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SELF-NORMALIZED LARGE DEVIATIONS

By Qi-Man Shao1

University of Oregon

Let �X�Xn� n ≥ 1� be a sequence of independent and identically dis-
tributed random variables. The classical Cramér–Chernoff large deviation
states that limn→∞ n−1 lnP��∑n

i=1 Xi	/n ≥ x	 = lnρ�x	 if and only if the
moment generating function of X is finite in a right neighborhood of zero.
This paper uses n�p−1	/pVn�p = n�p−1	/p�∑n

i=1 
Xi
p	1/p �p > 1	 as the
normalizing constant to establish a self-normalized large deviation with-
out any moment conditions. A self-normalized moderate deviation, that is,
the asymptotic probability of P�Sn/Vn�p ≥ xn	 for xn = o�n�p−1	/p	, is
also found for any X in the domain of attraction of a normal or stable law.
As a consequence, a precise constant in the self-normalized law of the iter-
ated logarithm of Griffin and Kuelbs is obtained. Applications to the limit
distribution of self-normalized sums, the asymptotic probability of the t-
statistic as well as to the Erdős–Rényi–Shepp law of large numbers are
also discussed.

1. Introduction. Throughout this paper, let �����P	 denote a probabil-
ity space, and let �X�Xn� n ≥ 1� be a sequence of independent and identically
distributed (i.i.d.) nondegenerate real-valued random variables on the proba-
bility space. Put

Sn =
n∑
i=1

Xi� V2
n =

n∑
i=1

X2
i � n = 1�2� � � � �

The classical Cramér–Chernoff large deviation [Chernoff (1952)] states that if

�A	 Eet0X < ∞ for some t0 > 0�

then for every x > EX,

lim
n→∞n−1 lnP

(
Sn

n
≥ x

)
= lnρ�x	�

or equivalently,

lim
n→∞P

(
Sn

n
≥ x

)1/n

= ρ�x	�(1.1)

where ρ�x	 = inf t≥0 e
−txEetX.

Roughly speaking, this type of large deviation shows that the convergence
rate in the law of large numbers is exponential if the moment generating
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function is finite in a right neighborhood of zero. The latter is also necessary
for an exponential scale [Petrov and Širokova (1973)]. Essentially built on
condition (A), the area of large deviations in finite-dimensional spaces and
even in abstract spaces has been well developed, and various applications in
statistics [cf. Bahadur (1971)], engineering, statistical mechanics and applied
probability have been found in recent years. We refer to de Acosta (1988),
Stroock (1984), Donsker and Varadhan (1987) and Dembo and Zeitouni (1992)
and references therein for more details.

On the other hand, the so-called self-normalized limit theorems put a totally
new countenance upon classical limit theorems. In contrast to the well-known
Hartman–Wintner law of the iterated logarithm (LIL) and its converse by
Strassen (1966), Griffin and Kuelbs (1989) obtained a self-normalized law of
the iterated logarithm for all distributions in the domain of attraction of a
normal or stable law.

1. If EX = 0 and EX2I�
X
 ≤ x� is slowly varying as x → ∞, then

lim sup
n→∞

Sn

Vn�2 log log n	1/2
= 1 a.s.

2. If X is symmetric and in the domain of attraction of a stable law, then there
is a positive constant C such that

lim sup
n→∞

Sn

Vn�2 log log n	1/2
= C a.s.(1.2)

It should be noted that under (2),

lim sup
n→∞

Sn

an
= 0 or ∞ a.s.

for any sequence �an� n ≥ 1� of positive numbers with an → ∞ (Lévy and
Marcinkiewicz [see Chung (1974), page 131]). So, the significance of the above
result is obvious. It shows that when the normalizing constants in the classical
limit theorem are replaced by an appropriate sequence of random variables,
a similar result to the classical limit theorem may still hold under less or
even without any moment conditions. This naturally leads to the exploration
of the feasibility of a self-normalized large deviation, which should be inter-
esting within the probability theory itself as well as for applications to other
fields. The main aim of this paper is to establish such a self-normalized large
deviation for arbitrary random variables without any moment conditions.

Theorem 1.1. Assume that either EX ≥ 0 or EX2 = ∞. Then

lim
n→∞P

(
Sn

Vn n
1/2

≥ x

)1/n

= sup
c≥0

inf
t≥0

E exp
(
t�cX− x�X2 + c2	/2	)(1.3)

for x > EX/�EX2	1/2, where EX/�EX2	1/2 is interpreted to be zero if EX2 = ∞,
and 0/0 to be ∞.
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More generally, using �∑n
i=1 
Xi
p	1/pn1−1/p, p > 1 as normalizing con-

stants, we have the following.

Theorem 1.2. Let p > 1. Assume that either EX ≥ 0 or E
X
p = ∞. Then

lim
n→∞P

(
Sn

Vn�p n
1−1/p

≥ x

)1/n

= sup
c≥0

inf
t≥0

E exp
(
t

(
cX− x

(
1
p

X
p + p− 1

p
cp/�p−1	

)))(1.4)

for x > EX/�E
X
p	1/p, where Vn�p = �∑n
i=1 
Xi
p	1/p and EX/�E
X
p	1/p = 0

if E
X
p = ∞.

From Theorem 1.1 the corollary follows immediately.

Corollary 1.1. Assume that either EX = 0 or EX2 = ∞. Then

lim
n→∞P

(
Sn

Vn n
1/2

≥ x

)1/n

= sup
c≥0

inf
t≥0

E exp
(
t

(
cX− x�X2 + c2	

2

))
(1.5)

for x > 0.

Remark 1.1. Note that for any random variable X either EX2 < ∞ or
EX2 = ∞. If EX2 < ∞, which obviously implies E
X
 < ∞, the assumption
that EX ≥ 0 in Theorem 1.1 is reasonable. In other words, Theorem 1.1 holds
without assuming any moment conditions.

Remark 1.2. If EX2 < ∞ and EX < 0, one can see from the proof of
Theorem 1.1 that (1.3) remains valid for x > 0.

Remark 1.3. From the Cauchy inequality, it follows that

Sn/�Vnn
1/2	 ≤ 1 if Vn > 0

and it is easy to see that both sides of �1�3	, �1�4	 and �1�5	 are equal to
P�X = 0	 for x > 1.

We will give proofs of these results in the next section. Based on similar
ideas, Section 3 presents self-normalized moderate deviations (Theorems 3.1–
3.3), which, in turn, enable us to get the exact constant C in �1�2	 (Theorem
5.1). As another application of Theorem 3.2, Section 6 settles a conjecture
of Logan, Mallows, Rice and Shepp (1973). Application to the t-statistic is
discussed in Section 7. As a direct application of Theorem 1.1, Section 8 deals
with a self-normalized Erdős–Rényi–Shepp type law of large numbers without
any moment conditions (Theorem 8.1).
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2. Proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. The main idea of the proof is to reduce the prob-
lem to that of Cramér–Chernoff large deviation, by using the following well-
known fact: for any positive numbers x and y,

xy = inf
b>0

1
2

(
x2

b
+ y2 b

)
�(2.1)

By �2�1	, we have

Vnn
1/2 = inf

b>0

1
2b

�V2
n + nb2	 if Vn > 0(2.2)

and

P

(
Sn

Vnn
1/2

≥ x

)
= P

(
Sn ≥ x inf

b>0

1
2b

�V2
n + nb2	 or Vn = 0

)

= P

(
sup
b>0

n∑
i=1

�bXi − x�X2
i + b2	/2	 ≥ 0 or Vn = 0

)

= P

(
sup
b≥0

n∑
i=1

�bXi − x�X2
i + b2	/2	 ≥ 0

)
�

(2.3)

Note that for x > EX/�EX2	1/2 �≥ 0	 and for b ≥ 0,

E exp�t�bX− x�X2 + b2	/2		 < ∞ for all t ≥ 0

and

E�bX− x�X2 + b2	/2	

=
{
−∞� if EX2 = ∞�

−�x/2	 �b− �EX	/x	2 − 1
2�xEX2 − �EX	2/x	 < 0� if EX2 < ∞�

Thus, by �2�3	 and �1�1	,

lim inf
n→∞ P

(
Sn

Vnn
1/2

≥ x

)1/n

≥ lim inf
n→∞ sup

b≥0
P

( n∑
i=1

�bXi − x�X2
i + b2	/2	 ≥ 0

)1/n

≥ sup
b≥0

inf
t≥0

E exp
(
t

(
bX− x�X2 + b2	

2

))
�

(2.4)

To finish the proof of �1�3	, it suffices to show that

lim sup
n→∞

P

(
Sn

Vnn
1/2

≥ x

)1/n

≤ sup
b≥0

inf
t≥0

E exp
(
t

(
bX− x�X2 + b2	

2

))
�(2.5)
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Recalling �2�3	, for A > 2

P

(
Sn

Vnn
1/2

≥ x

)
≤ P

(
sup
b>4A

n∑
i=1

(
bXi −

x�X2
i + b2	
2

)
≥ 0

)

+P

(
sup

0≤b≤4A

n∑
i=1

(
bXi −

x�X2
i + b2	
2

)
≥ 0

)


= I1 + I2�

(2.6)

Notice that

I1 = P

(
sup
b>4A

n∑
i=1

(
bXiI�
Xi
 ≤ xA� + bXiI�
Xi
 > xA�

− x�X2
i + b2	
2

)
≥ 0

)

≤ P

(
sup
b>4A

n∑
i=1

(
bxA+ bXiI�
Xi
 > xA� − x�X2

i + b2	
2

)
≥ 0

)

≤ P

(
sup
b>4A

n∑
i=1

(
bXiI�
Xi
 > xA� − x�X2

i + b2/2	
2

)
≥ 0

)

= P

( n∑
i=1

XiI�
Xi
 > xA� ≥ x

2
inf
b>4A

(∑n
i=1 X

2
i

b
+ bn

2

))

≤ P

( n∑
i=1

XiI�
Xi
 > xA� ≥ x√
2

(
n

n∑
i=1

X2
i

)1/2

� Vn > 0
)

≤ P

( n∑
i=1

I�
Xi
 > xA� ≥ x2

2
n

)

(2.7)

by the Cauchy inequality. Applying the Chernoff large deviation to the bino-
mial random variable B�n�p	, it follows that for all a > 0,

P�B�n�p	 > an	 ≤
(
ep

a

)an

�(2.8)

Therefore

P

( n∑
i=1

I�
Xi
 > xA� ≥ x2

2
n

)
≤

(
6P�
X
 > xA	

x2

)x2n/2

�

which together with �2�7	 yields

lim sup
n→∞

I
1/n
1 ≤

(
6P�
X
 > xA	

x2

)x2/2

�(2.9)

We next estimate I2. Take A ≥ 2 such that

P�
X
 ≤ A	 > 1/2�(2.10)
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Let

0 < δ < 1� � 
= ��A�δ	 = δ2

�10 + 60x	A4

and let Y be a standard normal random variable independent of X. We have

I2 ≤ P

(
max

1≤j≤1+4A/�
sup

�j−1	�≤b≤j�

n∑
i=1

�bXi − x�X2
i + b2	/2	 ≥ 0

)

≤ P

(
max

1≤j≤1+4A/�

n∑
i=1

�j�Xi − x�X2
i + ��j− 1	�	2	/2	 ≥ 0

)

≤ ∑
1≤j≤1+4A/�

P

( n∑
i=1

�j�Xi − x�X2
i + ��j− 1	�	2	/2	 ≥ 0

)

≤ ∑
1≤j≤1+4A/�

(
inf
t≥0

E exp�t�j�X− x�X2 + ��j− 1	�	2	/2		
)n

≤ ∑
1≤j≤1+4A/�

(
inf
t≥0

exp�t2δ2/2	E exp�t�j�X− x�X2 + ��j− 1	�	2	/2		
)n

= ∑
1≤j≤1+4A/�

(
inf
t≥0

E exp�t�j�X+ δY− x�X2 + ��j− 1	�	2	/2		
)n
�

(2.11)

Put

ξj = j�X+ δY− x�X2 + �j�	2	/2� 1 ≤ j ≤ 1 + 4A/��

It is easy to see that P�ξj = y	 = 0 and 0 < P�ξj < y	 < 1 for any y and that
−∞ ≤ Eξj < 0. Therefore, in terms of Lemmas 1 and 3 of Chernoff (1952),
there is 0 < tj < ∞ such that

E exp�tjξj	 = inf
t≥0

E exp�tξj	 ≤ 1�(2.12)

As to tj, by �2�12	 and �2�10	,

1 ≥ E exp�tj�j�X+ δY− x�X2 + �j�	2	/2		
≥ E exp�tj�j�X+ δY− x�X2 + �j�	2	/2		I�
X
 ≤ A�
= exp��δ tj	2/2	E exp�tj�j�X− x�X2 + �j�	2	/2		I�
X
 ≤ A�
≥ exp��δ tj	2/2	 exp�−tj�j�A+ x�A2 + �j�	2	/2	 − 1	
≥ exp��δ tj	2/2	 exp�−tj�4�5 + 30x	A2 − 1	
≥ exp

( 1
2

{(
δtj − �4�5 + 30x	A2/δ

)2 − (�5�5 + 30x	A2/δ
)2})

for 1 ≤ j ≤ 1 + 4A/�, which yields immediately

tj ≤ �10 + 60x	A2/δ2 for 1 ≤ j ≤ 1 + 4A/��(2.13)
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Therefore, by �2�11	, (2.12) and �2�13	,
I2 ≤ ∑

1≤j≤1+4A/�

�E exp�tj�j�X+ δY− x�X2 + ��j− 1	�	2	/2			n

= ∑
1≤j≤1+4A/�

�exp�tj x �j2 − �j− 1	2	�2/2	E exp�tj ξj		n

≤ ∑
1≤j≤1+4A/�

(
exp�tj j�2	 inf

t≥0
E exp�t ξj	

)n

≤ �1 + 4A/�	
(
exp�� �1 + 4A	�10 + 60x	A2/δ2	

× sup
b≥0

inf
t≥0

E exp�t�bX+ δY− x�X2 + b2	/2		
)n

≤ �1 + 4A/�	
(
exp�5/A	 sup

b≥0
inf
t≥0

E exp�t�bX+ δY− x�X2 + b2	/2		
)n
�

(2.14)

It follows from �2�6	, �2�9	 and �2�14	 that

lim sup
n→∞

P

(
Sn

Vn n
1/2

≥ x

)1/n

≤
(

6P�
X
 > xA	
x2

)x2/4

+ exp�5/A	 sup
b≥0

inf
t≥0

E exp
(
t

(
bX+ δY− x�X2 + b2	

2

))

for any 0 < δ < 1 and for any A satisfying �2�10	. Letting A → ∞ leads to

lim sup
n→∞

P

(
Sn

Vn n
1/2

≥ x

)1/n

≤ sup
b≥0

inf
t≥0

exp��tδ	2/2	E exp
(
t

(
bX− x�X2 + b2	

2

))(2.15)

for any 0 < δ < 1.
Clearly, �2�5	 will be an immediate consequence of �2�15	 and the following

Lemma 2.1. This completes the proof of Theorem 1.1. ✷

Lemma 2.1. For any random variable X we have

lim
δ↓0

sup
b≥0

inf
t≥0

exp��tδ	2/2	E exp�t�bX− x�X2 + b2	/2		

= sup
b≥0

inf
t≥0

E exp�t�bX− x�X2 + b2	/2		
(2.16)

for x > EX/�EX2	1/2. Moreover, the convergence is uniform in x ∈ �a�1� for
any EX/�EX2	1/2 < a < 1.
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The proof is given in the Appendix.
From the above proof of Theorem 1.1, one can obtain the following more

general result.

Theorem 2.1. Let µ and ν be two real numbers. Assume that either EX ≥ µ
or EX2 = ∞. Then

lim
n→∞P

( ∑n
i=1�Xi − µ	

�n∑n
i=1�Xi − ν	2	1/2

≥ x

)1/n

= sup
c≥0

inf
t≥0

E exp
(
t

(
c�X− µ	 − x��X− ν	2 + c2	

2

))(2.17)

for x > �EX− µ	/√E�X− ν	2.

Proof of Theorem 1.2. Let p > 1. It is well known that

x1/p y1−1/p = inf
b>0

(
1
p

x

b
+ p− 1

p
yb1/�p−1	

)
for any x > 0� y > 0�(2.18)

The remaining part of the proof is along the same lines as that of Theorem
1.1, just by using �2�18	 instead of �2�1	, so the details are omitted here.

3. Self-normalized moderate deviations. Let �xn� n ≥ 1� be a se-
quence of positive numbers with xn → ∞ as n → ∞. Essentially, Theorem 1.1
gives us the asymptotic probability of P�Sn ≥ xn Vn	 when xn � √

n. A natu-
ral question is whether we have an analogous result for general �xn� n ≥ 1�
without any moment conditions. The following theorems give an affirmative
answer to this question.

Theorem 3.1. Let �xn� n ≥ 1� be a sequence of positive numbers with xn →
∞ and xn = o�√n	 as n → ∞. If EX = 0 and EX2I�
X
 ≤ x� is slowly varying
as x → ∞, then

lim
n→∞x−2

n lnP
(
Sn

Vn

≥ xn

)
= −1

2
�(3.1)

The result is closely related to the Cramér (1938) large deviation. It is
known [cf. Petrov (1975)] that

lim
n→∞x−2

n lnP
( 
Sn
√

n
≥ xn

)
= −1

2

holds for any sequence of �xn� with xn → ∞ and xn= o�√n	 if and only if
EX=0� EX2 =1 and E exp�t0
X
	 < ∞ for some t0 >0. Theorem 3.1 shows
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again that the situation is quite different in the self-normalized limit theo-
rems. It tells us that the main term of the asymptotic probability of P�Sn ≥
xnVn	 is distribution free as long as X is in the domain of attraction of a nor-
mal law and xn = o�√n	. Our next theorem demonstrates that P�Sn ≥ xnVn	
has the same exponent power up to a constant when X is in the domain of
attraction of a stable law.

Theorem 3.2. Let �xn� n ≥ 1� be a sequence of positive numbers with
xn → ∞ and xn = o�√n	 as n → ∞. Assume that there exist 0 < α < 2� c1 ≥
0� c2 ≥ 0� c1 + c2 > 0 and a slowly varying function h�x	 such that

P�X ≥ x	 = c1 + o�1	
xα

h�x	 and

P�X ≤ −x	 = c2 + o�1	
xα

h�x	 as x → ∞�

(3.2)

Moreover, assume that EX = 0 if 1 < α < 2, X is symmetric if α = 1 and that
c1 > 0 if 0 < α < 1. Then, we have

lim
n→∞x−2

n lnP
(
Sn

Vn

≥ xn

)
= −β�α� c1� c2	�(3.3)

where β�α� c1� c2	 is the solution of '�β�α� c1� c2	 = 0 and

'�β�α� c1� c2	

=




c1

∫ ∞

0

1 + 2x− exp�2x− x2/β	
xα+1

dx

+ c2

∫ ∞

0

1 − 2x− exp�−2x− x2/β	
xα+1

dx� if 1 < α < 2�

c1

∫ ∞

0

2 − exp�2x− x2/β	 − exp�−2x− x2/β	
x2

dx� if α = 1�

c1

∫ ∞

0

1 − exp�2x− x2/β	
xα+1

dx

+ c2

∫ ∞

0

1 − exp�−2x− x2/β	
xα+1

dx� if 0 < α < 1�

(3.4)

In particular, if X is symmetric, then

lim
n→∞x−2

n lnP
(
Sn

Vn

≥ xn

)
= −β�α	�(3.5)

where β�α	 is the solution of

∫ ∞

0

2 − exp�2x− x2/β	 − exp�−2x− x2/β	
xα+1

dx = 0�
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More generally, corresponding to Theorem 1.2, we have Theorem 3.3.

Theorem 3.3. Assume that there exist 0 < α < 2� c1 ≥ 0� c2 ≥ 0� c1+c2 > 0
and a slowly varying function h�x	 such that �3�2	 holds. Moreover, assume
that EX = 0 if 1 < α < 2, X is symmetric if α = 1 and that c1 > 0 if 0 < α < 1.
Let p > max�1� α	, and let �xn� n ≥ 1� be a sequence of positive numbers with
xn → ∞ and xn = o�n�p−1	/p	 as n → ∞. Then, we have

lim
n→∞x

−p/�p−1	
n lnP

(
Sn

Vn�p

≥ xn

)
= −�p− 1	βp�α� c1� c2	�(3.6)

where βp�α� c1� c2	 is the solution of 'p�β�α� c1� c2	 = 0 and

'p�β�α� c1� c2	

=




c1

∫ ∞

0

1 + px− exp�px− xp/βp−1	
xα+1

dx

+ c2

∫ ∞

0

1 − px− exp�−px− xp/βp−1	
xα+1

dx� if 1 < α < 2�

c1

∫ ∞

0

2 − exp�px− xp/βp−1	 − exp�−px− xp/βp−1	
x2

dx�

if α = 1�

c1

∫ ∞

0

1 − exp�px− xp/βp−1	
xα+1

dx

+ c2

∫ ∞

0

1 − exp�−px− xp/βp−1	
xα+1

dx� if 0 < α < 1�

(3.7)

In particular, if X is symmetric, then

lim
n→∞x

−p/�p−1	
n lnP

(
Sn

Vn�p

≥ xn

)
= −�p− 1	βp�α	�(3.8)

where βp�α	 is the solution of

∫ ∞

0

2 − exp�px− xp/βp−1	 − exp�−px− xp/βp−1	
xα+1

dx = 0�

Remark 3.1. It is easy to see that 'p�β�α� c1� c2	 is strictly decreasing and
continuous on �0� ∞	 and by the l’Hôpital rule that

lim
β↓0

'p�β�α� c1� c2	 = ∞ and lim
β↑∞

'p�β�α� c1� c2	 = −∞�

So, the solution of 'p�β�α� c1� c2	 = 0 exists and is unique.
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4. Proofs of Theorems 3.1, 3.2 and 3.3. Recalling that a positive func-
tion h�x	 defined on x ≥ a for some a ≥ 0 is said to be slowly varying (at ∞)
if for all t > 0,

lim
x→∞

h�t x	
h�x	 = 1�

The following properties of a slowly varying function h�x	 are well known
[cf. Karamata (1933), Feller (1966) and Bingham, Goldie and Teugels (1987)]
and will be utilized in the following proofs.

(H1) h�x	 is representable in the form h�x	 = c�x	 exp�∫ x1 �a�y	/y	dy	�
where c�x	 → c > 0, for some c, and a�x	 → 0 as x → ∞.

(H2) For 0 < c < C < ∞� limx→∞ �h�tx		/h�x	 = 1 uniformly in c ≤ t ≤ C.
(H3) ∀ ε > 0� limx→∞ x−εh�x	 = 0 and limx→∞ xεh�x	 = ∞.
(H4) For any ε > 0, there exists x0 such that for all x� xt ≥ x0,

�1 − ε	
(
t ∨ 1

t

)−ε
≤ h�tx	

h�x	 ≤ �1 + ε	
(
t ∨ 1

t

)ε

�

∣∣∣∣h�tx	h�x	 − 1
∣∣∣∣ ≤ 2

((
t ∨ 1

t

)ε

− 1
)
�

(H5) For any θ > −1,
∫ x
a y

θh�y	dy ∼ �xθ+1h�x		/�θ+ 1	 as x → ∞�

Proof of Theorem 3.1. It suffices to show that

lim sup
n→∞

x−2
n lnP

(
Sn

Vn

≥ xn

)
≤ −1

2
(4.1)

and

lim inf
n→∞ x−2

n lnP
(
Sn

Vn

≥ xn

)
≥ −1

2
�(4.2)

The idea of the proof of �4�1	 comes from Griffin and Kuelbs (1989). Put

l�x	 = EX2I�
X
 ≤ x�� b = inf�x ≥ 1
 l�x	 > 0��

zn = inf
{
s
 s ≥ b+ 1�

l�s	
s2

≤ x2
n

n

}
�

(4.3)

By an elementary argument and the assumption that x2
n = o�n	, it is plain to

see that

zn → ∞ and n l�zn	 = x2
n z

2
n for every n sufficiently large.(4.4)
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Since EX2I�
X
 ≤ x� is slowly varying,

P�
X
 ≥ x	 = o�l�x	/x2	� E
X
I�
X
 ≥ x� = o�l�x	/x	(4.5)

and

E
X
kI�
X
 ≤ x� = o�xk−2l�x		 for each k > 2(4.6)

as x → ∞. For any 0 < ε < 1/2, we have

P

(
Sn

Vn

≥ xn

)
≤ P

(
Sn

Vn

≥ xn� Vn > 0
)
+P�Vn = 0	

≤ P

( n∑
i=1

XiI�
Xi
 ≤ zn� ≥ �1 − ε	xn Vn

)

+P

( n∑
i=1

XiI�
Xi
 > zn� ≥ εxn Vn�Vn > 0
)
+P�X = 0	n

≤ P

( n∑
i=1

XiI�
Xi
 ≤ zn� ≥ �1 − ε	xn
{ n∑
i=1

X2
i I�
Xi
 ≤ zn�

}1/2)

+P

( n∑
i=1

I�
Xi
 > zn� ≥ ε2x2
n

)
+P�X = 0	n

≤ P

( n∑
i=1

XiI�
Xi
 ≤ zn� ≥ �1 − ε	2xn

√
n l�zn	

)

+P

( n∑
i=1

X2
i I�
Xi
 ≤ zn� ≤ �1 − ε	n l�zn	

)

+P

( n∑
i=1

I�
Xi
 > zn� ≥ ε2x2
n

)
+P�X = 0	n


= J1 +J2 +J3 +P�X = 0	n�

(4.7)

From the elementary inequalities

∀ x ∈ R1� ex ≤ 1 + x+ x2

2
+ 
x
3

6
ex and ex ≤ 1 + x+ x2

2
e
x
�

it follows that for arbitrary bounded random variable ξ,

Eeξ ≤ 1 +Eξ + Eξ2

2
+ E
ξ
3eξ

6
(4.8)

and

Eeξ ≤ 1 +Eξ + Eξ2 e
ξ


2
�(4.9)
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By �4�4	, �4�5	, �4�8	 and �4�6	,

J1 ≤ exp
(
− 1
zn

�1 − ε	2xn

√
n l�zn	

)
E exp

(
1
zn

n∑
i=1

XiI�
Xi
 ≤ zn�
)

= exp�−�1 − ε	2x2
n	
(
E exp

(
1
zn
XI�
X
 ≤ zn�

))n

≤ exp�−�1 − ε	2x2
n	
(

1 + EXI�
X
 ≤ zn�
zn

+ EX2I�
X
 ≤ zn�
2 z2

n

+ eE
X
3I�
X
 ≤ zn�
6z3

n

)n

= exp�−�1 − ε	2x2
n	
(

1 − EXI�
X
 > zn�
zn

+ l�zn	
2 z2

n

+ eE
X
3I�
X
 ≤ zn�
6z3

n

)n

≤ exp�−�1 − ε	2x2
n	
(

1 + l�zn	
2 z2

n

+ o

(
l�zn	
z2
n

))n

≤ exp�−�1 − ε	2x2
n	 exp

(
n l�zn	

2 z2
n

+ o

(
n
l�zn	
z2
n

))

= exp�−�1 − ε	2x2
n	 exp

(
x2
n

2
+ o�x2

n	
)

= exp
(
−
(
�1 − ε	2 − 1

2

)
x2
n + o�x2

n	
)
�

(4.10)

As for J2, similar to the proof of �4�10	, using �4�9	 instead of �4�8	, we get

J2 = P

( n∑
i=1

EX2
i I�
Xi
 ≤ zn� −X2

i I�
Xi
 ≤ zn� ≥ εn l�zn	
)

≤ exp�−n l�zn	/z2
n	E exp

(
1
εz2

n

n∑
i=1

EX2
i I�
Xi
 ≤ zn� −X2

i I�
Xi
 ≤ zn�
)

= exp�−x2
n	
(
E exp

(
1
εz2

n

(
EX2I�
X
 ≤ zn� −X2I�
X
 ≤ zn�

)))n

≤ exp�−x2
n	
(

1 + EX4I�
X
 ≤ zn�
2ε2z4

n

exp�1/ε	
)n

≤ exp�−x2
n	
(

1 + exp�1/ε	
ε2

o�l�zn	/z2
n	
)n

≤ exp�−x2
n	 exp�o�nl�zn	/z2

n		
= exp�−x2

n + o�x2
n		�
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We next estimate J3. Recalling that
∑n

i=1 I�
Xi
 > zn� has a binomial dis-
tribution and applying �2�8	 again, we obtain from �4�5	 and �4�4	 that

J3 ≤
(

3nP�
X
 > zn	
ε2x2

n

)ε2x2
n

=
(
o

(
l�zn	
z2
n

)
n

ε2x2
n

)ε2x2
n

=
(
o�1	
ε2

)ε2x2
n

�

Now �4�1	 follows from the above inequalities and the arbitrariness of ε.
To prove �4�2	, we need the following two lemmas.

Lemma 4.1. Let �ξ� ξn� n ≥ 1� be a sequence of independent random vari-
ables, having the same nondegenerate distribution function F�x	. Assume that

H 
= sup�h
 Eehξ < ∞� > 0�

For 0 < h < H, put

m�h	 = Eξehξ /Eehξ� σ2�h	 = Eξ2ehξ /Eehξ −m2�h	�
Then

P

( n∑
i=1

ξi ≥ nx

)
≥ 3

4�E exp�hξ		n exp�−nhm�h	 − 2hσ�h	√n	(4.11)

provided that

0 < h < H and m�h	 ≥ x+ 2σ�h	/√n�(4.12)

Proof. Let

V�x	 = 1
Eehξ

∫ x

−∞
ehy dF�y	�

Consider the sequence of independent random variables �η�ηn� n ≥ 1�, hav-
ing the same distribution function V�x	. Denote by Fn�x	 the distribution
function of the random variable �∑n

i=1�ηi − Eηi		/
√
nVarη. In terms of the

conjugate method [cf. (4.9) of Petrov (1965)], we have

P

( n∑
i=1

ξi ≥ nx

)
= �Eehξ	ne−nhm�h	

∫ ∞

−�m�h	−x	√n/σ�h	
e−hσ�h	t

√
n dFn�t	�

By �4�12	 and the Chebyshev inequality,∫ ∞

−�m�h	−x	√n/σ�h	
e−hσ�h	t

√
n dFn�t	 ≥

∫ 2

−2
e−hσ�h	t

√
n dFn�t	

≥ e−2hσ�h	√nP
(∣∣∣∣

n∑
i=1

�ηi −Eηi	
∣∣∣∣ ≤ 2

√
nVarη

)

≥ 3
4e

−2hσ�h	√n�

This reduces to �4�11	. ✷
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Lemma 4.2. Let

0 < ε < 1/2� bn = 1/zn� ξ 
= ξn = 2bnX− b2
nX

2� h 
= hε = �1 + ε	/2�

where zn is defined as in �4�3	. Then, under the condition of Theorem 3�1,

Eehξ = 1 + ε�1 + ε	x2
n/�2n	 + o

(
x2
n/n

)
�(4.13)

Eξehξ = �1 + 2ε	x2
n/n+ o

(
x2
n/n

)
(4.14)

and

Eξ2ehξ = 4x2
n/n+ o�x2

n/n	(4.15)

as n → ∞.

Proof. Note that

hξ = h
(
1 − �bnX− 1	2) ≤ h ≤ 1�(4.16)

In terms of �4�5	, we have

Eehξ = EehξI�
X
 > zn� +EehξI�
X
 ≤ zn�

= o�l�zn	/z2
n	 +E

(
1 + hξ + �hξ	2

2

)
I�
X
 ≤ zn�

+E

(
ehξ − 1 − hξ − �hξ	2

2

)
I�
X
 ≤ zn��

(4.17)

From �4�4	 to �4�6	 it follows that

E

(
1 + hξ + �hξ	2

2

)
I�
X
 ≤ zn�

= 1 −P�
X
 > zn	 − 2hbnEXI�
X
 > zn� − hb2
nl�zn	

+ 2h2b2
nl�zn	 − 2h2b3

nEX
3I�
X
 ≤ zn�

+ h2b4
nEX

4I�
X
 ≤ zn�
2

= 1 − hb2
nl�zn	 + 2h2b2

nl�zn	 + o

(
l�zn	
z2
n

)
+ hbn o

(
l�zn	
zn

)

+ h2b3
n o�znl�zn		 + h2b4

no�z2
nl�zn		

= 1 + ε�1 + ε	b2
nl�zn	/2 + o�b2

nl�zn		
= 1 + ε�1 + ε	x2

n/�2n	 + o
(
x2
n/n

)
�

(4.18)
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Similarly, by using the inequality 
ex − 1 − x− x2/2
 ≤ 
x
3e
x
,∣∣∣∣E
(

exp�hξ	 − 1 − hξ − �hξ	2

2

)
I�
X
 ≤ zn�

∣∣∣∣
≤ E
hξ
3 exp�h
ξ
	I�
X
 ≤ zn�
≤ 4h3E exp�h�1 + �bnX− 1	2		�8b3

n
X
3 + b6
nX

6	I�
X
 ≤ zn�
≤ 4h3 exp 3E

(
8b3

n
X
3 + b6
nX

6)I�
X
 ≤ zn�
≤ 4h3 exp 3

(
b3
n o�znl�zn		 + b6

n o�z4
nl�zn		

)
= o

(
b2
n l�zn	

) = o
(
x2
n/n

)
�

(4.19)

This proves �4�13	, by �4�17	, (4.18) and �4�19	.
To estimate Eξehξ, write

Eξehξ = EξehξI�
X
 > zn� +Eξ�1 + hξ	I�
X
 ≤ zn�
+Eξ�ehξ − 1 − hξ	I�
X
 ≤ zn��

Noting that sup−∞<x≤1 
x
ex = e, we have


EξehξI�
X
 > zn�
 ≤ h−1Eh
ξ
ehξI�
X
 > zn�
≤ h−1 eP�
X
 > zn	
= h−1o�l�zn	/z2

n	
= o

(
x2
n/n

)
by �4�16	 and �4�5	. Similar to �4�18	,

Eξ�1 + hξ	I�
X
 ≤ zn� = �1 + 2ε	x2
n/n+ o�x2

n/n	�
In terms of the inequality that 
ex−1−x
 ≤ x2e
x
, along the lines of the proof
of �4�19	, one can get

Eξ�ehξ − 1 − hξ	I�
X
 ≤ zn� = o�x2
n/n	�

This reduces to �4�14	. The proof of �4�15	 is similar to that of �4�14	 and
so is omitted here. ✷

We are now ready to prove �4�2	. Let bn, h and ξ be defined as in Lemma
4.2. Put

ξi = 2bnXi − b2
nX

2
i � i = 1�2� � � � �

By �2�2	 we have

P

(
Sn

Vn

≥ xn

)
≥ P

(
Sn ≥ 1

2bn
�b2

nV
2
n + x2

n	
)

= P

( n∑
i=1

ξi ≥ x2
n

)
�

(4.20)
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Let

m�h	 = Eξehξ/Eehξ� σ2�h	 = Eξ2ehξ/Eehξ −m2�h	 and x = x2
n/n

in Lemma 4.1. From Lemma 4.2 it is clear that

m�h	 = �1 + 2ε	x2
n/n+ o

(
x2
n/n

)
�

Eξehξ − (
x2
n/n

)
Eehξ = 2εx2

n/n+ o
(
x2
n/n

)
and

σ�h	�Eehξ	1/2

√
n

= 2�1 + o�1		xn/
√
n√

n
= o

(
x2
n

n

)
�

Therefore, �4�12	 is satisfied for every sufficiently large n. By Lemma 4.1 and
�4�13	,

P

( n∑
i=1

ξi ≥ x2
n

)
≥ 3

4�E exp�hξ		n exp�−nhm�h	 − 2hσ�h	√n	

≥ 3
4 exp�ε�1 + ε	x2

n/2 − h�1 + 2ε	x2
n + o�x2

n		
= 3

4 exp�−�1 + ε	2x2
n/2 + o�x2

n		�

(4.21)

This proves �4�2	 by �4�20	 and �4�21	 and the arbitrariness of ε. The proof
of Theorem 3.1 is now complete. ✷

Remark 4.1. Along with the above proof we have actually proved that the
convergence in �3�1	 is uniform: for arbitrary 0 < ε < 1/2, there exist 0 < δ <
1� x0 > 1 and n0 such that for any n ≥ n0 and x0 < x < δ

√
n,

exp�−�1 + ε	x2/2	 ≤ P

(
Sn

Vn

≥ x

)
≤ exp�−�1 − ε	x2/2	�

Remark 4.2. By using the Ottaviani maximum inequality and according
to the above proof, one can obtain that under the condition of Theorem 3.1, for
any 0 < ε < 1, there exist 0 < δ < 1� x0 > 1 and n0 such that for any n ≥ n0
and x0 < x < δ

√
n,

P

(
max

n/2≤k≤n
Sk

Vk

≥ x

)
≤ exp

(−�1 − ε	x2

2

)
�

To prove Theorem 3.3, we start with some preliminary lemmas. For the sake
of convenience, statements below are understood to hold for every sufficiently
large n. Let

q = p/�p− 1	� yn = xqn/n(4.22)

and let zn be a sequence of positive numbers such that

h�zn	z−αn ∼ yn as n → ∞�(4.23)
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Lemma 4.3. Under the conditions of Theorem 3�3, we have

E
X
pI�
X
 ≤ x� ∼ α�c1 + c2	
p− α

xp−αh�x	�(4.24)

E
X
I�
X
 ≥ x� ∼ α�c1 + c2	
α− 1

x1−αh�x	 if 1 < α < 2�(4.25)

E
X
I�
X
 ≤ x� ∼ α�c1 + c2	
1 − α

x1−αh�x	 if 0 < α < 1�(4.26)

P�
X
 ≥ x	 ∼ c1 + c2

xα
h�x	(4.27)

as x → ∞.

The proofs are straightforward and so are omitted here.

Lemma 4.4. Let 2p < D < ∞. Under the conditions of Theorem 3�3, for any
2p ≤ t ≤ D and every sufficiently large n

E exp�−tz−pn 
X
p	 ≤ exp�−�c1 + c2	tα/�2p	yn/150	�(4.28)

Proof. Integration by parts leads to

1 −E exp�−tz−pn 
X
p	 = p
∫ ∞

0
xp−1 exp�−xp	P�
X
 ≥ xzn t

−1/p	dx

≥ p
∫ t1/p

1
xp−1 exp�−xp	P�
X
 ≥ xzn t

−1/p	dx�

By �4�27	, (H4) and �4�23	,

p
∫ t1/p

1
xp−1 exp�−xp	P�
X
 ≥ xzn t

−1/p	dx

≥ �1/2	p�c1 + c2	
∫ t1/p

1
xp−1 exp�−xp	�xzn t−1/p	−αh�xzn t−1/p	dx

= �1/2	p�c1 + c2	tα/pz−αn
∫ t1/p

1
xp−1−α h�xzn t−1/p	 exp�−xp	dx

≥ �1/2	p�c1 + c2	tα/pz−αn h�zn t−1/p	
∫ 2

1
xp−1−2α exp�−xp	dx

≥ �1/32	�c1 + c2	tα/pz−αn h�zn t−1/p	
∫ 2

1
pxp−1 exp�−xp	dx

≥ �c1 + c2	tα/pz−αn h�zn t−1/p	/140

≥ �c1 + c2	tα/�2p	z−αn h�zn	/145

≥ �c1 + c2	tα/�2p	yn/150�

Now �4�28	 follows from the above inequalities. ✷
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For t > 0, put

γ�t	 =




c1α
∫ ∞

0

1 + ptx− exp�t�px− xp		
xα+1

dx

+ c2α
∫ ∞

0

1 − ptx− exp�t�−px− xp		
xα+1

dx� if 1 < α < 2�

c1

∫ ∞

0

2 − exp�t�px− xp		 − exp�t�−px− xp		
x2

dx�

if α = 1�

c1α
∫ ∞

0

1 − exp�t�px− xp		
xα+1

dx

+ c2α
∫ ∞

0

1 − exp�t�−px− xp		
xα+1

dx� if 0 < α < 1�

(4.29)

Clearly, we have

γ′�t	=




c1α
∫ ∞

0

p− �p− xp−1	 exp�t�px− xp		
xα

dx

+ c2α
∫ ∞

0

�p+ xp−1	 exp�t�−px− xp		 − p

xα
dx�

if 1 < α < 2�

c1

∫ ∞

0

[�xp−1 − p	 exp�t�px− xp		
x

+ �p+ xp−1	 exp�t�−px− xp		
x

]
dx� if α = 1�

c1α
∫ ∞

0

�xp−1 − p	 exp�t�px− xp		
xα

dx

+ c2α
∫ ∞

0

�p+ xp−1	 exp�t�−px− xp		
xα

dx� if 0 < α < 1

(4.30)

and

γ′′�t	 =




−c1α
∫ ∞

0

�p− xp−1	2 exp�t�px− xp		
xα−1

dx

− c2α
∫ ∞

0

�p+ xp−1	2 exp�t�−px− xp		
xα−1

dx� if 1 < α < 2�

−c1

∫ ∞

0

[�xp−1 − p	2 exp�t�px− xp		

+ �2 + x	2 exp�t�−px− xp		]dx� if α = 1�

−c1α
∫ ∞

0

�xp−1 − p	2 exp�t�px− xp		
xα−1

dx

− c2α
∫ ∞

0

�p+ xp−1	2 exp�t�−px− xp		
xα

dx� if 0 < α < 1�

(4.31)

The next two lemmas play a key role in the proof of Theorem 3.3.
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Lemma 4.5. Let

ξ 
= ξb = pbX− 
bX
p� b > 0

and let 0 < d < D < ∞. Under the conditions of Theorem 3�3, as b ↓ 0,

1 −Eetξ = γ�t	bαh�1/b	 + o�bαh�1/b		�(4.32)

Eξ etξ = −bαh�1/b	γ′�t	 + o�bαh�1/b		(4.33)

and

Eξ2 etξ = −bαh�1/b	γ′′�t	 + o�bαh�1/b		(4.34)

for any d ≤ t ≤ D, where γ�t	 is defined as in �4�29	 and the constants implied
in o�·	 do not depend on t.

Proof. We divide the proof into three different cases.

Case 1. 1 < α < 2. Since EX = 0,

1−Eetξ = pt
∫ ∞

0
P�X ≥ x/b	�1 − �1 − xp−1	 exp�t�px− xp			dx

+ pt
∫ ∞

0
P�X ≤ −x/b	�−1 + �1 + xp−1	 exp�t�−px− xp			dx


= I1 + I2�

(4.35)

Let θ = �1 + α max�1/2�1/p		/2. Then

α max�1/2�1/p	 < θ < 1

and

I1 = pt
∫ bθ

0
P�X ≥ x/b	�1 − �1 − xp−1	 exp�t�px− xp			dx

+ pt
∫ ∞

bθ
P�X ≥ x/b	�1 − �1 − xp−1	 exp�t�px− xp			dx


= I1�1 + I1�2�

It is easy to see that for t > 0 and x > 0,


1 − �1 − xp−1	 exp�t�px− xp		

≤ ∣∣1 − exp�t�px− xp		∣∣+ xp−1 exp�t�px− xp		
≤ min�1 + exp�t�p− 1		� xKp exp�tp		

+ min�xp−1 exp�t�p− 1		�Kp�1 + t1−p	 exp�t�p− 1			
≤ Kp�1 + t1−p	 exp�tp	min�1� x+ xp−1	

(4.36)
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for some constant Kp depending only on p. From �4�36	 we obtain

I1�1 ≤ pt
∫ bθ

0
Kpe

tp�1 + t1−p	�x+ xp−1	dx

≤ pKpD�1 + d1−p	eDp�b2θ + bpθ	 = o�bαh�1/b		�
In terms of �3�2	, �4�36	 and (H4), we get

I1�2 = pt
∫ ∞

bθ

c1b
αh�x/b	
xα

�1 − �1 − xp−1	 exp�t�px− xp			dx

+ o�1	
∫ ∞

bθ

c1b
αh�x/b	
xα


1 − �1 − xp−1	 exp�t�px− xp		
dx

= ptc1b
αh

(
1
b

) ∫ ∞

bθ

1 − �1 − xp−1	 exp�t�px− xp		
xα

dx

+ ptc1b
αh

(
1
b

) ∫ ∞

bθ

(
h�x/b	
h�1/b	 − 1

)
1 − �1 − xp−1	 exp�t�px− xp		

xα
dx

+ o�1	bαh
(

1
b

)
�1 + t1−p	 exp�tp	

∫ ∞

bθ

h�x/b	min�1� x+ xp−1	
h�1/b	xα dx

= ptc1b
αh

(
1
b

) ∫ ∞

0

1 − �1 − xp−1	 exp�t�px− xp		
xα

dx+ o�1	bαh
(

1
b

)

+ ptc1b
αh

(
1
b

) ∫ ∞

bθ

(
h�x/b	
h�1/b	 − 1

)
1 − �1 − xp−1	 exp�t�px− xp		

xα
dx

+ o�1	bαh
(

1
b

)
�1 + t1−p	 exp�tp	

×
∫ ∞

bθ

(
x+ 1

x

)min�p−α�α−1�2−α	/2 min�1� x+ xp−1	
xα

dx

= αc1b
αh

(
1
b

) ∫ ∞

0

1 + ptx− exp�t�px− xp		
xα+1

dx+ o�1	bαh
(

1
b

)

+ ptc1b
αh

(
1
b

) ∫ ∞

bθ

(
h�x/b	
h�1/b	 − 1

)
1 − �1 − xp−1	 exp�t�px− xp		

xα
dx�

by an integration by parts. Use (H4) and �4�36	 again, for any 0 < ε < min�2−
α� α− 1� p− α	/2,

∫ ∞

bθ

∣∣∣∣h�x/b	h�1/b	 − 1
∣∣∣∣
∣∣∣∣1 − �1 − xp−1	 exp�t�px− xp		

xα

∣∣∣∣dx
≤ 2Kp�1 + t1−p	 exp�tp	

∫ ∞

bθ

((
x ∨ 1

x

)ε

− 1
)

min�1� x+ xp−1	
xα

dx

≤ 2Kp�1 + d1−p	 exp�pD	
∫ ∞

0

((
x ∨ 1

x

)ε

− 1
)

min�1� x+ xp−1	
xα

dx�
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Since

lim
ε↓0

∫ ∞

0

((
x ∨ 1

x

)ε

− 1
)

min�1� x+ xp−1	
xα

dx = 0�

the above inequalities yield

I1 = αc1b
αh

(
1
b

) ∫ ∞

0

1 + ptx− exp�t�px− xp		
xα+1

dx+ o�1	bαh
(

1
b

)
�(4.37)

Similarly, we have

I2 = αc2b
αh

(
1
b

) ∫ ∞

0

1 − ptx− exp�t�−px− xp		
xα+1

dx+ o�1	bαh
(

1
b

)
�(4.38)

This proves �4�32	, by �4�37	 and �4�38	.
As for Eξetξ, notice that

Eξetξ = p
∫ ∞

0
P�X ≥ x/b	(�1 − xp−1	�t�px− xp	 + 1	

× exp�t�px− xp		 − 1
)
dx

+ p
∫ ∞

0
P�X ≤ −x/b	(�1 + xp−1	�t�px+ xp	 − 1	

× exp�t�−px− xp		 + 1
)
dx�

(4.39)

Similar to �4�37	 and �4�38	, one can obtain that the right hand side of �4�39	
is equal to

pc1b
αh

(
1
b

) ∫ ∞

0

�1 − xp−1	�t�px− xp	 + 1	 exp�t�px− xp		 − 1
xα

dx

+ pc2b
αh

(
1
b

) ∫ ∞

0

�1 + xp−1	�t�px+ xp	 − 1	 exp�t�−px− xp		 + 1
xα

dx

+ o

(
bαh

(
1
b

))

= c1b
αh

(
1
b

) ∫ ∞

0

1
xα

��px− xp	 exp�t�px− xp		 − px	′ dx

+ c2b
αh

(
1
b

) ∫ ∞

0

1
xα

��−px− xp	 exp�t�−px− xp		 + px	′ dx

+ o

(
bαh

(
1
b

))
(4.40)
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= αc1b
αh

(
1
b

) ∫ ∞

0

�p− xp−1	 exp�t�px− xp		 − p

xα
dx

+ αc2b
αh

(
1
b

) ∫ ∞

0

�−p− xp−1	 exp�t�−px− xp		 + p

xα
dx

+ o

(
bαh

(
1
b

))

= −bαh
(

1
b

)
γ′�t	 + o

(
bαh

(
1
b

))
�

as desired.
The proof of �4�34	 is along the same lines as that of �4�32	. One has

Eξ2 etξ =
∫ ∞

0
P

(
X ≥ x

b

)
��px− xp	2 exp�t�px− xp			′ dx

+
∫ ∞

0
P

(
X ≤ −x

b

)
��px+ xp	2 exp�t�−px− xp			′ dx

= c1b
αh

(
1
b

) ∫ ∞

0
x−α��px− xp	2 exp�t�px− xp			′ dx

+ c2b
αh

(
1
b

) ∫ ∞

0
x−α��px+ xp	2 exp�t�−px− xp			′ dx

+ o

(
bαh

(
1
b

))

= αc1b
αh

(
1
b

) ∫ ∞

0

�p− xp−1	2 exp�t�px− xp		
xα−1

dx

+ αc2b
αh

(
1
b

) ∫ ∞

0

�p− xp−1	2 exp�t�px− xp		
xα−1

dx+ o

(
bαh

(
1
b

))

= −bαh
(

1
b

)
γ′′�t	 + o

(
bαh

(
1
b

))
�

as desired.

Case 2. α = 1. Since X is symmetric,

1 −E exp�tξ	 = −
∫ ∞

0
�1 − exp�t�px− xp			dP�X ≥ x/b	

−
∫ ∞

0
�1 − exp�t�−px− xp			dP�X ≤ −x/b	

= −
∫ ∞

0
�2 − exp�t�px− xp		 − exp�t�−px− xp			dP�X ≥ x/b	

=
∫ ∞

0
P�X ≥ x/b	(2 − exp�t�px− xp		 − exp�t�−px− xp		)′ dx�

The remainder of the proof is almost the same as in Case 1.
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The proofs of �4�33	 and �4�34	 are similar and so the details are omitted
here.

Case 3. 0 < α < 1. In this case, note that

1 −Eetξ = −
∫ ∞

0
�1 − exp�t�px− xp			dP�X ≥ x/b	

−
∫ ∞

0
�1 − exp�t�−px− xp			dP�X ≤ −x/b	

=
∫ ∞

0
P�X ≥ x/b	�1 − exp�t�px− xp			′ dx

+
∫ ∞

0
P�X ≥ x/b	�1 − exp�t�−px− xp			′ dx�

The rest of the proof is along the same lines as in Case 1. ✷

Lemma 4.6. Let 0<d≤D<∞. Then, under the conditions of Theorem 3�3,

sup
0<b≤D/zn

inf
t>0

exp�−t c yn	E exp�t�pbX− 
bX
p		

≤ exp�−βp cyn + o�yn		
(4.41)

for every d ≤ c ≤ D, where βp 
= βp�α� c1� c2	 is defined as in Theorem 3�3,
zn and yn are as in �4�22	 and �4�23	 and the constant implied by o�yn	 is
uniform in c ∈ �d�D�.

Proof. Let 0 < δ < d. From �4�32	 it follows that for 0 < b < δ/zn,

E exp�3βp�pbX− 
bX
p		 ≤ 1 − γ�3βp	bαh�1/b	 + o�bαh�1/b		
≤ exp

(�
γ�3βp	
 + 1	bαh�1/b	)
≤ exp

(
K�δ/zn	αh�zn/δ	

)
≤ exp

(
Kδα/2z−αn h�zn	

)
≤ exp

(
Kδα/2yn

)
≤ exp

(
dβpyn

)
≤ exp

(
cβpyn

)
�

provided that δ is chosen to be sufficiently small, and that n is large enough;
here and in the sequel K and K1�K2� � � � denote positive constants which
depend only on α, p and other given constants, but may be different from line
to line. Therefore, there exists δ > 0 such that

sup
0<b≤δ/zn

inf
t>0

exp�−t c yn	E exp�t�pbX− 
bX
p		

≤ sup
0<b≤δ/zn

exp�−3βp cyn	E exp�3βp�pbX− 
bX
p		

≤ exp�−2βp cyn	�

(4.42)
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Next estimate supδ/zn≤b≤D/zn inf t>0 exp�−tcyn	E exp�t�pbX− 
bX
p		. Let
γ�t	, γ′�t	 and γ′′�t	 be defined as in �4�29	, �4�30	 and �4�31	, respectively. In
view of �4�31	 and the fact that

γ′′�t	 < 0 for t > 0� lim
t↓0

γ′�t	 = ∞ and lim
t↑∞

γ′�t	 = −∞�

there exists a unique tb such that

γ′�tb	 = − ync

bαh�zn	
�(4.43)

Since

0 < K1 ≤ dynz
α
n

Dαh�zn	
≤ ync

bαh�zn	
≤ Dynz

α
n

δαh�zn	
≤ K2 < ∞

for δ/zn ≤ b ≤ D/zn, we have

K3 ≤ tb ≤ K4�

Applying (H2) and �4�32	 again, we obtain

sup
δ/zn≤b≤D/zn

inf
t>0

exp�−t c yn	E exp�t�pbX− 
bX
p		

≤ sup
δ/zn≤b≤D/zn

exp�−tb c yn	E exp�tb�pbX− 
bX
p		

≤ sup
δ/zn≤b≤D/zn

exp
(−tb c yn − γ�tb	bαh�1/b	 + o�bαh�1/b		)

≤ sup
δ/zn≤b≤D/zn

exp
(−tb c yn − γ�tb	bαh�zn	 + γ�tb	bαh�zn	o�1	 + o�yn	

)
≤ sup

δ/zn≤b≤D/zn
exp

(−tb c yn − γ�tb	bαh�zn	 + o�yn	
)
�

Let

g�b	 = −tb c yn − γ�tb	bαh�zn	
and b0 be such that tb0

= βp. Noting that γ�t	 = α tα 'p�t� α� c1� c2	, we have

γ�tb0
	 = 0�

By �4�43	,

g′�b	 = −γ�tb	αbα−1h�zn	


> 0� if b < b0�
= 0� if b = b0�
< 0� if b > b0�

for tb is a decreasing function of b, and γ�t	/tα is a decreasing function of
t. Thus, g�b	 achieves the maximum at b = b0 and g�b0	 = −βpcyn. Conse-
quently,

sup
δ/zn≤b≤D/zn

inf
t>0

exp�−t c yn	E exp�t�pbX− 
bX
p		

≤ exp�−βp cyn + o�yn		�
(4.44)

This proves �4�41	 by �4�42	 and �4�44	. ✷
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Proof of Theorem 3.3. Let βp = βp�α� c1� c2	. We first show that for any
0 < ε < 1/2,

P

(
Sn

Vn�p

≥ xn

)
≤ exp

(−�1 − ε	�p− 1	βp x
p/�p−1	
n

)
(4.45)

provided that n is sufficiently large.
Let q = p/�p−1	, yn and zn be defined as in �4�22	 and �4�23	, respectively,

and let 0 < δ < A < ∞. The values of δ and A will be specified later on; δ will
be very small, while A will be sufficiently large. Similar to �4�7	,

P

(
Sn

Vn�p

≥ xn

)

≤ P

(
Sn

Vn�p

≥ xn� δx
q/p
n zn < Vn�p < Axq/pn zn

)

+P

(
Sn

Vn�p

≥ xn� Vn�p ≥ Axq/pn zn

)
+P�Vn�p ≤ δxq/pn zn	

≤ P

(
Sn ≥ inf

b=xq/pn /Vn�p

��bVn�p	p/p+ x
q
n/q	

b
� δxq/pn zn ≤ Vn�p ≤ Axq/pn zn

)

+P

( n∑
i=1

XiI�
Xi
 ≤ Azn� ≥ Ax
q
nzn
2

)

+P

( n∑
i=1

XiI�
Xi
 > Azn� ≥ xnVn�p

2

)
+P�Vn�p ≤ δxq/pn zn	

≤ P

(
pSn ≥ inf

1/�Azn	≤b≤1/�δzn	
��bVn�p	p + �p− 1	xqn	

b

)

+P

( n∑
i=1

XiI�
Xi
 ≤ Azn� ≥ Ax
q
n zn
2

)

+P

( n∑
i=1

I�
Xi
 > Azn� ≥
(
xn
2

)q)
+P�Vn�p ≤ δxq/pn zn	


= T1 +T2 +T3 +T4�

(4.46)

From �2�8	, (H4), �4�27	 and �4�23	 it follows that

T3 ≤
(

2qenP�
X
 > Azn	
x
q
n

)x
q
n/2q

≤
(

4q�c1 + c2	h�Azn	
Aαzαnyn

)x
q
n/2q

≤
(

5q�c1 + c2	h�zn	
Aα/2zαnyn

)x
q
n/2q

≤ (
6q�c1 + c2	/Aα/2)xqn/2q

≤ exp�−2�p− 1	βp x
q
n	�

(4.47)
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provided that A is large enough. Let

tp = max
{

2p�
(

600�p− 1	βp

c1 + c2

)2p/α}
and δp = �c1 + c2	t−1+α/�2p	

p

300
�

From �4�28	 it follows that

T4 ≤ exp�tpz−pn δp xqn z
p
n	E exp�−tpz−pn Vp

n�p	
= exp�tp δp xqn	�E exp�−tpz−pn 
X
p		n

≤ exp
(
tpδ

px
q
n − �c1 + c2	n tα/�2p	p yn/150

)
≤ exp�−2�p− 1	βpx

q
n	

(4.48)

by the choice of tp and δp.
We next estimate T2. It is easy to see from Lemma 4.3 that

n∑
i=1


EXiI�
Xi
 ≤ Azn�
 = n
EXI�
X
 ≤ Azn�


≤


nE
X
I�
X
 > Azn�� if 1 < α < 2�
0� if α = 1�
nE
X
I�
X
 ≤ Azn�� if 0 < α < 1�

≤



2nα�c1 + c2	�Azn	1−αh�Azn	/�α− 1	� if 1 < α < 2�
0� if α = 1�
2nα�c1 + c2	�Azn	1−αh�Azn	/�1 − α	� if 0 < α < 1�

≤



2nα�c1 + c2	A1−α/2z1−α
n h�zn	/�α− 1	� if 1 < α < 2�

0� if α = 1�
2nα�c1 + c2	A1−α/2z1−α

n h�zn	/�1 − α	� if 0 < α < 1�
≤ Axqnzn/4�

(4.49)

Similar to estimating J1 in �4�10	, by �4�24	 (with p = 2 there), (H4) and �4�9	
we have

T2 ≤ P

( n∑
i=1

XiI�
Xi
 ≤ Azn� −EXiI�
Xi
 ≤ Azn� ≥ Ax
q
nzn

4

)

≤ exp�−4�p− 1	βpx
q
n	

×
(
E exp

(
16�p− 1	βp

Azn

(
XI�
X
 ≤ Azn� −EXI�
X
 ≤ Azn�

)))n
≤ exp�−4�p− 1	βpx

q
n	

×
(

1 +
(

16�p− 1	βp

Azn

)2

exp�32�p− 1	βp	EX2I�
X
 ≤ Azn�
)n

(4.50)
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≤ exp�−4�p− 1	βpx
q
n	

×
(

1+
(

16�p− 1	βp

Azn

)2

exp�32�p− 1	βp	

× 2α�c1 + c2	
2 − α

�Azn	2−αh�Azn	
)n

≤ exp�−4�p− 1	βpx
q
n	

×
(

1 + �16�p− 1	βp	2 exp�32�p− 1	βp	

× 2α�c1 + c2	
2 − α

A−α/2z−αn h�zn	
)n

≤ exp�−4�p− 1	βpx
q
n	�1 + 2�p− 1	βpyn	n

≤ exp�−2�p− 1	βpx
q
n	�

provided that A is chosen sufficiently large.
Finally, we consider T1. Let

θ = �1 − ε/2	−1/q and bj = θj/�Azn	� j = 0�1�2� � � � �

It follows from Lemma 4.6 that

T1 = P
(

sup
1/�Azn	≤b≤1/�δzn	

�pbSn − bpVp
n�p	 ≥ �p− 1	xqn

)

≤ P
(

max
0≤j≤logθ�A/δ	

sup
bj≤b≤bj+1

�pbSn − bpVp
n�p	 ≥ �p− 1	xqn

)

≤ P
(

max
0≤j≤logθ�A/δ	

�pbj+1Sk − b
p
jV

p
k 	 ≥ �p− 1	x2

n

)
≤ ∑

0≤j≤logθ�A/δ	
P
(
pθbjSn − b

p
jV

p
n�p ≥ �p− 1	xqn

)

= ∑
0≤j≤logθ�A/δ	

P
(
p�bj/θq−1	Sn − �bj/θq−1	pV2

n�p ≥ �p− 1	�xn/θ	q
)

≤ �1 + logθ�A/δ		 sup
0<b≤1/�δzn	

P
(
pbSn − bpVp

n�p ≥ �p− 1	�xn/θ	q
)

≤ �1 + logθ�A/δ		
× sup

0<b≤1/�δzn	
inf
t>0

exp�−t�p− 1	�xn/θ	q	E exp
(
t
(
pbSn − bpVp

n�p

))
≤ �1 + logθ�A/δ		

×
(

sup
0<b≤1/�δzn	

inf
t>0

exp�−t�p− 1	yn/θq	E exp�t�pbX− 
bX
p		
)n

≤ �1 + logθ�A/δ		 exp�−�p− 1	βpnyn/θ
q + o�yn	n	

= �1 + logθ�A/δ		 exp
(−�p− 1	βpx

q
n/θ

q + o�xqn	
)

= �1 + logθ�A/δ		 exp
(−�p− 1	βp�1 − ε/2	xqn + o�xqn	

)
�

(4.51)
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Putting the above inequalities together yields �4�45	 immediately.
Based on the same idea as in the proof of �4�2	, we next show that

P

(
Sn

Vn�p

≥ xn

)
≥ exp�−�1 + ε	�p− 1	βpx

q
n	�(4.52)

Recalling that γ�t	 = αtα 'p�t� α� c1� c2	, we have γ�βp	 = 0. Since γ�t	 is
concave on �0�∞	 and limt↓0 γ�t	 = 0, it follows from γ�βp	 = 0 that γ′�βp	 <
0. Let δ = ε/3 and γ′�t	 be as in �4�30	. Put

b 
= bn� δ =
(
−�1 + δ	�p− 1	yn

γ′�βp	h�zn	
)1/α

�

ξ = pbX− 
bX
p� ξi = pbXi − 
bXi
p� i = 1�2� � � � �

Applying �2�18	 again, we have

P

(
Sn

Vn�p

≥ xn

)
≥ P

(
Sn ≥ bpV

p
n�p + �p− 1	xqn

bp

)
= P

( n∑
i=1

ξi ≥ n �p− 1	yn
)
�

Below we verify the condition �4�12	. Let m�·	 and σ�·	 be as in Lemma 4.1.
From �4�23	 it follows that

b ∼ 1
zn

(
−�1 + δ	�p− 1	

γ′�βp	
)1/α

�

By Lemma 4.5, (H2) and �4�23	, we obtain

E exp�βpξ	 = 1 + o�yn	�
Eξ exp�βpξ	 = �1 + δ	�p− 1	yn + o�yn	�

�Eξ2 exp�βpξ		1/2/
√
n = O�√yn/

√
n	 = o�yn	

and hence

m�βp	 = �1 + δ	�p− 1	yn + o�yn	�

σ�βp	/
√
n = o�yn	�

Thus, the condition �4�12	 is satisfied with h = βp. Therefore, by Lemma 4.1,

P

( n∑
i=1

ξi ≥ n �p− 1	yn
)
≥ 3

4�E exp�βpξ		n exp�−nβpm�βp	 − 2βp σ�βp	
√
n	

≥ 3
4 exp�o�yn	n− n�1 + δ	�p− 1	βpyn	

≥ exp�−�1 + ε	�p− 1	βpx
q
n	�

as desired. ✷

Remark 4.3. Similar to Remark 4.1, the convergence in �3�6	 is uniform:
for arbitrary 0 < ε < 1/2, there exist 0 < δ < 1, x0 > 1 and n0 such that for
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any n ≥ n0 and x0 < x < δ
√
n,

exp�−�1 + ε	�p− 1	βp�α� c1� c2	xp/�p−1		

≤ P

(
Sn

Vn�p

≥ x

)

≤ exp�−�1 − ε	�p− 1	βp�α� c1� c2	xp/�p−1		�

5. Self-normalized law of the iterated logarithm. As we mentioned
in Section 1, Griffin and Kuelbs (1989) established an amazing self-normalized
law of the iterated logarithm for any i.i.d. random variables in the domain of
attraction of a stable law. Equation �1�2	 quoted in Section 1 is just a special
case of their general result. But, the constant C in �1�2	 is unknown. Applying
Theorem 3.3, we are able not only to compute the precise constant C but also
obtain a law of the iterated logarithm for Sn normalized by Vn�p.

Theorem 5.1. Under the conditions of Theorem 3.3, we have

lim sup
n→∞

Sn

�log log n	�p−1	/pVn�p

= ��p− 1	βp�α� c1� c2		�1−p	/p a.s.(5.1)

In particular, if X is symmetric, then

lim sup
n→∞

Sn

�log log n	�p−1	/pVn�p

= ��p− 1	βp�α		�1−p	/p a.s.,(5.2)

where βp�α� c1� c2	 and β�α	 are defined as in Theorem 3.3.

To prove the upper bound of the lim sup, we need a strong version of �4�45	.

Proposition 5.1. Under the conditions of Theorem 3�3, for any 0 < ε < 1/2
there exists θ > 1 such that

P

(
max
n≤k≤θn

Sk

Vk�p

≥ xn

)
≤ exp

(−�1 − ε	�p− 1	βp�α� c1� c2	xp/�p−1	
n

)
(5.3)

for every n sufficiently large.

Proof. Let q = p/�p− 1	 and η = �1 − �1 − ε/2	1/�2q		/3. Clearly,

P

(
max
n≤k≤θn

Sk

Vk�p

≥ xn

)
≤ P

(
Sn

Vn�p

≥ �1 − 3η	xn
)

+P

(
max
n<k≤θn

Sk −Sn

Vk�p

≥ 3ηxn

)
�

(5.4)

By Theorem 3.3, we have

P

(
Sn

Vn�p

≥ �1 − 3η	xn
)
≤ exp

(−�1 − ε/2	�p− 1	βp�α� c1� c2	xqn
)
�(5.5)

provided that n is sufficiently large.
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Below we estimate the second term on the right-hand side of �5�4	. Let zn
be as in �4�23	 and let δ > 0. Write

P

(
max
n<k≤θn

Sk −Sn

Vk�p

≥ 3ηxn

)

≤ P

(
max
n<k≤θn

∑k
i=n+1 XiI�
Xi
 ≤ zn�

Vk�p

≥ 2ηxn

)

+P

(
max
n<k≤θn

∑k
i=n+1 
Xi
I�
Xi
 ≥ zn�

Vk�p

≥ ηxn

)

≤ P

(
max
n<k≤θn

k∑
i=n+1

XiI�
Xi
 ≤ zn� ≥ 2ηδxqnzn

)

+P�Vn�p ≤ δxq/pn zn	 +P

( �θn�∑
i=n+1

I�
Xi
 ≥ zn� ≥ �ηxn	q
)
�

By �4�48	, there is δ > 0 such that

P�Vn�p ≤ δxq/pn zn	 ≤ exp�−2�p− 1	βp�α� c1� c2	xqn	�
Similar to �4�47	, we have

P

( �θn�∑
i=n+1

I�
Xi
 ≥ zn� ≥ �ηxn	q
)
≤

( �θ− 1	nP�
X
 ≥ zn	
�ηxn	q

)�ηxn	q

≤
(

2 e �c1 + c2	�θ− 1	nh�zn	
�ηxn	qzαn

)�ηxn	q

≤
(

6�θ− 1	�c1 + c2	
ηq

)ηqx
q
n

≤ exp�−2�p− 1	βp�α� c1� c2	xqn	�
as long as θ is very close to one. In view of the proof of �4�49	, if θ − 1 > 0 is
chosen to be sufficiently small,

�θn�∑
i=n+1


EXiI�
Xi
 ≤ zn�
 ≤ K�θ− 1	xqnzn ≤ 1
2ηδx

q
nzn

and

�θn�∑
i=n+1

VarXiI�
Xi
 ≤ zn� ≤ �θ− 1	nEX2I�
X
 ≤ zn�

≤ 2�θ− 1	nα�c1 + c2	
2 − α

z2−α
n h�zn	

≤ K�θ− 1	xqnz2
n ≤ 1

8
ηδxqnz

2
n�
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where K is a constant depending only on α� c1 and c2. Therefore, by the
Ottaviani maximum inequality and �4�9	,

P

(
max
n<k≤θn

k∑
i=n+1

XiI�
Xi
 ≤ zn� ≥ 2ηδxqnzn

)

≤ 2P
( �θn�∑

i=n+1

XiI�
Xi
 ≤ zn� −EXiI�
Xi
 ≤ zn� ≥ ηδxqnzn

)

≤ 2 exp�−4�p− 1	βp�α� c1� c2	xqn	

×
(
E exp

(
4�p− 1	βp�α� c1� c2	

ηδzn

× �XI�
X
 ≤ zn� −EXI�
X
 ≤ zn�	
))�θn�−n

≤ 2 exp�−4�p− 1	βp�α� c1� c2	xqn	
(
1 +Kz−2

n EX2I�
X
 ≤ zn�
)�θ−1	n

≤ 2 exp�−4�p− 1	βp�α� c1� c2	xqn	�1 +Kz−αn h�zn		�θ−1	n

≤ 2 exp�−4�p− 1	βp�α� c1� c2	xqn	
(

1 + Kx
q
n

n

)�θ−1	n

≤ 2 exp
(−4�p− 1	βp�α� c1� c2	xqn +K�θ− 1	xqn

)
≤ 2 exp

(−2�p− 1	βp�α� c1� c2	xqn
)
�

where K stands for a constant depending only on α�p� c1� c2� η and δ. Putting
together the above inequalities yields

P

(
max
n<k≤θn

Sk −Sn

Vk�p

≥ 3ηxn

)
≤ 4 exp

(−2�p− 1	βp�α� c1� c2	xqn
)
�(5.6)

This proves �5�3	, by �5�5	, �5�4	 and �5�6	. ✷

Proof of Theorem 5.1. By the subsequence method, it follows from Prop-
osition 5.1 that

lim sup
n→∞

Sn

�log log n	�p−1	/pVn�p

≤ ��p− 1	βp�α� c1� c2		�1−p	/p a.s.(5.7)

To prove the lower bound of the lim sup, let q = p/�p − 1	, τ > 1 and
nk = �ekτ �, k = 1�2� � � � � Note that

lim sup
n→∞

Sn

�log log n	1/qVn�p

≥ lim sup
k→∞

Snk

�log log nk	1/qVnk�p

≥ lim sup
k→∞

Snk
−Snk−1

�log log nk	1/qVnk�p

+ lim inf
k→∞

Snk−1

�log log nk	1/qVnk�p

(5.8)
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= lim sup
k→∞

�Vp
nk�p −V

p
nk−1� p	1/p

Vnk�p

Snk
−Snk−1

�log log nk	1/q�Vp
nk�p −V

p
nk−1� p	1/p

+ lim inf
k→∞

Vnk−1� p

Vnk�p

Snk−1

�log log nk	1/qVnk−1� p

�

Since ��Snk
− Snk−1

	/�Vp
nk�p −V

p
nk−1� p	1/p	� k ≥ 1� are independent, it follows

from Theorem 3.3 and the Borel–Cantelli lemma that

lim sup
k→∞

Snk
−Snk−1

�log log nk	1/q�Vp
nk�p −V

p
nk−1� p	1/p

≥ 1

τ2
(�p− 1	βp�α� c1� c2	

)1/q a.s.
(5.9)

On the other hand, by Proposition 5.2 of Griffin and Kuelbs (1989),

lim
k→∞

Vnk�p

Vnk−1� p

= ∞ a.s.(5.10)

Hence, by �5�8	, (5.9), �5�10	 and �5�7	,

lim sup
n→∞

Sn

�log log n	1/qVn�p

≥ 1
τ2��p− 1	βp�α� c1� c2		1/q

a.s.(5.11)

This proves �5�1	, by �5�7	, �5�11	 and the arbitrariness of τ > 1. ✷

6. Limit distribution of self-normalized sums. Self-normalized sums
have been studied previously in connection with weak convergence [see Dar-
ling (1952), Logan, Mallows, Rice and Shepp (1973), Csörgő and Horváth
(1988), and Hahn, Kuelbs and Weiner (1990)]. Logan, Mallows, Rice and Shepp
(1973) proved that all limit laws of Sn/Vn for X in the domain of attraction
of a stable law have a sub-Gaussian tail which depends in a complicated way
on the parameter α.

Theorem 6.1∗ (Logan, Mallows, Rice and Shepp). Under the condition of
Theorem 3�3� the limiting density function p�x	 of Sn/Vn exists and satisfies
as x → ∞�

p�x	 ∼ 1
α

(
2
π

)1/2

τα exp
(
−1

2
x2τ2

α

)
(6.1)

for some τα > 0.

On the basis of both mathematical simplicity and numerical evidence, they
conjectured [cf. pages 799–800 in Logan, Mallows, Rice and Shepp (1973)] that
τα is the solution of


c1Dα�−τ	 + c2Dα�τ	 = 0� if α �= 1�

exp�τ2/2	
τ

−
∫ τ

0
exp�x2/2	dx = 0� if α = 1�

(6.2)
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where Dα�x	 is the parabolic cylinder function [cf. pages 795 and 807 in Logan,
Mallows, Rice and Shepp (1973)].

Applying Theorem 3.2, we can determine that the above conjecture is true.

Theorem 6.1. Let β�α� c1� c2	 be as in Theorem 3.2 and let τα be the solution

of �6�2	. Then τα = √
2β�α� c1� c2	 and �6�1	 holds.

Proof. By Theorem 3.2 and Theorem 6.1∗, it suffices to show that√
2β�α� c1� c2	 is the solution of �6�2	. Recalling the following properties of

Dν�z	:

Dν�z	 =
exp�−z2/4	

'�−ν	
∫ ∞

0
exp�−zx− x2/2x−ν−1	dx for ν < 0�

Dv+1�z	 − zDν�z	 + νDν−1�z	 = 0 for v ∈ R1�

we have

Dα�z	 =




αe−z
2/2

'�1 − α	
∫ ∞

0

1 − exp�−zx− x2/2	
xα+1

dx� if 0 < α < 1�

α�1 − α	 exp�−z2/2	
'�2 − α	

∫ ∞

0

1 − zx− exp�−zx− x2/2	
xα+1

dx�

if 1 < α < 2�

(6.3)

Let '�β�α� c1� c2	 be defined as in �3�4	. It is easy to see that

c1Dα�−
√

2β	 + c2Dα�
√

2β	

=




αe−β

'�1 − α	
(
β

2

)α/2

'�β�α� c1� c2	� if 0 < α < 1�

α�1 − α	e−β
'�2 − α	

(
β

2

)α/2

'�β�α� c1� c2	� if 1 < α < 2�

(6.4)

This proves that
√

2β�α� c1� c2	 is the solution of �6�2	 for α �= 1.
We next deal with the case of α = 1. Write β = τ2/2. Since∫ ∞

0

2 − exp�2x− x2/β	 − exp�−2x− x2/β	
x2

dx

= τ

2

∫ ∞

0

2 − exp�xτ − x2/2	 − exp�−xτ − x2/2	
x2

dx�

it suffices to verify that∫ ∞

0

2 − exp�xτ − x2/2	 − exp�−xτ − x2/2	
x2

dx

=
√

2π
(

exp�τ2/2	 − τ
∫ τ

0
exp�x2/2	dx

)
�

(6.5)
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One has∫ ∞

0

2 − exp�xτ − x2/2	 − exp�−xτ − x2/2	
x2

dx

=
∫ ∞

0

�x− τ	 exp�xτ − x2/2	 + �x+ τ	 exp�−xτ − x2/2	
x

dx

=
∫ ∞

0
�exp�xτ − x2/2	 + exp�−xτ − x2/2		dx

− τ
∫ ∞

0

exp�−x2/2	�exp�xτ	 − exp�−xτ		
x

dx

= exp�τ2/2	
(∫ ∞

0
exp�−�x− τ	2/2	dx+

∫ ∞

0
exp�−�x+ τ	2/2	dx

)

− 2τ
∫ ∞

0
exp�−x2/2	

∞∑
i=0

x2iτ2i+1

�2i+ 1	! dx

= exp�τ2/2	
(∫ τ

0
exp�−x2/2	dx+

∫ ∞

0
exp�−x2/2	dx

+
∫ ∞

τ
exp�−x2/2	dx

)

− τ
√

2π
∞∑
i=0

�2i	!τ2i+1

�2i+ 1	! i! 2i

=
√

2π
(

exp�τ2/2	 − τ
∞∑
i=0

∫ τ

0

x2i

i! 2i
dx

)

=
√

2π
(

exp�τ2/2	 − τ
∫ τ

0
exp�x2/2	dx

)
�

as desired. This completes the proof of Theorem 6.1. ✷

7. Asymptotic probability of the t-statistic. Consider Student’s t-
statistic Tn defined by

Tn =
∑n

i=1 Xi√
n

/(
1

n− 1

n∑
j=1

�Xj − X̄	2
)1/2

�

Clearly, Tn and Sn/Vn are closely related via the following identity:

Tn = Sn

Vn

(
n− 1

n− �Sn/Vn	2

)1/2

�(7.1)

Since x/�n− x2	1/2 is increasing on �−√
n�

√
n	, it follows from �7�1	 that

�Tn ≥ t� =
{
Sn

Vn

≥ t

(
n

n+ t2 − 1

)1/2}
�(7.2)
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The above fact was pointed out by Efron (1969), who studied the limiting
distribution of Sn/Vn for X in the domain of a stable law. Hotelling (1961) also
studied the asymptotics of Tn for long-tailed X and has additional references.

With the help of �7�2	, the following large deviation type results as well as
the laws of the iterated logarithm for t-statistic are immediate consequences
of Theorems 1.1, 3.1, 3.2 and 5.1.

Theorem 7.1. (a) Assume that either EX ≥ 0 or EX2 = ∞. Then

lim
n→∞P

(
Tn ≥ x

√
n
)1/n = sup

c≥0
inf
t≥0

E exp
(
t

(
cX− x�X2 + c2	

2
√

1 + x2

))

for x > EX/�VarX	1/2.
(b) Under the conditions of Theorem 3.1, we have

lim
n→∞x−2

n lnP�Tn ≥ xn	 = −1/2

for every sequence �xn� n ≥ 1� of positive numbers with xn → ∞ and xn =
o�√n	 as n → ∞, and

lim sup
n→∞

Tn

�2 log log n	1/2
= 1 a.s.

(c) Under the conditions of Theorem 3.2, we have

lim
n→∞x−2

n lnP�Tn ≥ xn	 = −β�α� c1� c2	

for every sequence �xn� n ≥ 1� of positive numbers with xn → ∞ and xn =
o�√n	 as n → ∞, and

lim sup
n→∞

Tn

�log log n	1/2
= 1/

√
β�α� c1� c2	 a.s.

8. Erdős–Rényi–Shepp law of large numbers. Let c > 0. We are con-
cerned with the limiting behavior of

Un = max
0≤i≤n

�Si+�c log n� −Si	�

The classical Erdős–Rényi–Shepp law of large numbers [see Erdős and Rényi
(1970) and Shepp (1966)] says that if EX = 0, Eet0X < ∞ for some t0 > 0,
then

lim
n→∞

Un

�c log n� = λ�c	 a.s.,(8.1)

where λ�c	 = sup�x
 inf t≥0 exp�−tx	E exp�tX	 ≥ exp�−1/c	�. The result
was refined by S. Csörgő (1979) and M. Csörgő and Steinebach (1981), while
the exact rate of convergence of Un/�c log n� was determined by Deheuvels,
Devroye and Lynch (1986). We remark that the condition E exp�t0X	 < ∞ is
essential for an �8�1	 type result. Motivated by the self-normalized law of the
iterated logarithm of Griffin and Kuelbs (1989), Csörgő and Shao (1994) were
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the first to consider a self-normalized Erdős–Rényi–Shepp type law of large
numbers and obtain the following result.

Assuming EX ≥ 0� we have

lim
n→∞ max

0≤k≤n
Sk+�c log n� −Sk∑k+�c log n�
i=k+1 �X2

i + 1	
= B�c	 a.s.�

where B�c	 = sup�x ≥ 0
 inf t≥0 E exp�t�X− x�X2 + 1			 ≥ exp�−1/c	�.
Applying Theorem 1.1, we are able to establish another self-normalized

Erdős–Rényi–Shepp type law of large numbers, which may be of more interest
from a statistical point of view.

Theorem 8.1. Assume that either EX ≥ 0 or EX2 = ∞. Then

lim
n→∞ max

0≤k≤n
Sk+�c log n� −Sk√

�c log n�∑k+�c log n�
i=k+1 X2

i

= κ�c	 a.s.(8.2)

for any c > 1/ ln�1/P�X = 0		, where κ�c	 = inf�x ≥ 0
 f�x	 < exp�−1/c	�
and f�x	 = supb≥0 inf t≥0 E exp�t�bX− x�X2 + b2	/2		.

Let x0 = EX/
√
EX2. If one could prove that f�x	 is continuous and strictly

monotone decreasing for x0 ≤ x ≤ 1, then the proof of �8�2	 would be quite
standard [cf., e.g., S. Csörgő (1979) or Csörgő and Révész (1981)]. However, we
are unable to verify the strict monotonicity, so we have to use the next lemma
instead. Its proof is given in the Appendix.

Lemma 8.1. Let 0 < δ < 1/2. Define

fδ�x	 = sup
b≥0

inf
t≥0

exp��tδ	2/2	E exp�t�bX− x�X2 + b2	/2		�

Then,

f�x0	 = fδ�x0	 = 1�(8.3)

f�1	 = sup
b≥0

P�X = b	 and f�x	 = P�X = 0	 for x > 1�(8.4)

Also, fδ�x	 is continuous and strictly monotone decreasing for x ≥ x0. More-
over, f�x	 is continuous for x > x0.

Proof of Theorem 8.1. Let 0 < δ < 1/2, �Y�Yn�n ≥ 1� be i.i.d. standard
normal random variables independent of �Xn� n ≥ 1�. Define

κδ�c	 = inf�x ≥ 0
 fδ�x	 < exp�−1/c	��(8.5)

From the proof of Theorem 1.1 we obtain that

lim
m→∞P

(∑m
i=1�Xi + δYi	√
m

∑m
i=1 X

2
i

≥ x

)1/m

= fδ�x	
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for every x > EX/
√
EX2. Therefore, by Lemma 8.1 and a general version of

Erdős–Rényi–Shepp laws due to S. Csörgő (1979) [cf. Steinebach (1980)]

lim
n→∞ max

0≤k≤n

∑k+�c log n�
i=k+1 �Xi + δYi	√

�c log n�∑k+�c log n�
i=k+1 X2

i

= κδ�c	 a.s.(8.6)

for every c > 1/ ln�1/P�X = 0		. To finish the proof of �8�2	, we only need to
prove that

lim
δ↓0

κδ�c	 = κ�c	(8.7)

and

lim sup
n→∞

max
0≤k≤n


∑k+�c log n�
i=k+1 Yi
√

�c log n�∑k+�c log n�
i=k+1 X2

i

≤ D0 a.s.(8.8)

for some finite constant D0. Clearly,

lim inf
δ↓0

κδ�c	 ≥ κ�c	(8.9)

for fδ�x	 ≥ f�x	 for any δ > 0. On the other hand, by the definition of κ�c	
∀ ε > 0� ∃ 0 < η < ε� f�κ�c	 + η	 < exp�−1/c	�

From Lemma 2.1 we find that

lim
δ↓0

fδ�κ�c	 + η	 = f�κ�c	 + η	 < exp�−1/c	�

Therefore, there exists δε > 0 such that

fδ�κ�c	 + η	 < exp�−1/c	 for every 0 < δ < δε�

Thus, in terms of the definition of κδ�c	,
∀ 0 < δ < δε� κδ�c	 ≤ κ�c	 + η < κ�c	 + ε�

which together with �8�9	 implies �8�7	.
As to �8�8	, letting pm = em/c, we have

lim sup
n→∞

max
0≤k≤n


∑k+�c log n�
i=k+1 Yi
√

�c log n�∑k+�c log n�
i=k+1 X2

i

≤ lim sup
m→∞

max
pm≤n<pm+1

max
0≤k≤n


∑k+�c log n�
i=k+1 Yi
√

�c log n�∑k+�c log n�
i=k+1 X2

i

= lim sup
m→∞

max
pm≤n<pm+1

max
0≤k≤n


∑k+m
i=k+1 Yi
√

m
∑k+m

i=k+1 X
2
i

≤ lim sup
m→∞

max
0≤k≤exp��m+1	/c	


∑k+m
i=k+1 Yi
√

m
∑k+m

i=k+1 X
2
i

�
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Since limd↓0 inf t≥0 E exp�t�d2 −X2		 = P�X = 0	 and P�X = 0	 < exp�−1/c	,
choose d0 > 0 such that

inf
t≥0

E exp�t�d2
0 −X2		 < exp�−1/c	�(8.10)

Put D0 = 2/�d0
√
c	. Observe that

P

(
max

0≤k≤exp��m+1	/c	

∑k+m

i=k+1 Yi
√
m

∑k+m
i=k+1 X

2
i

≥ D0

)

≤ exp��m+ 1	/c	P
( 
∑m

i=1 Yi
√
m

∑m
i=1 X

2
i

≥ D0

)

≤ exp��m+ 1	/c	
(
P

(∣∣∣∣
m∑
i=1

Yi

∣∣∣∣ ≥ 2m/
√
c

)
+P

( m∑
i=1

X2
i ≤ md2

0

))

≤ exp��m+ 1	/c	
(

2 exp
(
−2m

c

)
+

(
inf
t≥0

E exp�t�d2
0 −X2		

)m)
�

which is summable over m, by �8�10	. This proves �8�8	.
The proof of Theorem 8.1 is now complete. ✷

Applying Theorem 1.2 instead of Theorem 1.1, along the same line of the
proof of Theorem 8.1, one can obtain a more general result.

Theorem 8.2. Let p > 1. Assume that either EX ≥ 0 or E
X
p = ∞. Then

lim
n→∞ max

0≤k≤n
Sk+�c log n� −Sk

�c log n�1−1/p�∑k+�c log n�
i=k+1 
Xi
p	1/p

= κ�p� c	 a.s.(8.11)

for any c > 1/ ln�1/P�X = 0		, where

κ�p� c	 = inf
{
x ≥ 0
 sup

b≥0
inf
t≥0

E exp
(
t

(
bX− x

(
1
p

X
p + p− 1

p
bp/�p−1	

)))

< exp�−1/c	
}
�

APPENDIX

Proof of Lemma 2.1. We first show that

lim
k→∞

sup
b≥k

inf
t≥0

exp�t2/2	E exp�t�bX− x�X2 + b2	/2		 = 0

uniformly in x ∈ �a�1��
(A.1)

Let �mk� k ≥ 1� be a sequence of positive numbers such that as k → ∞,

mk → ∞� exp�mk/a	P�
X
 >
√
k	 → 0� mk = o�

√
k	�(A.2)
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Notice that by (A.2)

lim
k→∞

sup
b≥k

inf
t≥0

exp�t2/2	E exp�t�bX− x�X2 + b2	/2		

≤ lim sup
k→∞

sup
b≥k

exp��mk/b
2	2/2	E exp��mk/b

2	�bX− a�X2 + b2	/2		

≤ lim sup
k→∞

sup
b≥k

exp��mk/b
2	2/2	(E exp��mk/b

2	�bX− ab2/2		I�
X
 ≤
√
k�

+E exp
(�mk/b

2	�−a�X− b/a	2/2 + b2/�2a			I�
X
 >
√
k�)

≤ lim sup
k→∞

sup
b≥k

(
E exp��mk/b	

√
k− amk/2	 +E exp�mk/�2a		I�
X
 >

√
k�)

≤ lim sup
k→∞

(
E exp��mk/

√
k	 − amk/2	 + exp�mk/a	P�
X
 >

√
k�)

= 0�

as desired.
Put

rδ�b� x	 = inf
t≥0

exp��tδ	2/2	E exp�t�bX− x�X2 + b2	/2		�

We next prove that rδ�b� x	 is a continuous function of �b� x	 over �0� k�×�a�1�
for every fixed 0 < δ < 1 and for any k ≥ 1. Let Y be a standard normal
random variable. Put

ξb�x 
= ξb�x� δ = bX+ δY− x�X2 + b2	/2�
Take A0 ≥ 1 such that P�
X
 ≤ A0	 ≥ 1/2. Then, we have

rδ�b� x	 = inf
t≥0

E exp�tξb� x	�

Similarly to �2�12	, there is 0 < tb�x < ∞ such that

rδ�b� x	 = E exp�tb� x ξb� x	 ≤ 1�

Along the same lines of the proof of �2�13	,
tb� x ≤ �2bA0 + xA2

0 + xb2 + 2	/δ2 ≤ 6k2A2
0/δ

2(A.3)

for 0 ≤ b ≤ k and a ≤ x ≤ 1. Put

T 
= T�k� δ	 = 6k2A2
0/δ

2�

By (A.3), for any 0 ≤ b, d ≤ k, a ≤ x, y ≤ 1, 0 < δ < 1 and A ≥ 1,

rδ�b� x	 ≤ E exp�td�yξb� x	
= exp��δ td�y	2/2	E exp�td�y�bX− x�X2 + b2	/2		I�
X
 ≤ A�

+ exp��δ td�y	2/2	E exp�td�y�bX− x�X2 + b2	/2		I�
X
 > A�
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≤ exp��
b− d
 + 
x− y
	T�A2 + k2		 exp��δ td�y	2/2	
×E exp�td�y�dX− y�X2 + d2	/2		
+ exp�T2 +Tk2/a	P�
X
 > A	

= exp��
b− d
 + 
x− y
	T�A2 + k2		rδ�d�y	
+ exp�T2 +Tk2/a	P�
X
 > A	

≤ rδ�d�y	 + exp��
b− d
 + 
x− y
	T�A2 + k2		 − 1

+ exp�T2 +Tk2/a	P�
X
 > A	�
Therefore


rδ�b� x	 − rδ�d�y	
 ≤ exp��
b− d
 + 
x− y
	T�A2 + k2		
−1 + exp�T2 +Tk2/a	P�
X
 > A	�

from which the continuity of rδ�b� x	 follows, by the fact that limA→∞P�
X
 >
A	 = 0. Hence, in terms of Dini’s theorem [cf. Royden (1968), page 162] and
Lemma 4 of Chernoff (1952),

lim
δ↓0

rδ�b� x	 = inf
t≥0

E exp�t�bX− x�X2 + b2	/2		

uniformly in �b� x	 ∈ �0� k� × �a�1��
Consequently,

lim
δ↓0

sup
0≤b≤k

inf
t≥0

exp��tδ	2/2	E exp�t�bX− x�X2 + b2	/2		

= sup
0≤b≤k

inf
t≥0

E exp�t�bX− x�X2 + b2	/2		
(A.4)

uniformly in x ∈ �a�1� for any k ≥ 1. Equation �2�16	 now follows from (A.1)
and (A.4). ✷

Proof of Lemma 8.1. Clearly,

f�x	 ≤ fδ�x	 ≤ 1 for every x ≥ 0�

Consider EX2 < ∞ first. Put b0 =
√
EX2. It is easy to see that

d
dt
E exp�t�b0X− x0�X2 + b2

0	/2		
∣∣∣
t=0

= 0�

Recalling that E exp�t�b0X− x0�X2 + b2
0	/2		 is a convex function of t, we

have

f�x0	 ≥ inf
t≥0

E exp�t�b0X− x0�X2 + b2
0	/2		

= E exp�t�b0X− x0�X2 +EX2	/2		∣∣
t=0 = 1�

This proves �8�3	.
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If EX2 = ∞, then x0 = 0 and

f�0	 = sup
b≥0

inf
t≥0

E exp�tbX	 = 1�

as desired.
Observe that

f�1	 = sup
b≥0

inf
t≥0

E exp�−t�X− b	2/2	 = sup
b≥0

P�X = b	�

So, �8�4	 holds.
To prove the continuity and monotonicity of fδ�x	, let Y be a standard

normal random variable and independent of X. Then

fδ�x	 = sup
b≥0

inf
t≥0

E exp�t�δY+ bX− x�X2 + b2	/2		�

For every x > x0, from the proof of Lemma 2.1,

lim
b→∞

inf
t≥0

E exp�t�δY+ bX− x�X2 + b2	/2		 = 0

and inf t≥0 E exp�t�δY+ bX− x�X2 + b2	/2		 is a continuous function of b.
Therefore, for x0 < x < y, there exists by ≥ 0 such that

fδ�y	 = inf
t≥0

E exp�t�δY+ byX− y�X2 + b2
y	/2		�(A.5)

Since δY+byX−x�X2+b2
y	/2 is a continuous random variable, and E�δY+

byX− x�X2 + b2
y	/2	 < 0, there exists tx�y > 0 such that

inf
t≥0

E exp�t�δY+ byX− x�X2 + b2
y	/2		

= E exp�tx�y�δY+ byX− x�X2 + b2
y	/2		�

(A.6)

A combination of (A.5) and (A.6) yields

fδ�y	 ≤ E exp�tx�y�δY+ byX− y�X2 + b2
y	/2		

< E exp�tx�y�δY+ byX− x�X2 + b2
y	/2		

= inf
t≥0

E exp�t�δY+ byX− x�X2 + b2
y	/2		

≤ sup
b≥0

inf
t≥0

E exp�t�δY+ bX− x�X2 + b2	/2		

= fδ�x	�
That is, fδ�x	 is strictly decreasing for x > x0.

We finally prove the continuity of fδ�x	. Given x > x0 From the proof of
(A.1) it follows that

lim
k→∞

sup
b≥k

inf
t≥0

exp�t2/2	E exp�t�bX− y�X2 + b2	/2		 = 0�
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uniformly in y ≥ �x+ x0	/2. Also, there are 0 ≤ bx ≤ k and tx�y > 0 such that

sup
0≤b≤k

inf
t≥0

exp��tδ	2/2	E exp�t�bX− x�X2 + b2	/2		

= inf
t≥0

exp��tδ	2/2	E exp�t�bxX− x�X2 + b2
x	/2		

= exp��tx�yδ	2/2	E exp�tx�y�bxX− y�X2 + b2
x	/2		�

It follows from (A.3) that

0 ≤ tx�y ≤ T 
= k2A2
0�3 + x	/δ2 for all 
y− x
 ≤ 1

and hence for x ≤ y ≤ x+ 1

fδ�y	 ≤ fδ�x	
≤ exp��tx�yδ	2/2	E exp�tx�y�bxX− x�X2 + b2

x	/2		
= exp��tx�yδ	2/2	E exp�tx�y�bxX− x�X2 + b2

x	/2		I�
X
 ≤ A�
+ exp��tx�yδ	2/2	E exp�tx�y�bxX− x�X2 + b2

x	/2		I�
X
 > A�
≤ exp�tx�y�y− x	�A2 + k2		 exp��tx�yδ	2/2	

×E exp�tx�y�bxX− x�X2 + b2
x	/2		

+ exp��Tδ	2	 exp�Tk2/x	P�
X
 > A	
≤ exp�T�y− x	�A2 + k2		fδ�y	 + exp��Tδ	2	E exp�Tk2/x	P�
X
 > A	
≤ fδ�y	 + exp�T�y− x	�A2 + k2		 − 1

+ exp��Tδ	2	 exp�Tk2/x	P�
X
 > A	�
This proves limy↓x fδ�y	 = fδ�x	. Similarly, one has limy↑x fδ�y	 = fδ�x	.

This proves the continuity of fδ�x	. Also, one can prove the right continuity
of fδ�x	 at x = x0. The continuity of f�x	 is a direct consequence of Lemma
2.1 and the continuity of fδ�x	. ✷
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Csörgő, S. (1979). Erdős–Rényi laws. Ann. Statist. 7 772–787.
Darling, D. A. (1952). The influence of the maximum term in the addition of independent random

variables. Trans. Amer. Math. Soc. 73 95–107.
De Acosta, A. (1988). Large deviations for vector-valued functionals of a Markov chain: lower

bounds. Ann. Probab. 16 925–960.
Deheuvels, P., Devroye, L. and Lynch, J. (1986). Exact convergence rate in the limit theorems
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