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STOCHASTIC PARTICLE APPROXIMATIONS FOR
GENERALIZED BOLTZMANN MODELS AND

CONVERGENCE ESTIMATES

BY CARL GRAHAM AND SYLVIE MELEARD´ ´
École Polytechnique and Universite Paris 6´

We specify the Markov process corresponding to a generalized molli-
fied Boltzmann equation with general motion between collisions and

Ž .nonlinear bounded jump collision operator, and give the nonlinear mar-
tingale problem it solves. We consider various linear interacting particle
systems in order to approximate this nonlinear process. We prove propa-
gation of chaos, in variation norm on path space with a precise rate of
convergence, using coupling and interaction graph techniques and a repre-
sentation of the nonlinear process on a Boltzmann tree. No regularity nor
uniqueness assumption is needed. We then consider a nonlinear equation
with both Vlasov and Boltzmann terms and give a weak pathwise propa-
gation of chaos result using a compactness�uniqueness method which
necessitates some regularity. These results imply functional laws of large
numbers and extend to multitype models. We give algorithms simulating
or approximating the particle systems.

1. Framework and main results. The Boltzmann equation describes
Ž .the evolution of the limit density f t, x, v of molecules of a rarefied gas at

Ž .time t, position x and speed v; f is positive and H f t, x, v dx dv � 1. It is
given by

� f t , x , v � v � � f t , x , vŽ . Ž .t x

� dn dwq v , w , n f t , x , v* f t , x , w*Ž . Ž . Ž .ŽH H
2 3S �

1.1Ž .

�f t , x , v f t , x , w ,Ž . Ž . .

3 ŽŽ . . ŽŽ .where x and v are in � , and v* � v � w � v � n n and w* � w � v � w �
.n n represent the post-collisional velocities of two particles of speeds v and

w having collided in a position in which their centers are on a line of
Ž .direction given by the unit vector n called the impact parameter . For more

� �details, in particular on the form of the cross-section q, see Cercignani 2 .
This equation has an intrinsic probabilistic interpretation consistent with

its derivation from the underlying particle dynamics. Integrating test func-
Ž .tions � with respect to 1.1 , transposing the operators so as to have them
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Ž . Ž . Ž .carry on � and setting f dx, dv � f t, x, v dx dv, we rewrite 1.1 ast

² : ² :� � , f � v � � � x , v , fŽ .t t x t

� � x , v* � � x , v q v , w , n f t , x , vŽ . Ž . Ž . Ž .Ž .H
� f t , x , w dx dv dw dnŽ .

1.2Ž .
� � x , v* � � x , v q v , w , n dnŽ . Ž . Ž .Ž .H¦

�f t , x , w dw, f dx , dv .Ž . Ž .t ;
This is the evolution equation for the flow of marginals of a nonlinear Markov
process. The collision term depends on the law of the process itself, but locally

Ž . Ž .through the density at x of the law. The mapping f dx, dw � f t, x, w dwt
Ž .is not continuous, and we cannot bound f t, x, w dw nor the jump rate

because of possible accumulation of particle density at x. This leads to an
ill-defined process. This difficulty is of the same nature as the one encoun-
tered by the analysts. There is an extensive physical and mathematical
literature, but even existence results are rare and under restrictive assump-

� �tions, the best ones being in DiPerna and Lions 4 .
Hence analysts, numericists and physicists consider a simplified tractable

model: a mollified bounded-rate equation in which the interaction is delocal-
Ž . Ž . Ž . Ž .ized. In 1.2 , f t, x, w is approximated by H I x, y f t, y, w dy and the

Ž . Ž .whole measure f dx, dw � f t, x, w dx dw intervenes instead of the localt
Ž . Ž .measure f t, x, w dw. The regularizing kernel I x, y approximating the

� �Dirac mass may be given by a grid method as in Perthame 15 and
� �Pulvirenti, Wagner and Rossi 17 , or be made more regular if needed. We

obtain the mollified Boltzmann equation with delocalized cross section
Ž . Ž . Ž .q x, v, y, w, n � I x, y q v, w, n :

² : ² :� � , f � v � � � x , v , fŽ .t t x t

� � x , v* � � x , v q x , v , y , w , n dn,Ž . Ž . Ž .Ž .H¦1.3Ž .

f dx , dv f dy, dw .Ž . Ž .t t ;
Heuristically, the particle repeatedly samples for collision partners using the
common law of the particles, but the equation does not say what happens to
these collision partners. Hence the different particle interpretations derived
by Bird, Nanbu and others. The physical binary symmetric collision deriva-
tion may lead us to write the collision term as

1 � x , v* � � x , v � � y , w* � � y , wŽ . Ž . Ž . Ž .Ž .H 2¦
1.4Ž .

�q x , v , y , w , n dn, f dx , dv f dy, dw .Ž . Ž . Ž .t t ;
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The form of the cross section gives causes of divergence of the jump rate due
to large speeds and grazing collisions. Except in the spatially homogeneous

Ž � �.hard-sphere case cf. 18 , mathematicians and physicists usually make the
Ž .cut-off assumption sup H q x, v, y, w, n dn � �.x, y, v, w

Ž .It is important to approximate solutions to equation 1.3 and obtain error
estimates. Because of its complexity and the probabilistic interpretation of
the collision term as the jump operator of a Markov process, Monte Carlo
algorithms based on stochastic interacting particles are widely used. Rigorous
results on the famous Bird and Nanbu algorithms appear for instance in

� � � �Wagner 21, 22 , Pulvirenti, Wagner and Rossi 17 and Babovsky and Illner
� � � �1 . Several numerical methods are also discussed in Nanbu 13 , Illner and

� � � � � �Neunzert 9 , Neunzert, Gropengeisser and Struckmeier 14 , Chauvin 3
� �and Perthame 15 .

We get new and better results using radically different techniques. We
prove propagation of chaos in variation norm on the path space, with precise
estimates of the proper order for fluctuations. This strong result gives asymp-
totics for sojourn times, hitting times and other functionals of the whole path
and immediately implies the convergence of the flow of time marginals and a
functional law of large numbers. We need no regularity assumption on the

Žnoninteracting motion no on the collision kernel which is very general not
.parameterized but bounded, and we do not use a uniqueness result.

Let us describe more precisely the contents of the paper. We wish to take
into account more complex physical models with boundary conditions, energy
exchanges, external fields, different species and so on. We thus define a
Markov process with a general linear Markov evolution instead of the free
flow and with any bounded jump measure with linear dependence on the law
of the process, and its corresponding nonlinear martingale problem. This
linear dependence on the law allows us to define a family of approximating

Žbinary mean-field interacting n-particle systems for which the jump mea-
.sure is a sum of terms in which only pairs of particles intervene that gives a

unified treatment of the Bird and Nanbu models. We prove Theorem 3.1.

� �THEOREM 1.1. The law on path space on 0, T of a subsystem of size k of
the interacting system converges in variation norm to the k-fold product of the
law of a Boltzmann process constructed on a Boltzmann tree when n goes to

Ž .infinity, with a precise O 1�n rate of convergence. This implies convergence
in probability of the empirical measure to the Boltzmann law.

The proof uses a pathwise representation of the particle systems with
binary interaction graphs and a probabilistic argument called coupling.

� �Graham and Meleard 8 use such ideas for pure jump processes, which we´ ´
Ž .adapt here to general markovian evolution without interaction between the

jumps. We obtain robust results which extend to multitype Boltzmann equa-
tions and interacting particle systems representing a mixture of different
species as in realistic physical models. These representations give an effective
simulation of the n-particle system using an acceptance�rejection or fictitious
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collision method. The empirical measure of this system approximates the
Boltzmann law.

In the last part of the paper we consider more complex physical models
Ž . Ž .mixing strong Boltzmann and weak Vlasov interaction, as in the

Fokker�Planck equation which takes into account grazing collisions and in
the Boltzmann�Maxwell equation for charged particles. Both the diffusion
and the jump operators depend on the law, possibly nonlinearly but with
some regularity assumptions. We introduce appropriate interacting particle
systems. In this case, interaction graph methods do not work since there is
interaction between collisions. We obtain Theorem 4.5.

THEOREM 1.2. There is propagation of chaos for weak convergence on path
space with the Skorokhod topology, which is equivalent to convergence in
probability of the empirical measure.

The proof uses the equivalence for exchangeable systems of propagation of
chaos for weak convergence and of convergence in law of the empirical
measures, and deduces the latter using compactness, martingale problems
and uniqueness of the limiting martingale problem with nonlinear integro-
differential operator. The complexity of the Skorokhod topology renders both
the new result and Theorem 4.6 difficult. Theorem 4.6 states a nontrivial
general result from which we deduce that Theorem 4.5 implies convergence
for the flow of marginals and a functional law of large numbers.

2. A generalized Boltzmann equation and its approximating inter-
Ž .acting particle systems. We generalize 1.3 in order to consider more

complex models with complicated spatial evolution between collisions includ-
ing boundary conditions. We consider the equation

˜ ˜ ˜² :2.1 � � , P � LL� � KK� �, P , P .Ž . ¦ ;Ž .t t t t

ASSUMPTION 2.1. The free evolution is given by a very general markovian
d Ž . �Ž d .operator LL on � acting on a sufficiently large domain Dom LL of L � .

ASSUMPTION 2.2. The collision operator is a bounded operator KK on � d

such that the following hold.

Ž . d di For z in � and a probability measure p on � , the jump amplitudes
h leading from the precollisional state z to the postcollisional state z* � z � h

Ž . Ž .are given by a positive measure m z, p , and for bounded �, KK� z, p �
Ž Ž . Ž .. Ž .H � z � h � � z m z, p, dh .

Ž . Ž . ² Ž .ii m depends linearly on p, and we set m z, p, dh � � z, a, dh ,
Ž .:p da .
Ž .iii m, or equivalently �, is uniformly bounded.
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Ž .Since m depends linearly on p as in Section 1, 2.1 can be written

˜ ˜² : ² :� � , P � LL� , Pt t t

˜ ˜² :� KK� , P � Pt t2.2Ž .
˜ ˜� � z � h � � z � z , a, dh , P dz P da .Ž . Ž . Ž . Ž . Ž .Ž .H t t¦ ;

Ž . 2Ž d . 1Ž d .Dom LL is usually C � , or C � for a first-order operator as in Sectionb b
1, but is more complex in case of boundary conditions discussed in Cercignani
� � � �2 , Neunzert, Gropengeisser and Struckmeier 14 and Babovsky and Illner
� �1 . An essential fact in all that follows is that adding mass at zero to m does

Ž . 3 Ž .not change KK. In Section 1, d � 6, z � x, v with x and v in � , LL� x, v �
Ž . Ž . Ž . Ž .3v � � � x, v and m x, v, p is the image of H q x, v, y, w, n p dy dw dnx y � �

Ž . ŽŽ . .under w, n � w � v � n n.
Ž . Ž .Equation 2.1 or 2.2 is satisfied by the flow of marginals of any solution

to the following nonlinear martingale problem.

DEFINITION 2.3. Let Z be the canonical process on the Skorokhod space
Ž d . Ž .D � , � . A solution to the Boltzmann nonlinear martingale problem is a�

˜ dŽ Ž ..P � PP D � , � such that�

t
�˜2.3 � Z � � Z � LL� Z � KK� Z , P ds � MŽ . Ž . Ž . Ž . Ž .Ht 0 s s s t

0

˜ ˜ ˜ �1Ž . Ž .is a P-martingale for any � in Dom LL . P � P � Z � law Z is thes s s
nonlinearity.

Ž .REMARK 2.4. The martingale problem 2.3 gives much more information
Ž . Ž .than 2.1 or 2.2 and enables us to consider multidimensional time marginals

and quantities based on the whole process as extrema or hitting times which
are of interest for gas dynamics.

Ž .In 2.1 the nonlinearity is a usual mean-field one as in the Vlasov models,
and the obvious choice of a mean-field approximating system gives the Nanbu

Ž .system defined below in 2.5 . This is far from the physical interpretation of
the system and does not preserve momentum. For any symmetrical jump

Ž .kernel � z, a, dh, dk , giving the joint postcollisional states of two particles,ˆ
Ž . Ž d .such that � z, a, dh is the marginal � z, a, dh � � up to mass at zero,ˆ

Ž .2.2 can be written

˜ ˜² : ² :� � , P � LL� , Pt t t

1� � z � h � � z � � a � k � � aŽ . Ž . Ž . Ž .Ž .H 2¦2.4Ž .

˜ ˜�� z , a, dh, dk , P dz P da .Ž . Ž . Ž .ˆ t t ;
The joint measure � cannot be deduced from the Boltzmann equation andˆ
involves consideration of an underlying physical process or some kind of

Ž .choice. It leads to the Bird model defined in 2.6 .
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We define a family of mean-field interacting particle systems which ap-
proximate the solution to the nonlinear martingale problem, corresponding to

Ž .different choices of the joint jump measure � in 2.4 , for which existence andˆ
n Ž . Ž d .nuniqueness is simple. Let z � z , . . . , z be the generic point in � ,1 n

n1 nn Ž Ž d .n.Z , . . . , Z be the canonical processes on D � , � , LL be the extension� i
Ž d .nof LL on � acting only on the variable z . Define the empirical measuresi

ni n ni nŽ Ž .. Ž Ž .. n jz � 1� n � 1 Ý � and Z � 1� n � 1 Ý � and thej� i, j�1 z j� i, j�1 Zjd Ž . Ž d .nmapping e : h � � � e � h � 0, . . . , 0, h, 0, . . . , 0 � � with h at the ithi i
Ž d .n Ž .place. We consider functions 	 on � that are in Dom LL for all 1 	 i 	 n.i

The Nanbu, or simple mean-field, model. The generator of the particle
system is

n n
n n n niLL 	 z � 	 z � e � h � 	 z m z , z , dhŽ . Ž .Ž .Ž . Ž .Ý Ý Hi i i

i�1 i�1
n 1

n n� LL 	 z � 	 z � e � hŽ . Ž .ŽÝ Ý Hi in � 1i�1 1	i�j	n

2.5Ž .

�	 zn � z , z , dh .Ž . . Ž .i j

The Bird and other binary mean-field models. The generator is
n 1

1n n nLL 	 z � 	 z � e � h � e � k � 	 zŽ . Ž .Ž .Ž .Ý Ý Hi i j2n � 1i�1 1	i�j	n2.6Ž .
�� z , z , dh, dk .ˆ Ž .i j

niIn numerical practice one often allows self-interactions and replaces z by
n nŽ . Ž .z � 1�n Ý � in 2.5 and n � 1 by n and takes the sum over 1 	 i,j�1 z j

Ž . Ž .j 	 n in 2.5 and 2.6 .

Ž .REMARK 2.5. In the specific Bird model, � x, v, y, w is the image ofˆ
Ž . ŽŽŽ . . ŽŽ . . .q x, v, y, w, n dn by the mapping n � w � v � n n, v � w � n n . This

physical choice preserves momentum.

Ž . Ž . Ž . Ž .REMARK 2.6. Taking � z, a, dh, dg � � z, a, dh � � dg � � dh �ˆ 0 0
Ž . Ž . Ž .� a, z, dg in 2.6 gives the Nanbu model 2.5 .

Ž . Ž .The action of 2.5 and 2.6 on functions of a variable z coincide with anyi
Ž .�. For � in Dom LL ,ˆ

tni ni ni� Z � � Z � LL� ZŽ . Ž . Ž .Hi 0 s
02.7Ž .

ni ni ni ni � ni� � Z � h � � Z m Z , Z , dh ds � MŽ . Ž .Ž . Ž .H s s s s t

�ni Ž ni.is a martingale. If A is the Doob�Meyer process of LL Z acting on �, the
Doob�Meyer bracket is

t 2� ni � ni ni ni ni ni² :2.8 M � A � � Z � h � � Z m Z , Z , dh ds.Ž . Ž . Ž .Ž . Ž .t H Ht s s s s
0
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Ž . ² �ni � n j:For 2.5 , M , M � 0 for i � j since there are no simultaneous jumps.
Ž .Generally for 2.6

² �ni � n j:M , M t

1 t ni ni n j n j� � Z � h � � Z � Z � k � � ZŽ . Ž . Ž . Ž .Ž . Ž .H H s s s sn � 1 0
2.9Ž .

�� Zni , Zn j, dh, dk ds.ˆ Ž .s s

Ž . Ž . Ž .Since at most two particles jump at the same time, 2.7 , 2.8 and 2.9
Ž .characterize the martingale problem corresponding to 2.6 . The factor

Ž . Ž .1� n � 1 in 2.9 is the key to the decoupling of the particles when n goes to
infinity in the martingale problem methods and is the sign of weak interac-

Ž2.n Ž Žtion. All this involves the two-body empirical measure Z � 1�n n �
.. ni n j1 Ý � .1	 i� j	 n Z , Z

3. Propagation of chaos in variation norm with estimates. Propa-
gation of chaos is a probabilistic limit result in which the law of a fixed
number k of particles in an interacting system converges to the k-fold
product of a limit law as the number of particles goes to infinity. It is usually
stated and proved in weak topology, but we shall prove it for the strong

� �variation norm on path space. is the variation norm on the space ofT
d n nŽ� � . Ž . nisigned bounded measures on D 0, T , � , and Z � 1�n Ý � .i�1 Z

Ž ni.THEOREM 3.1. Assume Z i.i.d. of law P , Assumptions 2.1 and0 1	 i	 n 0
� Ž . �2.2, sup � z, a 	 
.ˆx, a

Ž .i We then have propagation of chaos: for given T and k

2 2
T � 
 T�kn1 nk n1law Z , . . . , Z � law Z 	 2k k � 1Ž . Ž . Ž .T n � 1

˜and there exists a law P defined uniquely using a Boltzmann tree such that

exp 
T � 1Ž .
ni ˜law Z � P 	 6 ,Ž . T n � 1

Ž .which solves the nonlinear martingale problem 2.3 .
n1 nk ˜�kŽ . Ž .ii law Z , . . . , Z converges weakly to P for the Skorokhod topology

Ž Ž d .k .on D � , � .�
n ˜Ž .iii The empirical measure Z converges in probability to P in

Ž Ž d .. Ž d .PP D � , � for the weak convergence for the Skorokhod metric on D � , � ,� �'Ž . � �with O 1� n estimates on 0, T .

� �PROOF. Graham and Meleard 8 prove such a result for pure jump´ ´
processes. We give a compact proof adapted to our model with general
markovian motion given by LL . We separate the main steps.
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3.1. A sample path representation using interaction graphs. We give for

 4k 	 n and distinct i , . . . , i in 1, . . . , n a pathwise representation of1 k

Ž ni1 nik . � �Z , . . . , Z on 0, T . At time T the evolution of the state of a process will
have been directly affected by other processes with which it has collided, and
recursively these processes will have evolved according to collisions with
other processes which thus influence indirectly the first process. We now

� �describe this construction on 0, T in reverse time so that we can build the
processes with the least amount of superfluous knowledge. This will define
the past history of a particle. If the histories of two particles become disjoint
when n goes to infinity, a coupling argument will show that they become
independent.

This is described by interaction graphs, which are marked random subsets
� � 
 4 Ž .of 0, T � 1, . . . , n . Considering 2.6 , we introduce i.i.d. Poisson processes

Ž . Ž . � �N of rate 
� n � 1 , where � 	 
, and set N � N for nota-ˆi j 1	 i� j	 n i j ji
tional convenience. For i � j, N is a random clock giving the epochs ati j
which Zni and Zn j are possibly authorized to jump simultaneously and
interact. We imagine time as being vertical and directed upwards and the
indices of particles as being on a horizontal level. We work our way in reverse


 4time from time T to 0 to build a graph rooted on the given subset i , . . . , i .1 k
Every time we encounter a jump of a Poisson process N for an i already ini j
the graph, we include the index j in the graph at that time, and recursively
so, and mark the graph with variables for jumps and free flow. The branching
is binary and deterministic, given the Poisson processes; see Figure 1.

Once an index is selected, the whole vertical line from the time of selection
down to 0 is included in the graph, and we proceed recursively from the
selected indices. We do not have a tree since a particle may influence another
several times. We can thus build down, from time T, an interaction graph

n 
 4G rooted on i , . . . , i .i � � � i 1 k1 k

Once we reach time 0, we construct a pathwise representation of the
Ž ni1 nik . � �process Z , . . . , Z in direct time on 0, T . The interaction graph repre-

sents all the information necessary to construct the process, and we only need
to consider at time t the indices appearing then in the graph. We use the
independent variables Zni of law P at time 0. Then we follow the indices in0 0

FIG. 1. Interaction graph rooted at i.
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the graph. In between jumps of the N , we use the pathwise representationi j
of the process generated by LL . At the jump times of N we compute � at theˆi j

Ž ni n j. � �position reached by Z , Z ; with probability 1 � � �
, we do nothing andˆ
� �with probability � �
 we choose the joint amplitude of jumps according toˆ

� �the law �� � . All this must be done independently. This gives the correctˆ ˆ
Ž Ž . .evolution for the Markov process since 
 ��
 � 1 � ��
 � and � coin-ˆ ˆ ˆ0

cide up to mass at zero.

3.2. The coupling. The chaos property asserts that a fixed finite number
of particles become independent as the total number grows. We construct a
set of independent particles, couple it to an interacting system and show that
the two do not differ much. We detail this for two indices i and j. We take
two independent copies distinguished using indices i and j of the Poisson
processes, jump variables, Markov paths corresponding to LL and initial
values. We construct two independent interaction graphs Gi, n and G j, n andi j
two independent processes Zni and Zn j.i j

We build an interaction graph Gn in such a way that the subgraph Gn
i j i

stemming from i is as close as possible to Gi, n and Gn to G j, n. We musti j j

 4 i jchoose for any pair k, l of indices between N and N to get N . We setk l k l k l

N � N i and N � N j if k � j and l � i. There is a problem between N i
ik ik jl jl i j

and N j which we resolve by a fair toss-up. We still have to set prioritiesi j
between the N i and N j for distinct i, j, k and l. The special properties ofk l k l
the Poisson process allow us to do this pathwise in reverse time. If Gi, n is thei

Ž . 
 4 i j, nfirst in reverse time to intersect k, l , we set N � N ; if G is the first,k l k l j
j Ž .we set N � N there cannot be a tie because of independence . We choosek l k l

the initial values and jump variables among the two independent copies
accordingly.

Thus the subgraphs Gn and Gn will grow like Gi, n and G j, n until wei j i j
i j 
 4 i, nencounter a jump time of an N and N with k, l intersecting both Gk l k l i

and G j, n, when the priority rule will force us either to use it or discard it forj
both Gn and Gn. This introduces a difference between either Gn and Gi, n ori j i i

n j, n n 
 n i, n4 
 n j, n4G and G . We denote this event by A � G � G 
 G � G �j j i j i i j j

 i, n j, n 4 Ž ni n j.G � G � � , and on the contrary event, the process Z , Z built oni i

n Ž ni n j.G is equal to Z , Z .i j i j
Ž ni. Ž ni. Ž n j. Ž n j.Naturally law Z � law Z and law Z � law Z , and thusi j

� Ž ni n j. Ž ni. Ž n j. � Ž n .law Z , Z � law Z � law Z 	 2 P A , which leads us to estimateT i j
Ž n .P A . Similarlyi j

ni ni ni ni n1 k 1 klaw Z , . . . , Z � law Z � ��� � law Z 	 2 P AŽ . Ž . Ž . �T i ip qž /
1	p�q	k

	 k k � 1 P An .Ž . Ž .i j

3.3. Estimates on interaction chains and convergence. An happens only ifi j
we encounter a jump of one of a pair of conflicting Poisson processes before
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reaching time 0. There must then exist an interaction chain between i and j,
i j � �an event we now describe. The simplest case is a jump of N or N on 0, T ,i j i j

called a direct interaction.
Going from T to 0, there are indices i , . . . , i and j , . . . , j , such that in1 m 1 p

Gi, n, i branched on i , then i on i , and so on to i , and similarly, G j, n
i 1 1 2 m j

branched successively on j , j , . . . , j , and either i branched on j in Gi, n
1 2 p m p i

or j on i in G j, n. This last step may be taken from either side, hence atp m j
twice the branching rate, and is a direct interaction between i and j . Wem p
choose an interaction chain with the least number of indices involved, in
which i, j, i , . . . , i , j , . . . , j are distinct, and define the interaction chain1 m 1 p
length as m � p � 1. See Figure 2.

nŽ .If Q q is a bound on the probability of occurrence of a chain reaction ofT
n nŽ . Ž n . nŽ .length q, then Q � Ý Q q is a bound on P A . We evaluate Q q byT q �1 T i j T

induction; q � 1 corresponds to direct interaction: either N i or N j musti j i j
� � nŽ . Ž Ž ..jump in 0, T , an event of probability Q 1 � 1 � exp �2
T� n � 1 	T

Ž .2
T� n � 1 .
n Ž .Assume we have a bound Q q � 1 for q � 2. Then for a chain reaction toT

Ž .happen, there must first backwards from T be the birth of a new branch at
either i or j after a wait of t, and this new branch must be joined in a time
T � t by an interaction chain of length q � 1 to the one of i and j which did
not branch first. The maximal rate for this new branch is 2
 and thus

Tn n3.1 Q q � Q q � 1 2
exp �2
t dtŽ . Ž . Ž . Ž .HT T�t
0

nŽ . nŽ . nŽ . � Žq�1.and Q q � Q q � 1 � e � Q 1 � e , where e denotes the exponen-2
 2
 �
� kŽ . kŽ k�1 Žtial density of parameter � , e t is the gamma function � t � k ��

. . �� t1 ! e and we obtain
q�22
tŽ .Tn n nQ � Q 1 � 2
 Q 1 exp �2
t dtŽ . Ž . Ž .ÝHT T T�t q � 2 !Ž .0 q�2


 T � tŽ .Tn� Q 1 � 2
 1 � exp �2 dtŽ . HT ž /ž /n � 103.2Ž .
2
T 2
T

� n � 2 exp � � 1 �Ž . ž /ž /n � 1 n � 2


T � 
2T 2

	 2
n � 1

which gives us the first bound in Theorem 3.1.

3.4. The limit Boltzmann tree. A similar coupling argument between the
interaction graph issued from one index for given n and a limit Boltzmann
tree, where the links are taken among an infinite supply of independent
similar links, shows that the law of one of the interacting processes converges

˜as n goes to infinity to the law P of a process constructed similarly on the
tree.
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FIG. 2. Interaction chain between i and j.

For given n and index i, we build an interaction tree T n inspired from Gn.i i
Each branch of the tree has a distinct label, which is a finite sequence in

 41, . . . , n giving the successive filiation from the root. We need independent

Ž .Poisson processes of rate 
� n � 1 , jump variables. Markov paths corre-
sponding to LL and initial values, corresponding to all branches, which we

˜ni nindex by the labels. We then construct a process Z using T , similar to thei
way we constructed Zni using Gn. This is the Boltzmann process, constructedi
without self-interactions.

For the second bound in Theorem 3.1 we have to couple an interaction
n n ni ˜nigraph G to the tree T , and the process in the n-particle system Z to Z .i i

To obtain the graph from the tree, we simply retain the last index in the
labelling of the branches as we build the graph in reverse time, and we need
priority rules to decide between conflicting Poisson processes. We do as for
the graph coupling, and a conflict happens if two branches in the tree are
linked by an interaction chain, an event we call an interaction loop. We
obtain the second bound of Theorem 3.1 using a recursive evaluation of the

Ž .number of such pairs of branches and the bound 3.2 . We shall not further
Ž � �.detail this see Section 5 in 8 .

3.5. A law of large numbers on the empirical measure.

2n12n ni˜ ˜² : ² :E � , Z � P � E � Z � � , PŽ .Ž . Ýž /ž /n i�1

1 2n1 ˜² :� E � Z � � , PŽ .Ž .ž /n

n � 1
n1 n2˜ ˜² : ² :� E � Z � � , P � Z � � , PŽ . Ž .Ž . Ž .Ž .n

3.3Ž .

n1 n2 ˜ n1² :� E � Z � Z � 2 � , P E � ZŽ . Ž . Ž .Ž . Ž .
˜ 2² :� � , P � O 1�nŽ .

� O 1�nŽ .
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� � Ž� � d .uniformly on T and � for � on D 0, T , � . The Skorokhod space is�

Ž .Polish and there is a countable convergence determining family � withi i�1
� � n Ž Ž d .. ² n:� � 1: m converges weakly to m in PP D � , � if and only if � , m�i � i

² : Ž .2 Ž 2 .² :2converges to � , m for all i � 1. Then d m, m� � Ý 1�i � , m � m�i i�1 i
n 2˜Ž Ž . . Ž .defines a weak convergence metric, and E d Z , P � O 1�n , implying

'Ž .convergence in probability with O 1� n rate. This convergence result ex-
tends easily to � .�

3.6. The nonlinear martingale problem. The convergence of the law of one
process Zni being in variation norm, there is no need of regularity to prove
that the Boltzmann process solves the nonlinear martingale problem. We

Ž .consider the martingale problem 2.7 satisfied by one particle in the interact-
Ž . Ž .ing system together with 2.8 and 2.9 and the convergence of the empirical

measures. We use a characterization of martingales suited for taking the
limit to show that the limit law solves the limit nonlinear martingale
problem. Details on these convergence techniques are given in the next
section. This ends the proof. �

Ž .REMARK 3.2. i It is immediate that

�kn1 nk n1sup law Z , . . . , Z � law ZŽ . Ž .t t t
0	t	T

�kn1 nk n1	 law Z , . . . , Z � law Z ,Ž . Ž . T

ni ni˜ ˜sup law Z � P 	 law Z � P .Ž .Ž . Tt t
0	t	T

Ž .ii If the marginal of rank k of the law of the n-particle system at time t
n Ž d .k Žhas a density f on � and if the limit law at time t has density f thisk , t t

is the case if LL contains a hypoelliptic operator or if the initial values have a
.density and LL does not tend to concentrate the laws , then

�k �kn1 nk n1 n nlaw Z , . . . , Z � law Z � f � f ,Ž .Ž . Ž .t t t k , t 1, t 1

ni n˜ � �law Z � P � f � fŽ . 1t t 1, t t

and we can use the estimates in Theorem 3.1 to get results comparable to
� �those in Pulvirenti, Wagner and Rossi 17 .

REMARK 3.3. Certain chaotic initial conditions may work as in Theorem
� �1.4 in Graham and Meleard 7 .´ ´

REMARK 3.4. This rate of convergence allows to get some results in which
Ž .the regularizing kernel in 1.3 converges to the Dirac measure at the same

time as the number of particles increases sufficiently fast. In the grid meth-
ods this corresponds to the cell size going to zero. See, for instance, results in

� �this direction in Babovsky and Illner 1 .
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Ž .REMARK 3.5 Algorithms for the Boltzmann equation . The empirical mea-
nsure Z approximates the law of the Boltzmann process and depends on the

Ž .choice of the joint jump measure � in 2.4 . The ideas behind the proof ofˆ
Theorem 3.1 can be used to simulate the particle systems. There are n

Ž .particles and the total rate for the n n � 1 �2 pairs of possible interactions is
Ž .n
�2 as seen in 2.6 . A Poisson process of rate n
�2 gives the sequence of

collision times. At each of these we choose uniformly the pair of particles
� �which interact, update the states of these particles under LL , compute � atˆ

� �these states, discard the jump with probability 1 � � �
 and with probabil-ˆ
� � � �ity � �
 chose the joint jump amplitude according to �� � . All this is doneˆ ˆ ˆ

independently. We evaluate at each step only the cross section of the interact-
Ž .ing pair and not those of the n n � 1 �2 pairs. This simulation is exact if we

solve the free motion explicitly and if we simulate the exponential variables
Ž .exactly instead of discretizing time .

4. Weak convergence by martingale problem methods in case of
Ž .Vlasov terms. In physical models mixing strong Boltzmann interaction

Ž . Ž� �with weak Vlasov interaction as in Cercignani 2 , Sections II-4, II-9 and
.III-2 , the diffusion operator also is nonlinear and interaction graph tech-

niques fail. We use martingale problem techniques involving uniqueness
Žresults and give results for weak convergence for the Skorokhod topology on

.the path space instead of the variation norm. The complexity of the
Ž .Skorokhod topology discontinuity of the projections . . . renders the proof

and the deduction of results on the flow of time marginals intricate and
Ž .original. The situation is more sensitive to the actual form of LL z, p and the

Ž .uniqueness result is delicate. We need more regularity on KK z, p , but may
Ž .take a nonlinear dependence of m z, p on the law p.

We metrize weak convergence plus convergence of the first moment on
Ž d . Ž . 
² :PP � using the Kantorovitch�Rubinstein metric 
 p, q � sup f , p �

² : � Ž . Ž . � � �4f , q : f x � f y 	 x � y which we extend to bounded jump measures m
Ž . 
² : ² : � Ž . Ž . � � � Ž . 4and n by 
 m, n � sup f , m � f , n : f x � f y 	 x � y , f 0 � 0 .

Ž .ASSUMPTION 4.1. � and b are Lipschitz in z, p for the metric 
, a � �� *,
2Ž d .and for � in C � ,b

d d
1 2LL� z , p � b z , p � � z � a z , p � � z .Ž . Ž . Ž . Ž . Ž .Ý Ýi i i j i j2

i�1 i , j�1

Ž . � Ž . � Ž .ASSUMPTION 4.2. i sup m z, p � �, and m z, p is Lipschitz for thez, p
metric 
.

Ž . Ž . Ž . Ž . Ž .ii Define e z,m p � H hm z, p, dh , c z, p � H h h m z, p, dh . Eitheri j i j
� Ž . � 2 Ž Ž .. Ž � � 2 .P has a second moment and e z, p � tr c z, p 	 K 1 � z uniformly0

� Ž . � Ž � �.in p, or P has a first moment, � � 0 and e z, p 	 K 1 � z uniformly0
in p.

Ž . Ž . Ž Ž . Ž .. Ž .iii For bounded �, KK� z, p � H � z � h � � z m z, p, dh .
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˜ dŽ ..We say that P � PP � , � solves the Boltzmann�Vlasov nonlinear mar-�
tingale problem if

t
�˜ ˜4.1 � Z � � Z � LL� Z , P � KK� Z , P ds � MŽ . Ž . Ž . Ž . Ž .Ht 0 s s s s t

0

˜ 2 dŽ .is a P-martingale for any � in C � .b

THEOREM 4.3. Under Assumptions 4.1 and 4.2, there is existence and
Ž .uniqueness for the nonlinear martingale problem 4.1 starting at P .0

� �This is proved in Theorem 2.2 in Graham 5 . We wish to apply it to the
model in Section 1. We need a Lipschitz cross section q and use a Lipschitz
regularizing kernel I.

Ž .PROPOSITION 4.4. Assume H q x, v, y, w, n dn is uniformly bounded,
Ž . Ž . � �Ž . � Ž . �Žq x, v, y, w, n is Lipschitz in x, v and v � w � n q x, v, y, w, n � v �
. � Ž . � �Ž . Ž . �w � n q x, v, y, w, n 	 K y, w � y, w for a K such thatx, v, n x, v, n

HK dn is bounded uniformly in x and v. Then the image measure ofx, v, n
Ž . Ž . Ž . ŽŽ . .3H q x, v, y, w, n p dy dw dn by the mapping w, n � w � v � n n isy � �

Ž .Lipschitz in x, v, p .

f Ž . ŽŽŽ . . . Ž .PROOF. Set F y, w � H f w �v � n n q x, v, y, w, n dn. The 
-distancex v
Ž . ŽŽ . . Ž .3between the images by w, n � w � v � n n of H q x, v, y, w, ny � �

fŽ . Ž . Ž . 
² :3p dy dw dn and H q x, v, y, w, n p dy dw dn is sup F , p � p :y � � x v
f� Ž . Ž . � � � Ž . 4 Ž .f v � f w 	 v � w , f 0 � 0 . This is less than K 
 p, p as soon as F isx v

K-Lipschitz, which is true under our hypotheses since
f fF y , w � F y , wŽ . Ž .x v x v

	 f w � v � n n q x , v , y , w , nŽ . Ž .Ž .Ž .H
�f w � v � n n q x , v , y , w , n dnŽ . Ž .Ž .Ž .

	 f w � v � n n � f w � v � n n q x , v , y , w , nŽ . Ž . Ž .Ž . Ž .Ž . Ž .H
� f w � v � n n q x , v , y , w , n � q x , v , y , w , n dnŽ . Ž . Ž .Ž .Ž .

� �	 w � w q x , v , y , w , n dnŽ .H

� v � w � n q x , v , y , w , n � q x , v , y , w , n dn. �Ž . Ž . Ž .H
We now introduce interacting particle systems. The Vlasov terms have a

traditional mean-field interpretation. If m does not depend linearly on p, the
only possible interpretation is the Nanbu, or simple mean-field, model. We

Ž Ž d .n.define on D � � a Markov process with generator�
n n

n ni n n ni4.2 LL 	 z , z � 	 z � e � h � 	 z m z , z , dh .Ž . Ž . Ž .Ž .Ž . Ž .Ý Ý Hi i i
i�1 i�1
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Ž . ² Ž . Ž .:If m z, p, dh � � z, a, dh , p da , we may interpret the collision term as
Ž .in the Bird model 2.6 . The systems are characterized by the martingale

ni ni � n, iŽ . � Ž .� Ž . Ž .problem 2.7 with LL� Z , Z , 2.8 and 2.9 . We have A �s s t
t ni ni ni niŽ Ž . Ž . Ž ..H �� Z *a Z , Z �� Z ds.0 s s s s

Ž ni.THEOREM 4.5. Let Z be exchangeable and P -chaotic. Let the0 1	 i	 n 0
˜hypotheses of Theorem 4.3 hold, and P be the unique solution to the nonlinear

ni ˜Ž . Ž .martingale problem 4.1 starting at P . Then Z is P-chaotic;0 1	 i	 n
n1 nk ˜�k d kŽ Ž .. Ž Ž Ž . ..law Z , . . . , Z converges weakly to P in PP D � , � for any k.n�1 �

n ˜Moreover, Z converges in probability to P.

n Ž Ž Ž d .n..PROOF. Let P � PP D � , � be the law of the n-particle system;�
n1 nk n n1 nk �1 n n n �1Ž . Ž . Ž . Ž .law Z , . . . , Z � P � Z , . . . , Z and law Z � P � Z . Since

n n n1 nk �1 ˜�kŽ .P is exchangeable, P � Z , . . . , Z converges weakly to P in
d k n n �1Ž Ž Ž . .. Ž .PP D � , � for all k if and only if P � Z converges weakly to the�

˜ dŽ Ž Ž ... Ž � �.Dirac mass at P in PP PP D � , � cf. Proposition 2.2 in 19 . Thus to�
prove propagation of chaos it is enough to prove tightness of the empirical
measures and that the accumulation points solve a nonlinear martingale
problem with unique solution.

n n �1 dŽ Ž . . Ž Ž Ž ...Tightness of P � Z in PP PP D � , � is equivalent to tight-n�1 �
Ž n Ž n1.�1 . Ž Ž d .. � �ness of P � Z in PP D � , � by Proposition 2.2 in 19 . Undern�1 �

� �Assumptions 4.1 and 4.2, Lemma 3.2.2 in Joffe and Metivier 10 proves´
� �uniform square integrability on every 0, T by using the Gronwall lemma

to propagate the initial second moment assumption. Tightness of
Ž n Ž n1.�1 . � �P � Z follows in Proposition 3.2.3 in 10 from this and the Aldousn�1
and Rebolledo criteria. If � � 0 we only need the first moments. Thus

n n �1Ž Ž . .P � Z is relatively compact, and we now characterize its accumula-n�1
tion points.

Ž Ž Ž d ... Ž n.Let � in PP PP D � , � be an accumulation point of � �� n�1
n n �1 n 2kŽ Ž . . Ž .P � Z , limit of � . For � � C , 0 	 s , . . . , s 	 s 	 t,n�1 k �1 b 1 q

Ž Ž d ..g , . . . , g � C , Q in PP D � , � ,1 q b �

t
F Q � � Z � � Z � LL� Z , Q � KK� Z , Q duŽ . Ž . Ž . Ž . Ž .Hst s � � � s t s u u u u¦1 q ž /s

�g Z ��� g Z , Q .Ž . Ž .1 s q s ;1 q

4.3Ž .

F is not continuous since the projections Z � Z are not continuous forst s � � � s t1 q

 Ž Ž � � . . 4the Skorokhod metric. Let J � u � � : � Q: Q Z: �Z � 0 � 0 � 0 .� u

Clearly using monotone convergence of probability measures J � � J ,k �1 k

 � � Ž Ž � � . . 4where J � u � 0, k : � Q: Q Z: �Z � 1�k � 1�k � 1�k .k u

Since � is a probability measure, there are less than k laws Q such that
Ž Ž � � . .for some u in � , � Q: Q Z: �Z � 1�k � 1�k � 1�k. Similarly there are� u

Ž � � .less than k paths Z such that for some u, Q Z: �Z � 1�k � 1�k. Finallyu
since any path Z is right-continuous with left-hand limits, there are finitely

� � � �many u on 0, k such that �Z � 1�k. Hence J is countable, and for allu
s, t, s , . . . , s in its complement F is �-a.s. continuous.1 q sts � � � s1 q
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2 nk Ž 2 .�1Then F is �-a.s. continuous and � � F converges weaklyst s � � � s st s � � � s1 q 1 q

Ž 2 .�1 Žto � � F , and the Fatou lemma using, for instance, the Skorokhodst s � � � s1 q
. ² 2 : ² 2 nk:representation theorem gives F , � 	 lim inf F , � . By de-st s � � � s k st s � � � s1 q 1 q

veloping the square and using exchangeability,

2 n n 2 n² :F , � � E F ZŽ .ž /st s � � � s st s � � � s1 q 1 q

21
n � n1 � n1 n1 n1� E M � M g Z ��� g ZŽ . Ž . ž /t s 1 s q sž /ž /1 qn

n � 1
n � n1 � n1 � n2 � n2� E M � M M � MŽ . Ž .t s t sžn

�g Zn1 ��� g Zn1 g Zn2 ��� g Zn2 ,Ž . Ž .ž / ž /1 s q s 1 s q s /1 q 1 q

Ž . Ž . 2which goes to zero using the 1� n � 1 in 2.9 and the uniform L bounds,
² 2 :and F , � � 0.st s � � � s1 q

Ž .Then F Q � 0, �-a.s., for all choices of s, t, s , . . . , s outside of thest s � � � s 1 q1 q

countable set J and of g , . . . , g in C . Convergence of the initial values is1 q b
Ž .immediate, and �-a.s., Q solves the nonlinear martingale problem 4.1

˜starting at P . This problem has a unique solution P as stated in Theorem0
n n �1˜ Ž Ž . .4.3, and � is the Dirac mass at P. Thus P � Z converges to then�1

˜Dirac mass at P. �

This result on path space implies a functional law of large numbers. Such
an implication is simple for processes with continuous paths, but not here
because of topological difficulties related to the jumps. We give a general
topological result in which we adapt an intermediate result in the proof of

� �Lemma 2.8 in 12 .

Ž n.THEOREM 4.6. Let a random sequence Q converge in probability inn� 0
Ž Ž� � d .. Ž .Ž � � .PP D 0, T , � to Q such that �-a.s., Q � Z: �Z � 0 � 0 for any u inu

� � Ž n. Ž .0, T . Then the flow Q converges in probability to Q int t � 0 t t � 0
Ž� � Ž d ..D 0, T , PP � with the uniform norm.

PROOF. Convergence in probability is equivalent to the fact that from any
subsequence one can extract a further subsequence which converges a.s. Take

Ž . nka subsequence; let n be a subsubsequence such that Q converges a.s.k k �1
Ž Ž� � d .. nkŽ .to Q for the weak topology on PP D 0, T , � and let � be such that Q �

Ž .converges to Q � . By the Skorokhod representation theorem, there exists a
Ž . Ž� � d . kprobability space W, WW , � and D 0, T , � -valued random variables Y
Ž k .�1 nkŽ . Ž .�1 Ž . kand Y such that � � Y � Q � , � � Y � Q � , and Y converges to

Y. Hence the theorem is true if
� � k �4.4 lim sup E Y � Y 
 1 � 0.Ž . Ž .t t

k�� 0	t	T

Ž� � d . � � Ž . 
 � �For x � D 0, T , � , S � 0, T and � � 0 we set w S � sup x � x :x t s
4 � Ž . Ž � � .s,t � S and w � � inf max w t , t where the infimum is overx 
t 4 1	 i	 r x i�1 ii
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 4all finite sets t such that 0 � t � t � ��� � t � T and t � t � � fori 0 1 r i i�1

 4all i in 1, . . . , r . It is easy to see that for 0 	 a 	 b 	 T,

� � �� �4.5 w a, b 	 2w b � a � sup � x .Ž . Ž .Ž .x x s
� �s� a , b

Ž� � d . Ž .Let � � 0 and x, y in D 0, T , � be such that d x, y � � , where d
denotes the Skorokhod metric. There is a time-change � such that

� Ž . � � � Ž .sup � t � t � � and sup y � x � � , and thus d x, y � �0 	 t 	 T 0 	 t 	 T t �Ž t .
� � Ž � � . Ž .implies x � y � � � w t � � , t � � . Using 4.5 , this shows thatt t x

� � k �E Y � Y 
 1Ž .t t

k � � k � k	 � d Y , Y � � � E Y � Y 
 1: d Y , Y � �Ž . Ž .Ž . Ž .t t

k � � �	 � d Y , Y � � � � � E w t � � , t � � 
 1Ž . Ž .Ž .Ž . Y

k � � � �	 � d Y , Y � � � � � E 2w 2� � sup �Y 
 1 .Ž . Ž .Ž . Y sž /ž /� �s� t�� , t��

k Ž� � d . � Ž .Y converges to Y in D 0, T , � and lim w � � 0 for any x in� � 0 x
Ž� � d . Ž .�1D 0, T , � . Using the dominated convergence theorem and � � Y �
Ž . Ž .Q � , 4.4 is true as soon as

� � �lim sup E sup �Y 
 1sž /
��0 0	t	T � �s� t�� , t��

QŽ� . � �� lim sup E sup �Z 
 1 � 0.sž /
��0 0	t	T � �s� t�� , t��

4.6Ž .


 � 4 
Since for � � 0, Z: � Z � � is the decreasing limit of Z:u
� � 4 Ž � � .sup �Z � � , Q sup �Z � � 	 � and hences� �u�1� k , u�1� k � s s� s�u�� , u�� �u uQŽ � � .E sup �Z 
 1 	 2� for small enough � � 0. Let � � 0 bes� �u�� , u�� � s uu u

� �half of the minimal length of the overlaps of a finite covering of 0, T by the
� � � � � � �u � � , u � � . For any t in 0, T , t � � , t � � is included in an u �u u

� QŽ � � . Ž .� , u � � , hence sup E sup �Z 
 1 	 2� and 4.6u u 0 	 t 	 T s� � t�� , t�� � s
holds. �

COROLLARY 4.7. Under the assumptions of Theorem 4.3, we have con-
n ˜Ž . Ž . Žvergence of the flows Z to P in law and probability in D � ,t t � 0 t t � 0 �

Ž d ..PP � with the topology of uniform convergence on compact sets and
n1 k n ˜�kŽ Ž .. Ž .law Z , . . . , Z to P uniformly on compact sets.t t t � 0 t t � 0

� �PROOF. We use Theorems 4.5 and 4.6. If m 	 
,

˜ � �P sup �Z � 0 	 2
� . �Ž .s� �u�� , u�� � s
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