any � -polar set.

To prove Theorem 1.3, we use a result established in [12], Theorem 3.2 (see
also [14], Theorem 7.2).

1.6.A. A set ; ⊂ S is � -polar if and only if CM�;� = 0.

1.7. Discrete approximation of NLA functionals. An arbitrary NLA func-
tional A can be approximated by linear combinations of functionals

A�I� = 1I�t��ρXt−�
which charge a single point of �0∞�. To formulate a precise result, we need
a little preparation. Consider a set , = 	0 = t0 < t1 < · · · < tk�. If a�,� is a
real-valued function of ,, then writing lim, a�,� = a means that a�,n� → a
for every increasing sequence of sets ,n whose union is everywhere dense in
�0∞� (we call such a sequence standard). To every h ∈ H there corresponds
a positive function of interval:

h=�x� =
{
hs�x� −Tstht�x� for = = �s t�
hs�x� for = = �s∞��(1.20)

The following approximation result was deduced in [17] from 1.5.A and a
general theorem on compensators of local supermartingales.

1.7.A. Let A be a NLA functional with potential h and determining set
� ∗. Then, for every µ ∈ � ∗ and all 0 ≤ r < t ≤ ∞,

A�r t� = lim
,
A,�r t� weakly in L1�Pµ�(1.21)

where

A,�ds� =
n∑
1

δtk�ds��h=kXtk−��(1.22)

(Here =1 = �t1 t2� � � �  =n−1 = �tn−1 tn�, =n = �tn∞� for , = 	0 = t0 < t1 <
· · · < tn�.) If µ ∈ � ∗

� �h�, then (1.21) holds with strong convergence in L1�µ�.

1.8. New approximation results. These results allow us to construct all
NLA functionals starting from functionals of the form (1.2) with λ�ds� = ds
and from absorption processes. (Absorption processes were introduced heuris-
tically in Section 0.2. A rigorous definition is given in Section 2.4.)

We say that a domain D is smooth if ∂D belongs to class C2 λ.
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Theorem 1.4. Let D be a bounded smooth domain. Suppose X is a su-
perdiffusion in cylinder Q = �0 b�×D corresponding to an elliptic differential
operatorL which satisfies conditions 2.1.A–C in Q̄. LetA be an NLA functional
of X with potential h = Gη and determining set � ∗ ⊂ �� �h�. Put

Aλ�I� =
∫
I
�ρsλXs�ds(1.23)

where

ρsλ�x� = λ
∫
Q
e−λ�s−r�p�r x s y�η�dsdy��(1.24)

Then for every µ ∈ � ∗ and for all 0 ≤ r < t ≤ b,
A�r t� = lim

λ→∞
Aλ�r t� in Pµ-probability�(1.25)

Theorem 1.5. Let A be an NLA functional with potential h = Gη. There
exist NLA functionals An such that An ↑ A and potentials hn of An satisfy
condition � �hn� ∈ H.

We say that a sequence of bounded p-open sets Qn is a standard approxi-
mating sequence for S if Q̄n ⊂ Qn+1 and Qn ↑ S.

Theorem 1.6. Let Qn be a standard approximating sequence for S. Sup-
pose X is a superdiffusion in S, �Xn�′ is the absorption process on Qc

n and A
is an NLA functional of X with parabolic potential h and determining set � ∗.
We have

A�0 t� = lim
n→∞�h �Xn�′

t� Pµ-a.s.(1.26)

for every t ∈ �0∞� and for every µ ∈ � ∗.

Remark. FunctionFn�t� = �h �Xn�′
t� is monotone increasing in t for every

ω. It follows from (1.26) that measures corresponding toFn converge weakly to
measure A�dt� for almost all ω [relative to all measures Pµ with µ ∈ � ∗

� �h�].

We prove Theorem 1.5 in Section 4. Theorems 1.4 and 1.6 will be proved in
Section 6.

1.9. Homogeneous additive functionals. Processes ξ and X are defined on
two unrelated sample spaces *0 and *. If diffusion ξ has a stationary transi-
tion density p�r x s y� = ps−r�xy�, then it is possible to choose *0 and to
define a semigroup of transformations θt� *0 → *0 in such a way that

ξs�θtω� = ξs+t�ω�  r+t x�θtC� =  rx�C��(1.27)

Put @s�r x� = �r+ s x�. Conditions (1.27) imply: for every Q,

θt�τ ξτ� = @−t�τt ξτt�(1.28)
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where τ is the first exit time from Q and τt is the first exit time from Qt =
S<t ∪ @tQ.

The superdiffusion X corresponding to ξ has a stationary transition func-
tion and it can be defined in a space * with a semigroup of transformations
At subject to the conditions (see [11, Section 1.12]): for every Q,

XQ�AtωB� = XQt�ω@tB� Pµt�AtC� = Pµ�C�(1.29)

where µt is the image of µ under @t. The filtration � generated by X has the
property

At� �I� = � �I+ t��(1.30)

An additive functional A of X is called homogeneous if we have the follow-
ing.

1.9.A. The determining set � ∗ is invariant with respect to @t.

1.9.B. There exists a set *∗ such that A�Atω I� = A�ωI + t� for all I
and all ω ∈ *∗ and Pµ�*∗� = 1 for all µ ∈ � ∗.

A class of equivalent natural linear additive functionals of X contains a
homogeneous functional if and only if it contains a functionalA which satisfies
1.9.A and the following condition.

1.9.A*. The potential h�r x� of A does not depend on r.
Proposition 1.5.A implies that all homogeneous NLA functionals with � ∗ ⊂

�� �h� are continuous. Since the countable sum of continuous functionals is
continuous, Lemma 3.3 in [18] and Theorems 1.1 and 1.2 in [19] imply that
all homogeneous NLA functionals are continuous if E is a bounded smooth
domain.

By applying Theorems 1.1–1.6 to homogeneous functionals and to time-
independent exit rules (which are the same as excessive functions for ξ), we
get a stronger version of results proved in [18] and [19]. In Section 7 we
describe the relation between [18] and [19] and the present paper in more
detail.

1.10. Boundary value problems with measures. Put

Gf�r x� =  rx

∫ ∞

0
f�s ξs�ds =

∫ ∞

0
ds

∫
E
p�r x s y�f�s y�dy�(1.31)

Note that � �f� = G�fα� and that Gf = Gη for η�drdx� = f�r x�drdx.
Let E be a bounded domain with smooth boundary and let h ∈ H have the

form

h�r x� = Gρ�r x� + rx1ζ<∞σ�ζ ξζ−�
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where ζ is the lifetime of ξ, ρ ≥ 0 is a bounded function of class C1�S� and
σ ≥ 0 is a bounded continuous function on ∂′S = R+ ×∂E. Then u is a solution
of (1.8) if and only if it is a solution of the boundary value problem

u̇+Lu− uα = −ρ in S

u = σ on ∂′S

u = 0 on 	∞� ×E
(1.32)

where a second-order elliptic operator L is the generator of ξ. The solution of
problem (1.32) can be expressed by a probabilistic formula

u�r x� = − logPrxe
−A�r∞�(1.33)

where A is an NLA functional with potential h. For a general h ∈ H given
by (1.17) and (1.15), (1.33) describes a “mild” solution of the boundary value
problem

u̇+Lu− uα = −η in S

u = ν on ∂′S

u = 0 on 	∞� ×E�
(1.34)

Therefore the results stated above can be interpreted as propositions on the
boundary value problem (1.34). [For an arbitrary domain E, ∂′S in (1.34)
should be replaced by Se.]

In a time-homogeneous setting, formula (1.33) (with a homogeneous A)
solves the problem (0.15).

2. Superdiffusion.

2.1. Diffusion. We start from a differential operator

Lu = ∑
i j

aij∇i∇ju+ ∑
i

bi∇iu(2.1)

(∇i stands for the partial derivative with respect to xi) in a cylinder S = R+×E
where E is an arbitrary domain in R

d. The coefficients aij and bi satisfy the
following conditions:

2.1.A. for every nonzero vector �λ1 � � �  λd� ∈ R
d and for all �r x� ∈ S,∑

i j

aij�r x�λiλj > 0

2.1.B. aij and bi are locally Hölder continuous;

2.1.C. ∇i∇jaij and ∇ibi are continuous.

Under conditions 2.1.A, and 2.1.B, there exists a function p from S× S to
R+ with the following properties.
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(i) For all 0 ≤ r < s < t, x z ∈ E,∫
E
p�r x s y�dyp�s y t z� = p�r x t z��(2.2)

(ii) If f is a continuous function on S with compact support, then, for
every t,

u�r x� =
∫
E
p�r x t y�f�t y�dy(2.3)

satisfies the conditions
∂u�r x�
∂r

= Lu�r x� in S<t = �0 t� ×E(2.4)

and, for every y ∈ E,

u�r y� → f�t y� as r ↑ t�(2.5)

Moreover, there exists a minimal function with properties (i) and (ii) and, for
it, we have the following conditions.

(iii) For all 0 ≤ r < s, x ∈ D,∫
Qs

p�r x s y�dy ≤ 1�(2.6)

(iv) p�r x s y� = 0 for r ≥ s.
By (i) and (iii), p�r x t dy� =p�r x t y�dy is a Markov transition func-

tion in E. This is the transition function of a continuous Markov process
ξ = �ξt rx� on a random time interval �β ζ�. (See, e.g., [6].) We call it an
L-diffusion in S. (For every r x, β = r ξβ = x and 	ζ < ∞� ⊂ 	ξζ− ∈ ∂E�
 rx-a.s.)

2.2. Parts of diffusion. We define a simple cylinder as a set �a b� × D
where 0 ≤ a < b, D is open and D̄ ⊂ E. We say that a set Q is p-open if it
is open in the topology of S determined by simple cylinders. The boundary of
Q in this topology is denoted by ∂Q. (If Q = �a b� ×D, then ∂Q = ��a b� ×
∂D� ∪ �	b� ×D�.)

Let Q be a p-open set. The part ξ̃ of ξ in Q is obtained by restricting ξt to
interval �β τ� where

τ = inf	t� t ≥ β �t ξt� /∈ Q�(2.7)

is the first exit time of ξ from Q [if �t ξt� ∈ Q for all t ∈ �0 ζ�, then we set
τ = ζ]. The transition density of ξ̃ is defined by the formula

p̃�r x t y� = p�r x t y� − rxp�τ ξτ t y� for �r x� �t y� ∈ Q�(2.8)

We set p̃�r x t y� = 0 for r ≥ t and also if �r x� or �t y� is not in Q.
For every measure η on S, we put

GQη�r x� =
∫
Q
p̃�r x s y�η�dsdy� for �r x� ∈ Q�(2.9)

Formula (2.9) coincides with (1.16) if Q = S.
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We write GQρ for GQη with η�dsdx� = ρ�s x�dsdx. We call GQ Green’s
operator of ξ in Q.

For every positive Borel function ϕ, we set

KQϕ�r x� =  rxϕ�τ ξτ�1τ<ζ�(2.10)

For �r x� /∈ Q,  rx	τ = r� = 1 and therefore KQϕ�r x� = ϕ�r x�.

2.3. Superdiffusions. Let ξ = �ξt rx� be a Markov process in a measur-
able space �E��. A �ξ α�-superprocess is a Markov process X = �XtPrµ�
in � = � �E� which satisfies the condition: for every µ ∈ � , every positive
�-measurable function f and for all r < t ∈ R+,

Prµ exp�−fXt� = exp�−urµ�

ur�x� + rx
∫ t
r
us�ξs�α ds =  rxf�ξt��

(2.11)

Suppose that ξ is an L-diffusion in S. Then, for every 1 < α ≤ 2, there
exists a right �ξ α�-superprocess X (see [10] or [14, 15]). We call it an �Lα�-
superdiffusion in S.

For an arbitrary p-open set U ⊂ S and an arbitrary finite measure µ on
S, we introduce a random measure �XUPµ� which we call the exit measure
from U. Its probability distribution is given by formulas similar to (2.11):

Pµ exp�−ϕXU� = exp �−uµ�
u+ �U�u� = KUϕ

(2.12)

where �U is given by (1.7) with ξ replaced by its part in U and KU is defined
by (2.10) with Q replaced by U. Note that Pµ	XU�U� = 0� = 1 for all µ and,
if µ is concentrated on U, then XU is concentrated on ∂U.

[The measures Prµ can be considered as a particular case of the measures
Pµ if we interpret a measure µ ∈ � �E� as a measure on S concentrated on
Sr = 	r� ×E.]

Formulas (2.12) imply

Pµ�ϕXU� = �KUϕµ��(2.13)

Note that, for every t > r and every x, Prx	Xt = Xt−� = 1. [This follows,
for instance, from the fact that X is a Hunt process (see [20]).] Therefore, for
every µ ∈ � ,

Pµ	Xt = Xt− + µ	t�� = 1

where µ	t� is the restriction of µ to 	t� ×E.
Formula (2.13) implies

Pµ�fXt−� =
∫
S
µ�drdx�

∫
E
p�r x t y�f�y�dy�(2.14)
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The joint probability distribution of XU1
 � � � XUn

is determined by (2.12)
and by this property: for every positive �⊃U-measurable Y,

Pµ	Y
∣∣�⊂U� = PXU

Y(2.15)

where �⊂U is the σ-algebra generated by XU′ with U′ ⊂ U and �⊃U is the
σ-algebra generated by XU′′ with U′′ ⊃ U.

The existence of a family �XUPµ� subject to conditions (2.12) and (2.15)
is proved in [14].

We state a result which is an immediate implication of Theorem I.1.8 in
[14].

Let ρ be a positive Borel function on S and let λ�ds� be a measure on R+.
Then, for every µ ∈ � �S�,

Pµ exp
{
−
∫ ∞

0
�ρsXs�λ�ds�

}
= e−�uµ�(2.16)

where u satisfies everywhere the � -equation (1.8) with

h = Gη η�dsdx� = ρs�x�λ�ds�dx�(2.17)

2.4. Part of X in Q. Absorption process. Let Q be a p-open subset of S.
Put Q<t = 	�r x� ∈ Q� r < t� = Q ∩S<t and denote by Qt the t-section of Q.

Consider the restriction X̃t of XQ<t
to Qt. Note that �X̃tPrµ� with µ ∈

� �Qr� is an �L̃ α�-superdiffusion where L̃ is the restriction of L to Q. (The
state space Qr of X̃ is, in general, variable. It is constant if Q = R+ ×D). We
call X̃ the part of X in Q.

The restriction X′
t of XQ to S≤t is called the absorption process on Qc. If ϕ

is a positive Borel function, then, for all ω, �ϕX′
t� is a monotone increasing

function in t. It is bounded and right continuous if �ϕXQ�ω�� < ∞. We have

XQ<t
= X̃t +X′

t Pµ-a.s. for every µ ∈ � �Q<t��(2.18)

2.5. Let Qn be a standard sequence approximating S and let pn�r x t y�
be the transition density of the part of L-diffusion ξ in Qn. The sequence pn is
monotone increasing and its limit p is the transition density of an L-diffusion
in S.

Let Xn
t be the part of �Lα�-superdiffusion in Qn. Then, for every µ,

Xn
t ≤ Xn+1

t Pµ-a.s.(2.19)

and

Xn
t ↑ Xt Pµ-a.s.(2.20)

Formula (2.19) follows from [16, Lemma 4.1]. By (2.14),

PµX
n
t �;� =

∫
S
µ�drdx�pn�r x t ;� ↑

∫
S
µ�drdx�p�r x t ;� = PµXt�;�

which implies (2.20).
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3. Monotonicity properties of the � -equation.

3.1. We prove a stronger version of Theorem 1.1.

Theorem 3.1. Suppose that η is a measure on S, u û ≥ 0 and

û+ � �û� = u+ � �u� +Gη < ∞ on B�(3.1)

If m�Bc� = 0, then û ≥ u on B.

3.2. We use, as a tool, the processes �ξs tyr x� where s ∈ �r t�. Their finite-
dimensional distributions are given by the formula

 tyr x	ξt1 ∈ dy1 � � �  ξtn ∈ dyn� = p�r x t1 dy1�p�t1 y1 t2 dy2� � � �
p�tn−1 yn−1 tn dyn�p�tn yn t y�

(3.2)

for all r < t1 < � � � < tn < t. (The normalized measure  tyr x can be obtained
by conditioning the diffusion ξ to begin at time r at the point x and to end at
time t at the point y.)

Let f be a positive Borel function. The formula

pf�r x t y� =  tyr x

{
exp

{
−
∫ t
r
f�s ξs�ds

}}
(3.3)

defines the transition density of a Markov process obtained from ξ by killing
with rate f�s x� at the point �s x�.

Denote by Gf the operator corresponding to pf by formula (1.31).

Lemma 3.1. If γ is a signed measure on S, then

Gγ −Gfγ = Gf�fGγ�(3.4)

on the set 	G$γ$ < ∞�.

Proof. First, we prove the formula

p�r x t y� − pf�r x t y� =
∫ t
r

∫
E
dsdzpf�r x s z�f�s z�p�s z t y�(3.5)

which is a particular case of (3.4) for γ = δ�t y�. Equation (3.5) follows from
(3.3), (3.2), the Markov property of ξ, Fubini’s theorem and relation

∫ t
r
dsYs exp

{
−
∫ s
r
Yu du

}
= 1 − exp

{
−
∫ t
r
Yu du

}


which we apply to Yu = f�u ξu�.
To get (3.4), we integrate both parts of (3.5) with respect to measure γ. ✷
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Lemma 3.2. Suppose that f ≥ 0 and that

Gη+G$fw$ < ∞ on B(3.6)

and

w+G�fw� = Gη on B�(3.7)

If m�Bc� = 0, then

w = Gfη on B�(3.8)

Proof. By (3.7),

Gf�fw� +Gf�fG�fw�� = Gf�fGη��(3.9)

By (3.4), the left-hand side in (3.9) is equal to G�fw� and the right-hand side
is equal to Gη − Gfη on B. Therefore G�fw� = Gη − Gfη and (3.8) follows
from (3.7). ✷

Proof of Theorem 3.1. Put w = û−u on B and w = 0 on Bc. There exists
a function f ≥ 0 such that ûα−uα = fw a.e. Equation (3.1) implies (3.7). Since
G$fw$ ≤ � �u� + � �û� < ∞ on B, Theorem 3.1 follows from Lemma 3.2. ✷

Remark. Theorem 3.1 can also be deduced from the domination principle
of potential theory ([5], XII.27).

3.3. We also use another monotonicity property of the � -equation.

Theorem 3.2. Suppose thatQ is a p-open subset of S and ϕ ≥ 0. LetB ⊂ Q
and m�Q \B� = 0. If

û+ �Q�û� = u+ �Q�u� +KQϕ < ∞ on B(3.10)

then û ≥ u on B.

The proof is similar to the proof of Theorem 3.1 but, instead of ξ, we use
its part in Q, the corresponding operators GfQ and operators

K
f
Qϕ�r x� =  rxϕ�τ ξτ�1τ<ζ exp

{
−
∫ τ
r
f�s ξs�ds

}

and, instead of (3.4) we prove that

KQϕ−Kf
Qϕ = G

f
Q�fKQϕ�

on the set 	KQϕ < ∞�.

4. Spectral measures of NLA functionals.

4.1. Let h ∈ H and let γ be the spectral measure of h. First, we prove
three theorems which, obviously, imply Theorem 1.3.
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Theorem 4.1. If γ�;� = 0 for all compact sets ; with CM�;� = 0, then
h ∈ Hp∗.

Theorem 4.2. If h ∈ H∗, then γ does not charge � -polar sets.

Theorem 4.3. If h ∈ Hp, then γ does not charge � -polar sets.

Theorem 4.1 is a direct implication of 1.5.C and the following two proposi-
tions.

4.1.A. Let An be an NLA functional with potential hn and determining
set � ∗

n . If h = ∑
hn ∈ H, then A = ∑

An is an NLA functional with potential
h and determining set � �h� ∩ � ∗

1 ∩ · · · ∩ � ∗
n ∩ · · ·. If, in addition, � �hn� ∈ H,

then h ∈ Hp∗.

4.1.B. If the spectral measure γ of h does not charge compact sets ; with
CM�;� = 0, then

γ = γ1 + · · · + γn + · · ·  h = h1 + · · · + hn + · · · (4.1)

where γn is the spectral measure of hn and

� �hn� ∈ H�(4.2)

Proof of 4.1.A. The first statement is obvious. To prove the second state-
ment, we note that, by Jensen’s inequality, ��a + b�/2�α ≤ �aα + bα�/2 for all
a b ≥ 0, α > 1 and therefore

� �h1 + h2� ≤ 2α−1�� �h1� + � �h2��(4.3)

for all h1 h2. Put hn = h1 + · · · + hn. If � �hn� ∈ H for all n, then � �hn� ∈ H
for all n. By 1.5.B, the � -equation (1.13) holds for hn and the log-potential un
of A1 + · · · + An. By using the monotone convergence theorem, we get that
h ∈ Hp∗. ✷

Proof of 4.1.B. The proposition holds by [3], Lemma 5.2, if γ is concen-
trated on S and it holds by [18], Theorem 2.2, if γ is concentrated on Se.
Clearly, it is valid for γ if it holds for the restrictions of γ to S and to Se. ✷

4.2. To prove Theorem 4.2, we need some preparations.
Let C∞

0 �Q� be the set of all infinitely differentiable functions, with compact
supports, on an open set Q ⊂ S. Put

%f%12α′ = %f%α′ + %ḟ%α′ + ∑
i

%∇if%α′ + ∑
i j

%∇i∇jf%α′

where % · %α is the norm in Lα�Q� and α′ = α/�α− 1�.
Suppose that ; ⊂ Q. Then CM�;� = 0 if and only if CMQ�;� = 0 where

CMQ is defined by (1.19) with p replaced be the transition density of the part
of ξ in Q. We will drop the superscript Q dealing with capacities of ; ⊂ Q.
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Lemma 4.1. Suppose that η is a signed measure on Q. If∫
Q
f�r x�η�drdx� ≤ const� %f%12α′(4.4)

for all f ∈ C∞
0 �Q�, then η�;� = 0 for all ; ⊂ Q with CM�;� = 0.

Proof (cf. proof of Proposition 4.1 in [3]). If CM�;� = 0, then, by Proposi-
tion 3.2 in [3], there exists a sequence fn ∈ C∞

0 �Q� such that 0 ≤ fn ≤ 1, each
fn = 1 in some neighborhood of ; and %fn%12α′ → 0.

There exist Borel sets Q+ and Q− such that Q+ ∪Q− = Q and η+�B� =
η�B∩Q+� ≥ 0, η−�B� = −η�B∩Q−� ≥ 0 for all Borel B ⊂ Q. Suppose ; ⊂ Q+
is compact. Since η−�;� = 0, there exists, for every ε > 0, a neighborhood U
of ; such that U ⊂ Q and η−�U� < ε. We have

η�;� = η+�;� ≤
∫
U
fn dη+ =

∫
U
fn dη+

∫
U
fn dη− ≤

∫
U
fn dη+ ε�(4.5)

It follows from (4.4) and (4.5) that η�;� = 0. The case of ; ⊂ Q− can be reduced
to the case ; ⊂ Q+ by replacing ηf by −η−f which also satisfy (4.4). ✷

Lemma 4.2. Let f ≥ 0 be parabolic and let h = Gη+ f ∈ H. Suppose that

u+ � �u� = h on B ⊂ 	h < ∞�(4.6)

and that Q is a bounded p-open set such that Q̄ ⊂ S. Then

u+ ˜� �u� = G̃η+ K̃u on B ∩Q(4.7)

where ˜� is defined by (1.7) with ξ replaced by its part in Q and G̃ K̃ have an
analogous meaning.

Proof. We note that

G = G̃+ K̃G � = ˜� + K̃�(4.8)

by (2.8) and K̃f = f by the mean value property of parabolic functions (see,
e.g., [14], Theorem II.1.4). Therefore

u+ ˜� �u� + K̃� �u� = u+ � �u� = h = Gη+ f
= G̃η+ K̃Gη+ K̃f = G̃η+ K̃h
= G̃η+ K̃u+ K̃� �u� on B ∩Q�

Since K̃� �u� ≤ � �u� ≤ h < ∞ on B, this implies (4.7). ✷

Remark. If h is parabolic (that is, if η = 0), then (4.6) implies

u+ ˜� �u� = K̃u on B ∩Q�(4.9)

Lemma 4.3. Let f ≥ 0 be parabolic and let h = Gη+ f ∈ H∗. Then f also
belongs to H∗.
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Proof. Cf. [16, Lemma 4.1]. Let Qn be a standard approximating se-
quence for S and let �n and Kn be the operators (1.7) and (2.10) for the
part of ξ in Qn. By Lemma 4.2, the � -equation (1.8) implies

u+ �n�u� = Gnη+Knu on Bn(4.10)

where Bn = 	h < ∞� ∩Qn. By (2.12),

un�r x� = − logPrx exp�−�uXQn
��

satisfies the equation

un + �n�un� = Knu on Qn�(4.11)

Let m > n. Note that Kmu is parabolic in Qm. By the Remark to Lemma 4.2,
the equation

um + �m�um� = Kmu on Bm(4.12)

implies

um + �n�um� = Knum on Bn�(4.13)

We apply Theorem 3.1 to get from (4.10) and (4.11) that un ≤ u onBn. Then we
apply Theorem 3.2 to get from (4.11) and (4.13) that um ≤ un on Bn. Therefore
there exists a limit

v = lim
n→∞un on 	h < ∞��

By the monotone convergence theorem, we get from (4.10) that

u+ � �u� = Gη+ limKnu on 	h < ∞��
In combination with (1.8), this yields limKnu = f on 	h < ∞�. By (1.8),
� �u� < ∞ on 	h < ∞� and, by the dominated convergence theorem,
lim�n�un� = � �v�. Therefore (4.11) implies that (1.8), with uh replaced by
vf, holds a.e. Hence f ∈ H∗. ✷

Proof of Theorem 4.2. The main steps are the same as in the proof of
Theorem 2.2 in [16].

1◦. By Lemma 4.3, the parabolic part f of h belongs to H∗ and, by Theorem
3.1 in [18], the spectral measure of f does not charge � -polar sets. Theorem 3.1
in [18] is proved for time-homogeneous processes, but only minor modifications
are needed in the time-inhomogeneous setting.

2◦. It remains to show that η does not charge � -polar sets ;. By 1.6.A, it
is sufficient to show that η�;� = 0 if CM�;� = 0. We can assume, in addition,
that ; is compact. Choose a bounded open set Q such that ; ⊂ Q ⊂ Q̄ ⊂ S
and let ρ > 0 be a Borel function such that

J =
∫
S
ρ�r x�h�r x�drdx <∞�
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The function

ρ̃�s y� =
∫
S
drdxρ�r x�p�r x s y�

is strictly positive and lower semicontinuous. Equation (1.8) implies � �u� ≤ h
and therefore ∫

S
ρ̃�s y�u�s y�α dsdy ≤ J�(4.14)

Since infQ ρ̃ > 0, we conclude from (4.14) that
∫
Q
u�s y�α dsdy <∞�

By Lemma 4.2, u satisfies (4.7). By Lemma 4.3, there exists a function v ≥ 0
such that

v+ ˜� �v� = K̃u�(4.15)

By Theorem 3.1, w = u − v ≥ 0 on 	h < ∞�. There exists a function ϕ ≥ 0
such that uα − vα = ϕw a.e. By (4.7) and (4.15), w = G̃η̃ where η̃�drdx� =
η�drdx� − �ϕw��r x�drdx. Suppose that f ∈ C∞

0 �Q�. Let ψ = −ḟ − L∗f
where L∗ is the formal adjoint for L. Then

f�s y� =
∫
Q
drdxψ�r x�p�r x s y�

where p is the transition density of the part of ξ in Q (see [21], Section I.8).
Therefore ∫

S
f�s y�η̃�dsdy� =

∫
Q
w�r x�ψ�r x�drdx

≤ %w%α%ψ%α′ ≤ const� %w%α%f%12α′ �

(4.16)

Since %w%α ≤ %u%α < ∞, we conclude from Lemma 4.1 that η̃�;� = 0 for all
sets ; with CM�;� = 0. Clearly, m�;� = 0 and therefore η�;� = 0. ✷

4.3. Measures  hµ. A one-parameter family of measures ηs on E is called
an entrance rule if

ηsT
s
t ≤ ηt ηsT

s
t → ηt as s ↑ t�

By [24], to every pair (entrance rule η, exit rule h) such that ηs	hs = ∞� = 0
there corresponds a stochastic process �ξt � on a random time interval �β ζ�
with finite-dimensional distributions

 	β < t1 ξt1 ∈ dy1 � � �  ξtn ∈ dyn tn < ζ�
= ηt1�dy1�p�t1 y1 t2 dy2� · · ·p�tn−1 yn−1 tn dyn�h�tn yn�

(4.17)

for 0 < t1 < · · · < tn. [The measure  tyr x used in Section 3.1 is a particular
case corresponding to ηs�B� = p�r x sB�, hr�x� = p�r x t y�.] We denote
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by  hµ the measure  , corresponding to entrance rule

ηs�B� =
∫
µ�drdx�1r<sp�r x sB�

and to exit rule h. Suppose that h is parabolic with the spectral measure ν.
Then the total mass of  hµ is equal to �hµ�. If µ ∈ � �h�, then,  hµ-a.s., �s ξs�
tends to a limit L ∈ Se (in the topology of the exit space S̄) as s ↑ ζ and

 hµ	β < t < ζ L ∈ B�
=

∫
S<t

µ�drdx�
∫
E
p�r x t dy�

∫
B
k�t yw�ν�dw��(4.18)

In particular,

 hrx	L ∈ B� =
∫
B
k�r xw�ν�dw�(4.19)

and

 hrx	t < ζ� =
∫
E
p�r x t dy�h�t y� for r < t�(4.20)

4.4. Localization. Let

h�r x� =
∫
Se
k�r xw�ν�dw��

To every positive bounded Borel function ϕ on the exit space S̄ there corre-
sponds a parabolic function

hϕ�r x� =
∫
Se
k�r xw�ϕ�w�ν�dw��(4.21)

If h is the potential of an NLA functional A, then, by 1.5.C, hϕ is also the
potential of an NLA functional Aϕ. We call Aϕ the ϕ-localization of A. Re-
call that h=�x� = hs�x� − Tsth

t�x� for = = �s t�. For every measure µ, set
µϕ�drdx� = ϕ�r x�µ�drdx�.

Lemma 4.4. Suppose that A is an NLA functional with parabolic potential
h and that Aϕ is its ϕ-localization with continuous ϕ. For every µ ∈ � ∗,

Aϕ�0∞� = lim
,
B
ϕ
, weakly in L1�Pµ�(4.22)

where

B
ϕ
, = ∑

k

�h=kX
ϕ
tk

�(4.23)

for , = 	0 = t0 < t1 < · · · < tn�.

Proof. Let

A
ϕ
, = ∑

k

�hϕ=kXtk
�
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where

h
ϕ
=�x� = hϕ�s x� −

∫
p�s x t dy�hϕ�t y� for = = �s t��

By 1.7.A, lim, A
ϕ
, = Aϕ�0∞� weakly in L1�µ�. Put J, = A

ϕ
, −Bϕ,. To prove

(4.22), it is sufficient to show that lim, J, = 0. Note that

J, = ∑
k

�f=kXtk
�

where f= = h
ϕ
= − ϕh=. It follows from (4.18) that

f=�x� =  hsx�ϕ�L� − ϕ�s ξs��1ζ≤t for = = �s t��
By (2.14) and the Markov property of ξ,

Pµ�$f=$Xt� =  µ$f=�t ξt�$ ≤  hµ$ϕ�L� − ϕ�s ξs�$1ζ≤t
and

PµJ, ≤  hµ$ϕ�L� − ϕ�@�ζ� ξ@�ζ��$
where

@�t� = tk for tk < t ≤ tk+1�

Clearly, PµJ,n → 0. ✷

4.5. Proof of Theorem 4�3. It is similar to that of Theorem 3.1 in [18]. Let
; ⊂ S̄ be a compact � -polar set. Put

Qn =
{
�r x� ∈ S� d�r x;� > 1

n

}


where d is the distance in the exit space S̄. The bounded positive continuous
functions

ϕn�r x� = �1 − nd�r x;��+
vanish on Qn. Consider the corresponding localizations Aϕn . It follows from
Lemma 4.4 that, for every µ ∈ � ∗,

A ≥ Aϕ1 ≥ · · · ≥ Aϕn ≥ · · · Pµ-a.s.

and

	� ⊂ Qn� ⊂ 	Aϕn∞ = 0� Pµ-a.s.

Let µ ∈ � �h� and µ�;� = 0. Since ; is � -polar, 1�⊂Qn
↑ 1Pµ-a.s. and therefore

A
ϕn∞ → 0 Pµ-a.s. By the dominated convergence theorem,

limPµA
ϕn∞ = 0�(4.24)

On the other hand, by (1.3) and (4.21),

PµA
ϕn∞ =

∫
µ�drdx�

∫
S̄
k�r x z�ϕn�z�γ�dz� ↓

∫
µ�drdx�

∫
;
k�r x z�γ�dz��

By (4.24),
∫
; k�r x z�γ�dz� = 0 on ;c ∩ 	h < ∞� which implies γ�;� = 0. ✷



686 E. B. DYNKIN AND S. E. KUZNETSOV

4.6. Proof of Theorem 1�5. If Gη is the potential of an NLA functional A,
then, by Theorem 4.3, η does not charge � -polar sets. By 1.6.A, it does not
charge ; with CM�;� = 0 and Theorem 1.5 follows from 4.1.B and 1.5.D. ✷

5. The identity H ∗ � Hp � Hp∗.

5.1. We start from a general lemma applicable to all exit rules h.

Lemma 5.1. Let h ∈ H and let Qn be an arbitrary monotone increasing
sequence of p-open sets. Then, for every µ ∈ � �h�, there exists, Pµ-a.s., a finite
limit

Z = lim
n→∞�hXQn

�(5.1)

and

h�r x� ≥ PrxZ�(5.2)

If Qn ↑ S and if h = Gη, then, for every µ ∈ � �h�, Z = 0 Pµ-a.s.

Proof. Put Gn = GQn
, Kn = KQn

. The limit of Zn = �hXQn
� exists

and is finite because Zn is a positive supermartingale relative to ��⊂Qn
Pµ�.

Indeed, by (2.15) and (2.13),

Pµ	Zn$�⊂Qi
� = PXQi

Zn = �KnhXQi
� ≤ Zi Pµ-a.s.

for all i < n since Knh ≤ h on Qn. By (2.15),  rxZn = Knh�r x� ≤ h�r x�
which implies, by Fatou’s lemma, (5.2). If h = Gη, then Knh ↓ 0 on S∗ and
PµZ = 0 by Fatou’s lemma if �hµ� < ∞. ✷

Remark. In proving the existence of the limit (5.1) we used only the prop-
erty KQh ≤ h for all p-open sets Q. Note that this property holds for h1S≤t if
it holds for h.

5.2. Let � stand for the collection of all bounded p-open sets Q with Q̄ ⊂
S. Denote by �e the σ-algebra generated byXQ,Q ∈ � and let � µ

⊃Q�
µ
e stand

for the completions of �⊃Q�e relative to Pµ.

Lemma 5.2. Let A be an NLA functional with potential h and determining
set � ∗ and let µ ∈ � ∗. For every I, A�I� is �

µ
e -measurable. If h is parabolic,

then A�I� is �
µ

⊃Q-measurable for every Q ∈ � .

Proof. 1◦. Since Xt�B� = �1B1	t�X<t�, the first statement will be proved
if we show that �fX<t� is �

µ
e -measurable for every t ∈ R+ and every bounded

continuous f. Consider a sequenceQk ∈ � such thatQk ↑ S<t and let τk be the
first exit time fromQk. Clearly, f�τn ξτn� → f�τ ξτ� µ-a.s. where τ is the first
exit time from S<t. By Theorem 4.1 in [13], this implies �fXQk

� → �fX<t�
Pµ-a.s.
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2◦. Let ϕ be a continuous function on S̄ which is equal to 1 on ∂S and
vanishes on Q. Then hϕ = h and therefore Aϕ = A. By (4.22) and (4.23),
A�0∞� is measurable with respect to the Pµ-completion of the σ-algebra
generated by measures Xϕ

t , t > 0. The set Q̃t = Q ∪ S<t contains Q and
Pµ	Xϕ

Q̃t
= X

ϕ
t + µt� = 1 where µt is the restriction of µϕ to S>t. Hence Xϕ

t is
�
µ

⊃Q-measurable. ✷

5.3.

Theorem 5.1. Let A be an NLA functional with parabolic potential h and
determining set � ∗. Suppose that Qn is a standard sequence approximating
S and let Z be given by (5.1). Then

Pµ	A�0∞� = Z� = 1 for all µ ∈ � ∗�(5.3)

Proof. Note that the minimal σ-algebra which contains all �⊂Qn
coincides

with �e. By Lemma 5.2, the Markov property (2.15) and (1.3),

Pµ	A�0∞�$�⊂Qn
� = PXQn

A�0∞� = �hXQn
�(5.4)

and therefore

Pµ	A�0∞�$� µ
e � = Z Pµ-a.s�(5.5)

Formula (5.3) follows from (5.5) and Lemma 5.2. ✷

5.4. By (1.17), every h ∈ H has a unique representation h = Gη+f where
f is parabolic. Let Qn be a standard approximating sequence for S and let τn
be the first exit time of ξ from Qn. For every h ∈ H,  rxh�τn ξτn� ↓ f�r x�
on S∗ and therefore f is the maximal parabolic minorant of h.

5.4.A. A positive solution of the differential equation

u̇+Lu = uα(5.6)

is dominated by h ∈ H if and only if it is dominated by the maximal parabolic
minorant f of h.

Indeed, it follows from (5.6) that u̇ + Lu ≥ 0 and therefore u�r x� ≤
 rxu�τn ξτn� in Qn, which implies that u ≤ f.

By 5.4.A, the classU∗ of positive solutions of (5.6) dominated by functions of
class H coincides with the class of solutions dominated by parabolic functions.
Time-homogeneous processes are considered in [18] but the same arguments
work in the time-inhomogeneous setting. The results proved in [18] (see The-
orems 1.1–1.3, 1.5 and Lemma 1.1 there) in combination with 5.4.A imply the
following.

5.4.B. For every h ∈ H, there exists a maximal solution of (5.6) dominated
by h. It satisfies the condition

�uµ� = − logPµe
−Z for all µ ∈ � �h�(5.7)

where Z is given by (5.1).
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[This was proved in [18] for parabolic h. If h = Gη + f with parabolic f,
then, by 5.4.A, the maximal solution of (5.6) dominated by f is, at the same
time, the maximal solution dominated by h. On the other hand, if µ ∈ � �h�,
then, by Lemma 5.1,Z coincidesPµ-a.s. withZ∗ corresponding to f by formula
(5.1).]

5.4.C. If u ∈ U∗, then h = u+ � �u� is the minimal parabolic majorant of
u, and u is the maximal solution u of (5.6) dominated by h.

5.4.D. If h ∈ H∗ is parabolic, then

�hµ� = PµZ for all µ ∈ � �h��(5.8)

To simplify notation we write “a.s.” instead of “Prx-a.s. for m-almost all
�r x�”. Analogously, “a.s. on Q” means “Prx-a.s. for m-almost all �r x� ∈ Q.”
Note that 	 holds a.s. if it holds Pµ-a.s. for all µ in a total set � ∗.

Lemma 5.3. Let h ∈ H and let Z be given by (5.1). Suppose that

h�r x� = PrxZ a.e.(5.9)

Then h ∈ H∗. Moreover, h ∈ Hp∗ if h ∈ Hp.

Proof. Consider the maximal solution u of (5.6) dominated by h and de-
note by h∗ its minimal parabolic majorant. Let f be the maximal parabolic mi-
norant of h. By 5.4.A, u ≤ f and therefore h∗ ≤ f ≤ h. By 5.4.C, h∗ = u+� �u�
and u is the maximal solution dominated by h∗. By 5.4.C, for every µ ∈ � �h�,

Pµe
−Z = Pµe

−Z∗ = e−�uµ�(5.10)

where Z∗ corresponds to h∗ by Lemma 5.1. Clearly, Pµ	Z∗ ≤ Z� = 1 and
(5.10) implies Pµ	Z∗ = Z� = 1. By (5.9) and (5.2),

h�r x� = PrxZ = PrxZ
∗ ≤ h∗�r x� a.s.,

which implies h = h∗ a.s. Since h and h∗ are both exit rules, h = h∗ every-
where, which proves the first part of the lemma.

If h is the potential of a NLA functional A, then, by Theorem 5.1,

Prxe
−A�0∞� = Prxe

−Z on S∗�

By 5.4.B, the log-potential v of A coincides a.e. with u. Hence v + � �v� =
u+ � �u� = h∗ = h a.e. and h ∈ Hp∗. ✷

5.5.

Theorem 5.2. The three classes H∗Hp and Hp∗ have the same intersec-
tion with the class of parabolic functions.

Proof. Denote the three intersections by H̃∗ H̃p and H̃p∗.
1◦. H̃∗ ⊂ H̃p. To prove the existence of an NLA functional with potential

h ∈ H̃∗, we apply the criterion 1.5.C. Put Yt = �hXt� and note that, Pµ-a.s.,
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�hX<t� = Yt+�hµt� where µt is the restriction of µ to S>t. If µ ∈ � �h�, then
the second term is a bounded deterministic process. Therefore it is sufficient
to show that �YtPµ� belongs to class (D). Let T be an arbitrary stopping time
with respect to the filtration � 0

t . By Theorem 4.1 in [18],

Pµ	Z$� 0
T � ≥ F�TXT�(5.11)

where F�t ν� = Pt νZ. If µ ∈ � �h�, then, by 1.3.B, XT ∈ � �h� Pµ-a.s. and,
by (5.11) and 5.4.D,

Pµ	Z$� 0
T � ≥ YT�

Hence, the family 	YT� is uniformly integrable with respect to Pµ and
�YtPµ� belongs to class (D).

2◦. H̃p ⊂ H̃p∗. Indeed, if h is the potential ofA, then (5.9) holds by Theorem
5.1 and (1.3), and h ∈ Hp∗ by Lemma 5.3.

3◦. The inclusion H̃p∗ ⊂ H̃∗ is obvious. ✷

5.6.

Lemma 5.4. If h = Gη+ f ∈ H∗, then Gη and f belong to Hp∗.

Proof. By Theorem 4.3, η does not charge � -polar sets. By 1.6.A and
Theorem 4.1, Gη ∈ Hp∗. By Lemma 4.3, f ∈ H∗ and f ∈ Hp∗ by Theorem
5.2. ✷

Lemma 5.5. If h = Gη+ f ∈ Hp, then f and Gη belong to Hp∗.

Proof. By 1.5.C, fGη ∈ Hp. By Theorem 5.2, f ∈ Hp∗. By Theorem 4.3,
η does not charge � -polar sets and, by 1.6.A and Theorem 4.1, Gη ∈ Hp∗. ✷

5.7. In the next lemma the superscripts Q indicate that we consider op-
erators and classes of functions associated with the part of ξ in Q.

Lemma 5.6. LetQ be a bounded p-open set. Suppose that η does not charge
compact sets ; with CM�;� = 0 and ϕ is a positive a.e. finite Borel function.
Then GQηKQϕ and GQη+KQϕ belong to H

p∗
Q .

Proof. By 4.1.B, there exist measures ηn such that η = ∑
ηn and

�Q�GQηn� ∈ HQ. Let τ be the first exit time from Q. If Q ⊂ S<b, then
τ ≤ r ∨ b Prx-a.s. for all r x. Put

fn = KQ�ϕ1n≤ϕ<n+1��
Note that

 rxfn�t ξt�1t<τ = 0 for t > r ∨ b
and

�Q�fn��r x� =  rx

∫ τ∧r
r

fn�s ξs�α ds ≤ �n+ 1�αb�
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Since GQη = ∑
GQηn and KQη = ∑

fn, Lemma 5.6 follows from 4.1.A and
1.5.D. ✷

Lemma 5.7. Let Q and ϕ be as in Lemma 5.6 and let A be an NLA func-
tional of the part of X in Q with potential h = KQϕ. Then

A�0∞� = �ϕXQ� Pµ-a.s.(5.12)

for every µ in the determining set � ∗ of A.

Proof. Let Qn be a monotone increasing sequence of p-open sets such
that Q̄n ⊂ Qn+1 and the union of Qn is equal to Q. Function h is parabolic
in Q and we apply Theorem 5.1 to h, to the part X̃ of X in Q and to the
sequence Qn. By (5.3),

Pµ	A�0∞� = Z� = 1 for all µ ∈ � ∗

where Z is given by (5.1). To get (5.12), it is sufficient to prove that

�hXQn
� → �ϕXQ� Pµ-a.s.(5.13)

for µ ∈ � ∗. By Theorem 4.1 in [13], (5.13) will follow if we prove that
h�τn ξτn� → ϕ�τ ξτ�  µ-a.s. where τn is the first exit time of ξ from Qn and
τ is the first exit time from Q. To get this relation, we note that

 µ	ϕ�τ ξτ�$�τn� = h�τn ξτn� Pµ-a.s.

and that

 µ	ϕ�τ ξτ�$�τ−� = ϕ�τ ξτ� Pµ-a.s.

because ϕ�τ ξτ� = ϕ�τ ξτ−� is measurable with respect to �τ− = ∨�τn . ✷

Lemma 5.8. Suppose that Qn is a standard approximating sequence for S,
Xn is the part of X in Qn and Gn is Green’s operator in Qn. If Gη ∈ Hp, then
Gnη ∈ Hp

Qn
. If A is an NLA functional of X with potential h = Gη and An is

an NLA functional of XN with the potential Gnη, then

An�0∞� ↑ A�0∞� a.s.(5.14)

Proof. If Gη ∈ Hp, then, by Theorem 4.3, η does not charge � -polar sets.
Its restriction ηn to Qn does not charge � -polar sets for Xn and, by 1.6.A, it
does not charge sets of CM-capacity 0. By Theorem 4.1, Gnη = Gnηn is the
potential of an NLA functional An of Xn. It follows from 1.7.A that, for almost
all �r x�,

A�0∞� = lim
,
A,�0∞� weakly in L1�Prx�

where

A,�0∞� = ∑�h=iXti−��
Analogously, for almost all �r x� ∈ Qn,

An�0∞� = lim
,
An,�0∞� weakly in L1�Prx�(5.15)
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where

An,�0∞� = ∑�hn=iXn
ti−��(5.16)

If = = �s t� or = = �s∞�, then

h=�x� =
∫
S�=�

p�s xu z�η�dudz�

and

hn=�x� =
∫
Qn�=�

pn�s xu z�η�dudz�

where S�=� = =×EQn�=� = S�=� ∩Qn.
Hence, hn=i ≤ hn+1

=i
≤ h=i and

A1�0∞� ≤ · · · ≤ An�0∞� ≤ · · · ≤ A�0∞� a.s.

This implies (5.14) because PrxAn�0∞� = Gnη → Gη = PrxA�0∞�. ✷

Lemma 5.9. If

v+ �Q�v� = u′ + u′′ + �Q�u′� + �Q�u′′� < ∞ on B(5.17)

and if m�Q \B� = 0, then v ≤ u′ + u′′ on B.

Proof. We have �Q�u′ + u′′� − �Q�u′� − �Q�u′′� = GQρ where ρ = �u′ +
u′′�α − �u′�α − �u′′�α ≥ 0. It follows from (5.17) that

v+ �Q�v� +GQρ = u′ + u′′ + �Q�u′ + u′′� on B(5.18)

and v ≤ u′ + u′′ by Theorem 3.1. ✷

5.8.

Lemma 5.10. If Hp∗ contains Gη and a parabolic function f, then it con-
tains h = Gη+ f.

Proof. 1◦. Consider NLA functionals Aη and Af with potentials Gη and
f and denote by uη and uf their log-potentials. By definition of Hp∗,

uη + � �uη� = Gη a.e. uf + � �uf� = f a.e.(5.19)

Our objective is to prove that the log-potential v of the NLA functionalAη+Af
satisfies

v+ � �v� = h a.e.(5.20)

Consider a standard approximating sequence Qn for S. By Theorem 4.2 and
1.6.A, η does not charge sets ; with CM�;� = 0. By Lemma 4.2,

uη + �n�uη� = Gnη+Knuη a.e. on Qn

uf + �n�uf� = Knuf a.e. on Qn

(5.21)
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and therefore

uη + uf + �n�uη� + �n�uf� = hn a.e. on Qn(5.22)

where

hn = Gnη+Kn�uη + uf��
2◦. Let Xn be the part of X in Qn. By Lemma 5.6, GnηKQ�uη + uf� are

the potentials of NLA functionalsAnη,Anf ofXn. Their sumAnη+Anf is an NLA
functional with potential hn and therefore the corresponding log-potential

vn�r x� = − logPrx exp�−Anη�0∞� −Anf�0∞�� a.e. on Qn(5.23)

satisfies the equation

vn + �n�vn� = hn a.e. on Qn�(5.24)

By (5.22) and (5.24),

vn + �n�vn� = uη + uf + �n�uη� + �n�uf� a.e. on Qn

and, by Lemma 5.9,

vn ≤ uη + uf a.e. on Qn�(5.25)

3◦. By Lemma 5.7,

Anf�0∞� = �uη + ufXQn
� a.s. on Qn(5.26)

and, by Lemma 5.8,

Anη ↑ Aη a.s.(5.27)

4◦. We claim that

�uη + ufXQn
� → Af�0∞� a.s.(5.28)

Indeed, let τn be the first exit time of ξ from Qn. For almost all �r x�, by
(2.13), (1.6) and (2.8),

Prx�uηXQn
� = rxuη�τn ξτn� ≤PrxGη�τn ξτn� =Gη�r x� −Gnη�r x� → 0�

By Fatou’s lemma, this implies

lim�uηXQn
� = 0 a.s.(5.29)

By similar arguments,

lim�f− ufXQn
� = 0 a.s.(5.30)

By Theorem 5.1,

lim�fXQn
� = Af�0∞� a.s.(5.31)

By combining (5.29)–(5.31), we get (5.28).
5◦. It follows from (5.23), (5.26), (5.27), (5.14), (5.28) that vn�r x� tends

a.e. to the log-potential v of Aη + Af. By (5.19) and (4.3), � �uη + uf� < ∞
on 	h < ∞� and (5.20) follows from (5.24) and the dominated convergence
theorem. ✷
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5.9. Proof of Theorem 1�2. It follows from Lemmas 5.4, 5.5 and 5.10 that
H∗ ∪Hp ⊂ Hp∗. On the other hand Hp∗ ⊂ H∗ ∩Hp. ✷

6. The � -equation in a simple cylinder.

6.1. The main part of this section is devoted to proving Theorem 1.4. (At
the end, we prove Theorem 1.6.) We fix a bounded smooth domain D and
a simple cylinder Q = �0 b� × D. To simplify notation, we set S = Q and
we write HH∗ � � � for classes of functions with domain Q, and G�  � � � for
operators acting on these classes.

By 1.5.B, equation (1.13) has a unique solution which can be represented
by the formula

u�r x� = − logPrxe
−A�r b� on S∗�(6.1)

[To apply 1.5.B, one can continue L to R+ ×D preserving properties 2.1.A and
2.1.B and continue h by setting h = 0 on �b∞� ×D.]

Put

%f% =
∫
Q

$f�r x�$drdx�

Our first goal is to prove Theorem 6.1.

Theorem 6.1. Suppose h = Gη, η�Q� < ∞, A is an NLA functional with
potential h and determining set � ∗ ⊂ �� �h�. Then the log-potential u [given
by (6.1)] satisfies the condition

%uα% ≤ C1η�Q� +C2(6.2)

where the constants C1C2 depend on the operator L but not on h.
Let Aλ be given by (1.23) and let

uλ�r x� = − logPrx exp�−Aλ�r b���(6.3)

We have

lim
λ→∞

�uλµ� = �uµ�(6.4)

for every µ ∈ � ∗. In particular,

uλ�r x� → u�r x� on S∗�(6.5)

6.2. Properties of G. First, we establish a few properties of the operator
G given by (1.31).

6.2.A. There exists a constant C such that∫
Qr

p�r x t y�dx ≤ C for all �t y� ∈ Q r < t�

6.2.B. If fn is a bounded sequence in L1�Q�, then the sequence Gfn con-
tains a subsequence which converges a.e.
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6.2.C. Let f ∈ L1�Q� and let u = Gf. Then∫
Q
f signudsdx ≥ −θ%u%�(6.6)

Here

θ = sup
x∈D

c∗�x�

where

c∗ =
d∑

i j=1

∇i∇jaij −
d∑
i=1

∇ibi�(6.7)

Properties 6.2.A and 6.2.B hold for any bounded p-open set Q. Moreover
6.2.C holds for finite unions of simple cylinders and, more generally, for every
p-open set Q such that each point �r c� ∈ ∂Q which can be touched from
inside of Q by a vertical segment, is regular (that is  r c	�t ξt� ∈ Q for all t ∈
�r r′�� = 0 for every r′ > r.)

Property 6.2.A follows from well-known bounds for p�r x t y� ([21], Chap-
ter 1).

Proof of 6.2.B. Denote by ϕδ a function equal to 0 for $t$ < δ/2, equal to
1 for $t$ > δ and linear on �−δ−δ/2� and on �δ/2 δ�. Formula

pδ�s x t y� = ϕδ�t− s�p�s x t y�
defines a continuous kernel on Q̄. The corresponding operator Gδ is compact
in L1�Q� because the functions Gδfn are equicontinuous for every sequence
fn bounded in L1�Q�.

By 6.2.A and Fubini’s theorem,

%Gf−Gδf% =
∫
Q
dsdx

∫
Q

�1 − ϕδ�t− s��p�s x t y�$f�t y�$dtdy

≤
∫
Q
dtdy$f�t y�$

∫ t
�t−δ�∨0

dsdxp�s x t y� ≤ Cδ%f%�

Therefore G is a compact operator in L1�Q�. ✷

Proof of 6.2.C. 1◦. Let Q = �a b� ×D and let ϕ be a bounded increasing
continuously differentiable function on R such that ϕ�0� = 0. Suppose that

u ∈ C2�Q̄� u = 0 on ∂Q�(6.8)

Put O�t� = ∫ t
0 ϕ�s�ds. For every r ∈ R+, we get by integration by parts,

−
∫
D
ϕ�u�Ludx =

∫
D

[∑
aijϕ

′�u�∇iu∇ju− c∗O�u�
]
dx(6.9)

and therefore

−
∫
D
dxϕ�u�Lu ≥ −θ

∫
D
O�u�dx�(6.10)
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2◦. Suppose u = Gf with f ∈ C2�Q̄�. Then u satisfies (6.8) and Lu =
−�f+ u̇�. By (6.10), ∫

D
ϕ�u��u̇+ f�dx ≥ −θ

∫
D
O�u�dx�(6.11)

Note that u�x b� = 0 for all x ∈ D. Hence
∫ b
r ϕ�u�u̇ dr = O�u�x b�� −

O�u�x r�� ≤ 0 and therefore (6.11) implies
∫ b
r

∫
D
ϕ�u�fdsdx ≥ −θ

∫ b
r

∫
D
O�u�dsdx�(6.12)

An arbitrary f ∈ L1�Q� is the strong limit of a sequence fn ∈ L1�Q� ∩C2�Q̄�.
Let un = Gfn, u = Gf. Formula (6.12) holds for fn and un. By 6.2.A, %un −
u% → 0 and

∫
D $un�r x� − u�r x�$dx → 0. We have∫
ϕ�u�fdsdx−

∫
ϕ�un�fn dsdx

=
∫
ϕ�un��f− fn�dsdx+

∫
�ϕ�u� − ϕ�un��fdsdx�

(6.13)

A subsequence unk converges to u a.e. and the second term in the right-hand
side of (6.13) converges to 0 along this subsequence. The first term also con-
verges to 0. Since (6.12) holds for fnun, it holds also for fu.

3◦. By applying (6.12) to a sequence of functions ϕn which converge bound-
edly to signu and by passing to the limit, we get (6.6). ✷

6.3. Proof of Theorem 6.1. 1◦. Note that

Gρλ�r x� = Gη�r x� −
∫
Q
e−λ�t−r�p�r x t z�η�dtdz�

and therefore the functions hλ = Gρλ have the properties

hλ ≤ h and hλ ↑ h as λ → ∞�(6.14)

By (2.16), uλ given by (6.3) satisfies equation

uλ + � �uλ� = hλ�(6.15)

We have

uλ = GFλ(6.16)

where

Fλ = ρλ − uαλ�(6.17)

By 6.2.C, ∫
Q
Fλ signuλ dsdx =

∫
Q
Fλ signGFλ dsdx ≥ −θ%uλ%

and, since signuαλ = signuλ, we have

%uαλ% =
∫
Q
uαλ signuαλ dsdx ≤ %ρλ% + θ%uλ%�(6.18)
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By 6.2.A and (1.24),

%ρλ% ≤ Cη�Q��(6.19)

Note that, if α > 1, then for every δ > 0, there exists a constant Cδ such that

$b− a$ ≤ δ$bα − aα$ +Cδ(6.20)

for all reals a b. It follows from (6.18), (6.19) and (6.20) that

%uαλ% ≤ θδ%uαλ% +Cη�Q� + θCδ�(6.21)

If δθ ≤ 1/2, then

%uαλ% ≤ 2Cη�Q� + 2θCδ(6.22)

which implies (6.2) with C1 = 2CC2 = 2θCδ.
2◦. By (6.14), hλ ↑ h. By (6.15), (6.2) and 6.2.B, every sequence uλn contains

a subsequence which converges, a.e. We claim that, if a sequence uλn converges
a.e., then uλn converges on S∗ to the log-potential u of A. Suppose uλn → v
a.e. By (6.15) and (6.14), uλ ≤ h for all λ and, by the dominated convergence
theorem,

� �uλn� → � �v� on S∗�(6.23)

By (6.15) and Fatou’s lemma, v+ � �v� ≤ h and therefore v̄ = h− � �v� ≥ 0. It
follows from (6.15), (6.14) and (6.23) that uλn → v̄ on S∗. Clearly, v̄ = v a.e.
and therefore v̄+ � �v̄� = v̄+ � �v� = h. By Theorem 1.2, u+ � �u� = h on S∗.
By the uniqueness Theorem 1.1, v̄ = u on S∗.

Formula (6.5) holds because, otherwise, $uλn−u$ > δ for an �r x� ∈ S∗, δ > 0
and a sequence λn → ∞. By applying once more the dominated convergence
theorem, we get (6.4). ✷

6.4. Theorem 6.1 can be modified as follows.

Theorem 6.2. Let QhA and Aλ be as in Theorem 6.1. For every λ > 0,
we put

ũλ�r x� = − logPrx exp
(− 1

2Ãλ�r b�
)
(6.24)

where

Ãλ = 1
2�Aλ +A��(6.25)

If µ ∈ � ∗, then

lim
λ→∞

�ũλ µ� = �uµ�(6.26)

where u is given by (6.1).
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Proof. Put

ηλ�dsdx� = ρsλ�x�dsdx η̃λ = 1
2�ηλ + η��(6.27)

Clearly, Ãλ is an NLA functional with potential h̃λ = 1
2�hλ+h� and determin-

ing set � ∗. By 1.5.B,

ũλ + � �ũλ� = Gη̃λ on S∗�

By 6.2.A and (1.23), η̃λ�Q� ≤ Cη�Q� and (6.2) implies that supλ %ũαλ% < ∞.
The same arguments as in proof of Theorem 6.1 show that u = lim ũλ exists
on S∗ and that it satisfies (1.13). Since ũλ ≤ h, the dominated convergence
theorem implies (6.26). ✷

6.5. Proof of Theorem 1.4. 1◦. Consider functionals Ãλ and measures
ηλ η̃λ defined by (6.25) and (6.27) and denote by ηr η̃λr the restrictions of η
and η̃λ to S>r. By (2.16),

Pµ exp�−Aλ�r b�� = exp�−�uλr µ��

where

uλr + � �uλr� = Gηλr�

Suppose that µ ∈ � ∗. By Theorem 6.1 (applied to ηr), �uλr µ� → �urµ�
as λ → ∞ where

ur + � �ur� = Gηr on S∗�(6.28)

Therefore

lim
λ→∞

Pµ exp�−Aλ�r b�� = exp�−�ur µ��(6.29)

Analogously, by Theorem 6.2,

lim
λ→∞

Pµ exp�−Ãλ�r b�� = exp�−�urµ��(6.30)

By (6.29) and (6.30),

Pµ	exp�−Aλ�r b�/2� − exp�−A�r b�/2��2

= Pµ exp�−Aλ�r b�� +Pµ exp�−A�r b�� − 2Pµ exp�−Ãλ�r b��
→ 0 as λ → ∞�

(6.31)

Therefore exp�−Aλ�r b�� converges to exp�−A�r b�� in L2�Pµ� and Aλ�r b�
converges in Pµ-probability to A�r b�. ✷
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6.6. Proof of Theorem 1.6. 1◦. Fix t > 0. Formula Ã�I� = A�I ∩ �0 t��
defines a NLA functional with the same determining set � ∗ as A and with
the potential

h̃�r x� =
{

0 for r ≥ t
h�r x� − rxh�t ξt� for r < t�(6.32)

Clearly, h̃ ≤ h. By using the strong Markov property of ξ, we check that h̃ has
the mean value property on every simple cylinder and therefore it is parabolic.
By Theorem 5.1,

A�0 t� = Ã�0∞� = Z̃ Pµ-a.s.(6.33)

where

Z̃ = lim�h̃XQn
��(6.34)

2◦. We have

�h̃XQn
� = �h �Xn�′

t� − �ĥXQn
�(6.35)

where ĥ = �h− h̃�1S≤t . By the Remark to Lemma 5.1, the limit

Y = lim�ĥXQn
�

exists Pµ-a.s. for every µ ∈ � �h�. By (2.13), (2.10) and the strong Markov
property of ξ,

Pµ�ĥXQn
� =  µĥ�τn ξτn� =  µ1τn≤t<ζh�t ξt��

The right-hand side tends to 0 as n → ∞ and, by Fatou’s lemma, PµY = 0.
Formula (1.26) follows from (6.33), (6.34) and (6.35). ✷

7. Bibliographical notes and concluding remarks.

7.1. Additive functionals of a super-Brownian motion (with α = 2) of the
form

A�I� =
∫
I
�fsXs�ds

have been introduced and studied, first, by Iscoe [23] under the name
“weighted occupation times.” In [8] a continuous linear additive functional A
with potential h was constructed in the case: ξ is an arbitrary right process,
α = 2 and h is a bounded exit rule. The construction was based on integration
with respect to a martingale measure. The case of a superdiffusion with an
arbitrary α ∈ �12� was investigated in [9]. There a continuous linear additive
functional with potential h = Gη was constructed for every η which vanishes
on sets ; with CM�;� = 0.

Le Gall [25] investigated recently equation =u = u2 in a bounded domain
E with smooth boundary by using additive functionals of a Brownian snake.
His functionals correspond to NLA functionals of a super-Brownian motion
(α = 2) with potential h�x� = ∫

∂D k�xy�ν�dx� [here k is the Poisson kernel
and ν does not charge sets ; with CM�;� = 0].
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7.2. Homogeneous linear additive functionals of a time-homogeneous
superdiffusion X were studied in [16]. For a stationary transition density
p�r x t y� = pt−r�xy� and for time-independent u, formula (1.7) takes the
form

� �u��x� =
∫
E
g�xy�u�y�α dy

where

g�xy� =
∫ ∞

0
ps�xy�ds

is the Green’s function of ξ. The class of time-independent exit rules coincides
with the class of excessive functions and time-independent parabolic functions
are L-harmonic functions, that is, solutions of the equation Lu = 0. The Mar-
tin kernel k�xy� and the Martin exit space are defined in terms of g�xy�
[not p�r x s y� as in inhomogeneous case]. In this setting, all our results
remain valid with the word “functionals” replaced by “homogeneous function-
als.” Theorems 1.1—1.4 in [16] follow from Theorem 1.3. Theorems 2.1 and
2.1* in [16] are particular cases of Theorems 3.1 and 3.2 and Theorem 2.2
there is very close to the homogeneous version of Theorem 1.4.

Linear additive functionals of superdiffusions were constructed in [16] by
passing to the limit from functionals of the form A�dt� = �ρXt�dt and from
absorption processes. It was not clear that functionals constructed this way
were natural. A new approach in the present paper was made possible by
general results obtained in [17].

7.3. A particular case of problem (1.34) has been studied in [3]. The equa-
tion u̇ + Lu − uα = −η with a zero boundary condition was considered in
a cylinder �0 b� × D where D is a bounded smooth domain. It was proved
that the problem has a solution if and only if η does not charge sets ; with
CM�;� = 0. [We can get this by applying Theorem 1.3 to h with the spectral
measure concentrated on �0 b� ×D and by taking into account 1.6.A.] Baras
and Pierre have also treated the problem

u̇+Lu− uα = −η in �0 b� ×E
u = 0 on �0 b� × ∂E
u = γ on 	b� ×E�

(7.1)

by reducing it to a problem with 0 boundary condition in a larger domain
�0 b′� ×E with a modified measure η.

The boundary value problem (0.15) was investigated in [2] and [18]. The
case ν = 0 was treated in [2] and the case η = 0 was considered in [18]. [Even
earlier, Gmira and Véron [22] have investigated a class of functions ψ such
that the problem

=u = ψ�u� in D

v = ν on ∂D
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has a solution for every finite measure ν.] The results of [18] (modified for
the time-inhomogeneous setting) are substantially used in the proof of Theo-
rem 1.2.

7.4. In conclusion we state a challenging open problem.

7.4.A. Let ; be a compact subset of Se. For which domains E does the
condition CM�;� = 0 imply that ; is � -polar?

The converse implication—	; is � -polar� (⇒ 	CM�;� = 0�—follows for an
arbitrary domain E from Theorem 1.3 (cf. proof of 1.5.A in [16]). In a homoge-
neous setting, 7.4.A is proved for bounded domains with smooth boundaries
(see [19], Theorem 1.2). In an inhomogeneous setting, the problem is open
even for this class of domains.

The following problem is closely related to 7.4.A.

7.4.B. Describe the class 
 of pairs �η ν� for which there exists a solution
of the boundary value problem (1.34).

By the Remark to Theorem 1.2, �η ν� ∈ 
 if and only if �η0� ∈ 
 and
�0 ν� ∈ 
 . By 1.6.A, the following two conditions are equivalent: (i) η does not
charge sets of CM-capacity 0; (ii) η does not charge � -polar sets. By Theorem
1.3, each of these conditions is necessary and sufficient for �η0� to belong to

 . Analogous tests are valid for ν ∈ 
 and for all domains E for which the
answer to 7.4.A is positive.
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