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We study the fluctuation problem for the multiple point range of ran-
dom walks in the two dimensional integer lattice with mean 0 and fi-
nite variance. The p-multiple point range means the number of distinct
sites with multiplicity p of random walk paths before time n. The suit-
ably normalized multiple point range is proved to converge to a constant,
which is independent of the multiplicity, multiple of the renormalized self-
intersection local time of a planar Brownian motion.

1. Introduction. In the present article, we will treat the fluctuation prob-
lem for the number of distinct lattice points with multiplicity p of random walk
paths in the first n steps. A random walk in the d dimensional integer lattice
Z
d, denoted by �Sn�∞n=0, means a sequence of random variables defined by

S0 = 0� Sn =
n∑
k=1

Xk�

where �Xn�∞n=1 is a sequence of independent identically distributed random
variables with values in Z

d.
We assume for convenience that the random walk is adapted, which implies

that no proper subgroup of Z
d contains the support of X1. In particular, the

random walk is genuinely d dimensional. The p-multiple point range of a
random walk, denoted by Q

�p�
n , means the number of distinct sites visited

exactly p times by the random walk in the first n steps. Pitt [19] proved
that for all transient random walks and each p ≥ 1, Q�p�

n /n converges to
µ2�1 − µ�p−1 almost surely as n → ∞, where µ is the probability that the
random walk never returns to the origin. In the two dimensional case, Flatto
[4] showed that �log n�2Q

�p�
n /n converges to π2 almost surely as n tends to

infinity for the simple random walk.
The first work on the fluctuation problem for Q�p�

n was by Hamana [5]. He
proved that if d ≥ 5 and µ < 1, Cov�Q�k�

n �Q
�l�
n �/n converges to some constant

σk� l for each k� l ≥ 1, and for fixed integer K ≥ 1, the K dimensional random
vector Ψn = �Q�1�

n �Q
�2�
n � � � � �Q

�K�
n � obeys the central limit theorem; that is, the

law of �Ψn −EΨn�/
√
n is asymptotically equal to the K dimensional normal

distribution with mean 0 and the covariance matrix � of which the �k� l�-
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component is σk� l. Moreover, if d ≥ 4 and µ < 1, there exists a positive
constant σ2 such that VarQ�1�

n ∼ σ2n and �Q�1�
n − µ2n
/σ√n converges to

the standard normal variable in the distribution sense. If µ = 1, it is not
interesting since Q

�1�
n = n and Q

�p�
n = 0 for any p ≥ 2. Hamana [8] also

proved that if d = 3 and µ < 1, one has that VarQ�1�
n ∼ nψ�n� for some

nondecreasing slowly varying function ψ and �Q�1�
n − µ2n
/√nψ�n� tends to

the normal with mean 0 and variance 1 in law. In the two dimensional case,
he showed in the same paper that if EX1 = 0 and E�X1�2 <∞, there exists a
positive constant L such that VarQ�1�

n ∼ Ln2/�log n�6 and the distribution of
�log n�3�Q�1�

n −EQ
�1�
n 
/n is asymptotically equal to that of a constant multiple

of the renormalized self-intersection local time of a two dimensional Brownian
motion. However, one needs a more restrictive assumption—aperiodicity—to
prove this result. Aperiodicity means that for every x ∈ Z

d there exists an
n ≥ 1 such that P�Sm = x� > 0 whenever m ≥ n.

For general p, we shall consider the fluctuation problem for Q�p�
n when the

random walk moves on Z
2 and has zero mean and finite variance. Section 3

is devoted to the study of the variance of Q�p�
n and the asymptotic behavior of

the distribution of Q�p�
n − EQ

�p�
n . We will show that VarQ�p�

n ≤ Cn2/�log n�6

for some positive constant C and the law of �log n�3�Q�p�
n −EQ�p�

n 
/n converges
to that of a constant, which is independent of p, times the renormalized inter-
section local time of a planar Brownian motion. Section 4 is devoted to giving
several lemmas which are useful to estimate the probabilities of various quan-
tities of random walks. In Sections 5 and 6, we prove lemmas used in Section 3
by making the most of lemmas in Section 4.

We will now offer an intuitive explanation for the fact that Q�p�
n behaves like

Q
�1�
n . The event that the lattice point x is a p-multiple point of the random walk

path before time n is the intersection of the following three events. The first is
the event that the random walk first reaches x at some time, the second is the
event that the random walk returns �p−1� times to x for some steps and the
third is the event that the random walk never returns to x in the remaining
steps. The second event can also be described in terms of intersections of �p−1�
events in which the random walk returns to x in the first time for some steps.
Note that the probability that the random walk returns to the origin up to
time n converges to 1 as n→ ∞ in the two dimensional recurrent case, and so
it seems intuitively clear that the condition that the random walk eventually
returns to its starting point �p − 1� times will be asymptotically negligible.
On the other hand, the condition that it never returns again to a given point
after a certain time should play an important role. Thus, when the time n is
very large, the number of times which the random walk is required to return
to a point which has already been reached should not be significant. Only the
fact that the random walk reaches the point is important.

Let R�p�
n be the number of distinct points visited at least p times by a

random walk in the first n steps. For p = 1, various results were shown (cf.
[2, 10, 11, 12, 13, 14, 16, 18]). The results about Q�p�

n are refinements of these
results. We can also study R

�p�
n for p ≥ 1. In the transient case, the law
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of large numbers was established in [19] and the central limit theorem was
partially proved in [5]. For the two dimensional random walk with EX1 = 0
and E�X1�2 < ∞, we can also derive the limiting behaviors of VarR�p�

n and
the law of �R�p�

n − ER
�p�
n 
/�VarR�p�

n 
1/2 for each p ≥ 2, and we can conclude
that they are not different asymptotically from the case of p = 1.

2. Notation and preliminaries. We assume a random walk is adapted.
In terms of the characteristic function ϕ�ξ�, the adaptation means that, for
ξ ∈ �−π�π
d, ϕ�ξ� is equal to 1 if and only if ξ = 0. However this property
is not restrictive. If it is not satisfied, we may consider the smallest subgroup
G of Z

d on which the random walk takes place and then can find a linear
isomorphism from G to Z

m for some m ≤ d. Under this situation, the random
walk translated by this isomorphism is adapted and moves on Z

m. Therefore
we will investigate the adapted random walk in Z

d throughout this paper.
There may exist nonzero values of ξ satisfying �ϕ�ξ�� = 1. Let ρ be the number
of such ξ. We call ρ the period of the random walk. Aperiodicity is equivalent
to the condition ρ = 1.

In this section we will give some notation and basic lemmas. For x ∈ Z
d,

the notation Px� · � will be used to denote the probability measures of events
related to the random walk starting at x. When x = 0, we will simply use
P� · � instead of P0� · �. For n ≥ 0 and x�y ∈ Z

d, the notation pn�x�y� means
Px�Sn = y�. Note that pn�x�y� = pn�0� y− x�. For x ∈ Z

d, τx will denote the
first hitting time of x; that is,

τx = inf�n ≥ 1� Sn = x��
If there are no positive integers with Sn = x, then τx = ∞. The taboo proba-
bilities are defined by

pnz �x�y� = Px�Sn = y� τz ≥ n��
pnzw�x�y� = Px�Sn = y� τz ≥ n� τw ≥ n��

The following lemma is very important.

Lemma 2.1 ([11], [20]). If µ < 1, there is a positive constant A such that

pn�0� x� ≤ An−d/2

for all x ∈ Z
d and n ≥ 1.

Another standard result is that for n ≥ 1 and x ∈ Z
d,

�2�1� pn0�0� x� = pnx�0� x��
This can be checked easily by considering the reversed random walk.

We will use rn for P�τ0 > n�, fn for pn0�0�0� and un for pn�0�0�. When
d = 2, Kesten and Spitzer [15] proved that rn is slowly varying. Here the
meaning of slowly varying is that for any positive real number c, r�cn
/rn → 1
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as n tends to infinity, where �x
 is the integer part of a real number x. If the
two dimensional random walk is transient, the result of Kesten and Spitzer
is trivial since rn → µ as n → ∞. However, their result has an important
meaning in the recurrent case. In order to obtain the asymptotic behavior of
rn, we will need a simple observation about slowly varying functions.

Lemma 2.2 ([13]). Let �α�n��∞n=1 be a sequence of nonincreasing and slowly
varying functions. Then there is a positive constant B such that jα�j� ≤
Bnα�n� for all j ≤ n and n ≥ 1. In particular, this implies that there is a

constant C such that jr
β
j ≤ Cnr

β
n for j ≤ n and β ≥ 1.

In this paper, we will use the following convenient notation. If �an� and
�bn� �bn > 0� are sequences of real numbers, then an = o�bn� means anb−1

n →
0; an = O�bn� means anb−1

n remains bounded; an ∼ bn means anb−1
n → 1, as

n→ ∞. Let C1�C2� � � � � C36 denote suitable positive real constants. Through-
out this paper,

∑0
i=1 ai and

∏0
i=1 ai imply 0 and 1, respectively.

Let Ξ be the symmetric matrix satisfying E�θ�X1�2 = �θ�Ξ2θ� for any
θ ∈ R

d, where �·� ·� is the standard inner product on R
d. If the random walk is

adapted with EX1 = 0 and E�X1�2 <∞, it is known that Ξ is strictly positive
definite (cf. Spitzer [20]).

From now on, we consider the adapted random walk in Z
2 satisfying EX1 =

0 and E�X1�2 <∞. We can derive the asymptotic behaviors of rn and fn.

Lemma 2.3. We have that

�2�2� rn ∼ c

log n
�

where c = 2π�detΞ�.

Proof. Let ρ be the period of the random walk. By Proposition 2.4 in [18],
we have that

uρn = 1
cn

+ o

(
1
n

)

and then

n∑
k=0

uρk = log n
c

+ o�log n��

Note that um = 0 if m is not a multiple of ρ. By Lemma 2.3 in [10],

rρn ∼
( n∑
k=0

uρn

)−1

∼ c

log n
�

This implies �2�2� since rn is slowly varying. ✷
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Observing the proof of Theorem 3 in [15], we can easily check

�2�3� fn = O

{
1

n�log n�2

}

by Lemma 2.1, (2.1) and Lemma 2.3. If, in addition, the random walk is ape-
riodic, Jain and Pruitt [13] showed that

fn ∼ c

n�log n�2
�

Employing this asymptotic behavior, they also derived that

�2�4�
m∑
k=1

fk�rγm−k − rγm� = O�rγ+2
m �

for any integer γ ≥ 1. By Lemma 2.3 and �2�3�, we can improve �2�4� for the
adapted random walk. Moreover, we can sharpen this estimate for γ = 1.

Lemma 2.4.
m∑
k=1

fk�rm−k − rm� = O�r4
m��

This lemma can be proved in the same fashion as Lemma 5.8 in [8].

3. The fluctuation of Q�p�
n . We are given an adapted random walk mov-

ing on Z
2 with EX1 = 0 and E�X1�2 < ∞. Our goal in this section is to

establish the fluctuation theorem for Q�p�
n under this situation. If, in addition,

the random walk is aperiodic, Hamana [8] showed that

VarQ�1�
n ∼ Ln2

�log n�6

for some positive constant L and that

lim
n→∞

�log n�3

n

[
Q

�1�
n −EQ

�1�
n

]
= −16π3�detΞ�2γ�� �

in the distribution sense, where � = ��s� t� ∈ R
2� 0 ≤ s < t ≤ 1� and γ�� �

is the renormalized self-intersection local time of a planar Brownian motion
�Wt�t≥0, which is expressed formally by∫ ∫

�
δ0�Wt −Ws�dsdt−E

[ ∫ ∫
�
δ0�Wt −Ws�dsdt

]

(cf. [16, 17]). To consider the asymptotic behavior of the fluctuation of Q�p�
n

around its expectation for general p, we need to improve his observations and
introduce some notation. For 0 ≤ a < b, let S�a� b� = �Sk� a < k ≤ b� and
Sp�a� b� be the set of distinct sites visited exactly p times by a random walk
between time a+ 1 and time b. Let

Q
�p�
n �i�h� = ∣∣Sp��i− 1�2−hn� i2−hn�∣∣
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for h ≥ 0 and i ≥ 1, and

Ik�jn = ∣∣S��2j− 2�2−kn� �2j− 1�2−kn� ∩S��2j− 1�2−kn�2j2−kn�∣∣ �
Lk�j
n �p� = ∣∣S��2j− 2�2−kn� �2j− 1�2−kn� ∩Sp��2j− 1�2−kn�2j2−kn�∣∣ �

Mk�j
n �p� = ∣∣Sp��2j− 2�2−kn� �2j− 1�2−kn� ∩S��2j− 1�2−kn�2j2−kn�∣∣ �

Nk�j
n �p�q� = ∣∣Sp��2j− 2�2−kn� �2j− 1�2−kn� ∩Sq��2j− 1�2−kn�2j2−kn�∣∣

for k ≥ 0 and j ≥ 1, where �A� denotes the number of elements which belong
to a set A. It is clear that the distributions of these random variables are
equal to those of I0�1

2−kn, L0�1
2−kn�p�, M0�1

2−kn�p� and N0�1
2−kn�p�q�, respectively. Note

that

�3�1�
Q

�p�
2n = ∣∣Sp�0� n�∣∣− ∣∣Sp�0� n� ∩S�n�2n�∣∣+ ∣∣Sp�n�2n�∣∣

− ∣∣S�0� n� ∩Sp�n�2n�∣∣+ p−1∑
l=1

∣∣Sl�0� n� ∩Sp−l�n�2n�∣∣ �
Employing the same observation as we used to derive �3�1�, we have that for
each integer h ≥ 1,

Q
�p�
n =

2h∑
i=1

Q
�p�
n �i�h� −

h∑
k=1

2k−1∑
j=1

{
Lk�j
n �p� +Mk�j

n �p� −
p−1∑
l=1

Nk�j
n �l� p− l�

}
�

By applying Le Gall’s argument used to obtain Theorem 6.1 in [16], we can
prove the fluctuation results for Q�p�

n if we succeed in showing that the terms
involving N’s are negligible and that

∑
k� j L

k�j
n �p� and

∑
k� jM

k�j
n �p� are inde-

pendent of p asymptotically. Le Gall [16] proved that n−2r−4
n E�I0�1

n �2 converges
to some constant. In particular, E�I0�1

n �2 = O�n2r4
n� (see Theorem 5.1). This

plays an essential role to establish the fluctuation result for R�1�
n . To observe

the fluctuation of Q�p�
n , we need rnI0�1

n instead of I0�1
n , which will be used later

in the proof of Theorem 3.5. The following lemma implies that rnI0�1
n is the

dominant part comparing with N0�1
n �p�q�. We defer its proof to Section 5.

Lemma 3.1. For p�q ≥ 1,

�3�2� E
∣∣N0�1

n �p�q�∣∣2 = O�n2r7
n��

The following lemma implies that the difference between L0�1
n �p� and

L0�1
n �p+ 1� is small compared with rnI

0�1
n .

Lemma 3.2. For p ≥ 1,

E
∣∣L0�1

n �p� −L0�1
n �p+ 1�∣∣2 = O�n2r7

n��(3.3)

E
∣∣M0�1

n �p� −M0�1
n �p+ 1�∣∣2 = O�n2r7

n��(3.4)
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We also defer the proof of this lemma to Section 6. Consequently Lemma
3.2 indicates that L0�1

n �p� is not much different from rnI
0�1
n asymptotically for

each p ≥ 1. Namely, we can obtain the following corollary.

Corollary 3.3. For an arbitrary fixed integer p ≥ 1,

E
∣∣L0�1

n �p� − rnI
0�1
n

∣∣2 = O�n2r7
n��(3.5)

E
∣∣M0�1

n �p� − rnI
0�1
n

∣∣2 = O�n2r7
n��(3.6)

In particular, we have that both E
∣∣L0�1

n �p�∣∣2 and E
∣∣M0�1

n �p�∣∣2 are of order

n2r6
n.

Proof. For p = 1, the assertions were proved in Lemma 6.2 in [8] if, in
addition, the random walk is aperiodic. However, we can extend the results to
the adapted case along the same line by applying Lemma 2.3 and �2�3�. Thus
we need to prove �3�5� and �3�6� when p ≥ 2. For p ≥ 2, we have that

L0�1
n �p� − rnI

0�1
n =

p∑
l=2

{
L0�1
n �l� −L0�1

n �l− 1�}+L0�1
n �1� − rnI

0�1
n �

Using Minkowski’s inequality, we have that

{
E
∣∣L0�1

n �p� − rnI
0�1
n

∣∣2}1/2 ≤
p∑
l=2

{
E
∣∣L0�1

n �l� −L0�1
n �l− 1�∣∣2}1/2

+ {E ∣∣L0�1
n �1� − rnI

0�1
n

∣∣2}1/2
�

The first term of the right-hand side is of order nr7/2
n by applying Lemma 3.2,

and we mentioned that the second term is of order nr7/2
n in the beginning of

this proof. Therefore we conclude (3.5).
The method of obtaining (3.6) is similar to (3.5), and then we obtain (3.6). ✷

Now we are ready to give a bound of the variance of Q�p�
n and to establish

the fluctuation result for Q�p�
n .

Proposition 3.4. Let p be an arbitrary fixed positive integer. There exists
a constant C such that, for n ≥ 2,

VarQ�p�
n ≤ Cn2

�log n�6
�
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Proof. We will prove this proposition along the same line as Lemma 6.2
in [16]. Recall that �3�1� is equivalent to the equality

Q
�p�
2n = ∣∣Sp�0� n�∣∣+ ∣∣Sp�n�2n�∣∣−L0�1

n �p� −M0�1
n �p� +

p−1∑
l=1

N0�1
n �l� p− l��

Noting that
∣∣Sp�0� n�∣∣ is independent of

∣∣Sp�n�2n�∣∣ and that both
∣∣Sp�0� n�∣∣

and
∣∣Sp�n�2n�∣∣ have the same distribution as Q�p�

n , we obtain that[
VarQ�p�

2n

]1/2 ≤ [2VarQ�p�
n

]1/2 + [E ∣∣L0�1
n �p�∣∣2]1/2 + [E ∣∣M0�1

n �p�∣∣2]1/2
+

p−1∑
l=1

[
E
∣∣N0�1

n �l� p− l�∣∣2]1/2�
By Lemma 3.1 and Corollary 3.3,[

VarQ�p�
2n

]1/2 ≤ [2VarQ�p�
n

]1/2 +C1nr
3
n +C2nr

7/2
n �

For k ≥ 1, let

a
�p�
k = sup

{[
VarQ�p�

n

]1/2� 2k < n ≤ 2k+1
}
�

Since nr3
n ≤ C3k

−32k for 2k < n ≤ 2k+1, we have

a
�p�
k+1 ≤

√
2a�p�

k +C4k
−32k�

Put b�p�k = k32−ka�p�
k . For a given α ∈ �1/√2�1�, there is some constant k0 such

that, for any k > k0,

b
�p�
k+1 ≤ αb

�p�
k +C4�

This means that the sequence �b�p�k � is bounded. Therefore we can conclude
the assertion of this proposition. ✷

Theorem 3.5. For a two dimensional adapted random walk with mean 0
and finite variance,

lim
n→∞

�log n�3

n

[
Q

�p�
n −EQ

�p�
n

]
= −16π3�detΞ�2γ�� �

in the distribution sense.

Proof. Let h be a given positive integer. Recall that Q�p�
n is equal to

�3�7�

2h∑
i=1

Q
�p�
n �i�h� −

h∑
k=1

2k−1∑
j=1

{
Lk�j
n �p� +Mk�j

n �p�}

+
h∑
k=1

2k−1∑
j=1

p−1∑
l=1

Nk�j
n �l� p− l�
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and that the laws of Lk�j
n �p�, Mk�j

n �p�, and N
k�j
n �l� p− l� coincide with those

of L0�1
2−kn�p�, M0�1

2−kn�p�, and N
0�1
2−kn�l� p − l�, respectively. By Lemma 3.1 and

Minkowski’s inequality,

E

[∣∣∣∣�log n�3

n

h∑
k=1

2k−1∑
j=1

p−1∑
l=1

Nk�j
n �l� p− l�

∣∣∣∣
2]

≤ �log n�6

n2

[ h∑
k=1

2k−1∑
j=1

p−1∑
l=1

{
E
∣∣Nk�j

n �l� p− l�∣∣2}1/2
]2

≤ C5p
2h2�log n�6

�log 2−hn�7
→ 0

as n→ ∞. Then we can find that the third part of �3�7� is the negligible part.
By Corollary 3.3, we have that

E

[∣∣∣∣�log n�3

n

h∑
k=1

2k−1∑
j=1

{
Lk�j
n �p� +Mk�j

n �p� − 2r2−knI
k� j
n

}∣∣∣∣
2]

≤ �log n�6

n2

[ h∑
k=1

2k−1∑
j=1

{
E
∣∣Lk�j

n �p� +Mk�j
n �p� − 2r2−knI

k� j
n

∣∣2}1/2
]2

≤ C6h
2�log n�6

�log 2−hn�7
→ 0

as n → ∞. This implies that we can regard both L
k�j
n �p� and M

k�j
n �p� as

r2−knI
k� j
n asymptotically. Moreover, the fact that

0 ≤ r2−kn − rn ≤ C7k

�log n��log 2−kn� �

which is obtained by Lemma 2.3, allows us to exchange r2−kn for rn. Indeed,
using that E

∣∣I0�1
n

∣∣2 = O�n2r4
n� and the fact that the distribution of Ik�jn is

equal to that of I0�1
2−kn, we obtain that

E

[∣∣∣∣�log n�3

n

h∑
k=1

2k−1∑
j=1

�r2−kn − rn�Ik�jn

∣∣∣∣
2]

≤ C8h
4�log n�4

�log 2−hn�6
�

which converges to 0 as n tends to infinity. Therefore it is sufficient to consider

�3�8� �log n�3

n

2h∑
i=1

〈
Q

�p�
n �i�h�〉− 2rn�log n�3

n

h∑
k=1

2k−1∑
j=1

〈
Ik�jn

〉
�

Here the notation � · � means that �X� =X−EX for any random variable X.
Le Gall [16] showed that

lim
n→∞

�log n�2

n

h∑
k=1

2k−1∑
j=1

〈
Ik�jn

〉 = 4π2�detΞ�
h∑
k=1

2k−1∑
j=1

〈∫ ∫
Ak
j

δ0�Wt −Ws�dsdt
〉
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in law, where Ak
j = ��2j− 2�2−k� �2j− 1�2−k� × ��2j− 1�2−k�2j2−k
 ∈ R

2 (see
Proposition 6.3), and by the definition of the renormalized self-intersection
local time, we have

lim
h→∞

h∑
k=1

2k−1∑
j=1

〈∫ ∫
Ak
j

δ0�Wt −Ws�dsdt
〉
= γ�� �

in L2�>���P�. Then, by Lemma 2.3, we can see that the second part of �3�8�
converges to −16π3�detΞ�2γ�� � in the distribution sense. It remains to prove
that the first part of �3�8� is negligible. Note that �Q�p�

n �i�h�� 1 ≤ i ≤ 2h� is
a sequence of independent identically distributed random variables and that
the distribution of Q�p�

n �i�h� coincides with that of Q�p�
2−hn. Then, by Proposition

3.4, we have that

E

[�log n�3

n

2h∑
i=1

〈
Q

�p�
n �i�h�〉]2

= �log n�6

n2

2h∑
i=1

Var
[
Q

�p�
n �i�h�]

≤ C92−h�log n�6

�log 2−hn�6

≤ C102−h

as n is sufficiently large. Hence we can conclude that

lim
n→∞

�log n�3

n

〈
Q

�p�
n

〉
= −16π3�detΞ�2γ�� �

in the distribution sense by choosing h sufficiently large in the beginning. ✷

On the other hand, for p ≥ 1, let R�p�
n be the number of distinct points

entered at least p times by a random walk in the first n steps. If the random
walk is adapted with mean 0 and finite variance, Jain and Pruitt [13] showed
that

�3�9� R
�1�
n ∼ Kn2

�log n�4
�

where K = 8π2K1�detΞ�2 and

K1 = −
∫ 1

0

log x
1 − x+ x2

dx+ 1
2
− 1

12
π2�

Moreover, Le Gall [16] proved that

lim
n→∞

�log n�2

n

[
R

�1�
n −ER

�1�
n

] = −4π2�detΞ�γ�� �

in the distribution sense. Applying Proposition 3.4 and observing the proof of
Theorem 3.5, we can improve these results to R�p�

n for general p.
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Theorem 3.6. Let p be an arbitrary given positive integer. For a two di-
mensional adapted random walk with mean 0 and finite variance,

�3�10� R
�p�
n ∼ Kn2

�log n�4
�

where K is the same as we used in �3�9�, and

�3�11� lim
n→∞

�log n�2

n

[
R

�p�
n −ER

�p�
n

] = −4π2�detΞ�γ�� �

in the distribution sense.

Proof. First we prove �3�10� by induction on p. If p = 1, the assertion is
�3�9�, which was proved by Jain and Pruitt. Note that R�p+1�

n = R
�p�
n −Q�p�

n for
p ≥ 1. By Schwarz’s inequality, we have that∣∣VarR�p+1�

n − VarR�p�
n

∣∣ ≤ ∣∣Cov�R�p�
n �Q

�p�
n �∣∣+ VarQ�p�

n

≤
√

VarR�p�
n · VarQ�p�

n + VarQ�p�
n �

By the induction assumption and Proposition 3.4,

∣∣VarR�p+1�
n − VarR�p�

n

∣∣ ≤ C11n
2

�log n�5
�

Therefore we obtain that

VarR�p+1�
n ∼ Kn2

�log n�4
�

This completes the proof of (3.10).
We next prove (3.11) for p ≥ 2. Let R�p�

n �i�h� be the number of points visited
at least p times between time �i− 1�2−hn+ 1 and time i2−hn. It is clear that

R
�p�
n �i�h� = R

�1�
n �i�h� −

p−1∑
m=1

Q
�m�
n �i�h�

for h ≥ 0, i ≥ 1 and p ≥ 2. In particular,

R
�p�
n = R

�1�
n −

p−1∑
m=1

Q
�m�
n �

Moreover we have that for h ≥ 1,

R
�1�
n =

2h∑
i=1

R
�1�
n �i�h� −

h∑
k=1

2k−1∑
j=1

Ik�jn �
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Then, by using �3�7�, we can easily obtain that

R
�p�
n =

2h∑
i=1

R
�p�
n �i�h� −

h∑
k=1

2k−1∑
j=1

Ik�jn

+
h∑
k=1

2k−1∑
j=1

p−1∑
m=1

{
Lk�j
n �m� +Mk�j

n �m� −
m−1∑
l=1

Nk�j
n �l�m− l�

}
�

Combining Lemma 3.1 and Corollary 3.3, we immediately see that the third
part is negligible, and so it is enough to study

2h∑
i=1

〈
R

�p�
n �i�h�〉− h∑

k=1

2k−1∑
j=1

〈
Ik�jn

〉
�

Considering analogously with the proof of Theorem 3.5, we easily conclude
(3.11). ✷

4. Some lemmas. In this section, we supply several estimates of func-
tions of the transition probabilities of random walks which will be used in
Sections 5 and 6.

Lemma 4.1 ([8]). Let x �= 0 and m ≥ 1. Then

P0�τx < τ0 ≤m� =
m∑
j=1

m−j∑
i=1

p
j
0�x�0�pix�0� x�

× {rm−j−i +P0�τx < τ0 ≤m− j− i�}�
Px�τ0 ≤m < τx� =

m∑
k=1

pkx�x�0�P0�τx > m− k� τ0 > m− k��

In particular, we have that

P0�τx < τ0 ≤m� ≤
m∑
j=1

m−j∑
i=1

p
j
0�x�0�pix�0� x��

Px�τ0 ≤m < τx� ≤
m∑
k=1

pkx�x�0�rm−k�

The following two lemmas can be obtained by simple calculations.

Lemma 4.2 ([13]). For x �= 0, m ≥ 1 and γ ≥ 0,

m∑
k=1

pk0�0� x�rγm−k =
m∑
k=1

pk�0� x�rγ+1
m−k −

m∑
k=1

pk�0� x�
m−k∑
j=1

fj�rγm−k−j − r
γ
m−k�

≤
m∑
k=1

pk�0� x�rγ+1
m−k�
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Lemma 4.3 ([8]). For x �= 0, m ≥ 1 and γ ≥ 0, we have that

m∑
k=1

pk0x�0� x�rγm−k =
m∑
k=1

pkx�0� x�rγ+1
m−k

+
m∑
k=1

pkx�0� x�P0�τx < τ0 ≤m− k�rγm−k

−
m∑
k=1

m−k∑
j=1

pkx�0� x�pj0x�0�0��rγm−k−j − r
γ
m−k��

We need some refinements of the argument which Jain and Pruitt used
in [13] to estimate the negligible parts in proving the convergence of
�log n�4 VarR�1�

n /n2. For n ≥ 2 and h� i ≥ 1, let

Th� i�n� =
∑

1≤a1�����ah�

b1�����bi≤n
x∈Z

2

h∏
µ=1

paµ�0� x�
i∏

ρ=1

pbρ�x�0��

and for n�h� i� j� k� l� α�β ≥ 0 satisfying h+ i+j+k+ l < n and h+ i ≥ 1, let

T
α�β
h� i� j� k� l�n�

= ∑
1≤f+a1+···+ah

+b1+···+bi
+c1+···+cj
+d1+···+dk
+e1+···+el≤n
x �=0

h∏
µ=1

p
aµ
x �0� x�

i∏
ρ=1

p
bρ
0 �x�0�

j∏
λ=1

pcλ�0� x�
k∏
ζ=1

pdζ �x�0�

×
l∏

γ=1

Γ
�γ�
eγ rαfr

β

n−∑h
ξ=1 aξ−

∑i
η=1 bη−

∑j
σ=1 cσ−

∑k
ν=1 dν−

∑l
κ=1 eκ−f

�

Here Γ �i�
j are arbitrary nonnegative real numbers with

∑∞
j=1 Γ

�i�
j ≤ 1 for each

i ≥ 1.

Lemma 4.4. We have that

Th� i�n� = O�n��
T
α�β
h� i� j� k� l�n� = O�n2rα+β+h+in ��

Proof. The idea of the proof is the same as Lemma 5.6 in [8]. First we
estimate Th� i�n�. By Lemma 2.1, since it is symmetric in a1� � � � � ah and in
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b1� � � � � bi, Th�i�n� is bounded by

Ah+i−2h!i!
∑

1≤a1≤···≤ah≤n
1≤b1≤···≤bi≤n

∑
x∈Z

2

pa1�0� x�pb1�x�0�
h∏

µ=2

a−1
µ

i∏
ρ=2

b−1
ρ

≤ C12

n∑
a=1

n∑
b=1

pa+b�0�0�
(

log
en

a

)h−1(
log

en

b

)i−1

≤ C13

2n∑
m=1

m−1∑
b=1

m−1
(

log
en

m− b

)h−1(
log

en

b

)i−1

�

The bound of the double sum is
2n∑
m=1

(
log

e2n

m

)h+i−2

≤ C14n�

which means that Th� i�n� = O�n�. We will next estimate the order of
T
α�β
h� i� j� k� l�n�. By Lemma 2.3,

�4�1�
m∑
q=1

rγqr
δ
m−q ≤ C15mr

γ+δ
m

for γ� δ ≥ 0 since rn is nonincreasing and slowly varying. Then we have

T
α�β
h� i� j� k� l�n� ≤ C16nr

α+β+h+i
n Th+j� i+k�n��

where Lemma 4.2 has been used �h+i� times at first; second, the summations
on f and e1� � � � � el have been taken in this order; and last, Lemma 2.2 has
been applied. Therefore we obtain that Tα�β

h� i� j� k� l�n� is of order n2r
α+β+h+i
n � ✷

We need another estimate more complicated than T
α�β
h� i� j� k� l�n�. For n�h�

i� j� k� l�m� s� α�β ≥ 0 with h+ i+ j+ k+ l+m+ s < n and h+ i ≥ 1, let

T
α�β
h� i� j� k� l�m� s�n�

= ∑
1≤q+a1+···+ah+b1+···+bi

+c1+···+cj+d1+···+dk
+e1+···+el+f1+···+fm

+g1+···+gs≤n
x �=0

h∏
µ=1

p
aµ
0x�0� x�

i∏
ρ=1

p
bρ
0x�x�0�

j∏
λ=1

pcλx �0� x�

×
k∏
ζ=1

p
dζ
0 �x�0�

l∏
γ=1

peγ�0� x�
m∏
δ=1

pfδ�x�0�
s∏

χ=1

Γ
�χ�
gχ

× rαqr
β

n−∑h
1 aξ−

∑i
1 bη−

∑j
1 cσ−

∑k
1 dν−

∑l
1 eκ−

∑m
1 fπ−

∑s
1 gθ−q

�

The following lemma plays an important role in the proof of the main the-
orem of this paper, where it is used to show that many terms are negligible.
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Lemma 4.5. We have that

�4�2� T
α�β
h� i� j� k� l�m� s�n� = O�n2rα+β+2h+2i+j+k

n ��

Proof. First we show (4.2) when either h or i is 0; however, it is enough
to prove it when h ≥ 1 and i = 0 since

T
α�β
h� i� j� k� l�m� s�n� = T

α�β
i� h� k� j�m� l� s�n��

which is obtained by making the substitution y = −x in the summation on x.
We try to prove

�4�3� T
α�β
h�0� j� k� l�m� s�n� = O�n2rα+β+2h+j+k

n �

by induction with respect to h. Applying Lemma 4.3 and noting that rn is
nonincreasing, we have that

T
α�β
1�0� j� k� l�m� s�n� ≤ T

α�β+1
j+1� k� l�m� s�n� +T

α�β
j+2� k+1� l�m� s�n�

= O�n2r
α+β+j+k+2
n ��

The last estimate was obtained by Lemma 4.4. We assume (4.3) and apply
Lemma 4.3 to

∑
ah+1

p
ah+1
0x �0� x�. Using Lemma 4.4 again, we obtain that

T
α�β
h+1�0� j� k� l�m� s�n� ≤ T

α�β+1
h�0� j+1� k� l�m� s�n� +T

α�β
h�0� j+2� k+1� l�m� s�n�

= O�n2rα+β+2h+j+k+2
n ��

Hence we have (4.2) when h ≥ 1 and i = 0.
We next observe (4.2) when h� i ≥ 1. In this case, we show it by induction

on i. By Lemma 4.3,

T
α�β
h�1� j� k� l�m� s�n� ≤ T

α�β+1
h�0� j� k+1� l�m� s�n� +T

α�β
h�0� j+1� k+2� l�m� s�n�

= O�n2rα+β+2h+j+k+2
n ��

Assuming (4.2) for i ≥ 1 and applying Lemma 4.3 to
∑

bi+1
p
bi+1
0x �x�0�, we have

that

T
α�β
h� i+1� j� k� l�m� s�n� ≤ T

α�β+1
h� i� j� k+1� l�m� s�n� +T

α�β
h� i� j+1� k+2� l�m� s�n�

= O�n2rα+β+2h+2i+j+k+2
n + n2rα+β+2h+2i+j+k+3

n ��

which is of order n2r
α+β+2h+2�i+1�+j+k
n .

Therefore we can conclude (4.2). ✷
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5. The proof of Lemma 3.1. For simplicity, we put Nn�p�q� =
N0�1

n �p�q� = ∣∣Sp�0� n� ∩Sq�n�2n�∣∣. We can express Nn�p�q� by the summa-
tion of several sequences of indicator random variables. For 0≤ i<j, let

Z
j
i =

{
1� if Si �= Sα for i < α ≤ j�
0� otherwise,

Yi
j =

{
1� if Sj �= Sα for i ≤ α < j�
0� otherwise.

For 0 ≤ i < j and p ≥ 1, let

W
j
i �p� =




1� if there are exactly �p− 1� indices α in
�i+1� � � � � j−1� such that Sα=Si and Si=Sj,

0� otherwise.

Using these indicators, we have that for p�q ≥ 2,

Nn�1�1� =
2n∑

j=n+1

n∑
i=1

2n∑
l=j+1

Y0
iZ

n
i Y

n
j Z

2n
j χ�Si = Sj��

Nn�1� q� =
2n∑

j=n+1

n∑
i=1

2n∑
l=j+1

Y0
iZ

n
i Y

n
j W

l
j �q− 1�Z2n

l χ�Si = Sj��

Nn�p�q� =
2n∑

j=n+1

n∑
i=1

2n∑
h=j+1

n∑
l=i+1

Y0
iW

l
i�p− 1�Zn

l

×Yn
j W

h
j �q− 1�Z2n

h χ�Si = Sj��

where χ�A� means the indicator function of a set A. To estimate these random
variables, we need to introduce some notation of taboo probabilities. For x ∈ Z

2

and α ≥ 1, τ�α�x will denote the time of the αth entrance into x, so that τ�1�x = τx.
For the sake of convenience, we put τ�0�x = 0 for each x ∈ Z

2. For x�y ∈ Z
2 and

α�β ≥ 0, let

qny�x�α� = Px�τ�α�x = n� τ
�1�
y > n��

qn�x�y�α� = Px�τ�1�y = n� τ
�α�
x < n� τ

�α+1�
x ≥ n��

qn�x�y�α�β� = Px�τ�β�y = n� τ
�α�
x < n� τ

�α+1�
x ≥ n��

qny�x�α�β� = Px�τ�α�x = n� τ
�β�
y < n� τ

�β+1�
y ≥ n�

and f
�α�
n = Px�τ�α�x = n�. For x �= y, we obtain the estimates

qny�x�α�
qny�x�α�β�

}
≤ f

�α�
n �(5.1)
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qn�x�y�α� ≤




n−1∑
k=1

f
�α�
n−kp

k
xy�x�y�� if α ≥ 1,

pnxy�x�y�� if α = 0,

(5.2)

qn�x�y�α�β� ≤
{
pn�x�y�� if α ≥ 1 and β ≥ 1,

pnx�x�y�� if α = 0 and β ≥ 1.
(5.3)

From now on, we prove Lemma 3.1 and first show �3�2� when p�q ≥ 2. In
this case, it is equivalent to the estimate that E

∣∣Nn�p̄+ 1� q̄+ 1�∣∣2 = O�n2r7
n�

for p̄� q̄ ≥ 1. After this, for simplicity, we adopt p and q instead of p̄ and q̄,
respectively. For p�q ≥ 1, let

�ni� j�p�q� =
2n∑

h=j+1

n∑
l=i+1

Θn
i� l� j� h�p�q��

where Θn
i� l� j� h�p�q� = Y0

iW
l
i�p�Zn

l Y
n
j W

h
j �q�Z2n

h χ�Si = Sj�. Then we have

Nn�p+ 1� q+ 1� =
2n∑

j=n+1

n∑
i=1

�ni� j�p�q�

and also have that

E
∣∣Nn�p+ 1� q+ 1�∣∣2 =

2n∑
j=n+1

n∑
i=1

E��ni� j�p�q��2

+ 2
∑

n<h<j≤2n
0<k<i≤n

E
[
�ni� j�p�q��nk�h�p�q�

]

+ 2
∑

n<h<j≤2n
0<i<k≤n

E
[
�ni� j�p�q��nk�h�p�q�

]

=� I + 2II + 2III�

Our goal is to show that I = O�n� and both II and III are of order n2r7
n. The

method of estimating I is very easy. Indeed, noting that �ni� j�p�q� is also an
indicator random variable for i < j,

I =
2n∑

j=n+1

n∑
i=1

2n∑
h=j+1

n∑
l=i+1

rif
�p�
l−ifj−lf

�q�
h−jr2n−h�

Dominating ri and r2n−h by 1, we have that I ≤ n.
We now try to estimate II, which is equal to∑

n<h<j≤2n
0<k<i≤n

∑
h<r≤2n
j<m≤2n
i<l≤n
k<s≤n

E
[
Θn
i� l� j�m�p�q�Θn

k� s� h� r�p�q�
]
�
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To estimate this summation, we should divide it into the following nine parts
by the order of subscript letters of Θ:

(1) 1 ≤ k < s < i < l ≤ n < h < r < j < m ≤ 2n;
(2) 1 ≤ k < i < s < l ≤ n < h < r < j < m ≤ 2n;
(3) 1 ≤ k < i < l < s ≤ n < h < r < j < m ≤ 2n;
(4) 1 ≤ k < s < i < l ≤ n < h < j < r < m ≤ 2n;
(5) 1 ≤ k < i < s < l ≤ n < h < j < r < m ≤ 2n;
(6) 1 ≤ k < i < l < s ≤ n < h < j < r < m ≤ 2n;
(7) 1 ≤ k < s < i < l ≤ n < h < j < m < r ≤ 2n;
(8) 1 ≤ k < i < s < l ≤ n < h < j < m < r ≤ 2n;
(9) 1 ≤ k < i < l < s ≤ n < h < j < m < r ≤ 2n.

Now we introduce the notation II�u� for u = 1�2� � � � �9, where II�u� means
the summation of E�Θn

i� l� j�m�p�q�Θn
k� s� h� r�p�q�
 on h� i� j� k� l�m� s� r in the

case �u�.
In calculating the order of each II�u�, we express the summands by taboo

probabilities by using the Markov property, and next we apply lemmas in
Section 4, especially Lemma 4.5. II�1� is equal to∑

n<h<r<j<m≤2n
1≤k<s<i<l≤n

x �=0

qs−kx �0�p�pi−s0x �0� x�ql−i0 �x�p�ph−l0x �x�0�

× qr−hx �0�q�pj−r0x �0� x�qm−j
0 �x�q�

×Px�τ0 > 2n−m� τx > 2n−m�Px�τ0 > k� τx > k��
Neglecting the events �τ0 > 2n −m� and �τ0 > k� and employing �5�1�, we
have that II�1� is bounded by∑

1≤k<s<i<l<h
<r<j<m≤2n

x �=0

f
�p�
s−kp

i−s
0x �0� x�f�p�

l−ip
h−l
0x �x�0�f�q�

r−hp
j−r
0x �0� x�f�q�

m−jr2n−mrk

≤ ∑
1≤k+s+i+l+h

+r+j+m≤2n
x �=0

f
�p�
s pi0x�0� x�f�p�

l ph0x�x�0�f�q�
r

× p
j
0x�0� x�f�q�

m r2n−m−j−r−h−l−i−s−krk
= T

1�1
2�1�0�0�0�0�3�2n��

By Lemma 4.5, this is of order n2r8
n. In the case �2�, we may consider the

estimate of

�5�4�

∑
n<h<r<j<m≤2n

1≤k<i<s<l≤n
x �=0

0≤α�β<p

qi−k�0� x�α�qs−i�x�0�β�p− α�ql−s�0� x�0� p− β�

× ph−l0x �x�0�qr−hx �0�q�pj−r0x �0� x�qm−j
0 �x�q�r2n−mrk�
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It is clear that qn�0� x�α� ≤ pn�0� x� and qn�x�0�β�p − α� is not more than
pn�x�0�, and then �5�4� is bounded by

p2 ∑
1≤k+i+s+l+h

+r+j+m≤2n
x �=0

pi�0� x�ps�x�0�pl0�0� x�ph0x�x�0�f�q�
r

× p
j
0x�0� x�f�q�

m r2n−m−j−r−h−l−s−i−krk�

By (2.1), we can exchange pl0�0� x� for plx�x�0�, and we have that this sum-
mation is p2T

1�1
1�1�1�0�1�1�2�2n�. Therefore II�2� is of order n2r7

n by Lemma 4.5.
The term II�3� is not larger than∑

n<h<r<j<m≤2n
1≤k<i<l<s≤n

x �=0
0≤α+β<p

qi−k�0� x�α�ql−i0 �x�p�β�qs−l�x�0�0� p− α− β�

× ph−s0x �0�0�qr−hx �0�q�pj−r0x �0� x�qm−j
0 �x�q�r2n−mrk�

Applying �5�1� and �5�3�, we obtain that II�3� is bounded by

�5�5�

p
∑

1≤k+i+l+s+h
+r+j+m≤2n

x �=0
0≤α<p

qi�0� x�α�f�p�
l psx�x�0�fhf�q�

r

× p
j
0x�0� x�f�q�

m r2n−m−j−r−h−l−s−i−krk�

In estimating II�2�, we used the rough inequality that qi�0� x�α� ≤ pi�0� x�
without regard to the value of α. However, in this case, we must estimate
�5�5� more carefully and split the summation into the two cases—α = 0 and
α �= 0—to derive the order of II�3�. Using �5�2�, we have that a bound of II�3� is

p
∑

1≤k+i+l+s+h
+r+j+m≤2n

x �=0

( p−1∑
α=1

i−1∑
u=1

f
�α�
i−up

u
0x�0� x� + pi0x�0� x�

)
f
�p�
l psx�x�0�

× fhf
�q�
r p

j
0x�0� x�f�q�

m r2n−m−j−r−h−l−s−i−krk�

The order of the first summation is O�T1�1
2�0�0�1�0�0�5�2n�� and the second part

is O�T1�1
2�0�0�1�0�0�4�2n��. Hence we obtain that II�3� is of order n2r7

n by Lemma
4.5. In the case �4�, it is sufficient to calculate∑

n<h<j<r<m≤2n
1≤k<s<i<l≤n

x �=0
0≤α�β<q

qs−kx �0�p�pi−s0x �0� x�ql−i0 �x�p�ph−l0x �x�0�qj−h�0� x�α�

× qr−j�x�0�β�q− α�qm−r�0� x�0� q− β�r2n−mrk�
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There is no necessity of applying the careful argument used in estimat-
ing �5�5�, and it is enough to use the rough estimate that qj−h�0� x�α� ≤
pj−h�0� x�. Using �5�1� and �5�3�, II�4� is dominated by

p2 ∑
1≤k+s+i+l+h

+j+r+m≤2n
x �=0

f
�p�
s pi0x�0� x�f�p�

l ph0x�x�0�pj�0� x�

× pr�x�0�pm0 �0� x�r2n−m−r−j−h−l−i−s−krk

= p2T
1�1
1�1�1�0�0�0�2�2n� = O�n2r7

n��

A bound of II�5� is

∑
n<h<j<r<m≤2n

1≤k<i<s<l≤n
x �=0

∑
0≤α�β<p
0≤γ� δ<q

qi−k�0� x�α�qs−i�x�0�β�p− α�

× ql−s�0� x�0� p− β�ph−l0x �x�0�qj−h�0� x�γ�
× qr−j�x�0� δ� q− γ�qm−r�0� x�0� q− δ�r2n−mrk�

In the summands, there are two parts to which we can apply �5�2�, and they
are qi−k�0� x�α� and qj−r�0� x�γ�. However, we need not apply �5�2� to both
parts, and so we adopt the estimate that qj−h�0� x�γ� ≤ pj−h�0� x�. Then, by
�5�3�, we have that II�5� is bounded by

�5�6�

pq2 ∑
1≤k+i+s+l+h

+j+r+m≤2n
x �=0

0≤α<p

qi�0� x�α�ps�x�0�pl0�0� x�ph0x�x�0�pj�0� x�

× pr�x�0�pm0 �0� x�r2n−m−j−r−h−l−s−i−krk�

We can estimate �5�6� in a way similar to �5�5�. Indeed, calculating the
part α = 0 and the part 1 ≤ α < p separately, we obtain that (5.6) is
O�T1�1

1�1�2�0�1�2�1�2n� + T
1�1
1�1�2�0�1�2�0�2n��, which is of order n2r8

n by Lemma
4.5. In the case �6�, we may calculate

∑
n<h<j<r<m≤2n

1≤k<i<l<s≤n
x �=0

∑
0≤α+β<p
0≤γ� δ<q

qi−k�0� x�α�ql−i0 �x�p�β�

× qs−l�x�0�0� p− α− β�ph−s0x �0�0�qj−h�0� x�γ�
× qr−j�x�0� δ� q− γ�qm−r�0� x�0� q− δ�r2n−mrk�
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This is not larger than

�5�7�

pq
∑

1≤k+i+l+s+h
+j+r+m≤2n

x �=0
0≤α<p
0≤γ<q

qi�0� x�α�f�p�
l psx�x�0�fhqj�0� x�γ�

× pr�x�0�pm0 �0� x�r2n−m−j−r−h−s−l−i−krk�

We must use neither qi�0� x�α� ≤ pi�0� x� nor qj�0� x�γ� ≤ pj�0� x�, and so
have to apply �5�2� to both qi�0� x�α� and qj�0� x�γ�. Then we must split the
sum on α and γ into four parts: (i) α� γ �= 0; (ii) α �= 0, γ = 0; (iii) α = 0,
γ �= 0; (vi) α� γ = 0. The first part is O�T1�1

2�0�1�1�0�1�4�2n��; the second and

the third parts are of order T1�1
2�0�1�1�0�1�3�2n�; and the fourth part is of order

T
1�1
2�0�1�1�0�1�2�2n�. Hence II�6� is O�n2r8

n� by Lemma 4.5. The term II�7� can be
estimated by calculating∑

n<h<j<m<r≤2n
1≤k<s<i<l≤n

x �=0
0≤α+β<q

qs−kx �0�p�pi−s0x �0� x�ql−i0 �x�p�ph−l0x �x�0�

× qj−h�0� x�α�qm−j
0 �x�q�β�qr−m�x�0�0� q− α− β�r2n−rrk�

This summation is bounded by

q2 ∑
1≤k+s+i+l+h

+j+m+r≤2n
x �=0

f
�p�
s pi0x�0� x�f�p�

l ph0x�x�0�pj�0� x�

× f
�q�
m prx�x�0�r2n−r−m−j−h−l−i−s−krk�

the estimate of which is a constant multiple of T1�1
1�1�0�1�1�0�2�2n�. Here we have

used �2�1�. Therefore II�7� is of order n2r7
n by Lemma 4.5. In the case �8�, we

need to give a bound of∑
n<h<j<m<r≤2n

1≤k<i<s<l≤n
x �=0

∑
0≤α�β<p
0≤γ+δ<q

qi−k�0� x�α�qs−i�x�0�β�p− α�

× ql−s�0� x�0� p− β�ph−l0x �x�0�qj−h�0� x�γ�
× q

m−j
0 �x�q� δ�qr−m�x�0�0� q− γ − δ�r2n−rrk�

which is not larger than

pq2 ∑
1≤k+i+s+l+h

+j+m+r≤2n
x �=0

0≤α<p

qi�0� x�α�ps�x�0�pl0�0� x�ph0x�x�0�pj�0� x�

× f
�q�
m prx�x�0�r2n−r−m−j−h−l−s−i−krk�
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The method of calculation of this summation is quite similar to that of (5.5).
Moreover, we have that II�9� is not larger than

∑
n<h<j<m<r≤2n

1≤k<i<l<s≤n
x �=0

∑
0≤α+β<p
0≤γ+δ<q

qi−k�0� x�α�ql−i0 �x�p�β�

× qs−l�x�0�0� p− α− β�ph−s0x �0�0�qj−h�0� x�γ�
× q

m−j
0 �x�q� δ�qr−m�x�0�0� q− γ − δ�r2n−rrk�

which is bounded by

pq
∑

1≤k+i+l+s+h
+j+m+r≤2n

x �=0
0≤α<p
0≤γ<q

qi�0� x�α�f�p�
l psx�x�0�fhqj�0� x�γ�

× f
�q�
m prx�x�0�r2n−r−m−j−h−s−l−i−krk�

This can be estimated in the same manner as (5.7). Then each term II�8� and
II�9� is O�n2r7

n�. Their calculations are left to the reader. Thus we can conclude
that II ≤ C17n

2r7
n.

Now we will estimate the term III and have that

III = ∑
n<h<j≤2n
0<i<k≤n

∑
h<r≤2n
j<m≤2n
i<l≤n
k<s≤n

E
[
Θn
i� l� j�m�p�q�Θn

k� s� h� r�p�q�
]
�

To obtain its order, we also need to divide the summation into the following
nine parts:

(1) 1 ≤ i < l < k < s ≤ n < h < r < j < m ≤ 2n;
(2) 1 ≤ i < k < l < s ≤ n < h < r < j < m ≤ 2n;
(3) 1 ≤ i < k < s < l ≤ n < h < r < j < m ≤ 2n;
(4) 1 ≤ i < l < k < s ≤ n < h < j < r < m ≤ 2n;
(5) 1 ≤ i < k < l < s ≤ n < h < j < r < m ≤ 2n;
(6) 1 ≤ i < k < s < l ≤ n < h < j < r < m ≤ 2n;
(7) 1 ≤ i < l < k < s ≤ n < h < j < m < r ≤ 2n;
(8) 1 ≤ i < k < l < s ≤ n < h < j < m < r ≤ 2n;
(9) 1 ≤ i < k < s < l ≤ n < h < j < m < r ≤ 2n.

For u = 1�2� � � � �9, the notations III�u� are defined in the same way as II�u�.
The method of calculating each term except III�1� is analogous with that used
in estimating II, and we can conclude that they are of order n2r7

n. We can
estimate the terms III�2�, III�4� and III�7� by the same method that we have



620 Y. HAMANA

applied to estimate �5�5�. Indeed, the term III�7�, for example, is bounded by∑
n<h<j<m<r≤2n

1≤i<l<k<s≤n
x �=0

∑
0≤α+β<q

ql−ix �0�p�pk−l0x �0� x�qs−k0 �x�p�

× ph−s0x �x� x�qj−h�x�0�α�qm−j
0 �x�q�β�

× qr−m�x�0�0� q− α− β�r2n−rrk

≤ q
∑

1≤i+l+k+s+h
+j+m+r≤2n

x �=0
0≤α<q

f
�p�
l pk0x�0� x�f�p�

s fhq
j�x�0�α�

× f
�q�
m prx�x�0�r2n−r−m−j−h−s−k−l−iri�

Then we have that III�7� = O�n2r7
n� by applying �5�2�. The term III�3� can be

estimated similarly to II�2�. Moreover, we can estimate the terms III�5� and
III�8� by the method which has been used in estimating �5�7� and can calculate
III�6� and III�9� similarly to II�5�. Their calculations are also left to the reader.

To bring the proof of Lemma 3.1 to an end, we must estimate the term III�1�.
In calculating the other terms, we need not consider that h is larger than n
and s or l is less than or equal to n since this fact hardly has any effect on
their estimates. However, the fact that h cannot be close to s when s is away
from n affects the estimate of III�1� essentially, and the inequality

�5�8�
m∑
j=1

fn+j ≤ rn

plays an important role to give an upper bound of III�1�. The remainder of this
section is devoted to the calculation of III�1�. For 1 ≤ i < l < k < s ≤ n < h <
r < j < m ≤ 2n, we have that

E
[
Θn
i� l� j�m�p�q�Θn

k� s� h� r�p�q�
]

= ∑
x �=0

ql−ix �0�p�pk−l0x �0� x�qs−k0 �x�p�

× ph−s0x �x� x�qr−h0 �x�q�pj−r0x �x�0�qm−j
x �0�q�

×P0�τx > 2n−m� τ0 > 2n−m�Px�τ0 > i� τx > i��
Then it is sufficient to estimate

�5�9� ∑
n<h<r<j<m≤2n

1≤i<l<k<s≤n
x �=0

f
�p�
l−ip

k−l
0x �0� x�f�p�

s−kfh−sf
�q�
r−hp

j−r
0x �x�0�f�q�

m−jr2n−mri�

Here the events �τx > 2m − n� and �τ0 > i� have been neglected and the
estimate �5�1� has been applied. We now observe the contribution for 2n−m ≤
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2nr8
n in �5�9�. Note that

∑
x �=0 p

u
0 �0� x�pw0 �x�0� = fu+w and dominate r2n−m

and ri by 1. Then we may consider the summation

�5�10�
2n∑

m=2n−2nr8
n

∑
1≤i<l<k<s
<h<r<j<m

f
�p�
l−ifk−l+j−rf

�p�
s−kfh−sf

�q�
r−hf

�q�
m−j�

We first sum f
�p�
l−i over i and dominate its summation by 1, and next sum

fk−l+j−r over l and dominate its summation by 1. In a similar way, we sum over
k, s, h and j in this order and dominate the summation by 1 each time. Then
we have that �5�10� is not larger than 4n2r8

n. Hence we can concentrate upon
the calculation of �5�9� in the case that 2n−m > 2nr8

n, and can replace r2n−m
with a constant multiple of r2n and also rn in this case since rn ∼ c�log n�−1.
Then we have that �5�9� is bounded by

�5�11�

C18rn
∑

n<h<r<j<m≤2n
1≤i<l<k<s≤n

x �=0

f
�p�
l−ip

k−l
0x �0� x�f�p�

s−kfh−sf
�q�
r−hp

j−r
0x �x�0�f�q�

m−jri

+C19n
2r8

n�

In the first step, we calculate

∑
n<h<r<j<m≤2n

fh−sf
�q�
r−hp

j−r
0x �x�0�f�q�

m−j�

which is equal to

�5�12� ∑
1≤h+r+j+m≤n

fn+h−sf
�q�
r p

j
0x�x�0�f�q�

m �

The summations on m and r are dominated by 1. Using the inequality �5�8�,
a bound of �5�12� is

∑
1≤h+j≤n

fn+h−sp
j
0x�x�0� ≤

n∑
j=1

p
j
0x�x�0�rn−s�

and this is not larger than

n∑
j=1

p
j
0�x�0�rn−jrn−s +

n∑
j=1

p
j
0�x�0�Px�τ0 < τx ≤ n− j�rn−s

≤
n∑
j=1

pj�x�0�r2
n−jrn−s

+ ∑
1≤j+u+w≤n

pj�x�0�pu�0� x�pw�x�0�r3
n−j−u−wrn−s�
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Here we have used Lemmas 4.1 and 4.2 after applying Lemma 4.3. Hence the
first term of �5�11� is bounded by

C18rn
∑

1≤i+l+k+s≤n
1≤j≤n
x �=0

f
�p�
l pk0x�0� x�f�p�

s pj�x�0�r2
n−jrn−s−k−l−iri

+C18rn
∑

1≤i+l+k+s≤n
1≤j+u+w≤n

x �=0

f
�p�
l pk0x�0� x�f�p�

s pj�x�0�

× pu�0� x�pw�x�0�r3
n−j−u−wrn−s−k−l−iri�

In the next step, we estimate it and so can finish obtaining an upper bound of
III. First summing over i and applying (4.1) and Lemma 2.2 and then summing
over l and s, we have that it is not larger than

C20nr
3
n

∑
1≤k≤n
1≤j≤n
x �=0

pk0x�0� x�pj�x�0�r2
n−j(5.13)

+C20nr
3
n

∑
1≤k≤n

1≤j+u+w≤n
x �=0

pk0x�0� x�pj�x�0�pu�0� x�pw�x�0�r3
n−j−u−w�(5.14)

By Lemma 4.3, �5�13� is bounded by

C20nr
3
n

∑
1≤k� j≤n
x �=0

pkx�0� x�pj�x�0�r2
n−jrn−k

+C20nr
3
n

∑
1≤k� j≤n
x �=0

pkx�0� x�P0�τx < τ0 ≤ n− k�pj�x�0�r2
n−j�

Now we will estimate these two terms by using Lemmas 4.1, 4.2, 4.4 and the
method of changing rn−a into a constant multiple of rn which was used in
�5�9�. The first term is dominated by

�5�15� C20nr
3
n

∑
1≤k� j≤n
x �=0

pk�0� x�pj�x�0�r2
n−jr

2
n−k�

Considering the contributions for n−k ≤ nr7
n and n−j ≤ nr7

n, it turns out that
rn−j and rn−k can be replaced with rn. Then �5�15� is of order nr7

n ×T1�1�n�,
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which is O�n2r7
n� by Lemma 4.4. The second term is not larger than

C20nr
3
n

∑
1≤k+v+t≤n

1≤j≤n
x �=0

pkx�0� x�pv0�x�0�ptx�0� x�pj�x�0�r2
n−j

≤ C20nr
3
n

∑
1≤k+v+t≤n

1≤j≤n
x �=0

pk�0� x�pv�x�0�pt�0� x�pj�x�0�r2
n−jr

3
n−k−v−t�

By the same argument as we used in estimating the first term, we can replace
rn−j and rn−k−v−t with rn and it is of order nr8

n × T2�2�n� = O�n2r8
n�. The

remaining term (5.14) can be estimated by the same argument and so we
omit its calculation.

Hence we have that III ≤ C21n
2r7

n and we immediately conclude that
E
∣∣Nn�p�q�

∣∣2 is O�n2r7
n� for p�q ≥ 2.

We will next estimate E
∣∣Nn�1� p�

∣∣2 for p ≥ 1; however, the method is the
same as that used in obtaining a bound of E

∣∣Nn�p�q�
∣∣2 for p�q ≥ 2. Moreover,

we have that E
∣∣Nn�1� p�

∣∣2 = E
∣∣Nn�p�1�∣∣2 for p ≥ 1 by considering the re-

versed random walks. Then the remainder of the proof is left to the reader.

Remark. To calculate more carefully, we can sharpen the result of Lemma
3.1, that is,

E
∣∣N0�1

n �p�q�∣∣2 = O�n2r8
n�

for p�q ≥ 1.

6. The proof of Lemma 3.2. The method used to prove Lemma 3.2 is
the same as we used in the proof of Lemma 3.1. However the calculation is
somewhat more complicated. We can obtain �3�4� by considering the reversed
random walks in �3�3�, and so it is sufficient to prove �3�3�.

For simplicity, we put Ln�p� = L0�1
n �p� = ∣∣S�0� n� ∩Sp�n�2n�∣∣. Recall the

indicators Zj
i , Yi

j and Wj
i �p� defined in Section 5. The random variable Ln�p�

can be expressed by summations of these indicator random variables, and then
we have that for p ≥ 2,

Ln�1� =
2n∑

j=n+1

n∑
i=1

Zn
i Y

n
j Z

2n
j χ�Si = Sj��

Ln�p� =
2n∑

j=n+1

n∑
i=1

2n∑
l=j+1

Zn
i Y

n
j W

l
j �p− 1�Z2n

l χ�Si = Sj��

The idea of the calculation of �3�3� for p ≥ 2 is quite similar to that for
p = 1. So we will prove that only

E
∣∣Ln�1� −Ln�2�

∣∣2 = O�n2r7
n��
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For 1 ≤ i ≤ n < j ≤ 2n, let

�ni� j�1� = Zn
i Y

n
j Z

2n
j χ�Si = Sj��

�ni� j�2� =
2n∑

l=j+1

Zn
i Y

n
j W

l
j �1�Z2n

l χ�Si = Sj��

and then we have that

Ln�1� =
2n∑

j=n+1

n∑
i=1

�ni� j�1�� Ln�2� =
2n∑

j=n+1

n∑
i=1

�ni� j�2��

Note that �ni� j�1� and �ni� j�2� are also indicator random variables. Then we
have that

E
∣∣Ln�1� −Ln�2�

∣∣2
=

2n∑
j=n+1

n∑
i=1

E
{
�ni� j�1� − �ni� j�2�

}2

+ 2
∑

n<h<j≤2n
1≤k<i≤n

E
{
�ni� j�1� − �ni� j�2�

}{
�nk�h�1� − �nk�h�2�

}

+ 2
∑

n<h<j≤2n
1≤i<k≤n

E
{
�ni� j�1� − �ni� j�2�

}{
�nk�h�1� − �nk�h�2�

}

=� I + 2II + 2III�

The term I can be estimated easily. Indeed, for 1 ≤ i ≤ n < j ≤ 2n,

E
{
�ni� j�1�

}2 = E�ni� j�1� = fj−ir2n−j ≤ fj−i�

E
{
�ni� j�2�

}2 = E�ni� j�2� =
2n∑

l=j+1

fj−ifl−jr2n−l ≤ fj−i�

Thus we obtain that I ≤ 2n.
We next calculate II by estimating

II�1� �= ∑
n<h<j≤2n
1≤k<i≤n

E
[
�ni� j�1��nk�h�1� − �ni� j�1��nk�h�2�

]

II�2� �= ∑
n<h<j≤2n
1≤k<i≤n

E
[
�ni� j�2��ni� j�2� − �ni� j�2��nk�h�1�

]

separately. Note that we have no need for lower bounds of II�1� and II�2� since
E
∣∣Ln�1� −Ln�2�

∣∣2 is nonnegative.
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From now on, we give an upper bound of II�1�. For 1 ≤ k < i < h < j ≤ 2n,

�6�1�

E
[
�ni� j�1��nk�h�1�

]
= ∑

x �=0

pi−k0 �0� x�ph−i0x �x�0�pj−h0x �0� x�

×Px�τ0 > 2n− j� τx > 2n− j��

�6�2�

E
[
�ni� j�1��nk�h�2�

]
= ∑

h<l<j

x �=0

pi−k0 �0� x�ph−i0x �x�0�pl−h0x �0�0�pj−l0x �0� x�

×Px�τ0 > 2n− j� τx > 2n− j�
+ ∑

j<l≤2n
x �=0

pi−k0 �0� x�ph−i0x �x�0�pj−h0x �0� x�pl−j0x �x�0�

×P0�τx > 2n− l� τ0 > 2n− l��
Summing (6.1) over all indices, we have that

�6�3�

∑
n<h<j≤2n
1≤k<i≤n

E
[
�ni� j�1��nk�h�1�

]

= ∑
n<h≤2n
1≤k<i≤n
x �=0

2n−h∑
j=1

pi−k0 �0� x�ph−i0x �x�0�pj0x�0� x�

×Px�τ0 > 2n− j− h� τx > 2n− j− h��
By neglecting the second part of �6�2�, we obtain that

�6�4�

∑
n<h<j≤2n
1≤k<i≤n

E
[
�ni� j�1��nk�h�2�

]

≥ ∑
n<h<l<j≤2n

1≤k<i≤n
x �=0

pi−k0 �0� x�ph−i0x �x�0�pl−h0x �0�0�

× p
j−l
0x �0� x�Px�τ0 > 2n− j� τx > 2n− j��

The right-hand side of �6�4� is equal to∑
n<h≤2n
1≤k<i≤n
x �=0

∑
1≤j+l≤2n−h

pi−k0 �0� x�ph−i0x �x�0�pl0x�0�0�pj0x�0� x�

×Px�τ0 > 2n− j− l− h� τx > 2n− j− l− h��
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Using the inequality that Pz�τw > a− b� τz > a− b� ≥ Pz�τw > a� τz > a� for
any a > b ≥ 1 and z�w ∈ Z

d, we have that

�6�5�
N∑
l=1

plxy�x� x�Pz�τw > N− l� τz > N− l�

≥ Px�τx ≤N� τx < τy�Pz�τw > N� τz > N�
for any N ≥ 1 and x�y� z�w ∈ Z

d with x �= y. Then the left-hand side of (6.4)
is not less than

�6�6�

∑
n<h≤2n
1≤k<i≤n
x �=0

∑
1≤j≤2n−h

pi−k0 �0� x�ph−i0x �x�0�pj0x�0� x�

×P0�τ0 ≤ 2n− h− j� τ0 < τx�
×Px�τ0 > 2n− j− h� τx > 2n− j− h��

Note that, for a ≥ 1 and x �= y,

�6�7� 1 −Px�τx ≤ a� τx < τy� = ra +Px�τy < τx ≤ a��
Combining �6�3� and �6�6�, we have that

II�1� ≤ ∑
n<h≤2n
1≤k<i≤n
x �=0

2n−h∑
j=1

pi−k0 �0� x�ph−i0x �x�0�pj0x�0� x�

× {r2n−h−j +P0�τx < τ0 ≤ 2n− h− j�}r2n−h−j�

In calculating this summation, we need not consider the contribution that h
is larger than n and that i is not larger than n. In this case, the fact that
h cannot become close to i if i is apart from n has a small effect in this
summation, and so we can extend the range of the summation over k, i, and
h to �1 ≤ k < i < h ≤ 2n�. Then we have that

II�2� ≤ T
2�0
1�1�1�0�0�0�0�2n� +T

1�0
1�1�2�1�0�0�0�2n� = O�n2r7

n��
Here Lemma 4.1 and (2.1) have been applied and next Lemma 4.5 has been
used.

We now show that II�2� is dominated by a constant multiple of n2r7
n, which

leads us to a bound for the term II of the form C22n
2r7

n. For 1 ≤ k < i < h <
j ≤ 2n,

�6�8�

E
[
�ni� j�2��nk�h�1�

]
= ∑

j<l≤2n
x �=0

pi−k0 �0� x�ph−i0x �x�0�pj−h0x �0� x�pl−j0x �x� x�

×Px�τ0 > 2n− l� τx > 2n− l��
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�6�9�

E
[
�ni� j�2��nk�h�2�

]
= ∑

j<l≤2n
h<m<j

x �=0

pi−k0 �0� x�ph−i0x �x�0�pm−j
0x �0�0�pj−m0x �0� x�

× p
l−j
0x �x� x�Px�τ0 > 2n− l� τx > 2n− l�

+ ∑
j<l≤2n
j<m<l

x �=0

pi−k0 �0� x�ph−i0x �x�0�pj−h0x �0� x�pm−j
0x �x�0�

× pl−m0x �0� x�Px�τ0 > 2n− l� τx > 2n− l�
+ ∑

j<l≤2n
l<m≤2n
x �=0

pi−k0 �0� x�ph−i0x �x�0�pj−h0x �0� x�pl−j0x �x� x�

× pm−l
0x �x�0�P0�τx > 2n−m� τ0 > 2n−m��

Note that for a > b ≥ 1 and x �= y,

�6�10� Px�τy > a− b� τx > a− b�
≤ Px�τy > a� τx > a� + �ra−b − ra� +Px�τy < a < τx��

Hence, employing (6.10) and p
m−j
0x �0�0� ≤ fm−j, the sum of the first part of

(6.9) over k� i� h and j is not larger than

�6�11�

∑
n<h≤2n
1≤k<i≤n
x �=0

∑
1≤m+j+l≤2n−h

pi−k0 �0� x�ph−i0x �x�0�fmpj0x�0� x�pl0x�x� x�

×Px�τ0 > 2n− l− j− h� τx > 2n− l− j− h�

�6�12�
+ ∑

n<h≤2n
1≤k<i≤n
x �=0

∑
1≤m+j+l≤2n−h

pi−k0 �0� x�ph−i0x �x�0�fmpj0x�0� x�

× fl�r2n−l−j−m−h − r2n−l−j−h�

�6�13�
+ ∑

n<h≤2n
1≤k<i≤n
x �=0

∑
1≤m+j+l≤2n−h

pi−k0 �0� x�ph−i0x �x�0�fmpj0x�0� x�

× flPx�τ0 < 2n− l− j− h < τx��
Taking the summation over m in (6.12), we have that, by Lemma 2.4, a bound
of (6.12) is

C23
∑

1≤k<i<h≤2n
x �=0

∑
1≤l+j≤2n−h

pi−k0 �0� x�ph−i0x �x�0�pj0x�0� x�flr4
2n−j−l−h�
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which turns out of order T4�0
1�1�1�0�0�0�1�2n� by (2.1). Then we have that (6.12) is

O�n2r9
n� by Lemma 4.5. We next estimate (6.13). We first sum the summands

in (6.13) overm, dominate its summation by 1 and next apply (2.1) and Lemma
4.1. Then we obtain that (6.13) is bounded by

∑
1≤k+i+h+l≤2n

x �=0

pix�0� x�ph0x�x�0�pj0x�0� x�

× fjPx�τ0 < 2n− l− j− h− i− k < τx�
≤ ∑

1≤k+i+h+j
+l+s≤2n
x �=0

pix�0� x�ph0x�x�0�pj0x�0� x�psx�x�0�flr2n−l−j−h−i−k−s

= T
1�0
1�1�1�1�0�0�1�2n��

Hence a bound of (6.13) is O�n2r7
n�. On the other hand, summing (6.8) over

all indices, we have that

�6�14�

∑
n<h<j≤2n
1≤k<i≤n

E
[
�ni� j�2��nk�h�1�

]

= ∑
n<h≤2n
1≤k<i≤n
x �=0

∑
1≤l+j≤2n−h

pi−k0 �0� x�ph−i0x �x�0�pj0x�0� x�pl0x�x� x�

×Px�τ0 > 2n− l− j− h� τx > 2n− l− j− h��

By taking the summation on m in (6.11), it is easy to obtain that (6.11) is
dominated by (6.14). In other words, (6.11) minus (6.14) is not larger than
zero. Our purpose is only to give an upper bound of II�2�, and so we can
neglect the contribution for the nonpositive part. Then we obtain that the
sum of the first part of (6.9) minus (6.8) cannot exceed a constant multiple
of n2r7

n. It remains to estimate the summations of the second and the third
parts of (6.9). If we succeed in obtaining both summations are of order n2r7

n,
we can conclude that an upper bound of II�2� is a constant multiple of n2r7

n.
Dominating Px�τ0 > 2n − l� τx > 2n − l� by r2n−l, we have that a bound of
the sum of the second part of (6.9) over k� i� h and j is

∑
1≤k+i+h+j

+m+l≤2n
x �=0

pi0�0� x�ph0x�x�0�pj0x�0� x�pm0x�x�0�pl0x�0� x�r2n−l−m−j−h−i−k

= T
1�0
2�2�1�0�0�0�0�2n� = O�n2r10

n ��
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Here (2.1) and Lemma 4.5 have been applied. The summation of the third part
of (6.9) is not larger than∑

1≤k+i+h+j
+l+m≤2n
x �=0

pi0�0� x�ph0x�x�0�pj0x�0� x�flpm0x�x�0�r2n−m−l−j−h−i−k

= T
1�0
1�2�1�0�0�0�1�2n��

which is of order n2r8
n. Therefore we can conclude that II ≤ C24n

2r7
n.

The remainder of this section is devoted to the calculation of an upper bound
of term III. We aim to estimate the two summations∑

n<h<j≤2n
1≤i<k≤n

E
[
�ni� j�1��nk�h�1� − �ni� j�1��nk�h�2�

]
�(6.15)

∑
n<h<j≤2n
1≤i<k≤n

E
[
�ni� j�2��ni� j�2� − �ni� j�2��nk�h�1�

]
�(6.16)

Applying the same observation as II�1�, it can be easily obtained that (6.15) is
bounded by∑

n<h<j≤2n
1≤i<k≤n
x �=0

pk−i0 �0� x�ph−k0x �x� x�pj−h0x �x�0�P0�τx > 2n− j� τ0 > 2n− j�

− ∑
n<h<j≤2n
1≤i<k≤n
x �=0

j−1∑
l=h+1

pk−i0 �0� x�ph−k0x �x� x�pl−h0x �x� x�pj−l0x �x�0�

×P0�τx > 2n− j� τ0 > 2n− j�
=� III�1� − III�2��

We employ the same method used in estimating the left-hand side of (6.4),
and can obtain that

III�2� = ∑
n<h≤2n
1≤k<i≤n
x �=0

∑
1≤l+j≤2n−h

pk−i0 �0� x�ph−k0x �x� x�pl0x�x� x�pj0x�x�0�

×P0�τx > 2n− j− l− h� τ0 > 2n− j− l− h�

≥ ∑
n<h≤2n
1≤i<k≤n
x �=0

2n−h∑
j=1

pk−i0 �0� x�ph−k0x �x� x�pj0x�x�0�

×Px�τx ≤ 2n− j− h� τx < τ0�
×P0�τx > 2n− j− h� τ0 > 2n− j− h��
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where (6.5) has been applied. By (6.7), we have that III�1�− III�2� is not larger
than

∑
n<h≤2n
1≤i<k≤n
x �=0

2n−h∑
j=1

pk−i0 �0� x�fh−kpj0x�x�0�r2
2n−j−h(6.17)

+ ∑
n<h≤2n
1≤i<k≤n
x �=0

2n−h∑
j=1

pk−i0 �0� x�fh−kpj0x�x�0�r2n−j−h

×Px�τ0 < τx ≤ 2n− j− h��

(6.18)

We make the substitutions that h− n = m and k− i = u in the summations
on h and i in (6.17), respectively, and then have that (6.17) is equal to

∑
1≤m≤n

1≤u<k≤n
x �=0

n−m∑
j=1

pu0 �0� x�fn+m−kp
j
0x�x�0�r2

n−j−m�

By Lemmas 4.1 and 4.3, this summation is bounded by∑
1≤m+j≤n
1≤u<k≤n

x �=0

pu0 �0� x�fn+m−kp
j
0�x�0�r3

n−j−m(6.19)

+ ∑
1≤m+j+v+w≤n

1≤u<k≤n
x �=0

pu0 �0� x�fn+m−kp
j
0�x�0�pvx�0� x�pw0 �x�0�r2

n−j−m�(6.20)

The term (6.19) is equal to

�6�21� ∑
1≤m+j≤n
1≤u<k≤n

fu+jfn+m−kr
3
n−j−m�

Note that, by �2�3�, it can be obtained that for 1 ≤ a < b,

b∑
j=a+1

fj ≤ C25
log�a/b�

�log a��log b� �

Take the summation on u and k over �1� n
 in (6.21). Then we have that (6.21)
and also (6.19) are not larger than a constant multiple of

�6�22� ∑
1≤m+j≤n

log��n+ j�/j� log��n+m�/m�
�log�n− j−m��3 log j log�n+ j� logm log�n+m� �

The contribution for n−j−m ≤ nr8
n in (6.22) is O�n2r8

n�. Thus we can consider
only the summation on 1 ≤ m + j ≤ n − nr8

n and can replace log�n − j −m�
with log n in this case. Apply the same method to log j and logm in (6.22) by
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observing the contributions for j ≤ nr5
n and m ≤ nr5

n, respectively. Hence a
bound of (6.22) is

C26
1

�log n�7

n∑
m=1

n−m∑
j=1

log
n+ j

j
log

n+m

m

∼ C26
n2

�log n�7

∫ 1

0
dx
∫ 1−x

0
log

1 + y

y
log

1 + x

x
dy

≤ C27
n2

�log n�7
�

which implies that a bound of (6.19) is O�n2r7
n�. We shall show that the term

(6.20) is of order n2r7
n. Since rn is nonincreasing, we can bound rn−j−m by

rn−j−m−v−w. We first sum on k and use an analogy of (5.8) and next apply
Lemma 4.2 four times. Then the term (6.20) is dominated by

�6�23� ∑
1≤m+j+v+w≤n

1≤u≤n
x �=0

pu�0� x�pj�x�0�pv�0� x�pw�x�0�r5
n−j−m−v−wrn−urm�

Since the contribution for n − u ≤ nr5
n is O�n2r8

n�, we can regard rn−u as a
constant multiple of rn. Applying (4.1) and Lemma 2.2 to the summation on
m, a bound of (6.23) is

C28nr
7
n

∑
1≤j+v+w≤n

1≤u≤n
x �=0

pu�0� x�pj�x�0�pv�0� x�pw�x�0� ≤ C28nr
7
n ×T2�2�n��

Then (6.20), and also (6.17) are of order n2r7
n by Lemma 4.4. The calculation of

(6.18) is easier than that of (6.17). We must estimate (6.17) by noting the fact
that h cannot be close to k when s is away from n. However, it has no effect to
estimate (6.18). Indeed, making the substitution k− i = u in the summation
on i and dominating the summation on k by 1, we have that (6.18) is bounded
by ∑

1≤u<h≤2n
x �=0

2n−h∑
j=1

pu0 �0� x�pj0x�x�0�r2n−j−hPx�τ0 < τx ≤ 2n− j− h��

which is equal to∑
1≤u+h+j

+v+w≤2n
x �=0

pu0 �0� x�pj0x�x�0�r2n−j−h−up
v
x�0� x�pw0 �x�0�r2n−j−h−u−v−w

+ ∑
1≤u+h+j

+v+w≤2n
x �=0

pu0 �0� x�pj0x�x�0�r2n−j−h−u

× pvx�0� x�pw0 �x�0�Px�τ0 < τx ≤ 2n− j− h− u− v−w��
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where Lemma 4.1 has been applied. Noting the monotonicity of rn, the first
summation is not larger than T

0�2
0�1�2�1�0�0�0�2n� and the second one is bounded

by T
0�1
0�1�3�2�0�0�0�2n� by applying Lemma 4.1 again. Then (6.18) is of order

n2r7
n by Lemma 4.5. Therefore we conclude that III�1� − III�2� is not larger

than C29n
2r7

n.
We next calculate (6.16) and obtain that∑

n<h<j≤2n
1≤i<k≤n

E
[
�ni� j�2��nk�h�1�

]

= ∑
n<h<j≤2n
1≤i<k≤n
x �=0

2n∑
l=j+1

pk−i0 �0� x�ph−k0x �x� x�pj−h0x �x�0�pl−j0x �0�0�

×P0�τx > 2n− l� τ0 > 2n− l��
It is clear that this summation is equal to∑

n<h≤2n
1≤i<k≤n
x �=0

∑
1≤l+j≤2n−h

pk−i0 �0� x�ph−k0x �x� x�pj0x�x�0�pl0x�0�0�

×P0�τx > 2n− l− j− h� τ0 > 2n− l− j− h��
which is denoted by III�3�. Moreover, we have that∑

n<h<j≤2n
1≤i<k≤n

E
[
�ni� j�2��ni� j�2�

]

= ∑
n<h<j<l≤2n

1≤i<k≤n
x �=0

j−1∑
m=h+1

pk−i0 �0� x�ph−k0x �x� x�pm−h
0x �x� x�pj−m0x �x�0�

× p
l−j
0x �0�0�P0�τx > 2n− l� τ0 > 2n− l�

+ ∑
n<h<j<l≤2n

1≤i<k≤n
x �=0

l−1∑
m=j+1

pk−i0 �0� x�ph−k0x �x� x�pj−h0x �x�0�pm−j
0x �0� x�

× pl−m0x �x�0�P0�τx > 2n− l� τ0 > 2n− l�

+ ∑
n<h<j<l≤2n

1≤i<k≤n
x �=0

2n∑
m=l+1

pk−i0 �0� x�ph−k0x �x� x�pj−h0x �x�0�pl−j0x �0�0�

× pm−l
0x �0� x�Px�τ0 > 2n−m� τx > 2n−m�

=� III�4� + III�5� + III�6��
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Hence (6.16) is equal to −III�3� + III�4� + III�5� + III�6�. Neglecting the event
that �τ0 > 2n− l� and using the inequality ph−k0x �x� x� ≤ fh−k, we have that

III�5� ≤ ∑
1≤i<k<h<j
<m<l≤2n

x �=0

pk−i0 �0� x�fh−kpj−h0x �x�0�pm−j
0x �0� x�pl−m0x �x�0�r2n−l

= T
1�0
1�2�1�0�0�0�1�2n� = O�n2r8

n��
Then the term III�5� has little effect. Moreover, the term III�6� is dominated by

�6�24� ∑
n<h<j<l<m≤2n

1≤i<k≤n
x �=0

pk−i0 �0� x�fh−kpj−h0x �x�0�fl−jpm−l
0x �0� x�r2n−m�

To estimate (6.24), we need to adopt the same observation as we have used
in estimating (5.9). Namely, we must derive the effect of the fact that h is not
able to be close to i if i is away from n. We first observe the contribution for
2n−m ≤ 2nr8

n in (6.24), and then need to calculate a bound of

�6�25�
2n∑

m=2n−2nr8
n

∑
1≤i<k<h<j<l<m

x �=0

pk−i0 �0� x�fh−kpj−h0x �x�0�fl−jpm−l
0x �0� x�r2n−m�

We dominate r2n−m by 1, apply (2.1) to pk−i0 �0� x�, take the summation over i
and then have that (6.25) is bounded by

2n∑
m=2n−2nr8

n

∑
1≤k<h<j<l<m

x �=0

P0�τx ≤ k�fh−kpj−h0 �x�0�fl−jpm−l
0 �0� x��

Moreover, dominating P0�τx ≤ k� by 1 and next summing over k and x, this
summation is not larger than

2n∑
m=2n−2nr8

n

∑
1≤h<j<l<m

fj−h+m−lfl−j�

It is easy to obtain that this summation and also (6.25) are not larger than
4n2r8

n. Therefore we can concentrate on the case 2n − m > 2nr8
n and then

can dominate r2n−m by a constant multiple of rn under this situation. Conse-
quently, we may estimate only

�6�26� rn
∑

n<h<j<l<m≤2n
1≤i<k≤n
x �=0

pk−i0 �0� x�fh−kpj−h0x �x�0�fl−jpm−l
0x �0� x�

instead of (6.24). We first calculate

�6�27� ∑
n<h<j<l<m≤2n

fh−kp
j−h
0x �x�0�fl−jpm−l

0x �0� x��
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which is equal to

∑
1≤h+j+l+m≤n

fn+h−kp
j
0x�x�0�flpm0x�0� x��

Dominating the summation on l by 1 and next summing over h, then (6.27)
is bounded by

∑
1≤j+m≤n

p
j
0x�x�0�pm0x�0� x�rn−k�

Therefore (6.26) is not larger than

�6�28�

rn
∑

1≤j+m≤n
1≤i+k≤n
x �=0

pk0�0� x�pj0x�x�0�pm0x�0� x�rn−k−i

≤ rn
∑

1≤j+m≤n
1≤i+k≤n
x �=0

pk�0� x�pj0x�x�0�pm0x�0� x�r2
n−k−i�

The fundamental calculations show that∑
1≤j+m≤n

p
j
0x�x�0�pm0x�0� x�

≤ ∑
1≤j+m≤n

pj�x�0�pm�0� x�r4
n−m−j

+ 2
∑

1≤j+m+u+v≤n
pj�x�0�pm�0� x�pu�0� x�pv�x�0�r5

n−m−j−u−v

+ ∑
1≤j+m+u

+v+w+s≤n

pj�x�0�pm�0� x�pu�0� x�pv�x�0�

× pw�0� x�ps�x�0�r6
n−m−j−u−v−w−s�

where Lemmas 4.1, 4.2 and 4.3 have been applied. Consequently, we can con-
clude that the right-hand side of (6.28) is of order n2r7

n. Indeed, for example,
we have that, by Lemma 2.2,

rn
∑

1≤j+m≤n
1≤i+k≤n
x �=0

pk�0� x�pj�x�0�pm�0� x�r2
n−k−ir

4
n−m−j

≤ C30nr
3
n

∑
1≤j+m≤n

1≤k≤n
x �=0

pk�0� x�pj�x�0�pm�0� x�r4
n−m−j�
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which is dominated by a constant multiple of

nr7
n

∑
1≤j+m≤n

1≤k≤n
x �=0

pk�0� x�pj�x�0�pm�0� x� ≤ nr7
nT2�1�n� = O�n2r7

n��

Here we have applied the fact that rn−m−j can be replaced by rn, obtained
by observing the contribution for n − m − j ≤ nr8

n. The remainder of the
calculation of (6.26) is left to the reader. Then we have that III�6� is of order
n2r7

n.
It remains to calculate an upper bound of III�4� − III�3�. If we succeed in

proving that III�4�−III�3� ≤ C31n
2r7

n, we have that III is not larger thanC32n
2r7

n

and can finish the proof of Lemma 3.2. By (6.10), the term III�4� is bounded
by

∑
n<h≤2n
1≤i<k≤n
x �=0

∑
1≤m+j+l≤2n−h

pk−i0 �0� x�ph−k0x �x� x�pm0x�x� x�pj0x�x�0�pl0x�0�0�

×P0�τx > 2n− l− j− h� τ0 > 2n− l− j− h�

(6.29)

+ ∑
n<h≤2n
1≤i<k≤n
x �=0

∑
1≤m+j+l≤2n−h

pk−i0 �0� x�fh−kfmpj0x�x�0�fl

× �r2n−l−j−h−m − r2n−l−j−h�
(6.30)

+ ∑
n<h≤2n
1≤i<k≤n
x �=0

∑
1≤m+j+l≤2n−h

pk−i0 �0� x�fh−kfmpj0x�x�0�fl

×P0�τx < 2n− l− j− h < τ0��

(6.31)

It is clear that (6.29) is not larger than III�3� by summing over m. In other
words, the term (6.29) minus III�3� is nonpositive, and this difference can
be neglected since we aim to obtain an upper bound of III. The method of
estimating (6.30) is the same that we have used in (6.12). Indeed, applying
Lemma 2.4 to the summation on m, a bound of (6.30) is

∑
n<h≤2n
1≤i<k≤n
x �=0

∑
1≤l+j≤2n−h

pk−i0 �0� x�fh−kpj0x�x�0�flr4
2n−l−j−h�

which is of order T4�0
0�1�1�0�0�0�2�2n� by (2.1). Using Lemma 4.5, we obtain that

(6.30) is O�n2r7
n�. To end the proof, we may show that (6.31) is of order n2r7

n.
Dominating the summation on m by 1 and applying Lemma 4.1, a bound of
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(6.31) is

�6�32� ∑
n<h≤2n
1≤i<k≤n
x �=0

∑
1≤j+l≤2n−h

pk−i0 �0� x�fh−kpj0x�x�0�fl
2n−h−l−j∑

u=1

pux�x�0�r2n−h−j−l−u�

Make the substitution v = k− i in the summation on i and w = h− n in the
summation on h. Then (6.32) is equal to∑

1≤w≤n
1≤v<k≤n

x �=0

∑
1≤j+l+u≤n−w

pv0�0� x�fn+w−kp
j
0x�x�0�flpux�x�0�rn−w−j−l−u�

which is not larger than∑
1≤w+j+l+u≤n

1≤v<k≤n
x �=0

pv�0� x�fn+w−kp
j
0x�x�0�flpu�x�0�r2

n−w−j−l−urk−v

≤ ∑
1≤w+j+l+u≤n

1≤v<k≤n
x �=0

pv�0� x�fn+w−kp
j�x�0�(6.33)

× flp
u�x�0�r4

n−w−j−l−urk−v

+ ∑
1≤w+j+l+u≤n

1≤v<k≤n
x �=0

pv�0� x�fn+w−kp
j
x�x�0�flpu�x�0�

×P0�τx < τ0 ≤ n−w− j− l− u�
× r2

n−w−j−l−urk−v�

(6.34)

Here Lemmas 4.2 and 4.3 have been applied by noting (2.1). We first estimate
(6.33). The contribution for n−w− j− l−u ≤ nr10

n is O�n2r8
n�, and therefore

we can replace rn−w−j−l−u with a constant multiple of rn by Lemma 2.3. Then
it is sufficient to calculate

�6�35� r4
n

∑
1≤w+j+u≤n

1≤v<k≤n
x �=0

pv�0� x�pj�0� x�pu�x�0�fn+w−krk−v�

Moreover, we investigate the contribution for k − v ≤ nr4
n in (6.35) and then

we need to estimate

r4
n

n∑
v=1

nr4
n+v∑
k=v

∑
1≤w+j+u≤n

x �=0

pv�0� x�pj�0� x�pu�x�0�fn+w−krk−v�
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Dominating rk−v and the summation on w by 1, we have that this summation
is not larger than

nr8
n

∑
1≤v� j� u≤n

x �=0

pv�0� x�pj�0� x�pu�x�0��

which is of order n2r8
n by Lemma 4.4. Thus, in order to estimate (6.35) and

also (6.33), we may give a bound of only the summation

r5
n

∑
1≤w+j+u≤n

1≤v<k≤n
x �=0

pv�0� x�pj�0� x�pu�x�0�fn+w−k�

which is dominated by

r5
n

∑
1≤v� j� u≤n

x �=0

pv�0� x�pj�0� x�pu�x�0� ∑
1≤w�k≤n

fn+w−k

≤ r5
nT2�1�n�

∑
1≤w�k≤n

fn+w−k�

Using (2.3),

∑
1≤w�k≤n

fn+w−k ≤ C33
∑

2≤w≤n

log��n+w�/w�
logw log�n+w� = O

{
n

�log n�2

}
�

where we have investigated the contribution for w ≤ n�log n�−3 and it is pos-
sible to replace logw with a constant multiple of log n. Hence, by Lemma 4.4,
(6.33) is of order n2r7

n since rn ∼ c�log n�−1. By Lemma 4.1 and the monotonic-
ity of rn, the summation (6.34) is bounded by∑

1≤w+j+l+u+s+t≤n
1≤v<k≤n

x �=0

pv�0� x�fn+w−kp
j
x�x�0�fl

× pu�x�0�ps0�x�0�ptx�0� x�r2
n−w−j−l−u−s−trk−v

≤ ∑
1≤w+j+l+u+s+t≤n

1≤v<k≤n
x �=0

pv�0� x�fn+w−kp
j�x�0�fl

× pu�x�0�ps�x�0�pt�0� x�r5
n−w−j−l−u−s−trk−v�

The method of estimating this summation is the same as that of (6.33). Noting
that the influence of n−w− j− l− u− s− t ≤ nr12

n is O�n2r8
n�, it turns out

that a constant multiple of r5
n can bound r5

n−w−j−l−u−s−t. Moreover, the fact
that the contribution for k − v ≤ nr3

n is O�n2r8
n� assures the replacement of
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rk−v with a constant multiple of rn. Then we obtain that (6.34) is not larger
than

C34r
6
n

∑
1≤w+j+u+s+t≤n

1≤v<k≤n
x �=0

pv�0� x�fn+w−kp
j�x�0�pu�x�0�ps�x�0�pt�0� x�

≤ C34r
6
n

∑
1≤j�u� s� t� v≤n

x �=0

pv�0� x�pj�x�0�pu�x�0�

× ps�x�0�pt�0� x� ∑
1≤w�k≤n

fn+w−k

= O
{
nr8

n ×T3�2�n�
}
�

which is of order n2r8
n by Lemma 4.4. Hence III�4�− III�3� ≤ C35n

2r7
n. Then we

can conclude that III ≤ C36n
2r7

n. This completes the proof of Lemma 3.2.
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