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CENTRAL LIMIT THEOREM FOR THE EDWARDS MODEL

By R. van der Hofstad, F. den Hollander and W. König1

Universiteit Utrecht, Universiteit Nijmegen and TU Berlin

The Edwards model in one dimension is a transformed path measure
for standard Brownian motion discouraging self-intersections. We prove
a central limit theorem for the endpoint of the path, extending a law of
large numbers proved by Westwater. The scaled variance is characterized
in terms of the largest eigenvalue of a one-parameter family of differential
operators, introduced and analyzed by van der Hofstad and den Hollan-
der. Interestingly, the scaled variance turns out to be independent of the
strength of self-repellence and to be strictly smaller than one (the value
for free Brownian motion).

0. Introduction and main result.

0.1. The Edwards model. Let �Bt�t≥0 be standard one-dimensional Brown-
ian motion starting at 0. Let P denote its distribution on path space and E the
corresponding expectation. The Edwards model is a transformed path mea-
sure discouraging self-intersections, defined by the intuitive formula

dP
β
T

dP
= 1

Z
β
T

exp
[
−β

∫ T

0
ds

∫ T

0
dt δ�Bs −Bt�

]
� T ≥ 0�(0.1)

Here δ denotes Dirac’s function, β ∈ �0�∞� is the strength of self-repellence
and Z

β
T is the normalizing constant.

A rigorous definition of Pβ
T is given in terms of Brownian local times as fol-

lows. It is well known [see Revuz and Yor (1991), Section VI.1] that there exists
a jointly continuous version of the Brownian local time process �L�t� x��t≥0� x∈R
satisfying the occupation time formula∫ t

0
f�Bs�ds =

∫
R

L�t� x�f�x�dx P-a.s. �f� R→ R
+ Borel� t ≥ 0��(0.2)

Think of L�t� x� as the amount of time the Brownian motion spends in x until
time t. The Edwards measure in (0.1) may now be defined by

dP
β
T

dP
= 1

Z
β
T

exp
[
−β

∫
R

L�T�x�2 dx
]
�(0.3)

where Z
β
T = E�exp�−β ∫

R
L�T�x�2 dx�� is the normalizing constant. The ran-

dom variable
∫

R
L�T�x�2 dx is called the self-intersection local time. Think of
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this as the amount of time the Brownian motion spends in self-intersection
points until time T.

The path measure P
β
T is the continuous analogue of the self-repellent ran-

dom walk (called the Domb–Joyce model), which is a transformed path mea-
sure for the discrete simple random walk. The latter is used to study the
long-time behavior of random polymer chains. The effect of the self-repellence
is of particular interest. This effect is known to spread out the path on a linear
scale (i.e., BT is of order T under the law P

β
T as T→∞). It is the aim of this

paper to study the fluctuations of BT around the linear asymptotics. Our main
result appears in Theorem 2.

0.2. Theorems. The starting point of our paper is the following law of large
numbers.

Theorem 1 [Westwater (1984)]. For every β ∈ �0�∞� there exists a θ∗�β� ∈
�0�∞� such that

lim
T→∞

P
β
T

(∣∣∣∣BT

T
− θ∗�β�

∣∣∣∣ ≤ ε
∣∣BT > 0

)
= 1 for every ε > 0�(0.4)

[By symmetry, (0.4) says that the distribution of BT/T under P
β
T converges

weakly to 1
2�δθ∗�β� + δ−θ∗�β�� as T→∞, where δθ denotes the Dirac point mea-

sure at θ ∈ R.]

Theorem 1 says that the self-repellence causes the path to have a ballistic
behavior no matter how weak the interaction. Westwater (1984) proved this
result by applying the Ray–Knight representation for Brownian local times
and using large deviation arguments.

The speed θ∗�β� was characterized by Westwater in terms of the smallest
eigenvalue of a certain differential operator. In the present paper, however, we
prefer to work with a different operator, introduced and analyzed in van der
Hofstad and den Hollander (1995). For a ∈ R, define � a� L2�R+0 � ∩C2�R+0 � →
C�R+0 � by

�� ax��u� = 2ux′′�u� + 2x′�u� + �au− u2�x�u�(0.5)

for u ∈ R
+
0 = �0�∞�. The Sturm–Liouville operator � a will play a key role

in the present paper. It is symmetric and has a largest eigenvalue ρ�a� with
multiplicity 1. The map a �→ ρ�a� is real-analytic, strictly convex and strictly
increasing, with ρ�0� < 0, lima→−∞ ρ�a� = −∞ and lima→∞ ρ�a� = ∞. [The
operator � a is a scaled version of the operator � a originally analyzed in
van der Hofstad and den Hollander (1995), Section 5, namely �� ax��u� =
�� ax��u/2� where x�u� = x�2u�.]

Define a∗, b∗, c∗ ∈ �0�∞� by

ρ�a∗� = 0� b∗ = 1
ρ′�a∗� � c∗2 = ρ′′�a∗�

ρ′�a∗�3 �(0.6)

Our main result is the following central limit theorem.
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Theorem 2. For every β ∈ �0�∞� there exists a σ∗�β� ∈ �0�∞� such that

lim
T→∞

P
β
T

(
BT − θ∗�β�T
σ∗�β�√T ≤ C

∣∣BT > 0
)
= � ��−∞�C�� for all C ∈ R�(0.7)

where � denotes the normal distribution with mean 0 and variance 1. The
scaled mean and variance are given by

θ∗�β� = b∗β1/3� σ∗�β� = c∗�(0.8)

Theorem 2 says that the fluctuations around the asymptotic mean have the
classical order

√
T, are symmetric, and even do not depend on the interaction

strength.
The numerical values of the constants in (0.6) are

a∗ = 2�189± 0�001� b∗ = 1�11± 0�01� c∗ = 0�7± 0�1�(0.9)

The values for a∗ and b∗ were obtained in van der Hofstad and den Hollander
(1995), Section 0.5, by estimating ρ�a� for a range of a-values. This can be
done very accurately via a discretization procedure. (A rigorous upper bound
for a∗ is given in Lemma 6 in Section 4.1.) The same data produce the value
for c∗. Note that c∗ < 1. Apparently, as the path is pushed out to infinity, its
fluctuations are squeezed compared to those of the free motion with θ∗�0� = 0,
σ∗�0� = 1.

0.3. Scaling in β. It is noteworthy that the scaled mean depends on β
in such a simple manner and that the scaled variance does not depend on β
at all. These facts are direct consequences of the Brownian scaling property.
Namely, we shall deduce from (0.7) that for every β ∈ �0�∞�,

θ∗�β� = θ∗�1�β1/3� σ∗�β� = σ∗�1��(0.10)

Indeed, for a, T > 0,(
BT� �L�T�x��x∈R

) =�

(
a−1/2BaT� �a−1/2L�aT�a1/2x��x∈R

)
�(0.11)

where =� means equality in distribution [see Revuz and Yor (1991), Chap-
ter VI, Example (2.11), 1◦]. Apply this to a = β2/3 to obtain, via (0.3), that

P
β
T�BT�−1 = P1

β2/3T

(
β−1/3Bβ2/3T

)−1
�(0.12)

where we write µ�X�−1 for the distribution of a random variable X under a
measure µ. In particular, we have for all C ∈ R,

P
β
T

(
BT − θ∗�1�β1/3T

σ∗�1�√T ≤ C
∣∣BT > 0

)

= P1
β2/3T

(
Bβ2/3T − θ∗�1�β2/3T

σ∗�1�
√
β2/3T

≤ C
∣∣Bβ2/3T > 0

)
�

(0.13)
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The r.h.s. tends to � ��−∞�C�� as T → ∞ [in (0.7) pick β = 1 and replace
T by β2/3T]. Since the pair �θ∗�β�� σ∗�β�� is uniquely determined by (0.7), we
arrive at (0.10).

0.4. Outline of the proof. Theorem 2 is the continuous analogue of the
central limit theorem for the Domb–Joyce model proved by König (1996). We
shall be able to use the skeleton of that paper, but the Brownian context will
require new ideas and methods. The remaining sections are devoted to the
proof of Theorem 2. We give a short outline.

In Section 1, we use the well-known Ray–Knight theorems for the local
times of Brownian motion to express the l.h.s. of (0.7) in terms of two- and zero-
dimensional squared Bessel processes. The former describes the local times in
the area �0�BT�; the latter describes the local times in �−∞�0� (respectively,
�BT�∞�).

In Section 2, with the help of some analytical properties of the operator � a

proved in van der Hofstad and den Hollander (1995), we introduce a Girsanov
transformation of the two-dimensional squared Bessel process. The goal of this
transformation is to absorb the random variable exp�−β ∫ BT

0 L�T�x�2 dx� into
the transition probabilities. The transformed process turns out to have strong
recurrence properties. The Gaussian behavior of �BT − θ∗�β�T�/√T is traced
back to the asymptotic normality of the inverse of a certain additive functional
of this transformed process. Thus, the central limit behavior is determined by
those parts of the Brownian path that fall in the area �0�BT�.

In Section 3, we prove a central limit theorem for the inverse process. Fur-
thermore, as a second important ingredient in the proof, we derive a limit
law and a rate of convergence result for the composition of the transformed
process with the inverse process.

In Section 4, we finish the proof of Theorem 2 by showing that the contribu-
tion of the local times in �−∞�0�∪�BT�∞� remains bounded as T→∞ and is
therefore cancelled by the normalization in the definition of the transformed
path measure in (0.3).

1. Brownian local times. Since the dependence on β has already been
isolated [see (0.13)], we may and shall restrict to the case β = 1.

Throughout the sequel we shall frequently refer to Revuz and Yor (1991),
Karatzas and Shreve (1991), van der Hofstad and den Hollander (1995). We
shall therefore adopt the abbreviations RY, KS and HH for these references.

The remainder of this paper is devoted to the proof of the following key
proposition.

Proposition 1. There exists an S ∈ �0�∞� such that for all C ∈ R,

lim
T→∞

exp�a∗T�E
(
exp

(
−
∫

R

L�T�x�2 dx
)
10<BT≤b∗T+C

√
T

)
= S�c∗2��−∞�C���

(1.1)



CLT FOR THE EDWARDS MODEL 577

where a∗, b∗ and c∗ are defined in (0.6), and �σ2 denotes the normal distribu-
tion with mean 0 and variance σ2.

Theorem 2 follows from Proposition 1, since it implies that the conditional
distribution of �BT−b∗T�/

√
T given BT > 0 converges to �c∗2 [divide the l.h.s.

of (1.1) by the same expression with C = ∞ and recall (0.3)].
Sections 1.1 and 1.2 contain preparatory material. Section 1.3 contains the

key representation in terms of squared Bessel processes on which the proof of
Proposition 1 will be based.

1.1. Ray–Knight theorems. This subsection contains a description of the
time-changed local time process in terms of squared Bessel processes. The
material being fairly standard, our main purpose is to introduce appropriate
notation and to prepare for Lemma 1 in Section 1.2 and Lemma 2 in Sec-
tion 1.3.

For u ∈ R and h ≥ 0, let τuh denote the time change associated with L�t� u�;
that is,

τuh = inf�t > 0� L�t� u� > h��(1.2)

Obviously, the map h �→ τuh is right-continuous and increasing, and therefore
makes at most countably many jumps for each u ∈ R. Moreover, P�L�τuh� u� =
h for all u ≥ 0� = 1 (see RY, Chapter VI). The following lemma contains the
well-known Ray–Knight theorems. It identifies the distribution of the local
times at the random time τuh as a process in the spatial variable running
forwards, respectively backwards, from u. We write C2

c �R+� to denote the set
of twice continuously differentiable functions on R

+ = �0�∞� with compact
support.

RK theorems. Fix u�h ≥ 0. The random processes �L�τuh� u + v��v≥0 and
�L�τuh� u− v��v≥0 are independent Markov processes, both starting at h.

(i) �L�τuh� u+ v��v≥0 is a zero-dimensional squared Bessel process �BESQ0�
with generator

�G#f��v� = 2vf′′�v�� f ∈ C2
c �R+��(1.3)

(ii) �L�τuh� u − v��v∈�0� u� is the restriction to the interval �0� u� of a two-
dimensional squared Bessel process �BESQ2� with generator

�Gf��v� = 2vf′′�v� + 2f′�v�� f ∈ C2
c �R+��(1.4)

(iii) �L�τuh�−v��v≥0 has the same transition probabilities as the process in (i).

For the proof, see RY, Sections XI.1-2 and KS, Sections 6.3 and 6.4.
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1.2. The distribution of ��L�T�x��x∈R�BT�. The RK theorems give us a
nice description of the local time process at certain stopping times. In order to
apply them to (0.3), we need to go back to the fixed time T. This causes some
complications (e.g., we must handle the global restriction

∫
R
L�T�x�dx = T),

but these may be overcome by an appropriate conditioning.
This subsection contains a formal description of the joint distribution of the

three random processes

�L�T�BT + x��x≥0� �L�T�BT − x��x∈�0�BT�� �L�T�−x��x≥0�(1.5)

in terms of the squared Bessel processes. The main intuitive idea is that, up
to a P-null set [recall (1.2)],

�τuh = T� = �BT = u� L�T�BT� = h� for all u�h ≥ 0�(1.6)

This has two consequences.

1. Conditioned on �BT = u� L�T�BT� = h�, the three processes in (1.5) are
the squared Bessel processes from the RK theorems conditioned on having
total integral equal to T.

2. The distribution of �BT�L�T�BT�� can be expressed in terms of the squared
Bessel processes.

We shall make this precise in Lemma 1 below.
Before we proceed, let us briefly mention some earlier works on the distri-

bution of �L�T�x��x∈R with T ≥ 0 either fixed or random independent of the
motion. Perkins (1982) proves that �L�1� x��x∈R is a semimartingale. Jeulin
(1985) uses stochastic calculus, in particular Tanaka’s formula, to recover the
RK theorems and Perkins’ result and to prove the conditional Markov prop-
erty in x of the triple �L�1� x�� x∧B1�

∫ x
−∞L�1� u�du� given inf s≤1 Bs. In Biane

and Yor (1988) the RK theorems are extended to the case where T is an ex-
ponentially distributed random time, independent of the Brownian motion,
under the conditional law P�· �L�T�0� = s� BT = a� for any fixed s� a > 0.
Finally, Biane, Le Gall and Yor (1987) also deal with the intuitive idea (1.6)

when identifying the law of the process ��1/
√
τ0
h�Buτ0

h
�u∈�0�1�.

Let us now return to our identification of the law of the process
��L�T�x��x∈R�BT�. In order to formulate the details, we must first introduce
some notation. For the remainder of this paper, let

�Xv�v≥0 = BESQ2� �X#
v�v≥0 = BESQ0�(1.7)

Note that �Xv�v≥0 is recurrent and has 0 as an entrance boundary, while
�X#

v�v≥0 is transient and has 0 as an absorbing boundary (see RY, Section XI.1).
Denote by Ph and P

#
h the distributions of the respective processes conditioned

on starting at h ≥ 0. Denote the corresponding expectations by Eh, respectively
E
#
h. Furthermore, define the following additive functional of BESQ2 and its
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time change:

A�u� =
∫ u

0
Xv dv� u ≥ 0�

A−1�t� = inf�u > 0� A�u� > t�� t ≥ 0�
(1.8)

Note that both u �→ A�u� and t �→ A−1�t� are continuous and strictly increas-
ing towards infinity Ph-a.s. So A and A−1 are in fact inverse functions of each
other. We also need the analogous functional for BESQ0:

A#�u� =
∫ u

0
X#

v dv� u ∈ �0�∞��

A#−1�t� = inf�u ≥ 0� A#�u� > t�� t ≥ 0�
(1.9)

Note that, P
∗
h-a.s., u �→ A#�u� is strictly increasing on the time interval �0� ξ0�,

where ξ0 = inf�v ≥ 0� X#
v = 0� < ∞ denotes the absorption time of BESQ0.

Define Lebesgue densities ϕh and ψh1� t
by

ϕh�t�dt = P
#
h�A#�∞� ∈ dt��

ψh1� t
�u�h2�dudh2 = Ph1

�A−1�t� ∈ du� Xu ∈ dh2�
(1.10)

for a.e. h� t� h1� u� h2 ≥ 0. (The function ϕh is explicitly identified in Lemma 7
in Section 4.2.) Put the quantities defined in (1.8)–(1.10) equal to zero if any
of the variables are negative. Now the joint distribution of the three processes
in (1.5) can be described as follows.

Lemma 1. Fix T > 0. For all nonnegative Borel functions (1, (2 and (3
on C�R+0 � and for any interval I ⊂ �0�∞�,

E
(
(1

(�L�T�BT + x��x≥0
)
(2

(�L�T�−x��x≥0
)

×(3
(�L�T�BT − x��x∈�0�BT�

)
1BT∈I

)
=

∫
I
du

∫
�0�∞�4

dt1 dh1 dt2 dh2

×
2∏

i=1

E
#
hi

(
(i

(�X#
v�v≥0

) ∣∣A#�∞� = ti
)
ϕhi
�ti�

× Eh1

(
(3

(�Xv�v∈�0� u�
) ∣∣A−1�T− t1 − t2� = u� Xu = h2

)
× ψh1�T−t1−t2

�u�h2��

(1.11)

Proof. Essentially, Lemma 1 is a formal rewrite using (1.8), (1.10) and
the RK theorems, which say that under Ph, respectively P

#
h

�Xv�v∈�0� u� =� �L�τuh� u− v��v∈�0� u�
�X#

v�v≥0 =� �L�τuh� u+ v��v≥0�
(1.12)

However, the details are far from trivial.
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We proceed in four steps, the first of which makes (1.6) precise and is the
most technical.

Step 1. P�τuh ∈ dT�dudh = P�BT ∈ du� L�T�BT� ∈ dh�dT for a.e.
u�h�T ≥ 0.

Proof. From the occupation time formula (0.2) we have for every t ≥ 0,∫ t

0
1Bs∈du ds = L�t� u�du�(1.13)

Hence, we obtain for all bounded and measurable functions f� �R+�2 → R and
g� R+ → R with compact support:∫ ∞

0
du

∫ ∞
0

dhf�u�h�E�g�τuh��

=
∫ ∞

0
duE

(∫ ∞
0

dt�L�t� u��f�u�L�t� u��g�t�
)

=
∫ ∞

0
duE

(∫ ∞
0

dt�L�t� u��g�t�E�f�u�L�t� u�� �Bt = u�
)

=
∫ ∞

0
du

∫ ∞
0

dt
dE�L�t� u��

dt
g�t�E�f�u�L�t� u�� �Bt = u�

=
∫ ∞

0
du

∫ ∞
0

dt
P�Bt ∈ du�

du
g�t�E�f�u�L�t� u�� �Bt = u�

=
∫ ∞

0
dtg�t�E�f�Bt�L�t�Bt����

(1.14)

The first equality uses (1.2). The second equality follows from Fitzsimmons,
Pitman and Yor (1993), Proposition 3. The fourth equality uses (1.13). ✷

Next, abbreviate for u�h ≥ 0,

�u
h =

(
τuh�

∫ ∞
0

L�τuh� u+ v�dv�L�τuh�0��
∫ ∞

0
L�τuh�−v�dv

)
�(1.15)

Then the distribution of �u
h is identified as in the following.

Step 2. For every u�h ≥ 0 and a.e. T� t1� h2� t2,

P��u
h ∈ d�T� t1� h2� t2��
= ϕh�t1�ψh�T−t1−t2

�u�h2�ϕh2
�t2�dTdt1 dh2 dt2�

(1.16)

Proof. According to the RK theorems, �L�τuh�−x��x≥0 is BESQ0 starting
at L�τuh�0�. Moreover, L�τuh�0� itself has distribution Ph�Xu�−1. Furthermore,
from (0.2) we have

τuh =
∫ ∞

0
L�τuh� u+ v�dv+

∫ u

0
L�τuh� u− v�dv+

∫ ∞
0

L�τuh�−v�dv�(1.17)
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Combining these statements with the RK theorems and (1.12), we obtain

P��u
h ∈ d�T� t1� h2� t2�� = P

#
h

(∫ ∞
0

X#
v dv ∈ dt1

)
P
#
h2

(∫ ∞
0

X#
v dv ∈ dt2

)

× Ph

(∫ u

0
Xv dv ∈ d�T− t1 − t2��Xu ∈ dh2

)
�

(1.18)

But the r.h.s. of (1.18) equals the r.h.s. of (1.16), because of (1.10) and the
identity �A�u� < T− t1 − t2� = �A−1�T− t1 − t2� > u� implied by (1.8). ✷

Step 3. P�τBT

L�T�BT� = T� = 1.

Proof. Simply note that τ
BT

L�T�BT� −T is distributed as the time change
τ0

0 for the process �BT+t −BT�t≥0 [recall (1.2)]. But P�τ0
0 = 0� = 1 (see RY,

Remark 1◦ following Proposition VI.2.5). ✷

Step 4. Proof of Lemma 1.

Proof. First condition and integrate the l.h.s. of (1.11) w.r.t. the distribu-
tion of �BT�L�T�BT��, which is identified in Step 1. According to Step 3, we
may then replace T by τuh1

on �BT = u�L�T�BT� = h1�. Next, condition and
integrate w.r.t. the conditional distribution of �u

h1
given �τuh1

= T�. Then the
l.h.s. of (1.11) becomes∫

I
du

∫ ∞
0

dh1

P�τuh1
∈ dT�

dT

∫
�0�∞�3

P��u
h1
∈ d�T� t1� h2� t2��
P�τuh1

∈ dT�

×E
(
(1

(�L�τuh1
� u+ x��x≥0

)
(2

(�L�τuh1
�−x��x≥0

)
×(3

(�L�τuh1
� u− x��x∈�0� u�

) ∣∣�u
h1
= �T� t1� h2� t2�

)
�

(1.19)

Now use Step 2, apply the description of the local time processes provided
by the RK theorems in combination with (1.12) and (1.15), and again use
the elementary relation between A and A−1 stated at the end of the proof of
Step 2. Then we obtain that (1.19) is equal to the r.h.s. of (1.11). ✷

In Lemma 1, note that A#�∞� = t1, respectively t2, corresponds to the
Brownian motion spending t1, respectively t2, time units in the boundary areas
�BT�∞�, respectively �−∞�0�, while A−1�T− t1 − t2� corresponds to the size
of the middle area �0�BT� when the Brownian motion spends T− t1 − t2 time
units there.

1.3. Application to the Edwards model. We are now ready to formulate
the key representation of the expectation appearing in the l.h.s. of (1.1). This
representation will be the starting point for the proof of Proposition 1 in Sec-
tions 2–4. Abbreviate

CT = b∗T+C
√
T�(1.20)
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Lemma 2. For all T > 0,

E

(
exp

(
−
∫

R

L�T�x�2 dx
)

10<BT≤CT

)

=
∫ CT

0
du

∫
�0�∞�4

dt1 dh1 dt2 dh2

×
2∏

i=1

E
#
hi

(
exp

(
−
∫ ∞

0
X#2

v dv

) ∣∣∣A#�∞� = ti

)
ϕhi
�ti�

× Eh1

(
exp

(
−
∫ u

0
X2

v dv

) ∣∣∣A−1�T− t1 − t2� = u�Xu = h2

)
× ψh1�T−t1−t2

�u�h2��

(1.21)

The proof follows from Lemma 1.
Thus, we have expressed the expectation in the l.h.s. of (1.1) in terms of in-

tegrals over BESQ0 and BESQ2 and their additive functionals. Henceforth we
can forget about the underlying Brownian motion and focus on these processes
using their generators given in (1.3) and (1.4).

The importance of Lemma 2 is the decomposition into a product of three
expectations. The main reason to introduce the densities ϕh and ψh1� t

is the
fact that the last factor in (1.21) depends on t1 and t2. This dependence will
vanish in the limit as T → ∞, as we shall see in the sequel. After that the
densities ϕh and ψh1� t

can again be absorbed into the expectations [recall
(1.10)].

2. A transformed Markov process. All we have done so far is to rewrite
the key object of Proposition 1 in terms of expectations involving squared
Bessel processes. We are now ready for our main attack.

In Section 2.1 we use Girsanov’s formula to transform BESQ2 into a new
Markov process. The purpose of this transformation is to absorb the exponen-
tial factor appearing under the expectation in the fourth line of (1.21) into
the transition probabilities of the new process. In Section 2.2 we list some
properties of the transformed process. These are used in Section 2.3 to ob-
tain a final reformulation of (1.21) on which the proof of Proposition 1 will
be based. In Section 2.4 we formulate three main propositions, the proofs of
which are deferred to Sections 3 and 4. In Section 2.5 the proof of Proposition 1
is completed subject to these propositions.

2.1. Construction of the transformed process. Fix a ∈ R (later we shall pick
a = a∗). Recall from Section 0.2 that ρ�a� ∈ R is the largest eigenvalue of the
operator � a defined in (0.5). We denote the corresponding strictly positive
and L2-normalized eigenvector by xa. From HH, Lemmas 20 and 22, we know
that xa� R+0 → R

+ is real-analytic with limu→∞ u−3/2 log xa�u� ∈ �−∞�0�, and
that a �→ xa ∈ L2�R+0 � is real-analytic. Define

Fa�u� = u2 − au+ ρ�a�� u ∈ R
+
0 �(2.1)
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The following lemma defines the Girsanov transformation of BESQ2 that we
shall need later.

Lemma 3. For t� h1� h2 ≥ 0, let Pt�h1� dh2� denote the transition probability
function of BESQ2. Then

P̂a
t �h1� dh2�=

xa�h2�
xa�h1�

Eh1

(
exp

(
−
∫ t

0
Fa�Xv�dv

) ∣∣∣Xt = h2

)
Pt�h1� dh2�(2.2)

defines the transition probability function of a diffusion �Xv�v≥0 on R
+
0 .

Proof. Recall the definition of the generator G of BESQ2 given in (1.4).
According to RY, Section VIII.3, if f ∈ C2�R+0 � satisfies the equation

G�f� + 1
2G�f2� − fG�f� = Fa�(2.3)

then

�Df�a
t �t≥0 =

(
exp

(
f�Xt� − f�X0� −

∫ t

0
Fa�Xs�ds

))
t≥0

(2.4)

is a local martingale under Ph for any h ≥ 0. Substitute f = log x in the l.h.s.
of (2.3). Then an elementary calculation yields that for all u ≥ 0,

(
G�f� + 1

2
G�f2� − fG�f�

)
�u� = 2uf′′�u� + 2f′�u� + 2uf′�u�2

= 2ux′′�u� + 2x′�u�
x�u� �

(2.5)

We now easily derive from the eigenvalue relation �axa = ρ�a�xa [recall
(0.5)] that (2.3) is satisfied for f = fa = log xa. Hence, �Dfa�a

t �t≥0 is a local
martingale under Ph. Since Fa is bounded from below and xa is bounded from
above, each D

fa�a
t is bounded Ph-a.s. Hence �Dfa�a

t �t≥0 is a martingale under
Ph. The lemma now follows from RY, Proposition VIII.3.1. ✷

We shall denote the distribution of the transformed process, conditioned on
starting at h ≥ 0, by P̂

a

h and the corresponding expectation by Ê
a

h. Note that
we have

Ê
a

h�g�Xt�� = Eh�Dfa�a
t g�Xt��� t ≥ 0� g� R+0 → R

+
0 measurable�(2.6)

2.2. Properties of the transformed process. We are going to list some prop-
erties of the process constructed in the preceding section.
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1. The process introduced in Lemma 3 is a Feller process. According to RY,
Proposition VIII.3.4, its generator is given by (recall fa = log xa)

�Ĝaf��u� = �Gf��u� + (
G�faf� − faG�f� − fG�fa�

)�u�
= �Gf��u� + 4uf′a�u�f′�u�

= 2uf′′�u� + 2f′�u�
(

1+ 2u
x′a�u�
xa�u�

)
� f ∈ C2

c �R+��
(2.7)

2. According to KS, Chapter 5, Equation (5.42), the scale function for the
process is given (up to an affine transformation) by

sa�u� =
∫ u

c

dv

vx2
a�v�

� c > 0 arbitrary�(2.8)

Since xa does not vanish at zero and has a subexponential tail at infinity
(see the remarks at the beginning of Section 2.1), the scale function satisfies

lim
u↓0

sa�u� = −∞ and lim
u→∞ sa�u� = ∞�(2.9)

3. The probability measure on R
+
0 given by

µa�du� = xa�u�2 du(2.10)

is the normalized speed measure for the process [see KS, Chapter 5, Equa-
tion (5.51)]. Since it has finite mass, and because (2.9) holds, the process
converges weakly towards µa from any starting point h > 0 (see KS, Chap-
ter 5, Example 5.40), that is,

lim
t→∞

Ê
a

h�f�Xt�� =
∫ ∞

0
f�u�µa�du� for all bounded f ∈ C�R+0 ��(2.11)

Using this convergence and the Feller property, one derives in a standard
way that µa is the invariant distribution for the process. We write

P̂
a =

∫ ∞
0

P̂
a

h µa�dh�(2.12)

to denote the distribution of the process starting in the invariant distribu-
tion and write Ê

a
for the corresponding expectation.

4. According to Ethier and Kurtz (1986), Theorem 6.1.4, the process �Yt�t≥0
given by

Yt =XA−1�t�� t ≥ 0(2.13)

is a diffusion under P̂
a

with generator

(
G̃af

)�u� = 1
u
�Ĝaf��u�� u > 0� f ∈ C2

c �R+�(2.14)
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[see (2.7)]. This process has the same scale function sa as �Xt�t≥0 [see (2.8)],
and its normalized speed measure is given by

νa�du� =
u

ρ′�a�x
2
a�u�du�(2.15)

[In order to see that νa�R+� = 1, differentiate the relation ρ�a� =
�xa��

axa�L2 w.r.t. a. Use (0.5) and the relation �d/da��xa� xa�L2 = 0.]
Similarly as in (2.11), for any starting point h > 0,

lim
t→∞

Ê
a

h�f�Yt�� =
∫ ∞

0
f�u� νa�du� for all bounded f ∈ C�R+0 �(2.16)

and hence νa is the invariant distribution of the process �Yt�t≥0. We write

P̃
a =

∫ ∞
0

P̂
a

h νa�dh�(2.17)

to denote the distribution of the process �Xt�t≥0 starting in the invariant
distribution νa of the process �Yt�t≥0 and we write Ẽ

a
for the corresponding

expectation.

2.3. Final reformulation. Using the representation in Lemma 2, we shall
rewrite the l.h.s. of (1.1) in terms of the transformed process introduced in
Lemma 3. This will be the final reformulation in terms of which the proof of
Proposition 1 will be finished in Sections 2.4–2.5.

For h� t ≥ 0 and a ∈ R, introduce the abbreviation [recall (1.9) and (1.10)]

F#
a�u� = −u2 + au� u ∈ R

+
0 �

wa�h� t� = E
#
h

(
exp

(
−
∫ ∞

0
F#

a�X#
v�dv

) ∣∣∣A#�∞� = t

)
ϕh�t�

= exp�at�w0�h� t��

(2.18)

Recall that Ê
a

denotes the expectation for the transformed process �Xt�t≥0,
starting in the invariant starting distribution µa given by (2.10).

Lemma 4. For every T > 0,

exp�a∗T�E
(

exp
(
−
∫

R

L�T�x�2 dx
)

10<BT≤CT

)

=
∫ ∞

0
dt1

∫ ∞
0

dt2

× Ê
a∗
(
wa∗�X0� t1�
xa∗�X0�

1A−1�T−t1−t2�≤CT

wa∗�XA−1�T−t1−t2�� t2�
xa∗�XA−1�T−t1−t2��

)
�

(2.19)

Proof. First, from (1.8), (2.1) and ρ�a∗�=0 it follows that on �A−1�t�=u�,

a∗t−
∫ u

0
X2

v dv = −
∫ u

0
Fa∗�Xv�dv� t� u ≥ 0�(2.20)
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By an absolute continuous transformation from Ph to P̂
a∗

h , we therefore obtain
via (2.2) the identity [recall (1.10)]

exp�a∗t�Eh1

(
exp

(
−
∫ u

0
X2

v dv

) ∣∣∣A−1�t� = u� Xu = h2

)
ψh1� t

�u�h2�dudh2

= P̂
a∗

h1

(
A−1�t� ∈ du� Xu ∈ dh2

)xa∗�h1�
xa∗�h2�

(2.21)

for a.e. u�h1� h2� t ≥ 0. Similarly to (2.20), we have on �∫∞0 X#
v dv = t�,

a∗t−
∫ ∞

0
�X#

v�2 dv = −
∫ ∞

0
Fa∗�X#

v�dv� t ≥ 0(2.22)

and hence

exp�a∗ti�E#
hi

(
exp

(
−
∫ ∞

0
�X#

v�2 dv
) ∣∣∣A#�∞� = ti

)
ϕhi
�ti�

= wa∗�hi� ti�� i = 1�2�
(2.23)

Next, note that the l.h.s. of (2.19) is equal to the l.h.s. of (1.21) times the
factor ea

∗T. We divide this factor into three parts, according to the identity
T = t1+�T− t1− t2�+ t2, and assign them to each of the three expectations in
the r.h.s. of (1.21). Substitute (2.21) with t = T− t1− t2 and (2.23) into (1.21).
Then we obtain that the l.h.s. of (2.19) is equal to∫

�0�∞�4
dh1 dh2 dt1 dt2 wa∗�h1� t1�wa∗�h2� t2�

xa∗�h1�
xa∗�h2�

× P̂
a∗

h1

(
A−1�T− t1 − t2� ≤ CT�XA−1�T−t1−t2� ∈ dh2

)
�

(2.24)

Now formally carry out the integration over h1� h2, recalling (2.10) and (2.12),
to arrive at the r.h.s. of (2.19). ✷

Roughly speaking, the function wa∗ in the r.h.s. of (2.19) describes the contri-
bution to the random variable exp�− ∫

R
L�T�x�2 dx� coming from the boundary

pieces [i.e., the parts of the path in �−∞�0� ∪ �BT�∞�], while A−1 gives the
size of the area over which the middle piece (i.e., the parts of the path in
�0�BT�) spreads out.

2.4. Key steps in the proof of Proposition 1. The proof of Proposition 1 now
basically requires the following three ingredients.

1. A CLT for �A−1�t��t≥0 under P̂
a∗

.
2. An extension of the weak convergence of �Yt�t≥0 = �XA−1�t��t≥0 stated in

(2.16).
3. Some integrability properties of wa∗ .

The precise statements that we shall need are formulated in Propositions 2–4.
The proof of these propositions is deferred to Sections 3 and 4.
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We need some more notation. Let �· � ·�L2 denote the standard inner product
on L2�R+0 �. Let �· � ·�◦L2 denote the weighted inner product

�f�g�◦L2 =
∫ ∞

0
dhhf�h�g�h�(2.25)

on L2� ◦�R+0 � = �f� R+0 → R measurable � ∫∞0 dhhf2�h� <∞�. We write �� · ��L2 ,
respectively, �� · ��◦L2 for the corresponding norms.

For bounded and measurable f�g� R
+
0 → R, T ≥ 0 and a ∈ R, abbreviate

[recall Lemma 3, (2.10) and (2.12)]

N
f�g
T�a = Ê

a
(

f

xa

�Y0�
g

xa

�YT�
)

=
∫ ∞

0
dhf�h�Eh

(
exp

(
−
∫ A−1�T�

0
Fa�Xs�ds

)
g�XA−1�T��

)
�

(2.26)

Furthermore, define

σ2�a� = ρ′′�a�
ρ′�a�3(2.27)

and note that σ2�a∗� = c∗2 as defined in (0.6). Denote by ρ−1� R → R the
inverse function of ρ� R→ R.

Proposition 2. For all bounded and measurable f�g� R+0 → R, all a, λ ∈ R

and all T, T′ ≥ 0,

Ê
a
(

f

xa

�Y0� exp
(

λ√
T

(
A−1�T′� − T

ρ′�a�
))

g

xa

�YT′ �
)

= exp
(
λ2

2
σ2�ξT�

)
N

f�g
T′� aλ�T

exp��T−T′��aλ�T − a���
(2.28)

where

aλ�T = ρ−1
(
ρ�a� − λ√

T

)
(2.29)

and ξT ∈ �a� aλ�T� ∪ �aλ�T� a�.

Proposition 3. Let f�g� R+0 → R be measurable such that f/id� g ∈ L2� ◦.
Then for every a ∈ R and aT→ a,

lim
T→∞

N
f�g
T�aT

= 1
ρ′�a��f�xa�L2�g�xa�◦L2 �(2.30)

Next, recall (2.18). For a ∈ R, define ya� R+0 → �0�∞� by

ya�h� =
∫ ∞

0
wa�h� t�dt = E

#
h

(
exp

(
−
∫ ∞

0
F#

a�X#
v�dv

))
�(2.31)



588 R. VAN DER HOFSTAD, F. DEN HOLLANDER AND W. KÖNIG

Furthermore, for p ∈ �1�2�, q ∈ �2�∞� and t > 0 define

W
�1�
p �t� =

(∫ ∞
0

h1−pxa∗�h�2−pwa∗�h� t�p dh

)1/p

�

W
�2�
q �t� =

(∫ ∞
0

hxa∗�h�2−qwa∗�h� t�q dh
)1/q

�

(2.32)

Proposition 4.

(i) ya∗ is measurable and bounded.

(ii) ϕh�t� = �h/2
√

2πt3� exp�−h2/8t� for all h ≥ 0 and t > 0.

(iii) For any p ∈ �1�2�, W�1�
p is integrable on R

+.

(iv) For any q ∈ �2�∞� sufficiently close to 2, W
�2�
q is integrable on R

+.

2.5. Proof of Proposition 1. In this subsection we complete the proof of
Proposition 1, subject to Propositions 2–4. We shall show that (1.1) follows
from (2.19), with S identified as

S = b∗�ya∗� xa∗�L2�ya∗� xa∗�◦L2 �(2.33)

Step 1. For all t1� t2 > 0� as T→ ∞� the integrand on the r.h.s. of (2.19)
tends to

b∗�wa∗�·� t1�� xa∗�L2�wa∗�·� t2�� xa∗�◦L2 �c∗2��−∞�C���

Proof. By Proposition 4(ii) and (2.18), the functions f = wa∗�·� t1� and
g = wa∗�·� t2� satisfy the assumptions of Proposition 3 for all t1� t2 > 0, since
they are bounded by a factor times ϕ·�t1�, respectively, ϕ·�t2�. Define a (non-
Markovian) path measure P

f�g
T�a by

dP
f�g
T�a

d P̂
a =

1

N
f�g
T�a

f

xa

�Y0�
g

xa

�YT��(2.34)

Write E
f�g
T�a for the corresponding expectation. Apply Proposition 2 for a = a∗

and T′ = T− t1 − t2 to obtain that for every λ ∈ R and T ≥ t1 + t2,

E
f�g
T−t1−t2� a

∗

(
exp

(
λ√
T
�A−1�T− t1 − t2� − b∗T�

))

= exp
(
λ2

2
σ2�ξ∗T�

)N
f�g
T−t1−t2� a

∗
λ�T

N
f�g
T−t1−t2� a

∗
exp��t1 + t2��a∗λ�T − a∗���

(2.35)

where ρ�a∗� = 0, b∗ = 1/ρ′�a∗� [recall (0.6)], a∗λ�T = ρ−1�−λ/√T� and ξ∗T ∈
�a∗� a∗λ�T� ∪ �a∗λ�T� a∗�. Since ρ′� ρ′′ and ρ−1 are continuous, we have a∗λ�T→ a∗

and σ2�ξ∗T� → c∗2 as T → ∞. Therefore, by Proposition 3, the r.h.s. of (2.35)
tends to exp��λ2/2�c∗2� as T→∞. Thus, the distribution of �1/√T��A−1�T−
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t1−t2�−b∗T� under P
f�g
T−t1−t2� a

∗ converges weakly towards �c∗2 . Via (2.34), this
in turn implies that [recall (1.20)]

lim
T→∞

Ê
a∗
(
wa∗�X0� t1�
xa∗�X0�

1A−1�T−t1−t2�≤CT

wa∗�XA−1�T−t1−t2�� t2�
xa∗�XA−1�T−t1−t2��

)

= lim
T→∞

N
f�g
T−t1−t2� a

∗P
f�g
T−t1−t2� a

∗
(
A−1�T− t1 − t2� − b∗T ≤ C

√
T
)

= b∗�f�xa∗�L2�g�xa∗�◦L2 �c∗2��−∞�C���

(2.36)

again according to Proposition 3. ✷

Step 2. For all t1� t2 > 0� and any p�q > 1 satisfying 1/p+ 1/q = 1�
the integrand on the r.h.s. of (2.19) is bounded uniformly in T > 0 by
W
�1�
p �t1�W�2�

q �t2� defined in (2.32).

Proof. Recall (3) and (4) in Section 2.2. Make a change of measure from

Ê
a∗

to Ẽ
a∗

, use the Hölder inequality and the stationarity of �Yt�t≥0 under P̃
a∗

[recall (2.15) and (2.17)], to obtain

Ê
a∗
(
wa∗�X0� t1�
xa∗�X0�

1A−1�T−t1−t2�≤CT

wa∗�XA−1�T−t1−t2�� t2�
xa∗�XA−1�T−t1−t2��

)

≤ ρ′�a∗�Ẽa∗
(
wa∗�Y0� t1�
Y0xa∗�Y0�

wa∗�YT−t1−t2
� t2�

xa∗�YT−t1−t2
�

)

≤ ρ′�a∗�
(

Ẽ
a∗
([

wa∗�Y0� t1�
Y0xa∗�Y0�

]p))1/p (
Ẽ
a∗
([

wa∗�YT−t1−t2
� t2�

xa∗�YT−t1−t2
�

]q))1/q

=W
�1�
p �t1�W�2�

q �t2�� ✷

(2.37)

Step 3. Conclusion of the proof.

Proof. Let T → ∞ in (2.19) and note that, for some p�q > 1 satisfying
1/p+1/q = 1, the bound in Step 2 is integrable in �t1� t2� ∈ �R+�2 by Proposi-
tion 4(iii) and 4(iv). Therefore, by Steps 1 and 2 and the dominated convergence
theorem we may interchange T→∞ and

∫∞
0 dt1

∫∞
0 dt2, to obtain

lim
T→∞

l.h.s. of (2.19)

= b∗
∫ ∞

0
dt1

∫ ∞
0

dt2�wa∗�·� t1�� xa∗�L2�wa∗�·� t2�� xa∗�◦L2�c∗2��−∞�C���
(2.38)

Now use (2.31), Fubini’s theorem and Proposition 4(i) to identify the r.h.s. of
(2.38) as S�c∗2��−∞�C��, with S given in (2.33). ✷

3. CLT for the middle piece. This section contains the proofs of Propo-
sitions 2 and 3.



590 R. VAN DER HOFSTAD, F. DEN HOLLANDER AND W. KÖNIG

3.1. Proof of Proposition 2. Recall Lemma 3 and (2.26) to see that the l.h.s.
of (2.28) is equal to

exp
(
−λ
√
T

ρ′�a�
) ∫ ∞

0
dhf�h�

× Eh

(
exp

(
−
∫ A−1�T′�

0

(
Fa�Xs� −

λ√
T

)
ds

)
g�XA−1�T′��

)
�

(3.1)

According to (2.29), ρ�aλ�T� = ρ�a� − �λ/√T�. Since T′ = ∫A−1�T′�
0 Xs ds [see

(1.8)] and Fa�u� = u2 − au + ρ�a� [see (2.1)], we may write the exponents in
(3.1) as

−
∫ A−1�T′�

0
Faλ�T

�Xs�ds+ �a− aλ�T�
∫ A−1�T′�

0
Xs ds−

λ
√
T

ρ′�a�

= −
∫ A−1�T′�

0
Faλ�T

�Xs�ds+T

(
a− aλ�T −

λ√
Tρ′�a�

)

+ �T−T′��aλ�T − a��

(3.2)

Substitute this into (3.1) and use (2.26) to get that

l.h.s. of (2.28)

= exp
(
T

(
a− aλ�T −

λ√
Tρ′�a�

))
N

f�g
T′� aλ�T

exp��T−T′��aλ�T − a���(3.3)

Next, expand the inverse function ρ−1 of ρ as a Taylor series around ρ�a� up
to second order. It follows that there is an rT between ρ�a� and ρ�a�−�λ/√T�
such that

aλ�T = ρ−1
(
ρ�a� − λ√

T

)
=ρ−1�ρ�a�� − λ√

T
�ρ−1�′�ρ�a�� + λ2

2T
�ρ−1�′′�rT�

= a− λ√
Tρ′�a� −

λ2

2T
ρ′′

�ρ′�3 �ρ
−1�rT��=a− λ√

Tρ′�a� −
λ2

2T
σ2�ξT�

(3.4)

[see (2.27)] with ξT = ρ−1�rT�. Observe that ξT is between a and aλ�T by the
monotonicity of ρ. Now substitute (3.4) into (3.3) to arrive at (2.28). ✷

3.2. Proof of Proposition 3. We shall use an expansion in terms of the
eigenfunctions of the operator � a� L2� ◦�R+0 � ∩C2�R+0 � → C�R+0 � defined by

�� ax��u� = ��
ax��u� − ρ�a�x�u�

u
(3.5)

[recall (0.5)]. Obviously, � a is symmetric w.r.t. �·� ·�◦L2 because � a is sym-
metric w.r.t. �·� ·�L2 . Also � a is a Sturm–Liouville operator. We are going to
identify its eigenvalues and eigenvectors in terms of those of � a.

For l ∈ N0, let ρ�l��a� denote the lth largest eigenvalue of � a and x
�l�
a ∈

L2�R+� the corresponding eigenfunction, normalized such that ��x�l�a ��L2 = 1
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(all eigenspaces are one-dimensional by HH, Lemma 20). Then ρ�0� = ρ,
and each ρ�l� is continuous and strictly increasing [differentiate the formula
ρ�l��a� = �x�l�a �� ax

�l�
a �L2 to obtain d/daρ�l��a� = ��x�l�a ��◦2L2 via (0.5)]. Moreover,

lima→±∞ ρ�l��a� = ±∞. Since x
�l�
a has a subexponentially small tail at infinity

(see HH, Lemma 20), it is also an element of L2� ◦�R+0 �.
Next, define α�l��a� ∈ R and y

�l�
a ∈ L2� ◦�R+0 � by

ρ�l��a− α�l��a�� = ρ�a� and y
�l�
a =

x
�l�
a−α�l��a�

��x�l�
a−α�l��a���◦L2

� l ∈ N0�(3.6)

Note that α�0��a� = 0, y�0�a = xa/
√
ρ′�a�, and α�l+1��a� < α�l��a� for all l ∈ N0

since ρ�l��a� is strictly decreasing in l and strictly increasing in a.

Step 1. For each a ∈ R, the sequence �y�l�a �l∈N0
is an orthonormal basis in

L2� ◦�R+�.

Proof. Since � a is a symmetric Sturm–Liouville operator, all its eigen-
spaces are orthogonal to each other and one-dimensional, and they span the
space L2� ◦�R+�. Thus, it suffices to show that the functions y

�0�
a � y

�1�
a � � � � are

all the eigenfunctions of � a. Now, from (0.5) and (3.5) we easily derive the
equivalence

� ax = αx ⇐⇒ � a−αx = ρ�a�x�(3.7)

which is valid for every a, α ∈ R and x ∈ C2�R+0 �. From (3.6) and (3.7) we see
that �α�l��a��l∈N0

is the sequence of all the eigenvalues of � a with correspond-

ing eigenfunctions �y�l�a �l∈N0
, since (3.7) implies that for every eigenvalue α of

� a there is an l ∈ N0 such that ρ�l��a− α� = ρ�a�. ✷

Step 2. For every h�T ≥ 0, l ∈ N0 and a ∈ R,

Ê
a

h

(
y
�l�
a

xa

�YT�
)
= exp�α�l��a�T� y

�l�
a

xa

�h��(3.8)

Proof. Use (2.7) and (2.14) to compute, for f ∈ C2�R+�,(
G̃a

(
f

xa

))
�u� = f�u�

uxa�u�
(

2uf′′�u� + 2f′�u�
f�u� − 2ux′′a�u� + 2x′a�u�

xa�u�
)
�(3.9)

Apply this for f = y
�l�
a , use (0.5) and the eigenvalue relation � a′x

�l�
a′ =

ρ�l��a′�x�l�a′ for �a′� l� = �a�0� and for �a′� l� = �a− α�l��a�� l�, to obtain

G̃a

(
y
�l�
a

xa

)
= α�l��a�y

�l�
a

xa

�(3.10)
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Thus, G̃a being the generator of the process �Yt�t≥0, the function f�T� =
Ê
a

h��y�l�a /xa��YT�� satisfies the differential equation f′ = α�l��a�f. Therefore
f�T� = exp�α�l��a�T�f�0�, which is our assertion. ✷

Step 3. Conclusion of the proof.

Proof. According to Step 1, we may expand g ∈ L2� ◦�R+0 � as

g =
∞∑
l=0

y
�l�
aT
�g�y�l�aT

�◦L2

= xaT

ρ′�aT�
�g�xaT

�◦L2 +
∞∑
l=1

y
�l�
aT
�g�y�l�aT

�◦L2 �T ≥ 0��
(3.11)

Substitute this into (2.26) to obtain [recall (2.10) and (2.12)]∣∣∣∣Nf�g
T�aT
− 1

ρ′�a��f�xa�L2�g�xa�◦L2

∣∣∣∣
≤

∣∣∣∣ 1
ρ′�aT�

�f�xaT
�L2�g�xaT

�◦L2 − 1
ρ′�a��f�xa�L2�g�xa�◦L2

∣∣∣∣
+
∞∑
l=1

∣∣∣∣
(∫ ∞

0
dhf�h�xaT

�h�Êa

h

(
y
�l�
aT

xaT

�YT�
))
�g�y�l�aT

�◦L2

∣∣∣∣�
(3.12)

With the help of Step 2, the second term on the r.h.s. of (3.12) equals

∞∑
l=1

exp�α�l��aT�T�
∣∣∣∣
(∫ ∞

0
dhf�h�xaT

�h�y
�l�
aT

xaT

�h�
)
�g�y�l�aT

�◦L2

∣∣∣∣
≤ exp�α�1��aT�T�

∞∑
l=0

∣∣∣∣
〈
f

id
� y
�l�
aT

〉◦
L2

�g�y�l�aT
�◦L2

∣∣∣∣
≤ exp�α�1��aT�T�

√√√√ ∞∑
l=0

(〈
f

id
� y
�l�
aT

〉◦
L2

)2
√√√ ∞∑

l=0

(�g�y�l�aT
�◦L2

)2

= exp�α�1��aT�T�"
f

id
"◦L2"g"◦L2 �

(3.13)

This tends to zero as T → ∞ since limT→∞ α�1��aT� = α�1��a� < 0. The first
term on the r.h.s. of (3.12) vanishes as T → ∞ because of the continuity of
a �→ xa ∈ L2�R+� and a �→ ρ′�a� (see HH, Lemma 22). ✷

4. Integrability for the boundary pieces. This section contains the
proof of Proposition 4. It turns out that the functions wa [in (2.18)] and ya

[in (2.31)] have a nice representation in terms of standard one-dimensional
Brownian motion and that ya is a transformation of the Airy function. This
will be explored in Section 4.2. Section 4.1 contains some preparations.
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4.1. Preparations. Let Ai� R → R denote the Airy function, that is, the
unique (modulo a constant multiple) solution of the Airy equation

x′′�u� − ux�u� = 0� u ∈ R(4.1)

that is bounded on R
+
0 . Let u1 = sup�u ∈ R �Ai�u� = 0� be its largest zero.

From Abramowitz and Stegun (1970), Table 10.13 and page 450, it is known
that u1 = −2�3381 � � � � For a < −21/3u1, define za� R+0 → R

+ by

za�u� =
Ai�2−1/3�u− a��

Ai�−2−1/3a� � u ≥ 0�(4.2)

In Lemma 8 in Section 4.2, za will turn out to be equal to ya. Some of its
properties are given in the following lemma.

Lemma 5. For all a < −21/3u1, the function za is real-analytic, strictly
positive on R

+
0 with za�0� = 1, and satisfies

2z′′a�u� + �a− u� za�u� = 0� u ≥ 0�(4.3)

Moreover,

lim
u→∞u−3/2 log za�u� ∈ �−∞�0��(4.4)

Proof. It is well known that Ai is analytic. From (4.2) and the definition
of u1, it is clear that za�0� = 1 and that za�u� > 0 for u ≥ 0. Equation (4.3)
follows easily from (4.1). The asymptotics in (4.4) follows from Abramowitz
and Stegun (1970), 10.4.59. ✷

The following lemma shows in particular that Lemma 5 can be used for
a = a∗.

Lemma 6. a∗ ≤ 3
2π

1/3 < −u1.

Proof. The first inequality is proved via the variational representation

a∗ = inf
x∈L2�R+0 �∩C2�R+0 �� x #=0

∫∞
0 �u2x2�u� + 2ux′�u�2�du∫∞

0 ux2�u�du �(4.5)

This representation stems from the relation (see HH, Section 5.1)

0 = ρ�a∗� = max
x∈L2�R+0 �∩C2�R+0 �� ��x��L2=1

�x�� a∗x�L2�(4.6)

in which, by (0.5),

�x�� a∗x�L2 =
∫ ∞

0

[�a∗u− u2�x�u�2 − 2ux′�u�2]du�(4.7)

In (4.5), we choose the test function

x�u� = exp
(
−u2π

1/3

8

)
�(4.8)
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Elementary computations give that
∫∞

0 ux2�u�du=2π−1/3 and
∫∞

0 u2x2�u�du=
2 and

∫∞
0 ux′�u�2 du = 1

2 . Substituting this into (4.5), we obtain the bound
a∗ ≤ 3

2π
1/3 = 2�1968 � � � � ✷

4.2. Proof of Proposition 4. Let Ph be the distribution of standard one-
dimensional Brownian motion �Bt�t≥0 conditioned on starting at h and let Eh

be the corresponding expectation. Define

Tu = inf�t ≥ 0� Bt = u�� u ∈ R�(4.9)

Note that the following lemma in particular implies Proposition 4(ii).

Lemma 7. For every a ∈ R and h� t > 0,

wa�h� t� = exp�at�Eh/2

(
exp

(
−
∫ t

0
2Bs ds

) ∣∣∣T0 = t

)
ϕh�t��

ϕh�t� =
Ph/2�T0 ∈ dt�

dt
= h

2
√

2πt3
exp

(
−h2

8t

)
�

(4.10)

Consequently,

ya�h� = Eh/2

(
exp

(∫ T0

0
�a− 2Bs�ds

))
�(4.11)

Proof. Recall (1.9). According to Ethier and Kurtz (1986), Theorem 6.1.4,
the process �Y#

t�t≥0 = �X#
A#−1�t��t≥0 is a diffusion with generator [see (1.4)]

(
G̃#f

)�u� = 1
u

(
G#f

)�u� = 2f′′�u�� f ∈ C2
c �R+��(4.12)

In other words, the distribution of �Y#
t�t≥0 under P

#
h is equal to that of

�B4t∧T0
�t≥0 under Ph, which in turn is equal to that of �2Bt∧T0

�t≥0 under

Ph/2. Thus, noting that �d/dt�A#−1�t� = 1/X#
A#−1�t� and hence

∫A#−1�t�
0 X#2

v dv =∫ t
0 X

#
A#−1�s� ds, we have

E
#
h

(
exp

(
−
∫ ∞

0
X#2

v dv

) ∣∣∣A#�∞� = t

)

= E
#
h

(
exp

(
−
∫ ξ0

0
X#2

v dv

) ∣∣∣A#�ξ0� = t

)

= E
#
h

(
exp

(
−
∫ A#−1�t�

0
X#2

v dv

) ∣∣∣A#−1�t� = ξ0

)

= Eh/2

(
exp

(
−
∫ t

0
2Bs ds

) ∣∣∣T0 = t

)
�

(4.13)

which proves the first formula in (4.10) [see (2.18)]. In the same way, we see
that ϕh defined in (1.10) equals the Lebesgue density of T0 under Ph/2, and
its explicit shape is given in RY, page 102. Finally, the representation (4.11)
is a direct consequence of (2.31). ✷
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Proof of Proposition 4(i). In view of Lemmas 5 and 6, the following
lemma implies Proposition 4(i).

Lemma 8. za = ya for all a < −21/3u1.

Proof. Since ya�0� = za�0� = 1 and since za is bounded on R
+
0 , it suffices

to show that ya satisfies the same differential equation as za [see (4.3)]. But
this easily follows from the argument in the proof of KS, Theorem 4.6.4.3,
picking (in the notation used there) α = a < −21/3u1, k�u� = u, γl = 0, b = 0
and c = ∞. ✷

Proof of Proposition 4(iii) and (iv). Fix p ∈ �1�2� and q ∈ �2�∞�. Recall
(2.32). In the following, c denotes a generic positive constant, possibly varying
from line to line.

Step 1. W
�1�
p is integrable at zero.

Proof. Use (4.10) to estimate wa∗�h� t� ≤ ct−3/2he−h
2/8t for any h ≥ 0 and

t ∈ �0�1�. Use the boundedness of x2−p
a∗ on R

+
0 to get

W
�1�
p �t� ≤ c

(∫ ∞
0

h1−phpt−3p/2 exp
(
−ph2

8t

)
dh

)1/p

= ct−3/2
(∫ ∞

0
h exp

(
−ph2

8t

)
dh

)1/p

= ct�1/p�−3/2�

(4.14)

which is integrable at zero. ✷

Step 2. W
�2�
q is integrable at zero.

Proof. As in Step 1, use (4.10) to estimate wa∗�h� t� ≤ ct−3/2he−h
2/8t, and

furthermore use h1+qe−qh
2/16t ≤ ct�1+q�/2 for any h ≥ 0 and t ∈ �0�1�. This gives

W
�2�
q �t� ≤ c

(∫ ∞
0

hxa∗�h�2−qhqt−3q/2 exp
(
−qh2

8t

)
dh

)1/q

≤ ct−3/2
(∫ ∞

0
xa∗�h�2−qt�1+q�/2 exp

(
−qh2

16t

)
dh

)1/q

= ct�1/2q�−1
(∫ ∞

0
xa∗�h�2−q exp

(
−qh2

16

)
dh

)1/q

�

(4.15)

The integral is finite since limh→∞ h−3/2 log xa∗�h� is finite (see the beginning
of Section 2.1). Thus, the r.h.s. of (4.15) is integrable at zero. ✷

Step 3. W
�1�
p is integrable at infinity.
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Proof. Since t �→ 1
2t
−3/2 is a probability density on �1�∞�, Jensen’s in-

equality and the boundedness of x2−p
a∗ on R

+
0 give∫ ∞

1
W
�1�
p �t�dt ≤ c

∫ ∞
1

1
2t
−3/2 dt

(∫ ∞
0

h1−pt3p/2wa∗�h� t�p dh

)1/p

≤ c

(∫ ∞
1

dt
∫ ∞

0
dhh1−pt�3/2��p−1�wa∗�h� t�p

)1/p

�

(4.16)

Use (4.10), Jensen’s inequality and the Brownian scaling property to estimate

wa∗�h� t�p ≤ ϕh�t�p−1ϕh�t�Eh/2

(
exp

(
a∗pt− p

∫ t

0
2Bs ds

) ∣∣∣T0 = t

)
≤ chp−1t−�3/2��p−1�ϕhp1/3�tp2/3�

×E�hp1/3�/2

(
exp

(
a∗p1/3tp2/3 −

∫ tp2/3

0
2Bs ds

) ∣∣∣T0 = tp2/3
)

= chp−1t−�3/2��p−1�wa∗p1/3�hp1/3� tp2/3��

(4.17)

Substitute this into (4.16), recall (2.31) and use Lemmas 6 and 8, to get(∫ ∞
1

W
�1�
p �t�dt

)p

≤ c
∫ ∞

0
za∗p1/3�hp1/3�dh�(4.18)

The r.h.s. is finite by (4.4). ✷

Step 4. W
�2�
q is integrable at infinity if q ∈ �2�∞� is sufficiently close to 2.

Proof. Estimate in the same way as in (4.16) and (4.17), but do not esti-
mate x

2−q
a∗ �h�. The result is(∫ ∞

4
W
�2�
q �t�dt

)q

≤ c
∫ ∞

0
hqxa∗�h�2−qza∗q1/3�hq1/3�dh�(4.19)

For q sufficiently close to 2 we have a∗q1/3 < −21/3u1 (see Lemma 6), and so we
may apply (4.4). Combine the latter with the fact that limh→∞ h−3/2 log xa∗�h�
is finite to deduce that the r.h.s. of (4.19) is finite for q sufficiently close to 2. ✷

Acknowledgment. The authors thank M. Yor for help with the proof of
Lemma 1. Ch. Leuridan has recently extended Lemma 1 and improved its
proof.

REFERENCES

Abramowitz, M. and Stegun, I. (1970). Handbook of Mathematical Functions, 9th ed. Dover,
New York.

Biane, P., Le Gall, J.-F. and Yor, M. (1987). Un processus qui ressemble au pont Brownien.
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