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� 4 dLet X be a symmetric, nearest-neighbor random walk on �t t � 0

with exponential holding times of expectation 1�d, starting at the origin.
d � .For a potential V: � � 0, � with finite and nonempty support, define

ˆ �1 T TŽ Ž . .transformed path measures by d� � exp T H H V X � X ds dt d��T 0 0 s t
Z for T � 0, where Z is the normalizing constant. If d � 1 or if theT T

� �self-attraction is sufficiently strong, then X has an exponential mo-�t
ˆ � �ment under � which is uniformly bounded for T � 0 and t � 0, T . WeT

ˆ� 4 � 4also prove that X under suitable subsequences of � behavest t � 0 T T � 0
for large T asymptotically like a mixture of space-inhomogeneous ergodic
random walks. For special cases like a sufficiently strong Dirac-type
interaction, we even prove convergence of the transformed path measures
and the law of X as well as of the law of the empirical measure LT T

ˆ� 4under � .T T � 0

Ž� . d .1. Introduction. Let � � D 0, � , � be the set of right-continuous
� . dpaths from 0, � to � having left-hand limits. For every t � 0 let X witht

Ž . Ž .X � � � t for � � � denote the evaluation map. The space � is equippedt
� 4with the �-algebra FF generated by X . Let � be the unique path measuret t � 0

Ž . � 4on �, FF such that X is a symmetric, nearest-neighbor random walk ont t � 0
�d with exponential holding times of expectation 1�d, starting at the origin.

� 4For t � 0 the empirical distribution process L after time t is definedt, T T � t
by

1
d1.1 � � t , � � � , T � L � � � ds � MM �Ž . Ž . Ž . Ž . Ž .Ht , T X Ž� . 1sT � t � .t , T

Ž . Ž d .and L � � � , where MM � denotes the set of probability measures ont, t X Ž� . 1t

the d-dimensional cubic lattice �d. If t � 0, then we write L instead of L .T 0, T
d � .Let V: � � 0, � be a function, which is not identically zero, such that

�� � d Ž . 4the radius R � sup x : x � � , V x � 0 of its support is finite. Define a1
Ž d . � .‘‘Hamiltonian’’ H: MM � � 0, � by1

H � � V x � y � x � y , � � MM �d .Ž . Ž . Ž . Ž . Ž .Ý 1
dx , y��
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Without loss of generality we may and will assume in the following that V is
Ž . Ž . da symmetric function in the sense that V x � V �x for all x � � . Note

that

1 T T
1.2 TH L � V X � X ds dt , T � 0.Ž . Ž . Ž .H HT s tT 0 0

Our aim is to investigate the limiting behavior of the transformed probabil-
ity measures

ˆ1.3 � A � � 1 exp TH L �Z , A � FF , T � 0,Ž . Ž . Ž .Ž .T A T T

� Ž Ž ..�as T � �, where Z � � exp TH L is the normalizing constant.T T
If the self-attraction is sufficiently strong, then it is intuitively clear that

ˆunder � the paths tend to clump together much more than for the free walk.T
An interesting consequence, which we derive near the end of Section 4 during
the proof of our main result, is the following theorem; it excludes diffusive
behavior.

THEOREM 1.4. Assume that the self-attraction is sufficiently strong to
satisfy Condition 1.10 below, which is certainly the case for d � 1 or for
V � � 1 with � � d. Then there exists an 	 � 0 such that�04 0

ˆ � �sup sup � exp 	 X � �,Ž .�T 0 t
T�0 � �t� 0, T

ˆ ˆwhere � denotes expectation with respect to � .T T

� �REMARK 1.5. Brydges and Slade 3 , who work on the discrete-time ran-
dom walk with the Dirac-type potential V � �1 , recently proved that for�04
two and more dimensions and sufficiently small � � 0 the diffusive behavior

�1ˆ '� Ž . 4persists in the sense that � X � T converges to a nontrivialT T T � �

Ždistribution as T tends to infinity, which is Gaussian for d � 3. They
actually prove convergence of the rescaled process and describe the limiting

.process explicitly. As far as we know, it is still an open problem whether the
diffusive behavior persists for all coupling strengths � � 0 which are too
small to satisfy our Condition 1.10.

� � � �Somewhat related models have been investigated recently in 1 , 16 and
� �17 . The self-attraction in these models is different from the one of reinforced

Ž � � � �.random walks see, e.g., 5 and 13 , which have a more Markovian struc-
ture. Our model is more in the spirit of the widely studied self-repellent

Ž � �random walks which have a minus sign in the exponent see, e.g., 10 ,
.Chapter 10.1 and the references given there , but no 1�T factor. It is easy to

Ž .see that if this 1�T factor in 1.2 would be absent in our model, then the
interaction would be too strong for an interesting result and, for example, for

ˆ� 4V � 1 , the path measures � would completely collapse to the Dirac�04 T T � 0
measure on the zero function as T � �.
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The Donsker�Varadhan large deviation theory plays a crucial role in this
Ž d . Ž �paper. We define the rate function J: MM � � 0, d by1

21 ' ' '1.6 J � � � x � � y � d � � x � yŽ . Ž . Ž . Ž . Ž . Ž .Ý Ýž /2
d d� 4 � 4x , y �� x , y ��

� � � �x�y �1 x�y �11 1

Ž d .for all � � MM � . Using these two representations for J and Fatou’s lemma,1
Ž d .it follows that J is continuous in the weak topology on MM � , which is1

1� � � Ž . Ž . �dmetrizable by the total-variation distance � � 
 � Ý � x � 
 x .x � �2
� �14The measures �L satisfy a weak large deviation principle with rateT T � 0

function J. This means

1
1.7 lim sup log � L � C 	 � inf J �Ž . Ž . Ž .TT ��CT��

Ž d .for every compact subset C of MM � , and, for every open subset U of1
Ž d .MM � ,1

1
1.8 lim inf log � L � U � � inf J � .Ž . Ž . Ž .TTT�� ��U

� � Ž .See 8 , Theorem 8.1, for the lower bound 1.8 , which we will use in the proof
� �of Proposition 1.12, and 7 , Theorem 5, for the identification of the rate

function.
Ž d .As an abbreviation, we define �: MM � � � by � � H � J. Let1

1.9 b � sup � �Ž . Ž .
dŽ .��MM �1

be the lowest upper bound for �. With these preparations, we can make
precise what we consider as a sufficiently strong self-attraction. In addition to

Žthe properties of V stated above, we assume throughout this article with the
.exception of Lemma 2.1, Lemma 2.2 and the last section the following

condition:

CONDITION 1.10. Let V be chosen such that b � 0.

Lemma 2.1 shows that this condition is always satisfied in one dimension.
Ž d . Ž .Furthermore, if there exists a � � MM � with H � � d, then Condition1

1.10 is satisfied because the rate function J is bounded by d and, therefore,
Ž . Ž .b � H � � J � � 0.

Note that � is shift-invariant, which means that ��� � � for all x � �d,x
Ž .Ž . Ž .where the shift transformation � is defined by � � y � � y � x for allx x

Ž d . d� � MM � and y � � . Let1

K � � � MM �d : � � � bŽ . Ž .� 41

Ž .be the set of optimal measures where the supremum in 1.9 is attained. It is
not immediately clear whether K � �. Furthermore, due to the shift-invari-
ance of �, the set K is shift-invariant too and cannot be compact unless K is
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empty. Therefore, we introduce the subset

� �K 0 � � � K : � 0 � H � � V ,� 4Ž . Ž . Ž . 1

� � Ž .dwhere V � Ý V x , of those optimal measures which have a consider-1 x � �

able amount of their mass at the origin.

PROPOSITION 1.11. The following statements hold:

Ž . Ž d .a K is a nonvoid closed subset of MM � .1
Ž . Ž . db If � � K, then � x � 0 for all x � � .
Ž . Ž . � Ž . Ž . d4c The set K 0 is compact and K � � � : � � K 0 , x � � .x
Ž . � Ž . Ž d . Ž .4 Ž .d If  � 0, then sup � � : � � MM � 
 U K � b, where U K is the1  

-neighborhood of K with respect to the total-variation distance.

The following result concerning the asymptotic behavior of the partition
function will be proved at the end of Section 2.

Ž .PROPOSITION 1.12. lim 1�T log Z � b.T �� T

In Lemma 4.4 we will show among other things that for every � � K there
� �4 Ž .dexists a unique family � of Markovian path measures on �, FF withx x � �

�Ž . d� X � x � 1 for all x � � , whose conservative infinitesimal generatorx 0
� Ž � . dQ � q is determined byx, y x, y � �

1 � �'� y �� x , if x � y � 1,Ž . Ž . 12�1.13 q �Ž . x , y ½ � �0, if x � y � 1.1

� �4 dNote that � is reversible with respect to the measure �.x x � �

Ž d .Considering the equivalence relation on MM � given by the shift transfor-1
� � � Ž . d4mation, we denote by � � � � : x � � the equivalence class of � �x

d ˜ d dŽ . Ž . �� � Ž .4MM � , by MM � � � : � � MM � the set of all equivalence classes and,1 1 1
˜ ˜ d�� � 4 Ž .finally, by K � � : � � K the optimal ones. We equip MM � with the1

metric

d� � � �1.14 � � 
 � inf � � � 
 , � , 
 � MM � .Ž . Ž . Ž .x 1
dx��

� Ž .� � �Note that the infimum is attained because � � � 
 � 1 as x � �.1x
Ž d . � �Since the canonical projection MM � � � � � is continuous, Proposition1

˜Ž .1.11 c shows that K is compact. This is the substitute for the missing
˜ 'compactness of K. For � � K define � � Ý � 0 . If � � K, then � �Ž .� � � � � � �

Ž .'dÝ � x , and we will show in Lemma 4.12 that � x decays exponen-Ž .x � �

� �tially fast as x tends to infinity, hence � � �. For every � � K define� � � �
d dŽ . Ž . '� � MM � by � x � � x �� for all x � � . Finally, let id denote theŽ .˜ ˜1 � � � �

identity on �. The main result of this article is the following theorem.
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ˆ �1 ˜ d� � � 4 Ž Ž ..THEOREM 1.15. The set � L is relatively compact in MM MM �T T T � 0 1 1
with respect to the weak topology. Every accumulation point � of
ˆ �1 ˜� � � 4� L as T � � is concentrated on K. IfT T T � 0

�1ˆ1.16 lim � L � �Ž . T Tk kk��

� 4for a sequence T tending to infinity, thenk k � �

�1 �ˆ1.17 lim � L , id , X � � 0 � � � � � � d�Ž . Ž . Ž .˜ ˜Ž . ÝHT T � T � 0k k k ˜k�� K ���

Ž Ž d . d .with respect to the weak topology on MM MM � � � � � .1 1

We always consider the path space � equipped with the standard Skoro-
Ž� � Ž .. Ž� �hod metric 9 , Chapter 3, 5.2 , which turns � into a Polish space 9 ,

. Ž� �Chapter 3, Theorem 5.6 with Borel �-algebra FF 9 , Chapter 3, Proposi-
.tion 7.1 .

If there exists only one accumulation point � in Theorem 1.15, then we
Ž .obtain convergence in 1.17 for the full sequence and the right-hand side of

˜Ž . � �1.17 simplifies. A sufficient criterion for this to happen is K � 1.

˜ ˜ d� 4 Ž .COROLLARY 1.18. If K � � for some � � MM � , then1

�1 �ˆlim � L , id , X � � 0 � � � � �.Ž . Ž .˜ ˜ÝT T � T � 0
T�� ���

As an illustration of this corollary, consider A � �d. Then, for every 
 � � ,
1ˆ ' 'lim � X � A � � 0 � A � 
 x 
 x � y .Ž . Ž . Ž . Ž . Ž .˜ ˜Ý Ý ÝT T 2�T�� d���� y�Ax��

˜To decide whether K contains just one element or not is quite delicate. For
a Dirac-type interaction we will prove the following result:

d ˜� �THEOREM 1.19. For � � 0 define V � �1 on � . If � � 2 d, then K � 1.�04

REMARK 1.20. The corresponding variational problem for the one-dimen-
sional Brownian motion is given by

1 24 1
2� � � �sup � g x dx � �g dx : g � H � , g � 1 .Ž . Ž .H H L2½ 5

� �

For every � � 0 this variational expression has solutions which can easily be
Ž � �. Ž .determined explicitly see 11 . Uniqueness up to translations follows from

a symmetrization argument. The delicacy of the variational problem on �d is
that no symmetrization argument seems to be available. We successfully

Ž .tried to lower the bound for � to the integer 2 d see Lemma 6.3 and with
more work a small additional improvement would be possible, but our
method does not allow us to reach zero. Indeed, numerical results for the

Ž .one-dimensional case suggest that uniqueness does not hold for all � � 0, 2 .
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In the remaining part of this introduction we briefly outline the method we
Ž d .adopt to prove our results. In Section 2 we first show that for every � � MM �1

with a large value of the Hamiltonian there exists a point x � �d where a
considerable amount of the mass of � is concentrated, in the sense that
Ž . Ž . � � Ž .� x � H � � V . If � is nearly optimal in the sense that � � is close to1

Ž .the supremum b in 1.9 , then we prove in Lemma 2.3 that most of the mass
of � is concentrated in the vicinity of the abovementioned x. It is crucial for
our results that the size of this vicinity depends on � only via the distance of
Ž . � 4� � to the supremum b of �. This will imply that a sequence � isk k � �

Ž .tight if lim � � � b and every � has considerable mass at x. Usingk �� k k
this observation, we can prove Proposition 1.11.

Ž .Since we do not have the large deviation upper bound 1.7 for all closed
d ˜ dŽ . Ž .subsets of MM � and since MM � is not compact either, we project the1 1

random walk onto a large discrete torus �d � �d�l�d, where a full largel
deviation principle for the empirical measures is available. On �d we havel
the torus analogue � of � and the corresponding supremum b . For suffi-l l
ciently large l the uniform distribution on �d cannot maximize � . Instead,l l

d Ž d .the situation resembles the one in � ; namely, for every � � MM � with1 l
Ž . d� � close to b , there exists a ‘‘d-dimensional octahedron’’ in � , wherel l l

most of the mass of � is concentrated, and the size of this octahedron
Ž .depends on � only via b � � � . Using this observation, we can show thatl l

every optimal measure � on �d, when projected onto a large discrete torus
�d, looks very similar to an optimal measure on �d. On the other hand, if � isl l
an optimal measure on a large torus, then we can find suitable seams to cut
the torus apart such that, after identification with a cube in �d, the trivially

d dextended measure � on � looks very similar to an optimal one on � . This
turns Proposition 1.12 into an easy corollary.

ˆŽ . Ž Ž ..In Section 3 we want to prove that lim sup 1�T log � L � U K �T �� T T 

0 for every  � 0. The full large deviation principle for the torus immediately
l d ˆimplies that the empirical measure L on � has a high � -probability ofT l T

being close to the projections of the optimal measures constituting K. Unfor-
tunately, this does not imply that L has to be close to an optimal measureT
on �d, because a priori the mass of L might be distributed among several,T
widely separated humps in �d, and these humps might fall on top of each

d ˜� �other when projected onto � . In the special case d � 1 and K � 1, the set Kl
Ž .is a discrete line and we could visualize U K as a tube centered around K,

which explains why Section 3 bears the title ‘‘The tube problem.’’ To solve
this problem, we devise a suitable way to fold the abovementioned annoying
paths of the random walk such that the humps of the corresponding empirical
measures cannot fall on top of each other during the projection. For this to
work we have to keep the probabilistic ‘‘cost’’ of the folding operation small

ˆŽ .with respect to � and, on the other hand, have to shift a considerable partT
of the mass of L . We divide the troublesome paths into a T-dependentT
number of subsets, such that for each of these sets, we can find a slab of fixed
width 3w which separates the mass of L and in which the correspondingT
paths spend only a small amount of time. Folding this slab to obtain a slab of
width w yields the desired estimates.
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ˆ �1� 4In Section 4 we prove the tightness of � L . Note that tightness isT T T � 0
not an immediate consequence of Section 3, because the shift-invariant set K
of optimal measures is not compact. We start by considering, for every � in

Ž d . ² � : Ž d .MM � , an affine function h , � : MM � � � which approximates H at �. If1 1
Ž . � ² � : Ž .� � � 0, then there exists a unique measure � maximizing h , � � J �

and, via a Feynman�Kac-like formula, we can define time-homogeneous
� �4 Ž .dMarkovian probability measures � on �, FF which are reversibley y � �

� � Ž .with respect to � . If � is optimal, then � � �. If � � is sufficiently close
to b, then we can derive nontrivial upper and lower bounds for the exponen-

� Ž . Ž .tial decay of � , uniformly for all � satisfying � � � 1 �  b for a1
specific  � 0. Furthermore, uniformly for these �, we obtain the conver-1
gence of � �X�1 to � � as t � �, with an explicit dependence of the conver-y t
gence rate on the starting point y � �d. Lemma 4.23, the main one in Sec-
tion 4, then states the following: If L is in a neighborhood of an optimalT
measure �, which has a considerable amount of its mass at x, then the
�̂ -probability for a corresponding path to be far away from x at a given timeT

� �t � 0, T is negligible, uniformly for large T. We prove this lemma by a
‘‘partial path exchange’’ argument. This means that we compare the paths
with a far reaching excursion at time t to similar ones which hang around x

Ž .during the period of this excursion. For the latter paths the value of H L isT
ˆconsiderably bigger, giving them a higher � -probability. Using Lemma 4.23,T

ˆ �1� 4we can derive Theorem 1.4 and the tightness of � L .T T T � 0
We start the proof of our main theorem in Section 5 by showing that

certain quantities and measures, like � � and � � for y � �d, depend contin-y
Ž . Ž .uously on � as long as � is nearly optimal in the sense that � � � 1 �  b.1

Ž .To prove weak convergence on MM � , it suffices to consider continuous1
� �functions f : � � 0, 1 , which depend only on a finite part of the paths, say

� �0, s for a given f. By the results of Sections 3 and 4, we can reduce our
convergence problem from �d to various big cubes in �d. It follows from the
uniform convergence results in Section 4 that we can find a t � 2 s such that
� �X�1 and � �X�1 are close to the corresponding equilibrium distributiony t�2 y t
� �, uniformly for all nearly optimal �, which are essentially concentrated in
one cube, and all starting points y in another, larger cube. The abovemen-
tioned continuity results allow us, for sufficiently large T, to replace L byT

Ž . Ž .L defined as in 1.1 . Furthermore, we may express the term TH L byt,T�t T
Ž . Ž . ² Lt, T�t :T � 2 t H L plus an affine correction 2 t h , � . If L satisfies thet, T�t T
recently stated condition for �, then so does L . Under the measurest, T�t

Lt, T�t � � � � � �� the intervals 0, t�2 , t�2, t and T � t, T are long enough fory
convergence close to equilibrium; the dependence on the starting point y
thereby fades away. This indicates why we obtain a product measure in
Ž .1.17 .

A heuristic explanation why the normalized square root � and not � itself˜
Ž � �4 .das the stationary distribution of � determines the distribution of thex x � �

˜� �final point X and the mixture within the equivalence class � � K mightT
be the following: At time T the paths do not have to be prepared to build up

ˆempirical mass according to �. Instead, under � , they behave like the freeT
walk after T. Therefore, the distribution of X is more spread out than �,T
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which is one property of �. Similarly, there was no need to build up empirical˜
mass according to � before time zero. Technically speaking, � is an eigenvec-˜
tor of the generator of the semigroup given by the Feynman�Kac formula
Ž . ² � :4.9 , which includes the affine approximation h , � .

In the last section we prove our uniqueness result for a sufficiently strong
Dirac-type interaction, namely, Theorem 1.19. The main work is to show that
nearly all the mass of an optimal measure is concentrated at one point of �d.
To derive uniqueness from this fact, we basically use the concavity of the

� � Ž 2Ž . 2Ž . .function 0, ��2 � 	 � H cos 	 � � sin 	 � for small 	 . To reach the0 1
lower bound 2 d for �, our method actually requires some numerical work.

2. Proofs of Propositions 1.11 and 1.12. We first show that the self-
attraction is always strong enough in one dimension.

� � Ž .dLEMMA 2.1. If d � �, then b � V � max V x . If d � 1, then� x � �

b � 0.

� �PROOF. The upper bound follows from H 	 V and J � 0. Consider�

Ž .now the case d � 1. Then there exists k � � with V k � 0. Choose n � �0
Ž . Ž . Ž . �1Ž � � � 4.2even such that n � k V k � 48. Define � i � N max 0, 1 � i �n for

all i � �, where N � 1 � 2Ýn�1i2�n2 	 1 � 2Ýn�1i�n � n. Theni�1 i�1

2n�2�k 1 3
H � � V k � i � k � i � V k n � k �Ž . Ž . Ž . Ž . Ž . Ž .Ý ž /4N nNi��n�2

Ž . Ž . Ž . Ž . Ž .and J � � 2� nN . Hence, b � H � � J � � 1� nN � 0. �

Ž d . d Ž .LEMMA 2.2. For each � � MM � there exists x � � with � x �1
Ž . � �H � � V .1

Ž . � � Ž . dPROOF. Define c � H � � V . If � x � c for all x � � , then we obtain1
Ž . Ž . Ž . � � Ž .d dthe contradiction H � � cÝ � y Ý V x � y 	 c V � H � . �1y � � x � �

The following technical-looking but important lemma will be used to show
tightness in the proof of Proposition 1.11. It is also the main tool to prove the
exponential decay of the stationary measures in Lemma 4.12. We use � and	 

� to denote rounding to the next higher and lower integer, respectively.� �

� Ž � � .� Ž d . Ž .LEMMA 2.3. If  � 0, b� 2 V � 2b and � � MM � satisfy � � �1 1
Ž . d Ž . Ž . � �1 �  b and if x � � satisfies � x � � � � V , then1

� �4 V � 2 d R � 1�d � �2.4 � y � � : x � y � n 	  �� 4Ž . Ž . (1 b n

� Ž . 	 Ž .� � 2Ž � � .2 4 
4for all n � n � max R R � 1 , 4 R � 1 V 4 V � 2 d �b .1 �0
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Ž .PROOF. Replacing � by � � if necessary, we may assume that x � 0.�x
� d Ž . � � 4For every j � � define A � y � � : j � 1 r � y 	 jr , where r �1j

� 4 � 4 � 4max 1, R . Since the sets A are disjoint, there exists k � 1, . . . , n�r� �j j� �

Ž . � d � � 4such that � A 	 1� n�r . Define A � A , B � y � � : y 	 kr and� � 1k k

 d � 4� y , for y � � 
 A � 0 ,Ž . Ž .�2.5 � y � 0, for y � A ,Ž . Ž .˜ �� 0 � � A , for y � 0.Ž . Ž .
Ž c. Ž . Ž . Ž .Let � � � B . If � � 0, then estimate 2.4 holds. Since � 0 � � 0 � 0,˜ ˜

Ž .the case � � 1 is excluded. Therefore, it remains to consider the case � � 0, 1 .
Ž � . Ž � c. Ž . Ž .If � � � � B and � � � � B , then � � 1 � � � � �� . Since � A � 0,˜ ˜ ˜ ˜0 1 0 1

Ž . Ž .2 Ž . 2 Ž .it follows from the definition of r that H � � 1 � � H � � � H � and˜ 0 1
Ž . Ž . Ž . Ž . Ž .2 Ž . 2 Ž .J � � 1 � � J � � �J � � 1 � � J � � � J � . Hence,˜ 0 1 0 1

2 2� � 	 1 � � � � � � � �Ž . Ž . Ž . Ž .˜ 0 1
2.6Ž .

2 2 � 4	 1 � � � � b 	 b max �, 1 � � .Ž .Ž .
Ž . Ž .In the remaining part of the proof we want to show that � � is close to � �˜

and thereby close to b. Since � turns out to be substantially smaller than 1,
Ž .this will imply that 1 � � is the maximum in 2.6 , hence � has to be small.

� Ž . Ž . � � � Ž .First note that H � � H � 	 4 V � A . It follows from the second˜ �

Ž .representation in 1.6 that

' '2.7 J � � J � � � y � z � � y � zŽ . Ž . Ž . Ž . Ž . Ž . Ž .˜ ˜ ˜Ý ž /
d� 4y , z ��

� 4 Ž � 4.y , z � A� 0 ��
� �y�z �11

If k � 1, then A contains all neighbors of the origin and we may replace
� 4 Ž . Ž . Ž . d � �A � 0 by A in 2.7 . If k � 2, then � z � � z for all z � � with z � 1.˜ 1

Ž . Ž . � 4Since � 0 	 � 0 , we obtain an upper estimate when we replace A � 0 by˜
Ž . Ž .'A in 2.7 . Dropping all remaining terms of the form � � y � z in 2.7 ,Ž . Ž .˜ ˜

� 4 � �'and adding � y � z for y, z � A with y � z � 1, it follows thatŽ . Ž . 1

' 'J � � J � 	 � y � z .Ž . Ž . Ž . Ž .˜ Ý Ý
dy�A z��

� �y�z �11

By the Cauchy�Schwarz inequality,
d'' '2.8 J � � J � 	 2 d� A 2 d� � � 2 d � A .Ž . Ž . Ž . Ž . Ž . Ž .˜

Ž . ' ' 'Hence, since � A 	 � A 	 1� n�r 	 R � 1 �n ,Ž . � � Ž .
� � '2.9 � � � � � � 4 V � 2 d R � 1 �n .Ž . Ž . Ž . Ž . Ž .˜ �

Ž . Ž . Ž . � � � 4Note that � 	 1 � � 0 	 1 � � 0 	 1 � � � � V . If max �, 1 � � � � in˜ 1
Ž . Ž . Ž .2.6 , then the last estimate, 2.6 and 2.9 together show that

b R � 1
� �2.10 1 � � � 	 b � 4 V � 2 d .Ž . Ž . Ž .(�ž /� �V n1
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By assumption,

b b b
� � � b 1 �  � b 1 � � b 1 � 1 � .Ž . Ž . ž / ž / ž /� � � � � �2 V � 2b 2 V V1 1 1

Ž .Together with 2.10 this leads to a contradiction for every n � n . There-0
� 4 Ž . Ž . Ž .fore, max �, 1 � � � 1 � � and 2.4 follows from the estimates 2.6 , 2.9

Ž . Ž .and � � � 1 �  b. �

Ž . � 4 Ž d .PROOF OF PROPOSITION 1.11. a Let � be a sequence in MM �k k � � 1
Ž .such that lim � � � b. By the shift-invariance of � and Lemma 2.2 wek �� k
Ž . Ž . � �may assume that � 0 � H � � V for all k � �. Then it follows from1k k

� 4Lemma 2.3 that � is tight. By Prohorov’s theorem, we may assumek k � �

� 4 Ž d .that � converges to some � � MM � . Since H and J are continuous,k k � � 1
Ž .K is closed and � � � b, hence � � K.

Ž . Ž . db Suppose that there exists � � K satisfying � x � 0 for some x � � .
� d � � 4Define the neighborhood of x by N � y � � : x � y � 1 . Without loss of1x

Ž .generality we may assume that � y � 0 for at least one y � N . Forx
� � Ž 2 . 2 Ž d . Ž .t � 0, 1 let � � 1 � t � � t � , where � � MM � satisfies � x � 1.t x x 1 x

Then

d d 'H � � 0 and J � � � � y � 0,Ž . Ž . Ž .Ýt tdt dtt�0 t�0 y�Nx

which is a contradiction to � � K.
Ž . Ž . Ž .c Using the proof of a , compactness of K 0 follows. The representation

of K follows from Lemma 2.2.
Ž . � 4 Ž d . Ž .d Assume that there exists a sequence � in MM � 
 U K withk k � � 1 

Ž . Ž .lim � � � b. By the proof of a and the shift-invariance of the total-k �� k
� 4variation distance, we may then assume that � converges to somek k � �

� 4� � K, but this is a contradiction to the choice of � . �k k � �

To prepare the proof of Proposition 1.12 and the treatment of the tube
problem in Section 3, we need to pass to a large discrete torus in order to
have a full large deviation principle available. Furthermore, we have to study
the connections between the optimal measures on �d and those on the
discrete torus.

� 4 d d d d dFor l � � 
 1 let � � � �l� be the discrete torus and let � : � � �l l l
l Ž .be the canonical projection. Then X � � X for t � 0 is the ordinaryt l t

d Ž d .symmetric random walk on � . Naturally, we equip the set MM � ofl 1 l
probability measures on �d with the total-variation distance. Let Ll � L ��1

l T T l
� l4denote the empirical distribution of X up to time T � 0. It follows fromt t � 0

� � � Ž l .�146 , Theorem 4.2.58, that the measures P L satisfy a full largeT T � 0
deviation principle as T � � with the good rate function

d 2
1 d'2.11 J � � � x � � x � e , � � MM � ,'Ž . Ž . Ž . Ž . Ž .Ý Ý ž /l i 1 l2

d i�1x�� l
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Ž . dwhere e � 0, . . . , 0, 1, 0, . . . , 0 � � with the 1 at position i. We define thei l
d � .potential V : � � 0, � on the discrete torus byl l

V x � V y , x � �d ,Ž . Ž .Ýl l
�1Ž .y�� xl

and the corresponding Hamiltonian by

H � � V x � y � x � y , � � MM �d .Ž . Ž . Ž . Ž . Ž .Ýl l 1 l
dx , y�� l

Again, we will use the abbreviation � � H � J . The large deviation princi-l l l
ple implies that

1
llim log � exp TH L � b ,Ž .Ž .l T lTT��

Ž . Ž d .dwhere b � sup � � . Since � is continuous and MM � is compact,l � � MM Ž� . l l 1 l1 l
� Ž d . Ž . 4it follows that K � � � MM � : � � � b is nonvoid and compact. If � isl 1 l l l

Ž d . l �1 Ž d .in MM � , then � � �� is in MM � ,1 l 1 l

H �l � V x � lr � y � ls � lt � x � lr � y � lsŽ . Ž . Ž . Ž .Ž .Ž . Ýl
d� 4x , y� 1, . . . , l2.12Ž . dr , s , t��

� H �Ž .
and
2.13 J �l 	 J � ,Ž . Ž .Ž .l

since
2 22' ' ' '' 'u � v � x � y 	 u � x � v � yŽ .Ž . Ž .

� .for all u, v, x, y � 0, � . These two estimates show that b � b.l
Ž d . d Ž . � � dIf � � MM � is the uniform distribution on � , then H � � V �l and11 l l l

Ž . � � d Ž� � .1� dJ � � 0, hence b � V �l and � � K for l � V �b . This already1 1l l l
indicates that, for large l, the optimal measures are essentially concentrated
on small regions. Using b � b and the arguments which led to Lemma 2.3,l
one can indeed prove a corresponding result for measures on �d.l

LEMMA 2.14. Let l, n � � satisfy l � 2n � 1 and n � n with n defined0 0
� Ž � � .� Ž d . Ž .as in Lemma 2.3. If  � 0, b� 2 V � 2b and � � MM � satisfy � � �1 1 l l

Ž . d1 �  b , then there exists x � � such thatl

d d � �� � 
 � y � � : x � y 	 n� 4Ž .Ž .1l l

� �4 V � 2 d R � 1�
	  � .(b n

2.15Ž .

d d dŽ . Ž . Ž .For � � MM � and x � x , . . . , x � � we define � � MM � by1 l 1 d x 1

d d� � y , if y � � � Ł x � l�2 , x � l � 1 �2 ,Ž . � � Ž .Ž .l i�1 i i� y �Ž .x ½ 0, otherwise.
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� 4dThere exists a minimal z � 1, . . . , l with respect to the lexicographic order
lŽ . Ž .dsuch that � � � max � � . Let � denote this � . Note that � � �z x � � x z

Ž d .for every � � MM � . The next lemma establishes the close relationship1 l
between the nearly optimal measures on �d and those on �d for large l. Forl

� 4 Ž� l4 . � 0 and l � � 
 1 define U � U � . , l  � � K

� Ž � � . Ž � � .4LEMMA 2.16. Let  � min b� 2 V � 2b , 1� 2 V . For every  in1 �0
Ž � � 40, there exists l � � 
 1 such that for every l � l the following state-0 0 0
ments hold:

Ž . Ž d . Ž . Ž .a If � � MM � satisfies � � � 1 �  b , then1 l l l

� � � � � � 2 d � 1  ;Ž . Ž . Ž .l

Ž . Ž .b b 	 b � 2 d � 1  ;l
Ž . � Ž . Ž d . 4c sup � � : � � MM � 
 U � b;l 1 l  , l
Ž .d K � U .l  , l

Ž .PROOF. a Take any n � n , with n as in Lemma 2.3, such that the0 0
Ž .right-hand side of 2.15 is less than 2 . Let l � 2n � 2 R � 3 be given. Take

Ž d . Ž . Ž .any � � MM � satisfying � � � 1 �  b . By Lemma 2.14 there exists1 l l l
d Ž . d Ž� d � � 4.x � � such that � A 	 2 with A � � 
 � y � � : x � y 	 n . De-1l l
 d Ž� d � � 4. � � � �fine A � � 
 � y � � : x � y 	 n � 1 . Note that V � V . Since1 � �l l l
Ž � � . 	 1� 2 V , it follows that�

2� �H � � H � 	 V y � z � y � z 	 V � A 	 2 .Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ý �l x l l
y , z�A

Ž . Ž .Using 1.6 , 2.11 and the Cauchy�Schwarz inequality, it follows that
d

' 'J � � J � 	 � y � y � e 	 d� A d� A 	 2 d .'Ž . Ž . Ž . Ž . Ž .Ž . Ý Ýx l i
y�A i�1

Ž . Ž .b Apply part a to any � � K .l
Ž . Ž .c Assume that c does not hold. Then there exist a strictly increasing

� 4 � 4 � Žk .4 Žk .sequence l in � 
 1 and a sequence � such that every � isk k � � k � �

Ž d . Ž Žk ..in the compact set MM � 
 U and satisfies � � � b. Remember that1 l  , l lk k k

� 4 Ž .b � b for all l � � 
 1 . Using part b and choosing a subsequence ifl
Ž .necessary, we may assume that 1 �  �k b 	 b for all k � �. It follows0 lk

Ž .from part a that

 2 d � 1  b � 2 d � 2Ž .0 0Žk .2.17 � � � 1 � b � � 1 �  bŽ . Ž . l 0ž / k ž /k k bk

for all k � �. By Lemma 2.2 there exists, for every k � �, a point x � �d
k

Žk . Žk .Ž . Ž . � �with � x � � � � V . Since every single measure is tight and since1k
Žk . Ž .Lemma 2.3 applies to � for every k � b � 2 d � 2 �b, it follows that

Žk . d� 4 Ž .� � is a tight subset of MM � . Using Prohorov’s theorem and�x k � � 1k Žk .� 4choosing a sub-subsequence if necessary, we may assume that � ��x k � �k
Ž d . Ž .converges to some � � MM � . Since � is continuous, it follows from 2.171
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Ž .that � � � b, hence � � K and � � � K for all k � �. Furthermore,x k

lkŽk . Žk . Žk .� � � �� � � � 	 � � � � � � � � � � 0 as k � �.Ž .x x �xk k k

Thus, �Žk . � U for all sufficiently large k � �. This is a contradiction to , lk
� Žk .4the choice of the sequence � . Hence, there exists l � 2n � 2 R � 3k � � 0

Ž .such that c holds.
Ž . Ž . � 4 Ž .d If part c holds for l � � 
 1 and if � � K , then � � � b � b,l l l

Ž d . Ž .hence � � MM � 
 U by part c . �1 l  , l

PROOF OF PROPOSITION 1.12. The lower bound in Proposition 1.12 follows
Ž . � �from 1.8 as in the proof of 6 , Lemma 2.17. To show the upper bound, choose

Ž . � Ž l .�14any  � 0. By 2.12 and the full large deviation principle for � L ,T T � 0

1 1
llim sup log Z 	 lim log � exp TH L � b 	 b � 2 d � 1  ,Ž .Ž .Ž .T l T lT TT��T��

Ž Ž .where the last inequality follows from Lemma 2.16 b for all large l. �

3. The tube problem. As explained in the introduction, the tube prob-
ˆlem is to show that L stays in � -law inside a ‘‘tube’’ around K as T � �,T T

that is, to prove the following proposition:

PROPOSITION 3.1. For any  � 0,

1 ˆlim sup log � L � U K � 0.Ž .Ž .T T TT��

The proof of this proposition together with a corollary concerning the
existence of an uniformly bounded exponential moment is given at the end of
this section. The difficulty in proving Proposition 3.1 is coming from the fact

� �14that we have only a weak large deviation principle for �L at ourT T � 0
Ž .disposal. Also, the monotonicity argument based on 2.12 , which we used in

the above proof of Proposition 1.12, does not work here.

LEMMA 3.2. If  � 0, then there exists l � � such that0

1
lˆsup lim sup log � L � U � 0.Ž .T T  , lTl�l T��0

� Ž l .�14 � �PROOF. The large deviation principle for � L and 6 , ExerciseT T � 0
2.1.24, show that

1
l llim sup log � exp TH L ; L � U 	 sup � � : � � U .� 4Ž .Ž .Ž .l T T  , l l  , lTT��

Ž . � Ž . 4By Lemma 2.16 c there exists l � � with sup � � : � � U � b for all0 l  , l
l � l . This together with Proposition 1.12 proves the claim. �0
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Already this seems to be very close to Proposition 3.1, except for one very
annoying point. We know by Lemma 2.14 that the elements in K arel
essentially concentrated on small sets, namely, d-dimensional octahedrons,
uniformly in l. Therefore, Lemma 3.2 says that L is essentially concentratedT
on the union of the l-translates of such a small set. The delicacy is to exclude
the possibility that L has substantial mass on more than one of theseT
translated sets.

To explain the key idea for the solution of this problem, we need to
� 4introduce some additional notation. Given a coordinate direction � � 1, . . . , d

�Ž . d 4and an integer i � �, let h � x , . . . , x � � : x � i denote the corre-i, � 1 d �

Ž . dsponding discrete hyperplane. Such a hyperplane divides � into two half-
� �Ž . d � � � � 4spaces given by h � x , . . . , x � � : x � 1�2 	 2 i � x � 1�2 andi, � 1 d � �

h� � �d 
 h� . Note that h� always contains the origin, the d unit vectorsi, � i, � i, �

Ž . d � 4e � 0, . . . , 0, 1, 0, . . . , 0 � � , where the 1 is at place j � 1, . . . , d , and thej
Ž .hyperplane h itself this justifies the plus sign . We have to use 1�2i, �

instead of 0 in the definition of h� to handle the case i � 0 conveniently. Fori, �

i � � and w � � define0

i � w , if i � 1,i �w ½ i � w , if i 	 0,

Ž � � .and let s � h � h � h be the slab of width w.i, � , w i , � i, � i, �w

The main idea to prove Proposition 3.1 is the following. If the empirical
measure L has substantial mass in more than one of the translated d-T
dimensional octahedrons, then we choose a slab s , which is visitedi, � , 3w
seldom, such that L has substantial mass in the half-spaces h� andT i , �3w

h� 
 h . With the help of two reflections at the hyperplanes h andi, � i, � i , �w

h we fold up the path inside the slab s such that it fits into the slabi , � i, � , 3w2 w

s . The empirical distribution of the new path, when projected to �d, turnsi, � , w l
out not to be essentially concentrated on one ‘‘d-dimensional octahedron’’ of
�d. Hence Lemma 3.2 applies. Of course, we have to show that the probabilis-l
tic ‘‘cost’’ of these two reflections is less than the ‘‘cost’’ for Ll to substantiallyT
deviate from K .l

In one dimension we could prove Proposition 3.1 using one reflection,
Ž . Ž .because V x � V �x for all x � �. In higher dimensions we need the more

Ž .complicated construction with two reflections to prove Lemma 3.6 c be-
Ž .low. This is due to the fact that, for a general potential, V x , . . . , x �1 d

Ž .V x , . . . , x , �x , x , . . . , x .1 ��1 � ��1 d
� 4For � � 1, . . . , d and i � � let � � 0. Define the arrival and depar-i, � , 0

ture times of the random walk for the hyperplane h , recursively for everyi, �

� 4 �k � � , by � � inf t � � : X � h and � � inf t � � :0 i, � , k i, � , k t i, � i, � , k�1 i, � , k
4 � 4X � h . For T � 0 let n � max k � � : � � T be the number oft i, � i, � , T 0 i, � , k

excursions starting from the hyperplane h before T. Let � � �i, � i, � , T i, � , ni, � , T

be the end of the last excursion which started from h before T. Further-i, �

� �more, we denote by M � max X � X the maximal spread up to�T s, t ��0, T � s t
time T. The following lemma contains some useful large deviation estimates.
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Ž . � 4 ŽLEMMA 3.3. a If  � 0, i � �, � � 1, . . . , d , T � 0 and � 	  exp �1 �
ˆŽ� � . . Ž Ž . . Ž .V � 1 � , then � L h 	 � , n � T 	 exp �T .� T T i, � i, � , T

ˆ 2 2Ž . Ž� � . Ž . Ž .b If T � exp V � 2 , then � M � T 	 d exp �T .� T T
ˆŽ . � Ž . Ž� � .�c If 	 , T � 0, then � exp 	M ; M � T exp V � 2 � 	 	 d.�T T T

Ž . � 4 Ž .PROOF. a Since the �-component of X is recurrent, � � � � �t t � 0 i, � , k
� 41 for all k � � . The random variables � � inf t � 0: X � h for0 k t�� i, �i, � , k

k � � are independent and exponentially distributed with expectation 1.0
� 4They describe the duration of the visits of X at the hyperplane h . Byt t � 0 i, �

Ž� �the derivation of the one-dimensional version of Cramer’s theorem 6 ,´
.Section 1.2 ,

� � T

� L h 	 � , n � T 	 � � 	 � T 	 exp �mh � T�mŽ . Ž .Ž .Ž . ÝT i , � i , � , T kž /
k�0

with m � T � 1 � �T, where the rate function is given by� �
� �, for x 	 0,� y �yh x � sup � x � log e e dy �Ž . H ½ž / x � 1 � log x , for x � 0.0���

� �Note that the rate function h is decreasing within the interval 0, 1 . Since
Ž .T 	 m and �h x 	 1 � log x for x � 0, it follows that

� ��mh �T�m 	 �Th � T�m 	 T 1 � log �� 	 � V � 1 T .Ž . Ž . Ž . Ž .�

Ž . � � Ž d . Ž Ž ..Since 0 	 H � 	 V for all � � MM � , it follows that exp TH L 	� 1 T
Ž � � . � Ž Ž ..� Ž . Ž .exp T V and � exp TH L � 1. Using 1.3 , part a follows.� T
Ž . � 4 � 4b For every � � 1, . . . , d let � be the times between successive� , k k � �

jumps of the random walk in coordinate direction � . These times are indepen-
dent and exponentially distributed with expectation 1. If M � T 2, thenT

	 2 
there is a direction � in which the random walk jumped at least T times.
Hence

	 2 
Td
2 2� M � T 	 � � 	 T 	 d exp �T h 1�T .Ž .Ž .Ž . Ý ÝT � , kž /

��1 k�1

Ž . Ž . � � 2Using the inequalities �h 1�T 	 1 � log 1�T 	 � V � 1 and T 	 T , it�

Ž 2 . Ž � � 2 .follows that � M � T 	 d exp � V T � T . Similarly as in the proof of�T
Ž . Ž .part a , part b follows from the last estimate.

Ž . Ž� � .c If T � 0 and M � m with m � T exp V � 2 � 	 , then there ex-�T
� 4ists a coordinate direction in which the random walk X jumped at leastt t � 0

� � Ž .m times during 0, T . Similarly as in part b , it follows that

� �� M � m 	 d exp �mh T�m 	 d exp �m V � 1 � 	Ž . Ž . Ž .Ž . Ž .�T

and
ˆ �m �	 m� M � m 	 de .Ž .T T

Therefore,
�mˆ � �� exp 	M ; M � T exp V � 2 � 	 	 dÝ e 	 d. �Ž . Ž .�T T T m� �
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� 4For i � � and � � 1, . . . , d let

x , for x � h� ,i , �
� x �Ž .i , � �½ x � 2 x � i e , for x � x , . . . , x � h ,Ž . Ž .� � 1 d i , �

be the map which reflects the half-space h� into h� , and, for w � �, leti, � i, �

� x , for x � h� ,Ž .i , � i , �w 2 w3.4 � x �Ž . Ž .i , � , w �½ x � i � i e , for x � h ,Ž .2 w � i , �2 w

Ž .be the map which folds up the slab s . The second case in 3.4 corre-i, � , 3w
Ž . � �sponds to reflecting � x from h 
 h back into h . For T � 0 definei , � i, � i, � i, �w

the accompanying map � : � � �, which folds up the paths, byi, � , w, T

� � t , for t � � � � ,Ž .Ž .i , � , w i , � , T i , � , Tw 2 w�� � t , for � � � 	 t � � ,Ž .� � t � Ž .Ž . Ž . i , � i , � , T i , � , T i , � , Ti , � , w , T w w 2 w w�� t , for t � � .Ž . i , � , Tw

�1� 4LEMMA 3.5. If i � �, � � 1, . . . , d , T � 0 and w � �, then �� � �i, � , w, T
�1 n �ni, � , T i , � , Twand d� � �d� 	 2 .i, � , w, T

PROOF. Since the random walk is symmetric, it suffices to give, for every
� � �, a crude upper estimate for the number of paths � � � with˜

Ž .� � � �. If the path � leaves one of the hyperplanes h and h˜i, � , w, T i, � i , �w
Ž .before T, then � may have gone if at all possible into the other direction˜

with respect to the �-coordinate. Since � leaves the hyperplanes h andi, �

h before T exactly n � n times, we get the claimed estimate. �i ,� i, � , T i , � , Tw w

� 4For every integer i � �, coordinate direction � � 1, . . . , d and width
Ž d . Ž d .w � �, we define a ‘‘folding operator’’ � : MM � � MM � , which corre-ˆi, � , w 1 1

Ž . Ž . �1 Ž d .sponds to � given in 3.4 , by � � � �� for all � � MM � . Noteˆi, � , w i, � , w i, � , w 1
that � � L � L �� for every T � 0.ˆi, � , w T T i, � , w, T

LEMMA 3.6. Let  be defined as in Lemma 2.16. For every choice of  � 00
Ž � Ž .4�and � � 0, min  , � 45d there exist l � � and a width w � � such0 1

Ž d . Ž . lthat, for every l � l and every � � MM � 
 U K satisfying � � U , there1 1  � , l
� 4exist an integer i � � and a coordinate direction � � 1, . . . , d such that:

Ž . Ž .a � s 	 2� ,i, � , 3w
Ž . Ž Ž ..lb � � � U ,ˆi, � , w  �Ž7d ., l
Ž . � Ž Ž .. Ž . � � � 2c H � � � H � 	 4 V � .ˆ �i, � , w

PROOF. Define n as in Lemma 2.3. Choose an integer n � n such that0 0
Ž .the second term on the right-hand side of 2.4 is less than � . Since � 	  ,0

Ž . Ž .Lemma 2.16 d applies. Hence there exists l � 8 2n � 1 such that K � U1 l � , l
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Ž d . Ž .for all l � l . Define w � 2n � 1. Take l � l and � � MM � 
 U K with1 1 1 
l Ž� l4 . � l l �� � U . Since U � U 
 , there exists 
 � K with � � 
 	 � . By� , l � , l � 
 � K

� d � �Lemma 2.3 there exists a d-dimensional octahedron O � y � � : x � y 	1
4 d Ž . dn , centered at some x � � , such that 
 O � 1 � � . For every z � � define

� 4 dthe shifted octahedron O � y � lz: y � O . Let C � � O be the collec-z z � � z
�1Ž Ž .. � l l �tion of all these octahedrons. Since C � � � O and � � 
 	 � , itl l

follows that

� C � �l � O � 
 l � O � �Ž . Ž . Ž .Ž . Ž .l l3.7Ž .
� 
 C � � � 
 O � � � 1 � 2� .Ž . Ž .

d Ž . Ž � .Assume that there exists z � � with � O � 1 � 4�9. Let � � � � Oz z
Ž � . � l l � � � � l l � � �and 
 � 
 � O . Then � � � 	 � � � 	 4�9 and 
 � 
 	 
 � 
 	˜ ˜ ˜ ˜ ˜

� � � l Ž .l � � l l � � l l �� . Furthermore, � � � 
 � � � � 
 � � � 
 	 � � � �˜ ˜ ˜ ˜ ˜ ˜ ˜l z l z
� l l � � l l �� � 
 � 
 � 
 	 4�9 � 2� . Hence˜

� � � � � � � �� � � 
 	 � � � � � � � 
 � � 
 � � 
 	 8�9 � 3� �  .˜ ˜ ˜ ˜l z l z l z l z

Ž .This is a contradiction to � 
 � K and � � U K .l z 

� 4For every j � � and � � 1, . . . , d define

A � O .�j , � Ž z , . . . , z .1 d
dŽ .z , . . . , z ��1 d

z 	j�

Assume that
 

� A 	 or � A � � C �Ž .Ž . Ž .j , � j , �5d 5d
� 4 � 4for all j � � and � � 1, . . . , d . For every � � 1, . . . , d we know that A ��j, �

as j � �� and A �C as j � �. Hence, there exists j � � such thatj, � �

Ž . Ž . Ž . Ž .A � A 
 A satisfies � A � � C � 2� 5d . Using 3.7 , it follows� j ,� j �1, � �� �

Ž . Ž . Ž . Ž .that � A � 1 � 2� � 2� 5d � 1 � 4� 9d . If we define z � j , . . . , j ,� 1 d
d Ž .then O � � A and � O � 1 � 4�9. According to the previous para-z ��1 � z

� 4graph, this leads to a contradiction. Hence, there exist j � � and � � 1, . . . , d
such that

 
� � A � � C � .Ž .Ž .j , �5d 5d

Ž .With x � x , . . . , x as above, define i � jl � x � 4w. Then s � C �1 d � i, � , 3w
Ž . Ž . Ž . Ž�, hence a follows from 3.7 . Define A � � A and B � � C 
i, � , w j, � i, � , w

. Ž .Ž . Ž . Ž .Ž . Ž .A . Then � � A � � 5d and � � B � � 5d . Furthermore,ˆ ˆj, � i, � , w i, � , w
since � shifts either A or C 
 A by 2w in the �-direction and sincei, � , w j, � j, �

� �the � -diameter of O equals w � 1, it follows that, for every d-dimensional1
 � d � � 4 doctahedron O � y � � : y � z 	 n with z � � , the intersection of1

�1Ž Ž ..� � O with either A or B is empty, hencel l


�13.8 � � � � O � 1 � .Ž . Ž . Ž .Ž .ˆ Ž .i , � , w l l 5d

Ž Ž ..lAssume that � � is in U . Then there exists a measure � � Kˆ ˆi, � , w  �Ž7d ., l
�Ž Ž ..l l � Ž . dwith � � � � � � 7d and, by Lemma 2.3, there exists z � �ˆ ˆ ˆi, � , w
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 � d � � 4 Ž .such that O � y � � : y � z 	 n satisfies � O � 1 � � . Hence,ˆ ˆ1

  
 �1� � � � O � � O � � 1 � � � � 1 � ,Ž . Ž . Ž .Ž .ˆ ˆŽ .i , � , w l l 7d 7d 5d

Ž . Ž .which is a contradiction to 3.8 . This proves part b .
�Ž . d 4Let D � y , . . . , y � � : i 	 y 	 i be the region where the1 d �R � R�3w

terms of H may be distorted. Since n � n � R by the definition of n in0 0
Ž . Ž .Lemma 2.3, it follows that D � C � �, hence � D 	 2� by 3.7 . Therefore,

H � � � H �Ž . Ž .Ž .ˆi , � , w

� V � y � � z � V y � z � y � zŽ . Ž . Ž . Ž . Ž .Ž .Ž .Ý i , � , w i , � , w
y , z�D

2 2� � � �	 V � D 	 4 V � ,Ž .Ž .� �

Ž .because V is nonnegative. This proves part c . �

PROOF OF PROPOSITION 3.1. Choose any  � 0. According to Lemma 3.2
there exists l � � such that0

1
lˆ3.9 � � � sup lim sup log � L � U � 0.Ž . Ž .T T  �Ž7d . , lTl�l T��0

Let  be given as in Lemma 2.16, define0

� � � � V � 1�
� � min  , , , exp �1 � 120 (½ 5ž /� �45d 12 V 24 ��

and let the corresponding l � � and w � � be determined by Lemma 3.6.1
According to Lemma 3.2 there exists l � � such that2

1
lˆ3.10 sup lim sup log � L � U � 0.Ž . Ž .T T � , lTl�l T��2

� 4Let l � max l , l , l and T � 0. Then0 1 2

ˆ ˆ l ˆ l� L � U K 	 � L U � � L � U K , L � U .Ž . Ž .Ž . Ž . Ž .T T  T T � , l T T  T � , l

Ž .The first probability on the right-hand side is estimated by 3.10 .
Ž . � Ž Ž .. Ž . �To estimate the second probability, define f � � H � � � H �ˆi, � i, � , w

� 4 Ž d .for every i � �, � � 1, . . . , d and � � MM � . Using Lemma 3.6, it follows1
that

ˆ l� L � U K , L � UŽ .Ž .T T  T � , l

� 2 �Td
l2ˆ ˆ� � M � T � � � L � U ,Ž .ˆŽ . Ý Ý žT T T i , � , w T  �Ž7d . , l

2��1 � �i�� T

� � 2L s 	 2� , f L 	 4 V � .Ž . Ž . � /T i , � , 3w i , � T
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ˆ 2Ž . Ž .The term � M � T is estimated in Lemma 3.3 b . Due to the choice of � ,T T
Ž .it follows from Lemma 3.3 a that

� T
�̂ L s 	 2� , max n �Ž .T T i , � , 3w i , � , Tk wž /12� 4k� 0, 1, 2, 3

ˆ� � L h 	 2� , n � � T�12 	 4 exp �TŽ .Ž .Ž .Ý T T i , � i , � , Tk w k w
� 4k� 0, 1, 2, 3

� 4 Ž . Ž 2 .for all i � � and � � 1, . . . , d . Since lim 1�T log 2 dT � d � 0, itT ��

therefore suffices to show that

1 �lˆlim sup log � � L � U , f L 	 ,Ž . Ž .ˆT i , � , w T  �Ž7d . , l i , � TžT 3T�� i��
� 4�� 1, . . . , d3.11Ž .

� T �
max n 	 	� .i , � , Tk w /12 3� 4k� 0, 1, 2, 3

Since � � L � L �� as well as n �� � n � nˆi, � , w T T i, � , w , T i, � , T i, � , w, T i, � , T i , � , T2 w
Ž .and n �� � n � n , it follows from 1.3 and Lemma 3.5i , � , T i, � , w, T i , � , T i , � , Tw w 3w

� 4that, for all i � �, � � 1, . . . , d and T � 0,

� � Tl
�̂ � L � U , f L 	 , max n 	Ž . Ž .ˆT i , � , w T  �Ž7d . , l i , � T i , � , Tk wž /3 12� 4k� 0, 1, 2, 3

� T �3e l	 � exp TH L �� ; L �� � U ,Ž . Ž .Ž .T i , � , w , T T i , � , w , T  �Ž7d . , lZT

n � n �� 	 � T�3Ž .i , � , T i , � , T i , � , w , Tw

2� T �3 ˆ l	 e � L � U .Ž .T T  �Ž7d . , l

Ž . Ž .Using 3.9 , the estimate 3.11 follows. �

� �COROLLARY 3.12. For T � 0 let M � max X � X denote the�T s, t ��0, T � s t
maximal spread up to time T. Given  � 0, there exists 	 � 0 such that˜

ˆ3.13 sup � exp 	M ; L � U K � �.Ž . Ž .Ž .˜T T T 
T�0

Ž �PROOF. Proposition 3.1 implies the existence of 	 � 0, 1 and c � 0 such˜
ˆ Ž Ž .. Ž Ž� � ..that � L � U K 	 c exp �	T exp V � 3 for all T � 0. Hence˜ �T T 

ˆ � �� exp 	M ; M 	 T exp V � 3 , L � U K 	 c.Ž . Ž .Ž .˜ �T T T T 

Ž .Using Lemma 3.3 c , the corollary follows. �

ˆ �1� 44. Tightness. In this section we prove the tightness of � L andT T T � 0
d Ž .also Theorem 1.4. For x � � let � denote the path measure on �, FF of ax

symmetric, nearest-neighbor random walk on �d with exponential holding
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times of expectation 1�d, starting at x. Let � denote the correspondingx
Ž d .expectation. Note that � � � and � � �. For every � � MM � define0 0 1

Ž . d � . � dH � : � � 0, � and h : � � � by

4.1 H  � x � 2 V x � y � y , x � �d ,Ž . Ž . Ž . Ž . Ž .Ý
dy��

and

4.2 h � x � H  � x � H � , x � �d .Ž . Ž . Ž . Ž . Ž .
d ² : Ž . Ž .dFor a bounded function f : � � � let f, � � Ý f x � x . Furthermore,x � �

define
� ² � :4.3 � � sup h , 
 � J 
Ž . Ž .Ž .

dŽ .
� MM �1

� � Ž . � ² � : Ž . Ž . Ž .and note that 2 V � H � � � � h , � � J � � H � � J � ��

Ž .� � . We start with a lemma which shows that, in particular for all nearly
optimal measures �, there exists a unique solution � � of the linearized

Ž . �variational expression in 4.3 . This � is the stationary distribution of a
certain ergodic random walk.

Ž d . �LEMMA 4.4. Let � � MM � with � � 0 be given.1

Ž .a For every  � 0 there exists n � � such that
d � �4.5 
 x � � : x � 2n 	 4� 4Ž . Ž .�

Ž d . ² � : Ž . Ž . �for all 
 � MM � satisfying h , 
 � J 
 � 1 �  � .1
Ž . � Ž d . � ² � �: Ž �.b There exists a unique � � MM � with � � h , � � J � . It1

�Ž . dsatisfies � x � 0 for all x � � .
Ž . d � xŽ � . Ž �.c If x � � , then � � � � .x
Ž . � �4 dd There exists a set � of time-homogeneous Markovian probabilityx x � �

Ž . dmeasures on �, FF such that, for every x � � , t � 0 and A � FF ,t

�exp �� tŽ .
� � �² :4.6 � A � � 1 exp t h , L � X .'Ž . Ž . Ž .Ž .x x A t t�'� xŽ .

Ž . � Ž � . � �4d de The conservative generator Q � q corresponding to �x, y x, y � � x x � �

is determined by

1 � � � �'� y �� x , if x � y � 1,Ž . Ž . 12�q �x , y ½ � �0, if x � y � 1.1

Ž . � � �4 df The measure � is the reversible distribution of � .x x � �

Ž . � �g If � � K, then � � b and � � �.

1 �Ž .PROOF. a It suffices to consider the case  � . Define � � � . Using4
Ž .the finite support of V, the tightness of � and 4.1 , it follows that there

Ž .2 Ž .Ž . dexists n � � with n � 2 d�� such that H � x 	 � for all x � � with
� �x � n.�
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� d � � 4 � 4For every j � � define A � x � � : x � j . Since the sets A are�j j j� �

� 4 Ž .disjoint, there exists k � n � 1, . . . , 2n such that 
 A 	 1�n. Define A �k
� d � � 4 Ž .A and B � x � � : x 	 k . Use 2.5 with 
 instead of � to define the�k

² � : ² � : Ž .measure 
 . Note that h , 
 � h , 
 � � . The arguments leading to 2.8˜ ˜
Ž . Ž . 'show that J 
 � J 
 	 2 d 
 A 	 � . HenceŽ .˜

� ² � : ² � :4.7 � � 3� 	 h , 
 � J 
 � 2� 	 h , 
 � J 
 .Ž . Ž . Ž .˜ ˜

Ž c. Ž c.Define � � 
 B . If � � 0, then we are done. If � � 1, then 
 B � 1 and˜
1� � �Ž . ² : Ž .1 �  � 	 h , 
 � J 
 � � � � , which is a contradiction to  � . It4

Ž . Ž � . Ž � c.remains to consider � � 0, 1 . Defining 
 � 
 � B and 
 � 
 � B , it fol-˜ ˜0 1
Ž . Ž . Ž . Ž . Ž . Ž . ² � :lows that J 
 � 1 � � J 
 � � J 
 � 1 � � J 
 . Since h , � is lin-˜ 0 1 0

² � : ² � : Ž . Ž . �ear and h , 
 	 � , it follows that h , 
 � J 
 	 1 � � � � � . Using˜ ˜1
Ž . �4.7 and solving for � , we obtain � 	 4��� � 4 .

Ž . � � 4 Ž d .b To prove the existence of � , let 
 be a sequence in MM � withk k � � 1
Ž² � : Ž .. � Ž . � 4lim h , 
 � J 
 � � . It follows from part a that 
 is tight.k �� k k k k � �

� Ž d .Hence we may assume that the sequence converges to some � � MM � .1
² � �: Ž �. �Since J is continuous, h , � � J � � � . By the same method as in the
Ž . �Ž . dproof of Proposition 1.11 b it follows that � x � 0 for all x � � .

To prove the uniqueness of � �, it suffices to show that J is strictly
Ž d . Ž . dmid-convex on the set of all 
 � MM � satisfying 
 x � 0 for all x � � .1

1 1Let 
 and 
 be such measures, define 
 � 
 � 
 and assume that˜ ˆ ˜2 2
1 1Ž . Ž . Ž . Ž .J 
 � J 
 � J 
 . Using the second expression for J in 1.6 , a short˜ ˜2 2

2Ž .' 'computation shows that this is equivalent to 
 x 
 y � 
 y 
 xŽ . Ž . Ž . Ž .˜ ˜
Ž . Ž . Ž . Ž . d � �� 0, hence 
 x �
 y � 
 x �
 y , for all x, y � � with x � y � 1.˜ ˜ 1

Therefore, 
 � 
 .˜
Ž . ² � xŽ � . Ž .: ² � : Ž d . Ž .c Since h , � 
 � h , 
 for all 
 � MM � , it follows from 4.3x 1

� xŽ � . � ² � xŽ � . Ž �.: Ž Ž �.. ² � �:that � � � . Furthermore, h , � � � J � � � h , � �x x
Ž �. � � xŽ � . � xŽ � . Ž �. Ž .J � � � � � . Hence � � � � by the uniqueness from part b .x
Ž . �Ž . Ž .d Since � x � 0 by part b , we can define

1
� � � d'4.8 � � h x � d � � y , x � � .Ž . Ž . Ž .Ýx �'2 � xŽ . dy��

� �x�y �11

d � 4 Ž �Ž . �Ž .. Ž d .Take x � � 
 0 . For t in the interval �� 0 , � x define 
 � MM �x, t 1
� Ž . �by 
 � � � t� � t� . By part b , � maximizes the variational expres-x, t 0 x

Ž . Ž .Ž² � : Ž .. � � � Ž .sion in 4.3 . Hence 0 � d�dt h , 
 � J 
 � � � � . By 4.8 ,t�0x, t x, t 0 x
Ž . Ž . � �Ž . ² � �: Ž �. � � �

d1.6 and part b , Ý � � x � h , � � J � � � , hence � � �x � � x x
for all x � �d.

� �4Define a semigroup of transition kernels P byt t � 0

� � d d² :4.9 P x , A � � exp t h , L 1 X , x � � , A � � , t � 0.Ž . Ž . Ž .Ž .t x t A t

The corresponding operator semigroup on the space of bounded functions on
d � �4 � Ž � . d� is denoted by P , too. Let L � L be the generator of thist t � 0 x, y x, y � �
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operator semigroup. Its components are given by
� �1�2, for x � y � 1,1� � 4P x , y � �Ž .t x y �� �h x � d , for x � y ,Ž .4.10 L � lim �Ž . x , y tt�0 � � �0, for x � y � 2.1

� � � � �Furthermore, L 	 2 V � 2 d.op �
� �' Ž .' dIf � denotes the vector � x , then it follows with the help ofŽ . x � �

� � � � � � � �' ' ' 'Ž . Ž . Ž .4.8 that L � � � � , hence P � � exp � t � . Therefore, 4.6t
Ž . ddefines a probability measure on �, FF for every t � 0 and x � � . Further-t

more, for every x � �d, these measures are consistent. Hence, they can be
� �4 Ž . Ž� �duniquely extended to measures � on �, FF 14 , Chapter V, Theoremx x � �

. � �4 � 4d d4.2 . The other properties of � follow from those of � .x x � � x x � �

Ž . Ž . Ž . Ž .e The generator follows from 4.6 using 4.8 and 4.10 .
Ž . �Ž . � �Ž . � df Check that � x q � � y q for all x, y � � .x, y y, x

� � � �' 'Ž . Ž .g Remember that L � � � � by the proof of part d . Due
Ž . Ž . � Ž . �to Proposition 1.11 b , the proof of d also works when � from 4.3 and �

Ž .are replaced by b and �, provided that the variational expression in 1.9
Ž . Ž . ² � : Ž .and � 
 are used instead of the one in 4.3 and h , 
 � J 
 .x, t x, t x, t

� � �'² :' ' 'Hence, L � � b � . Since the matrix L is symmetric, b � , � �
� � � � � � �' ' '² : ² : ² :' ' 'L � , � � � , L � � � � , � . Therefore, b � � and

� Ž .� � � by the uniqueness in part b . �

1 dŽ � � .Define  � b� 4 V . Note that  � . For every x � � let11 1 4
d � �4.11 K x ,  � � � MM � : � � � 1 �  b , � x � � � � VŽ . Ž . Ž . Ž . Ž . Ž . Ž .� 411 1 1

denote the set of all nearly optimal measures with considerable mass at x.
The following three lemmas show that, uniformly for all � in a neighborhood
of the set K of optimal measures, the corresponding invariant measures � �

given by Lemma 4.4 have an exponential decay without decaying too fast and
� 4 � �4 dthat X under � ‘‘forgets’’ its starting point sufficiently fast.t t � 0 x x � �

Ž .LEMMA 4.12. There exist constants c , c � 0, � such that1 2
� � �� y 	 c exp �c x � yŽ . Ž .�1 2

d Ž .for all x, y � � and � � K x,  .1

d � �PROOF. It suffices to consider x, y � � with x � y � 10n , where n� 0 0
Ž .2is as in Lemma 2.3, and prove the estimate with the constants c � d � 11̃

Ž � 2 � � 4. � �and c � b� 2 max e , 2 V for these x, y. Define j � x � y �2 and	 
� �2
Ž . � Ž .t � 2c j�b. Using 4.6 for A � � and � � � � � 3b�4, it follows that2

� �² :'� y 	 exp �3bt�4 � exp t h , L .Ž . Ž . Ž .y t

² � : � � Ž . d � �Note that h , L 	 2 V by 4.1 . If z � � satisfies z � x � 5n �� 1t 0
Ž .4n � R, then 4.1 and an application of Lemma 2.3 with n � 4n show that0 0

� �V � d� � � �H � z 	 2 V � y � � : y � x � 4n 	 b 	 b.Ž . Ž . � 4˜ ˜� 1ž /0 � �V 1
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�Ž . Ž . Ž . �Hence h z 	 b�4 because H � � � � � 3b�4. Let N � max X �t s��0, t � s
� ² � :y . If the walk starts at y and if N 	 j, then h , L 	 b�4. Therefore,� t t

� � �'4.13 � y 	 exp �bt�2 � exp �3bt�4 exp 2 t V � N � j .Ž . Ž . Ž . Ž . Ž . Ž .� y t

Applying Cramer’s theorem as in the proof of Lemma 3.3, it follows that´
Ž . Ž Ž .. �2 Ž �2 .� N � j 	 d exp �jh t�j . Using t�j 	 e and h e � 1 for the firsty t

� � Ž .step and j � 2 t V for the second one, it follows that � N � j 	� y t
Ž . Ž � � . Ž .d exp �j 	 d exp �2 t V . Substituting this estimate into 4.13 proves�

the lemma. �

Ž .LEMMA 4.14. There exists a constant c � 0, � such that3

� ��2 x�y 1� � �� y � c 4 V � 2 dŽ . Ž .�3

d Ž .for all x, y � � and � � K x,  .1

� 	Ž .Ž � � .2 Ž .2 
4PROOF. Define n � max n � 1, R � 1 4 V � 2 d � b with n�1 0 1 0
Ž� d � � 4.as in Lemma 2.3. Since � z � � : x � z � n 	 2 by Lemma 2.3, it1 1 1

Ž . Ž . Ž .Ž . � �follows from 4.1 and 4.2 that H � z 	 4 V 	 b and, therefore,�1
�Ž . d � � Ž . Ž .h z 	 b�4 for all z � � with x � z � n � R, because H � � � � �1 1

� � � � �3b�4. Since h 	 2 V and� �

d �� � � �b�4 � 2 V 2n � 2 R � 1 max � z : x � z 	 n � R� 4Ž . Ž .� 11 1

² � �: ² � �: � �� h , � � h , � � J � � � � � � � 3b�4,Ž . Ž .
Ž . dwhere the equality follows from Lemma 4.4 b , there exists a point y � �˜

� �with x � y 	 n � R such that˜ 1 1

b �d�4.15 � y � 2n � 2 R � 1 .Ž . Ž . Ž .˜ 1� �4 V �

Ž . Ž .From the proof of Lemma 4.4 d , in particular from 4.8 , it follows that
1 � � � � dŽ . � � �'� z �� z � d 	 � � h z 	 2 V for all z, z � � with z �Ž . Ž .˜ ˜�2
� �Ž . Ž � � .�2 �Ž . dz � 1. Hence � z � 4 V � 2 d � z . Given y � � , there exists a˜ ˜1 �

� �path from y via x to y with a length not exceeding n � R � x � y .˜ 11
Ž .Applying the last estimate to every bond of this path and using 4.15 , the

lemma follows. �

� .LEMMA 4.16. There exists an increasing function c: � � 0, � such that0

� �c x � yŽ .1� �1 � �1� �4.17 � X � � X 	Ž . x t y t t
d Ž .for all x, y � � , � � K x,  and t � 0. Furthermore,1

� � �1 � �4.18 lim sup � X � � � 0.Ž . x t
t�� Ž .��K x , 1

� 4 � 4 Ž . Ž .PROOF. Define random walks X and Y by X � , � � � ss s� 0 s s� 0 s 1 2 1
Ž . Ž . Ž . 2 �and Y � , � � � s for all s � 0 and � , � � � . Let � � inf s � 0:s 1 2 2 1 2
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 4 2 2X � Y denote the first time they meet. Then TT: � � � , defined bys s

� s , � s , for s � 0, � � , � ,Ž . Ž . Ž .Ž . .1 2 1 2
TT � , � s �Ž . Ž .1 2 ½ � s , � s , for s � � � , � , � ,Ž . Ž . Ž .Ž . .1 1 1 2

�, c Ž � �. �1gives the coalescent random walks and � � � � � TT is the corre-x, y x y
Ž �, csponding coupling measure to verify this, show that � is a time-homoge-x, y
Ž 2 .neous Markovian measure on � , FF � FF with the classical coupling genera-

� � . dtor given in 4 , Example 5.11 . For every A � � the coupling inequality
yields

 � � � , c � , c� X � A � � X � A � � X � A � � Y � AŽ . Ž . Ž . Ž .x t y t x , y t x , y t

	 � � , c � � t .Ž .x , y

Let � � denote the expectation with respect to � � � � �. Since � � TT � � , itx, y x y
�, cŽ . Ž � �.Ž . � � � Ž .follows that � � � t � � � � � � t 	 � � �t. To prove 4.17 , itx, y x y x, y

� � � Ž . � �suffices to show for x � y that � � 	 c j with j � x � y and1x, y

2 j j� �4 V � 2 d 2 j!Ž .�
� �4.19 c j � exp 4 V � 2 d ,Ž . Ž . Ž .�2 dc3

where c is the constant from Lemma 4.14.3
� Ž  . Ž .4Define � � 0 and � � min i � �: i � � , X , Y � x, y for every0 n n�1 i i

n � �. The idea is to show that after each stopping time � the two walksn
have a new, independent chance to meet within the next time unit. Let
� 4 2 �� be the time-shift operators on � . Then � 	 Ý � �� 1 . Notes s� 0 n�0 1 � �� � � 4n n

� 4 � 4 � 4 � 4that � � � � � �� � � �� � � � � and � � � � FF forn � 1 � n�1 n�1 �n� 1 n�1 n�1

every n � �. Hence, by the strong Markov property,
� �� � �� � �� 1 FF � 1 � �x , y 1 � �� � � 4 � �� � � 4 x , y 1n n n n

and
� � � � �� � � � � � FF � 1 � � � � � � .Ž .Ž .x y n � �� � � 4 x y 1n� 1 n�1

Therefore, using the last equality recursively,
� � � �� �n x , y 1� � � �� � � �4.20 � � 	 � � � � � � � � � .Ž . Ž .Ž .Ýx , y x , y 1 x y 1 � �� � � � 	 �Ž .x y 1n�0

Ž . � �By Lemma 4.4 f , the unique invariant distribution of � � � is givenx y
� � �Ž  .4by � � � , hence the Markov chain X , Y is positive recurrentn n n� �0

Ž� � . � � Ž . � � �12 , page 74 . It follows from 12 , Example 5.1 a , that � � �x, y 1
Ž �Ž . �Ž ..�1 Ž . Ž .� x � y . Using 4.20 and Lemma 4.14, the first quotient of 4.19
follows.

Ž . �Ž .To estimate the denominator in 4.20 , we only consider the case � x �
�Ž . �   4 � 4 �Ž . �Ž .� y and use X � x, Y � x � � 	 � , because the case � x � � y1 1 1

�   4 � 4 Ž .using X � y, Y � y � � 	 � is similar. It follows from 4.6 and1 1 1
� ² � : � � �Ž . Ž � � . Ž .� � h , L 	 2 V that � X � x � exp �2 V � X � x and� �1 x 1 x 1
�Ž . Ž � � . Ž . Ž . �d� X � x � exp �2 V � X � x . Note that � X � x � e , because�y 1 y 1 x 1

� � Ž .the walk may stay at x during 0, 1 . To estimate � X � x , note that therey 1
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� �exists at least one path from y to x of length j � x � y , hence the walk1

can reach x from y in time u � 1 using j steps if it goes along this path and
then stays at x. Since the distribution of the time for j jumps is given by the

Ž . j j�1 �d s Ž .gamma density f s � d s e � j � 1 !, it follows thatd, j

u1 f uŽ .d , j�1�dŽu�s.4.21 � X � x � f s de ds � .Ž . Ž . Ž .Hy u d , jj j
02 d 2 dŽ . Ž .

Ž . �j �dHence � X � x � 2 de �j!. Combining this estimate with the ones giveny 1

Ž .above, the remaining factors in 4.19 follow.
Ž . Ž . Ž .To prove 4.18 , note that due to Lemma 4.4 f and 4.17 ,

� � �1 � � � � � �1 � �1 �� X � � 	 � x � y � X � � XŽ .Ýx t x t x�y t
dy��

� �	 � y min 1, c y �t� 4Ž . Ž .Ý 1
dy��

4.22Ž .

Ž . Ž . � �Ž . Ž .4for all � � K x,  and t � 0, where � y � sup � x � y : � � K x, 1 1
d Ž . Ž .dfor every y � � . Lemma 4.12 implies that Ý � y � �. Hence 4.18y � �

Ž .follows from 4.22 using the dominated convergence theorem for the limit
t � �. �

We need the following lemma for t � 0 to prove the tightness of
ˆ �1� 4� L , and we will need its full strength to reduce the convergence inT T T � 0
Ž . d1.17 from � to various big cubes. Furthermore, it will enable us to prove
Theorem 1.4.

Ž .LEMMA 4.23. There exist 	 ,  , T � 0 such that, for every � � K 0 ,0 0

ˆ � �4.24 sup sup � exp 	 X � x ; L � U � � �  .Ž . Ž .Ž . Ž .Ý �T t T  x0
dT�T � �t� 0, T0 x��

REMARK 4.25. Let us briefly explain how we are going to prove this
Ž .important lemma. If L is in an  -neighborhood of � � , then, due toT 0 x

� 4Lemma 2.3, the process X spends most of its time in the vicinity of x.s s��0, T �
When the process is far away from x at time t, then it must be on an

Ž . � �excursion from the main bulk of � � during a time interval u, v , wherex
� � � �u � 0, t and v � t, T . Since we do not have Lemma 4.16 for random times,

Ž . Ž . Ž .we need to discretize time. As in 1.1 define, for u, v � 0, T ,

1
4.26 L � � ds.Ž . Hu , v , T Xsu � T � v � . � .0, u � v , T

Splitting L asT

v � u v � u
L � L � 1 � L ,T u , v u , v , Tž /T T
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Ž . Ž .we can use 4.1 and 4.2 to decompose the Hamiltonian in the following way:
² Lu , v , T :TH L � T � v � u H L � v � u h , LŽ . Ž . Ž . Ž .T u , v , T u , v

2v � uŽ .
Lu , v , T² :� H L � h , L .Ž .Ž .u , v u , vT

4.27Ž .

Ž .Since v � u is small compared with T, the contribution of H L is small.u, v
Furthermore, since L has its support outside the main bulk of L andu, v u, v, T

² Ž . :since V has only finite support, the contribution of H L , L isu, v, T u, v
� �small. If v � u 	 s for an appropriate s � 0 and if X � x is sufficiently�0 0 t

� �large, then the process must have jumped very often during u, v . Using a
large deviation argument concerning the sum of the holding times, we can

� �show that the probability of such a far-reaching excursion during u, v
� �decreases exponentially with X � x . If v � u � s , then we consider a�t 0

partially exchanged path, which is identical to the original one during
� � � � Ž . � �0, T 
 u, v but hangs around the main bulk of � � during u, v . For thisx

² Ž . : Ž .modified path, H L , L and therefore H L are considerably in-u, v, T u, v T
� �creased to surpass 	 X � x without paying too much ‘‘entropy.’’ Hence,�t

the partially exchanged path has a substantially higher probability with
ˆ ˆrespect to the transformed measure � . That is, the � -probability of theT T

Ž � � . � �original path was small enough to balance exp 	 X � x . See 1 for a�t
more involved application of such a ‘‘partial path exchange’’ argument.

Ž . �1Ž .PROOF OF LEMMA 4.23. With b given by 1.9 , define 	 � cosh 1 � b�3 ,
 �  with0

b b 1
4.28  � min , , inf f � ,Ž . Ž .½ 5� � � �V 168 V 18 Ž .��K 01 �

Ž . � Ž . � Ž d .dwhere f � � inf � � � � for all � � MM � , and T � 1� . Tox � � 
�04 x 1 0
Ž .prove that  � 0, first note that b � 0 by Condition 1.10 and that K 0 is

Ž . � Ž . �compact by Proposition 1.11 c . Since lim � � � � � 1 for every� x � �� x1

Ž d . d � 4 Ž . � Ž . �� � MM � , there always exists x � � 
 0 with f � � � � � � .1 � x�

Ž .Furthermore, f � � 0, because there is no shift-invariant �. To see that f is
Ž d .continuous, notice that for all �, 
 � MM � ,1

f 
 	 � 
 � 
Ž . Ž .x�

� �	 � 
 � � � � � � � � � � � 
Ž . Ž . Ž .x x x� � �

� �� f � � 2 � � 
 .Ž .
Ž .Given � � K 0 , there exists m � � such that m � R and

4.29 � Bc 	  ,Ž . Ž .m� R , 0

� d � � 4 dwhere B � y � � : x � y � n for n � � and x � � . By Proposition�n, x
Ž .1.11 b the constant

1
4.30 c � maxŽ . �

y , z�S '� y � zŽ . Ž .m, 0
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� d � � 4 dis well defined, where S � y � � : x � y � m for x � � . Using�m , x
Ž .Lemma 4.4 g and Lemma 4.16, it follows that there exists s � 1 such that0

� � X � z 1Ž .y s
4.31 min � for every s � s .Ž . 0� z 2y , z�S Ž .m, 0

As a convenient abbreviation, choose n � � such that n � m � 1 �
� 4 Ž .k Ž .max s , 2 dm and k�e � k � 1 ! for all k � n � m � 1.0

� �For the remaining part of the proof fix a time T � T . For all t � 0, T and0
d � � 44x � � define the random time � � max 0, sup u 	 t: X � S and thet, x u� m , x

� � 44stopping time � � min T, inf v � t: X � S . We say that a path witht, x v m , x
c Ž . � .X � B is on its excursion from the main bulk of � � during � , � .t n, x x t, x t, x

We define the time spans, for which the walk rests before and after its
� � � Ž � Ž . Ž .44excursion, by � � min � , inf u � 0, � : X � � u � X � � andt, x t, x t, x x, t x, t

� � � Ž � Ž . Ž .44� � min T � � , inf v � 0, T � � : X � � v � X � . Further-t, x t, x t, x t, x t, x
d � �more, for all � � 0 and x � � , we define the two events A � � 	 � ,� , � , t, x t, x

� 4 � � � 4� � � and A � � 	 � , � � T � � . We want to show that,t, x t, x � , � , t, x t, x t, x t, x
Ž �for every � � 0, 1 ,

cˆ � �� exp 	 X � x ; L � U � � , X � B� 4Ž .Ž . Ž .Ý �T t T  x t n , x
dx��4.32Ž .

c c� A � A 	 c,� , � , t , x � , � , t , x

where the constant c is explicitly expressible in terms of 	 , b, c , d,  , m, s� 0
� � Ž� . d .and V ; it does not depend on � , t or T. Since � � D 0, � , � , it follows�

that A �� and A �� for � �0. Hence we can apply Fatou’s lemma� , � , t, x � , � , t, x
Ž . Ž Ž .. Ž Ž ..to 4.32 for the limit � �0. Since U � � and U � � are disjoint for all x  y

d Ž .x, y � � with x � y, we obtain that the series of expectations in 4.24 is
	 n � �bounded by c � e for every T � t and t � 0, T .0

Ž . � .As a reduction step, let us show that 4.32 for t � 0, T�2 follows from
Ž . � �4.32 for t � T�2, T . For this purpose, we define the map TT : � � �,T

� �which reverses the time in 0, T , by

� T � s � � 0 � � T , for s � 0, T ,Ž . Ž . Ž . .� �
TT � s �Ž . Ž .T ½ 2� 0 � � s , for s � T , � ,Ž . Ž . .

� 4where � is the left-continuous version of � � �. Since X is a time-� s s� 0
homogeneous process with independent, symmetric increments under � and
Ž . �1� X � X � 0 for all s � 0, it follows that � � �TT . Hence TT is mea-s s� T T

Ž . Ž . Ž .sure-preserving. Note that L � TT � � L . Hence H L � H L � TTT T X �X T T T T0 T�
and

L � TT � U � � � L � U � � .� 4Ž . Ž .Ž . Ž .½ 5T T  x T  x�X �X0 T�

Ž . �Furthermore, t � � � TT � � � T � t . In addition, � � TT �t, x T T�t, x�X �X t, x T0 T�
� Ž .� . Since the -neighborhoods in 4.32 are disjoint, the series andT� t, x�X �X0 T�

the expectation can be exchanged, and the above relations can be used to
Ž .rewrite 4.32 with T � t in place of t.
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� � dIn the following we fix t � T�2, T and x � � and show that
c� �� exp 	 X � x � TH L ; L � U � � , X � B� 4Ž . Ž .Ž . Ž .�t T T  x t n , x

c c� A � A� , � , t , x � , � , t , x4.33Ž .

	 c� exp TH L ; L � U � � ,Ž . Ž .Ž . Ž .T T 9 x

Ž .which implies 4.32 because the 9-neighborhoods are disjoint. We will drop
the indices t and x at various places.

Ž Ž .. Ž .If L � U � � , then, by 4.29 ,T  x

4.34 L Bc 	  � � Bc 	 2 .Ž . Ž . Ž .T m�R , x m�R , 0
c Ž c . � � �If in addition X � B , then L B � 1 for every u � � � � , � andt n, x u, v m , x

� � � Ž c . Ž c . Ž .v � � , � � � . Since L B 	 L B 	 2 by 4.34 , it followsu, v, T m�R , x T m�R , x
Ž . ² Ž . : � �from 4.1 and the definition of the radius R that H L , L 	 4 V �u, v, T u, v

� Ž Ž .. c 4 Ž . Ž c .on L � U � � , X � B . It follows from 4.34 and L B � 1 thatT  x t n, x u, v m , x
Ž . � � Ž d . Ž .v � u 	 2T. Since 0 	 H 
 	 V for all 
 � MM � , it follows from 4.2� 1

Ž . Ž . Ž . Ž . Ž .� �and 4.27 that TH L 	 T � v � u H L � 8 v � u V .�T u, v, T
� � � �44To discretize time, define the sets I � t � j� : j � 1, 2, . . . , 2T�� and�

 �Ž . � � �44I � t � j� � T : j � 1, 2, . . . , 2T�� . Since t � T�2 and  	 1�8, it�
� . Ž Ž .. Ž . follows that I � T�4, T . If L � U � � and u, v � I � I , then� T  x � �

Ž Ž ..L � U � � . For the next inequality we use the results of the pre-u, v, T 5 x
vious paragraph and the Markov property, partially applied in the form that
Ž � Ž� � �4.. Ž � . Ž� � � � .4.� C � X : s � u, v � P C X , X for C � � X : s � 0, u � v, �s u v s

� ��-almost surely. Since the walk may be outside of B during t, T if t ism , x
Ž .close to T, we have to consider two different terms one of them may be zero :

c c c� �� exp 	 X � x � TH L ; L � U � � , X � B � A � A� 4Ž . Ž .Ž . Ž .�t T T  x t n , x � , � � , �

� �	 exp 8 v � u V � X � yŽ . Ž .Ž .Ý Ý Ý � u
u�I � 4 y , z�Sv�I 
 T� m , x�

�� exp T � v � u H L ;Ž . Ž .Ž .u , v , T

�L � U � � X � y , X � zŽ .Ž .u , v , T 5 x u v

c� ��� exp 	 X � x ; X � y , X � B ,Ž .�y t�u � t�u n , x

cL B � 1, X � z , X � zŽ .v�u m , x v�u�� v�u

4.35Ž .

� �� exp 8 T � u VŽ .Ž .Ý Ý Ý �
u�I � 4 y�Sv�I � T� m , x�

�� exp uH L ; L � U � � , X � yŽ . Ž .Ž . Ž .u u 5 x u

� ��� exp 	 X � x ;Ž .�y t�u

c cL B � 1, X � y , X � B .Ž .T�u m , x � t�u n , x

We will handle the terms with v � u 	 s by a large deviations argument; for0
the other ones we will use a ‘‘partial path exchange’’ argument.

Ž . Ž  � 4. � .Consider y, z � S and u, v � I � I 
 T . For every s � 0, � andm , x � �
d � � e � 4e � � with e � 1 let N denote the number of jumps of X during1 s w w � 0

� � � e40, s of size e. The 2 d processes N are independent Poisson processess s� 0
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Ž e � e .under � with intensity 1�2. Since � N � 1 N � k 	 k��s for all s � �y y � s
Ž � � . Ž eand k � � see, e.g., 15 , Chapter 5, Theorem 3.2 , it follows that � N � 1,y �

e . Ž . Ž e . Ž . �d �N � k 	 ��2 � N � k � 1 . Since � X � X 	 1 � e 	t�u y t�u y v�u�� v�u
� 4d� , it follows by considering the direction of the first jump of X thats s� 0

c� �� exp 	 X � x ; X � y , X � B , X � z , X � zŽ .�y t�u � t�u n , x v�u�� v�u
4.36Ž . 2 2 	 c� �	 d � e � exp 	 X � x ; X � B .Ž .�y t�u t�u n�1, x

Similarly, for every u � I and y � S ,� m , x

c� �� exp 	 X � x ; X � y , X � BŽ .�y t�u � t�u n , x

	 c� �	 d� e � exp 	 X � x ; X � B .Ž .�y t�u t�u n�1, x

4.37Ž .

Ž . Consider y, z � S and u, v � I � I satisfying v � u 	 s . If the eventm , x � � 0
� � � 4X � y, X � y � k occurs for some k � n � m � 1, then there exists�0 t�u
at least one coordinate direction in which the walk has jumped at least k

� �times during 0, v � u . As in the proof of Lemma 3.3, it follows that

� �� X � y � k 	 d exp �kh v � u �kŽ .Ž .Ž .Ž .�y t�u

k 2 dmke v � u s v � uŽ . 0	 d 	 d ,ž /ž /k k � 1 ! sŽ . 0

4.38Ž .

Ž .k Ž .because v � u 	 s 	 k, 2 dm 	 k and k�e � k � 1 ! by the above choice0
Ž .of n, and because �h r 	 1 � log r for all r � 0. It follows that

c� �� exp 	 X � x ; X � BŽ .�y t�u t�u n�1, x

�
	 m 	 k � �	 e e � X � y � kŽ .Ý �y t�u

k�n�m�14.39Ž .
2 dmv � u

		 d exp 	 m � 1 s exp s e .Ž .Ž . Ž .0 0 ž /s0

d Ž . � � � ��Ž x .Ž . � � 4Define g: � � � by g z � max � V , h z � 40 V . If v � u 	 s ,˜ ˜� � 0
Ž . Ž . � �it follows with 4.21 applied to � X � z with j � y � z 	 2 dm that1y u�v

² :� exp v � u g , L ; X � zŽ .Ž .y v�u v�u

2 dmd v � u
� �� exp �s d � V ,Ž .Ž .�0ž /2 dm ! sŽ . 0

Ž .because s � 1. Comparison with 4.39 shows that0

c� � � �exp 8 v � u V � exp 	 X � x ; X � BŽ .Ž . Ž .� �y t�u t�u n�1, x

	 Žm�1. 	 � �	 2 dm !s e exp s e exp s d � s 1 � 8 VŽ . Ž .Ž . Ž .�0 0 0 04.40Ž .
² :� � exp v � u g , L ; X � z .Ž .Ž .y v�u v�u

� 4This estimate is also valid without the event X � z in the last expecta-v�u
tion.
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Ž . We now consider y, z � S and u, v � I � I which satisfy v � u � s .m , x � � 0
Ž . Ž . Ž . Ž .Lemma 4.4 d and g together with 4.30 and 4.31 show that

� Ž � .x² :� exp v � u h , L ; X � zŽ .Ž .y v�u v�u

bŽv�u.� � y eŽ . Ž .xbŽv�u. � Ž � .x� e � X � z � .Ž .y v�u( � � z 2cŽ . Ž .x �

4.41Ž .

 Ž . � Ž  .�For s � 0 let X denote the first component of X . Since f s � � exp 	 Xs s s
Ž . Ž .Ž Ž . . Ž . ŽŽ Ž . . .satisfies f s � f s cosh 	 � 1 , it follows that f s � exp cosh 	 � 1 s .

� Ž � � .� ŽŽ Ž . . .Hence, � exp 	 X 	 2 d exp cosh 	 � 1 s for all s � 0. In particular,�s

	 m� �� exp 	 X � x 	 2 de exp cosh 	 � 1 v � u .Ž . Ž .Ž .Ž .Ž .�y t�u

�1Ž . � �Since 	 � cosh 1 � b�3 and 56 V 	 b�3 by the choice of 	 and  , a�

Ž .comparison with 4.41 yields

� � � �exp 16 v � u V � exp 	 X � xŽ .Ž . Ž .� �y t�u

	 4c de	 m exp �b v � u �3Ž .Ž .�4.42Ž .

� ² :� exp v � u g , L ; X � z ,Ž .Ž .y v�u v�u

� 4where we may again drop the event X � z in the last expectation.v�u
Ž .  Ž . Ž .Finally, if u, v � I � I , then v � u 	 4T and, by 4.1 and 4.2 ,� �

2v � uŽ .
Lu , v , T² : � �4.43 H L � h , L � 8 v � u V � 0.Ž . Ž . Ž .Ž . �u , v u , vT

Ž Ž .. � Lu , v, T � xŽ � . � � �Furthermore, if L � U � � , then h � h 	 40 V . Us-� �u, v, T 5 x
Lu , v, T � �ing h � � V , it follows that�

² Lu , v , T : ² :4.44 h , L � g , L .Ž . u , v u , v

Ž . Ž .We now have all the ingredients to derive 4.33 from 4.35 . There are at
2 Ž . Ž . Ž  � 4.most s �� terms in 4.35 with u, v � I � I 
 T satisfying v � u 	 s� �0 � � 0

Ž . Ž  � 4.and at most s �� terms with u, v � I � I � T satisfying v � u 	 s .� �0 � � 0
Ž . Ž . Ž .We can use 4.36 and 4.37 , respectively, and then 4.40 to obtain an upper

estimate for these. We then use the Markov property to put the factors in
Ž . Ž . Lu , v, T4.35 together, use 4.44 to replace g by h , insert the exponential of the

Ž . Ž .left-hand side of 4.43 and use the decomposition 4.27 . Finally, since
Ž Ž .. Ž Ž ..v � u 	 4T, we can replace L � U � � by L � U � � .u, v, T 5 x T 9 x

Ž . Ž .To estimate the other terms in 4.35 with v � u � s , we first use 4.36 , if0
Ž . Ž .v � T, or 4.37 , if v � T. The next step is to use 4.42 , where we drop the

� 4event X � z in the case v � T. Then, as above, we use the Markovv�u
Ž . Ž . Lu , v, Tproperty to put the factors in 4.35 together, use 4.44 to replace g by h ,

Ž . Ž .insert the exponential of 4.43 and use the decomposition 4.27 . Then, since
Ž Ž .. Ž Ž ..v � u 	 4T, we can replace L � U � � by L � U � � . We areu, v, T 5 x T 9 x
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left with two sums, which we regard as Riemann sums and estimate as
follows:

v � u v � u
2� exp �b � � exp �bÝ Ýž / ž /3 3 Ž . Ž � 4. Ž . Ž � 4.u , v �I � I 
 T u , v �I � I � T� � � �

v�u�s v�u�s0 0

v � u T � u 3b � 9t T T
	 exp �b dv du � exp �b du 	 .H H H 2ž / ž /3 3 b0 t 0

Ž . Ž .Using this, we finally obtain 4.33 from 4.35 . �

PROOF OF THEOREM 1.4. Let 	 ,  , T � 0 be given by Lemma 4.23. Since0 0
Ž .K 0 is compact and nonvoid by Proposition 1.11, there exists a finite nonvoid

Ž . Ž . Ž .subset M of K 0 such that � U � covers K 0 . According to Corol-�� M  �20
Ž .lary 3.12, there exists 	 � 0 such that 3.13 holds with  replaced by  �2.˜ 0

1 � 4 Ž . Ž Ž ..dDefine 	 � min 	 , 	 . Note that U K � � � U � � by˜0  �2 � � M x � � 2 0 0
Ž . Ž .Proposition 1.11 c . In view of Lemma 3.3 c , it suffices to show that

ˆ � �4.45 sup sup � exp 	 X ; L � U � � � �.Ž . Ž .Ž . Ž .Ý Ý �T 0 t T  x0
dT�T � �t� 0, T ��M0 x��

Ž � � . Ž � � . Ž � � .Since exp 	 X � X 	 exp 	 X � x exp 	 X � x for all t � 0� � �0 t 0 0 t 0 0
and x � �d, an application of the Cauchy�Schwarz inequality shows that

ˆ � �sup sup � exp 2	 X � x ; L � U � � � �Ž .Ž . Ž .Ý Ý �T 0 t T  x0
dT�T � �t� 0, T ��M0 x��

Ž .is sufficient for 4.45 . Since 2	 	 	 , this follows from Lemma 4.23. �0

ˆ �1� 4We are now ready to prove the tightness of the set � L byT T T � 0
combining Proposition 3.1 with Lemma 4.23. For use in the proof of Theorem

Ž .1.15, we formulate 4.47 of the following proposition with the supremum over
� � Ž .all t in 0, T . For part b we only need the case t � 0 and use the fact that

ˆ Ž .� X � 0 � 1. For n � � defineT 0

d � �K n � � � : � � K 0 , x � � , x 	 n .Ž . Ž . Ž .� 4�x

PROPOSITION 4.46. Let  be defined as in Lemma 4.23.0

Ž . Ž �a For every � � 0 there exists n � � such that, for every  � 0,  �2 ,0
there exists T � 0 satisfying1

ˆ d4.47 sup sup � L � MM � 
 UU  , n , X 	 � ,Ž . Ž . Ž .Ž .T T 1 t
T�T � �t� 0, T1

Ž . � Ž . Ž Ž ..4 dwhere UU  , n, x � � � : � � U K n for all x � � .x 
ˆ �1 dŽ . � 4 Ž Ž ..b The set � L is a tight subset of MM MM � .T T T � 0 1 1

Ž . Ž .PROOF. a Since K 0 is compact and nonvoid by Proposition 1.11, there
Ž . Ž .exists a finite nonvoid subset M of K 0 such that � U � covers�� M  �20

Ž .K 0 . Let 	 and T be given by Lemma 4.23. For each � � M let c denote0 �
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Ž .the left-hand side of 4.24 . Define c � max c . Choose n � � satisfying0 � � M �
	 n � ��e � 2c M . By a Chebyshev-type estimate, for all � � M, T � T and0 0

� �t � 0, T ,
ˆ � �� L � U � � , X � x � nŽ .Ž .Ž .Ý �T T  x t0

dx��

� �ˆ � �	 � exp 	 X � x ; L � U � � 	 .Ž .Ž . Ž .Ý �T t T  x0� � � �2c M 2 Md0 x��

Ž �Given  � 0,  �2 , Proposition 3.1 guarantees the existence of T � T such0 1 0
ˆ Ž Ž .. Ž . Ž Ž ..that sup � L � U K 	 ��2. Note that � U � covers U K 0 .T � T T T  � � M  1 0

Ž .Hence, using Proposition 1.11 c ,

� L � U K nŽ . Ž .Ž .� 4�X T t

� �� L � U K � L � U � � , X � x � n .� 4Ž . Ž .Ž .� 4� � �T  T  x t0
d ��Mx��

Ž .Therefore, 4.47 follows from the two estimates above.
Ž . Ž �b Given � � 0 and  � 0,  �2 , choose n � � and T � 0 according to0 1

ˆŽ . Ž Ž Ž ... Ž .part a such that � L � U K n 	 � for all T � T . Since K 0 isT T  1
Ž . Ž . � �compact by Proposition 1.11 c , the set K n is compact, too. Since 0, T �1

ˆ �1 d ˆ �1Ž Ž .. � 4T � � L � MM MM � is continuous, � L is compact. Hence,T T 1 1 T T T ��0, T �1d ˆŽ . Ž .by Prohorov’s theorem, there is a compact C � MM � with � L � C 	 �1 T T
ˆ  � � Ž Ž ..for all T � 0, T . Therefore, � L � U C 	 � for all T � 0, where C �1 T T 

Ž . Ž . � �C � K n . Part b now follows from 9 , Chapter 3, Theorem 2.2. �

˜ d �Ž .5. Proof of the main theorem. For every � � MM � with � � 0 for1
� d� � � Ž . 4'� � � define � � Ý � 0 . Using � � � � : x � � and LemmaŽ .� � � � x

� d �Ž . Ž .'d4.4 c , it follows that � � Ý � x for every � � MM � with � � 0.Ž .� � � x � � 1
d ˜Ž . � Ž . Ž . Ž . 4 Ž .For every  � 0 define K  � � � MM � : � � � 1 �  b and K  �1

�� � Ž .4 Ž . Ž . Ž .d� : � � K  . Note that K  � � K x,  by 4.11 and Lemma 2.2.x � �

˜Ž .It follows from Lemma 4.12 that � � � for every � � K  , where  �� 1 1
Ž � � . Ž . � Ž d .b� 4 V . Therefore, for every � � K  , we can define � � MM � by˜1 1 1

� � dŽ . Ž .'� y � � y �� for all y � � . According to Lemma 4.4 g theseŽ .˜ � � �
definitions are compatible with the ones given before Theorem 1.15. To prove
the weak convergence stated in our main theorem, we need the continuity of
several maps in a neighborhood of the optimal measures. Note that the set
� Ž d . � 4 Ž .� � MM � : � � 0 contains K  .1 1

Ž � � .LEMMA 5.1. As in Section 4, let  � b� 4 V .11

Ž . � �Ž d . � Ž d .a The maps � � h � l � and � � � are continuous on MM � .1
Ž . � Ž d . � 4 � Ž d .b The map � � MM � : � � 0 � � � � � MM � is continuous.1 1

˜ dŽ . Ž .c The quotient topology on MM � coincides with the topology generated1
Ž .by the metric 1.14 .

˜ ˜ dŽ . Ž . Ž .d For every  � 0 the set K  is open in MM � .1
˜Ž . Ž . � .e The map K  � � � � � 1, � is bounded and continuous.1 �

Ž . Ž . � Ž d .f The map K  � � � � � MM � is continuous.˜1 1
Ž . Ž . � Ž . dg The map K  � � � � � MM � is continuous for every y � � .1 y 1
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Ž . Ž .PROOF. a It follows from 4.3 that
� � 
 � � � 
 � � � � �� � � 	 h � h 	 8 V � � 
� �

Ž d .for all �, 
 � MM � .1
Ž . � 4 � Ž d . � 4 �b Let � � � � MM � : � � 0 converge to some � with � � 0.k k � � 1

Ž . � � kBy Lemma 4.4 b there exist � and � � � for all k � �, and they satisfyk
� ² � :� � h , � � J �Ž .k k

² �k : � �k � �� h , � � J � � h � hŽ . �k k

�k � �k � �� � � h � h .�

Ž . Ž² � : Ž .. �Part a implies that lim h , � � J � � � . Hence, according tok �� k k
Ž . � 4Lemma 4.4 a , the set � is tight. Since J is continuous, every accumu-k k � �

� 4 ² � : Ž . � Ž .lation point � of � satisfies h , � � J � � � . By Lemma 4.4 b ,k k � �

� � is the unique solution of this equation, hence lim � � � �.k �� k
˜ d Ž . Ž .c Let � be the quotient topology on MM � and let � be the topology1

d ˜ dŽ . Ž . Ž .induced by 1.14 . The canonical projection from MM � to MM � is continu-1 1
ous with respect to � , hence �  � � . The other way round, if A � � , then the

� Ž d . � � 4set B � � � MM � : � � A is open. If � � B, then there exists  � 0 such1
Ž . Ž� �. �� � Ž .4 that U � � B. Furthermore, U � � 
 : 
 � U � � A. Hence, � � � .  

Ž . Ž .d Use the shift-invariance of � and part c .
Ž . Ž . Ž .e According to part c it suffices to show that K x,  � � � � is1 � � �

continuous for every x � �d. It follows from Lemma 4.12 that there exists a
constant C � 0, independent of x � �d, such that

� �' '� � � y 	 sup � y 	 C � �.Ž . Ž .Ý Ý� � �
d d Ž .��K x , y�� y�� 1

Ž .Hence, the series converges uniformly in � � K x,  and the continuity1
Ž .follows from part b .

Ž . Ž . Ž .f Combine b and e .
Ž . d � �g Let x, y � � . By 2 , Lemma 2.21, it suffices to consider an arbitrary

� �continuous function f : � � 0, 1 , which is FF -measurable for some t � 0, andt
Ž . �� � Ž .to show that K x,  � � � � f is continuous. Using 4.6 and the conti-1 y

² � Ž .: Ž . Ž .nuity of � � h , L � for every � � �, this follows from a and b . �t

Ž .PROOF OF THEOREM 1.15. Proposition 4.46 b and the continuity of the
d ˜ d ˆ �1Ž . Ž . � � � 4projection from MM � to MM � imply that � L is tight and,1 1 T T T � 0

therefore, relatively compact. According to Proposition 3.1, every accumula-
˜ ˜ dŽ Ž ..tion point of this sequence as T � � is concentrated on K. Let � � MM MM �1 1

� 4denote such an accumulation point and let T be a sequence tending tok k � �

Ž .infinity and satisfying 1.16 .
d � �d dLet CC be the set of all functions g: � � 0, 1 and let CC be the set� MM Ž� .1

Ž d . � �of all uniformly continuous functions � : MM � � 0, 1 . Finally, let CC1 �

� �denote the set of all continuous functions f : � � 0, 1 , which are FF -mea-s
surable for some s � 0. Note that CC d and CC are convergence determin-MM Ž� . �1� � � � Ž .ing by 9 , Theorem 3.1, and 2 , Lemma 2.21, respectively. For � , f , g �

Ž . Ž . Ž . Ž . � �d dCC � CC � CC define the map � �, �, x � � � f � g x . By 9 ,MM Ž� . � � Ž� , f , g .1
Ž .Proposition 4.6 b , the set of all these � is convergence determining forŽ� , f , g .

Ž Ž d . d .the weak convergence on MM MM � � � � � .1 1
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Ž . Ž . d dTo prove 1.17 , choose any � , f , g � CC � CC � CC , where f isMM Ž� . � �1
Ž d . � d �FF -measurable for some s � 0. For � � MM � with � � 0 and x � � , let �s 1 x
� ˜Ž . � �denote the expectation with respect to � . Define �: K  � 0, 1 byx 1

� � ² �:� �5.2 � � � � 0 � � � f g , � .Ž . Ž . Ž . Ž .˜ ˜Ý
���

˜ dŽ . � �Let � : MM � � 0, 1 be a continuous function which is equal to 1 on1
˜ ˜Ž . Ž . Ž .K  �2 and vanishes outside of the set K  ; according to Lemma 5.1 c we1 1

Ž� �. � � Ž Ž . . 44may choose � � � min 1, max 0, 2 � � �b � 1 �  � . Defining1 1
˜Ž . Ž . Ž . Ž . Ž .� � � � � � � for all � � K  and � � � 0 otherwise, we obtain a˜ ˜1

˜ dŽ . � � Ž .function �: MM � � 0, 1 . In view of Lemma 4.4 g , it suffices for the proof˜ 1
Ž .of 1.17 to show that

ˆ5.3 lim � � L g X f � � d�.Ž . ˜Ž . Ž . HT T Tk k k ˜k�� K

Ž . Ž . Ž .By Lemma 5.1 f and g , each term of the series in 5.2 is continuous on
Ž . Ž . � � � Ž . d4K  . Note that � � 1 for � � K  . Using � � � � : y � � and1 � � � 1 y

Ž . Ž .Lemma 4.4 c to rewrite the series in 5.2 , it follows from Lemma 4.12 that,
d Ž .for every x � � , this series converges uniformly for � � K x,  . Therefore,1
Ž . Ž� �.the function K  � � � � � is continuous. Since � vanishes outside1

˜ dŽ . Ž . Ž� �.K  , the function MM � � � � � � is continuous, too. Hence, by Lemma˜1 1
˜ ˜ dŽ . Ž . Ž . Ž . Ž .5.1 c , K  � � � � � and MM � � � � � � are continuous. Choose˜1 1

ˆ �1Ž � � � � 4 Ž .� � 0, 1 . Since � L satisfies 1.16 , it is sufficient for the proof ofT T k � �k k
Ž .5.3 to show that, for all sufficiently large T,

ˆ ˆ � �5.4 � � L g X f � � � L 	 100� .Ž . Ž . Ž . Ž .˜T T T T T

Let us now determine all relevant epsilons, cube sizes and time intervals
˜Ž .for the proof of 5.4 . Since � is continuous, there exists, for every � � K, a˜

  ˜� Ž . Ž . � Ž .radius  � 0 such that � � � � � 	 ��2 for all � � U � . Since K˜ ˜� �

˜ ˜is compact, there exists a finite subset M of K such that K is covered by
Ž . Ž .� U � . Define  � min  �3. Since � U � covers� � M  �3 � � � M � � � M 2  �3� �

˜Ž .U K , it follows that�

  ˜ � �5.5 � � � � � 	 � for all � , � � U K with � � � 	  .Ž . Ž . Ž . Ž .˜ ˜  ��

� Ž .By the uniform continuity of � , there exists  � 0 such that � � ��

Ž . � Ž d . � � Ž .� 
 	 � for all �, 
 � MM � with � � 
 	  . The set K 0,  is open1 � 1
Ž . Ž .because � is continuous. The set K 0 is compact by Proposition 1.11 c and

Ž . Ž Ž ..contained in K 0,  . Hence there exists  � 0 such that U K 0 �1 � �

Ž . Ž . Ž .K 0,  �2 . The shift-invariance of H and � then implies that U K � K  .1  1�

� 4With  as in Lemma 4.23, define  � min  ,  ,  ,  .0 0 � � �

Ž .Since K 0,  may contain shift-equivalent measures, define n � n � 21 1 0
Ž . d Ž .with n as in Lemma 2.3. Then, if � � K 0,  and y � � satisfy � � �0 1 y

Ž . Ž . Ž . � � Ž � � . Ž .K 0,  , it follows that � �y � 1 �  b� V � 3b� 4 V by 4.11 and,1 11 1
Ž c . Ž � � . Ž .on the other hand, � B 	  � b� 2 V � � �y by Lemma 2.3. Hence1n , 0 11

� �y � n .� 1
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Ž . According to Proposition 4.46 a there exist n � � and T � 0 such that2

ˆ5.6 sup sup � L � UU �2, n , X 	 ��5.Ž . Ž .Ž .T T 2 t
T�T � �t� 0, T

Ž .Note that � � 1 for � � K  . Hence, by Lemma 4.12, there exists n �� � � 1 3
n � 2n such that1 2

5.7 max sup � � Bc 	 � .Ž . ˜ Ž .n , 03x�Bn , 0 Ž .��K x , 2 1

Furthermore, there exists n � n � n such that4 2 3

5.8 max sup � � Bc 	 � .Ž . Ž .n , 04x�Bn �n , 0 Ž .��K x , 2 3 1

By Lemma 4.14, Lemma 4.16 and shift-invariance, there exists t � 2 s such
that

�� X � zŽ .y u
5.9 max sup sup max � 1 	 �Ž . �� z� 4 y , z�B Ž .u� t�2, t d 2 n , xŽ .��K x ,  4x�� 1

and
� � �1 � �5.10 sup sup � X � � 	 � .Ž . 0 t�2

x�B Ž .��K x , n , 0 13

Ž . Ž . Ž .Using 4.26 and the splitting L � 2 t�T L � 1 � 2 t�T L , itT t, T�t, T t, T�t
Ž .follows in a similar way as 4.27 that

2 24t 8t
Lt , T�t² : � �TH L � Y � H L � h , L 	 V ,Ž . Ž . �T t , T t , T�t , T t , T�t , TT T

Ž . Ž . ² Lt, T�t : � where Y � T � 2 t H L � 2 t h , L . Choose T � T sucht, T t, T�t t, T�t, T

Ž 2 � � � . � �that exp 8t V �T 	 1 � � and T � 4t� . Then, for all T � T ,�

� exp YŽ .t , T
5.11 1 � 	 �Ž .

ZT

and
2 t 

� �5.12 L � L 	 	 .Ž . t , T�t T T 2
Ž . �To show that 5.4 holds for all T � T , fix any such T for the remaining

part of the proof. We are now going to reduce our problem to various big
� � � � � �cubes and decouple the time intervals 0, t , t, T � t and T � t, T .

d � � Ž .If x, y � � satisfy x � y � n � 2n , then UU �2, n , x and� 1 2 2
Ž .UU �2, n , y are disjoint by the argument which led to the choice of n .2 1

ˆ Ž . Ž .Hence, it follows by using � X � 0 � 1 and applying 5.6 for the fiveT 0
intermediate times 0, t�2, t, T � t and T that

ˆ5.13 � L � UU �2, n , X , A � 1 � � ,Ž . Ž .Ž .T T 2 t T

where

� � � �A � X � B , X � B , X � X � n � 2n , X � X � n .� 4� �T t�2 n , 0 t n , 0 T�t t 1 2 T t 34 3
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Ž . Ž .By 5.13 it is sufficient for the proof of 5.4 to show that

�̂ � L g X f ; L � UU �2, n , X , AŽ . Ž . Ž .T T T T 2 t T
5.14Ž .

ˆ � �� � � L ; L � UU �2, n , X , A 	 98� .Ž .Ž .T T T 2 t T

Ž . Ž .It follows from 5.12 and 5.6 that

ˆ ˆ0 	 � L � UU  , n , X � � L � UU �2, n , XŽ . Ž .Ž . Ž .T t , T�t 2 t T T 2 t
5.15Ž .

ˆ	 � L � UU �2, n , X 	 � .Ž .Ž .T T 2 t

Ž . Ž . Ž . Ž .To further reduce 5.14 , we first use 5.12 , 5.5 ,  	  and 5.15 to replace�

Ž .L by L ; an application of 5.11 then shows that we have to prove thatT t, T�t

� � L g X f exp Y ; L � UU  , n , X , AŽ . Ž . Ž . Ž .t , T�t T t , T t , T�t 2 t T

� �� � � L exp Y ; L � UU  , n , X , AŽ . Ž .Ž .t , T�t t , T t , T�t 2 t T5.16Ž .
	 92�Z .T

Ž .It remains to show that the two expectations in 5.16 are essentially the
� � � �same, using the fact that the time intervals t�2, t and T � t, T are long

enough for the new ergodic random walks to converge close to their equilib-
rium distributions. Using the definition of Y , the Markov property andt, T
Ž . Ž .4.6 , it follows that the first expectation in 5.16 can be rewritten as

� �� 0 � zŽ . Ž .
�� � exp T � 2 t H � � 2 t�Ž . Ž . Ž .Ž .Ý H ( �� yŽ .Ž .UU  , n , y �B2 n �2 n , yy�B 1 2n , 03

g XŽ .t� �� � f ; X � B , X � y � ; X � B0 t�2 n , 0 t z t n , y4 3�� X' Ž .t

5.17Ž .

�1
� � L , X d� , dz .Ž . Ž .y T�2 t T�2 t

Ž . Ž . Ž .It follows from 5.11 that the two expectations in 5.16 and, therefore, 5.17
Ž . Ž . Ž .are bounded above by 1 � � Z . Using 5.7 and 5.9 , it follows thatT

g XŽ .t� �² :� ; X � B � g , �̃z t n , y3�� � X' Ž .5.18Ž . � � � t

	 � � Bc � �� � B 	 2�˜ ˜ Ž .Ž .n , y n , y3 3

Ž .for all y � B , � � UU  , n , y and z � B . According to Lemman , 0 2 n �2 n , y3 1 2
Ž . � �4 Ž .d4.4 d the measures � with � � U K are Markovian. Using f 	 1,x x � � 

Ž . Ž . Ž . Ž .5.8 , 5.9 and 5.10 , it follows that, for all y � B and � � UU  , n , y ,n , 0 23

�� f ; X � B , X � y0 t�2 n , 0 t4 �� �� � f0�� yŽ .
�� X � yŽ .x t�2� c �	 � X � B � � X � x � 1Ž .Ž . Ý0 t�2 n , 0 0 t�2 �4 � yŽ .x�Bn , 04

5.19Ž .

� � �1 � � � c �	 � X � � � � B � �� X � B 	 3� .Ž .Ž .0 t�2 n , 0 0 t�2 n , 04 4
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Ž . Ž . Ž .Using 5.18 and 5.19 to rewrite 5.17 , we obtain

� � L g X f exp Y ; L � UU  , n , X , AŽ . Ž . Ž . Ž .t , T�t T t , T t , T�t 2 t T

� ² �: �� �� � � � f g , � � 0Ž . Ž .˜ ˜Ý H 0
Ž .UU  , n , y �B2 n �2 n , yy�B 1 2n , 03

� � 4 � � y � � z exp T � 2 t H � � 2 t� �Ž . Ž . Ž . Ž .Ž .˜ ˜� � �

5.20Ž .

�1
� � L , X d� , dzŽ . Ž .y T�2 t T�2 t

	 5 � 6� � 1 � � Z ,Ž . Ž . T

Ž .where we used that the first expectation is bounded by 1 � � Z . Note thatT
Ž . Ž .Ž .Ž . Ž .the sum in 5.20 is bounded by 1 � � 1 � 2� 1 � 3� Z . Since � � H � ,T

� � yŽ � .Ž . �Ž .� � � and � � � are shift-invariant, and since � y � � 0 and˜ ˜� � �
� yŽ � .Ž . �Ž . Ž . Ž .� y � z � � z by Lemma 4.4 c , the sum in 5.20 can be rewritten as˜ ˜

� yŽ � . ² � yŽ � .: � yŽ � .� �� � � � f g , � � 0Ž . Ž .˜ ˜Ž .ÝH y 0
Ž .UU  , n , 0 �B2 n �2 n , 0 y�B1 2 n , 03

� � 4 � � 0 � � z exp T � 2 t H � � 2 t� �Ž . Ž . Ž . Ž .Ž .˜ ˜� � �
5.21Ž .

�1
� � L , X d� , dz .Ž . Ž .0 T�2 t T�2 t

Ž . Ž . Ž .Using 5.2 , Lemma 4.4 c and 5.7 , it follows that
� yŽ � . ² � yŽ � .: � yŽ � .� � � �0 	 � � � � � � � f g , � � 0Ž . Ž .Ž . ˜ ˜Ž .Ý y 0

y�Bn , 035.22Ž .
	 � � Bc 	 �˜ Ž .n , 03

Ž . Ž . Ž . Ž .for all � � UU  , n , 0 . Using 5.21 and 5.22 to rewrite 5.20 , we obtain2

� � L g X f exp Y ; L � UU  , n , X , AŽ . Ž . Ž . Ž .t , T�t T t , T t , T�t 2 t T

� � 4 � �� � � � � 0 � zŽ . Ž .Ž . ˜ ˜H � � �
Ž .UU  , n , 0 �B2 n �2 n , 01 2

� exp T � 2 t H � � 2 t� �Ž . Ž .Ž .
5.23Ž .

�1
� � L , X d� , dzŽ . Ž .0 T�2 t T�2 t

	 � 1 � � 6 � 11� � 6� 2 Z .Ž . Ž . T

Ž .The calculations leading from the first expectation in 5.16 to the estimate
Ž . Ž� �. Ž . d5.23 are also valid for � � � � with � given by 5.2 , when we set g � 1�

Ž .and f � 1 in these calculations. Therefore, 5.23 also holds with the expec-�

Ž . Ž .tation in 5.23 replaced by the second one from 5.16 . Since we chose � 	 1,
Ž . Ž .the estimate 5.16 follows from the two versions of 5.23 . �
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d � .6. Proof of Theorem 1.19. For � � 0 define a function V: � � 0, � ,
which models a Dirac-type interaction, by V � � 1 . In this section we write�04

Ž . Ž d . d� � � x for � � MM � and x � � . Definex 1

� d 4K � � � K : � � max � .� 0 x � � x

� � Ž d . dLEMMA 6.1. If a � 1�2, 1 and � � MM � satisfy � 	 a for all x � � ,1 x
2 2 Ž .2

dthen Ý � 	 a � 1 � a .x � � x

PROOF. There exist I � �d and y � �d 
 I such that r � Ý � 	 ax � I x
2 ŽŽ .and s � r � � � a. Note that s � a 	 s � � � r. Hence � � s � a �y y y

Ž ..2 Ž .2 Ž .2 Ž .a � r 	 s � a � a � r � 2r a � r and

�2 � �2 � �2 � �2Ý Ý Ýx x y x
d dx�I Ž � 4.x�� x�� 
 I� y

2 2 22	 r � s � a � a � r � 2r a � r � 1 � sŽ . Ž . Ž . Ž .
22	 a � 1 � a . �Ž .

2'LEMMA 6.2. If � � 2 d and � � K , then � � 1 � 1 � 2 d�� �2.Ž .� 0 ž /
Ž d . d � 4PROOF. Define 
 � MM � by 
 � 1 and 
 � 0 for all x � � 
 0 . Then1 0 x

Ž . Ž .H 
 � � and J 
 � d. Define
�nŽ .2 1�21 'a � 1 � 1 � 2 d��Ž .n 2 ž /

for all n � � . We show by induction that � � a for all n � � .0 0 n 0
Ž . Ž .Assume that � 	 a . Then H � 	 ��2 by Lemma 6.1. Since J � � 0, it0 0

Ž . Ž . Ž .follows that � � � ��2, which contradicts � � � � 
 � � � d � ��2.
Assume now that � 	 a . Then, by Lemma 6.1,0 n�1

21 �
H � 	 2� a � �Ž . n�1ž /2 2

Ž �Ž n�1.. �n1�22 1�2� 2 d � 2 d
� 1 � � � � � d .ž / ž /ž /2 � 2 �

According to the induction hypothesis, � � a . Hence � � 1 � a for all0 n y n
d � � Ž . � 4 dy � � with y � 1. Restricting the sum in 1.6 to all 0, y � � with1

� �y � 1, it follows that1

2 �n1�2J � � d a � 1 � a � d � 2 d a 1 � a � d � d 2 d�� ,'Ž . Ž . Ž .' 'ž /n n n n

Ž . Ž . Ž .hence � � � � � d. Again, this contradicts � � � � 
 � � � d. �

The result of Lemma 6.2 would be sufficient to prove Theorem 1.19 for
� �� � 3.1766d. To prove K � 1 for all � � 2 d, we need a refinement of�

Lemma 6.2.
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2'LEMMA 6.3. If � � 2 d and � � K , then � � 1 � 1 � 1.19d�� �2.Ž .� 0 ž /
d 2Ž . 'PROOF. Define the measure 
 � MM � by 
 � 1 � 1 � d� 2� �2Ž .ž /1 0

Ž . Ž . d � �and 
 � 1 � 
 � 2 d for all x � � satisfying x � 1. Hence 
 � 0 for1x 0 x
� �x � 1. A lengthy but elementary calculation shows that1

� d 6d � 1
� 
 � 2 d � 1 � 2 d � 1 1 � � � d.Ž . Ž .( 2ž /4d 16�2�

� 4Define 	 � 2 and, recursively for n � 1, 2, . . . , 10 ,1
	n�1

' '1 4 14 � 8 2 d 	 �30 1 4n 2' '� 48� 8 14 � � � 8 � 4 � 	 ,  n) 2 ž /' d d8 dŽ .
 � 4where d � min d, 2 . Evaluating this numerically shows that 	 � 	 �1 2

	 � ��� � 	 . Furthermore, 	 � 1.18075 � 1.19, if d � 1, and 	 �3 11 11 11
� 41.10491, if d � 2. For every n � 1, 2, . . . , 11 define

2'a � 1 � 1 � 	 d�� �2.Ž .n nž /
Lemma 6.2 shows that � � a .0 1

� 4 � �Assume that there exists n � 1, . . . , 10 with � � a , a . Then, by0 n n�1
Lemma 6.1,

2 2 21 � 	 dn�1
H � 	 2� a � � � � � .Ž . n�1ž /2 2 2�

Since � � a ,0 n
21J � � a � � .Ž . ' 'Ý ž /n x2

dx��
� �x �11

Under the restriction Ý � 	 1 � a , this lower bound is minimal when� x � �1 x n1
Ž . Ž . d � �� � 1 � a � 2 d for all x � � with x � 1. Therefore,1x n

2
1 � an

J � � d a �Ž . ' (nž /2 d

2 22 d � 1 2 d � 1 	 d 1 	 dn n� � 1 � � ,) ž / '4 4 � �2 d
hence

21 4 2 d � 1 � dŽ .
2 2� � � � 
 	 1 � 1 � � 8d 	Ž . Ž . n�1( 2ž /16� d 2��

2	 dn'�8d 2 d 	 � 6d � 1 � 4 2 d � 1 � 1 � 1 � .Ž . )n ž /�ž / 0
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Since the functions

2 2'� � � 1 � 1 � d� 2�Ž .ž /
and

2'� � � 1 � 1 � 	 d��Ž .nž /
� .are decreasing on 2 d, � , we get an upper estimate by setting � � 2 d in

'these expressions. Furthermore, � � d � 1 � 1 � 1� 8d is maximal forŽ .
Ž . Ž . 2 Ž . Ž .d � 1. Hence, � � � � 
 	 d f d, n � 16� , where

4
2 2' 'f d , n � 48 � 8 14 � 8	 � 8 � 4 � 	Ž . n�1 nž /d

' '4 14 � 8 2 d 	 � 30 1n� � .2d d

Ž . Ž  . Ž .In order to show that f d, n 	 f d , n , it suffices to show that f d � 1, n 	
Ž . Ž .2 2f d, n for all d � 2. Using 1� d � 1 	 1�d and

1 1 1
� �' ' ' 'd d � 1 'd d � 1 d � d � 1Ž . Ž .

1 1
� � ,' '2 d � 1 d 2 d � 1 dŽ . Ž .

2' 'it suffices to show that 0 	 4 14 � 8	 � 4 4 � 	 � 30, which is in factn n
� �true for 	 � 1.0186, 2 .n

Ž  . Ž . Ž .Since f d , n � 0 by the definition of 	 , it follows that � � � � 
 	 0.n�1
Ž .Since 
 � K by Proposition 1.11 b , we thereby obtain a contradiction. ��

Ž .PROOF OF THEOREM 1.19. If � � d, then H 
 � � � d for every Dirac
� �measure 
 . Therefore, Condition 1.10 is satisfied and K � 1 by Proposition�

Ž . Ž d .1.11 a . Assume that there exist �, � � K with � � �. Define �, � � l �˜ ˜ ˜� 2
dby � � � and � � � for all x � � . Define'' ˜ ˜x x x x

² :� � � , � �˜ ˜ l2 � ² : �� � and  � arcsin � � � , � �˜ ˜ l l0 2 2� ² : �� � � , � �˜ ˜ l l2 2

� � Ž d . Ž . � �as well as � : 0,  � l � by �  � � cos  � � sin  and 
 : 0,  �0 2 0
Ž d . Ž . Ž .2 d � �MM � by 
  � � cos  � � sin  for all x � � and  � 0,  . Note1 x x x 0

Ž . Ž . Ž Ž .. � �that �  � �. Define �  � � 
  for all  � 0,  . Then˜0 0

� � 4� � 3�  � � � � �  � � Ž . Ž .Ý Ýx x x y x y
d d� 4x�� x , y ��

� �x�y �11
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and, using � � � �� ,

22�   2 2� � 4� � 3 � � � � 2 J�
 � � � � .Ž . Ž .Ž .Ý Ýx x x x y
d d� 4x�� x , y ��

� �x�y �11

�Ž . � �To prove the theorem, it suffices to show that �  � 0 for all  � 0,  .0
²  : � � �  � dSince � , � � 0 and � � � � 1, it follows that, for every x � � ,l l l2 2 2

2   2� � ' '� � � � � 	 1 � � 1 � � .Ž .Ýx x y y x x
d � 4y�� 
 x

Ž  .2 Ž  .2 2 Ž d .Squaring and solving for � yields � 	 1 � � . Since J 	 d on MM � ,x x x 1
it follows that �� � 2 d � 12� � 16H�
 . Since the estimate in Lemma 6.3

Ž . � �holds for � and � , it is also valid for 
  with  � 0,  . Therefore,˜0 0 0 0

�� � 2 d � 12� � 16�
 2
0

22 2 '	 2 d � 4 1.19 d �� � 4� 2 1 � 1.19d�� � 1 .Ž . Ž .ž /
'For � � 2.38d� 3 � 1.3741d this upper bound is obviously decreasing in �

and it is negative for � � 2 d. Hence, �� � 0 for all � � 2 d. �
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