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We consider inhomogeneous nearest neighbor Bernoulli bond percola-
d Žtion on � where the bonds in a fixed s-dimensional hyperplane 1 � s �

. Ž d .d � 1 have density p and all other bonds have fixed density, p � , the1 c
homogeneous percolation critical value. For s � 2, it is natural to conjec-

sŽ d .ture that there is a new critical value, p � , for p , strictly betweenc 1
Ž d . Ž s.p � and p � ; we prove this for large d and 2 � s � d � 3. For s � 1,c c

1Ž d .it is natural to conjecture that p � � 1, as shown for d � 2 by Zhang;c
we prove this for large d. Related results for the contact process are also
presented.

0. Introduction. We begin with some general background and some
motivation for studying the type of inhomogeneous percolation models consid-
ered in this paper. In independent nearest neighbor bond percolation on �d,

Ž . dthe bonds i.e., the nearest neighbor edges b of � are independently open
Ž . Ž .respectively, closed with probability p respectively, 1 � p . Clusters areb b

Ž .maximal collections of sites connected to each other by nearest neighbor
paths of open bonds. The existence of an infinite cluster is a tail event and
hence its probability must be zero or one; in the latter case percolation is said
to occur. The standard percolation model is the homogeneous one in which

�p � p for every b, and the basic result of percolation theory see, e.g.,b
Ž .� Ž d .Grimmett 1989 is that for d � 2, there is a critical value p � p �c c

Ž .strictly between 0 and 1 such that percolation occurs respectively, is absent
Ž . Žfor p � p respectively, for p � p . It is a major open problem except forc c

.d � 2 and for large d, as discussed below to prove absence of percolation at
p � p .c

One of the recurring themes in work on this and related problems has been
the relation between percolation on the full space �d and percolation on the
half space ��� �d�1. For example, this relation played an important role in

Ž .the results of Harris 1960 which, when combined with those of Kesten
Ž . 21980 , imply absence of percolation at the critical point in � . For general d,
absence of critical percolation was reduced by Barsky, Grimmett and
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Ž .Newman 1991 to the problem of showing that for any p, percolation in the
full space implies percolation in the half space.

There is a natural way to interpolate continuously between the full space
and the half space models; namely, by using the inhomogeneous model in
which p � p for all bonds b except those between a fixed pair of adjacentb
Ž .d � 1 -dimensional hyperplanes, where p � p�. When p� � p, this is justb
the homogeneous model on the full space while for p� � 0, this becomes a
pair of independent models on half spaces. This interpolating feature sug-
gests that the study of the percolation properties of models with similar types
of inhomogeneity may be of some value, even if one’s ultimate goal is to
obtain results about the standard homogeneous models.

In this paper, we study d-dimensional models with lower-dimensional
inhomogeneity, but in a different direction than what would be needed to
prove absence of critical percolation in the standard models. Here, we will use

Ž .results already known for the standard models in high dimension to obtain
results about the inhomogeneous models. What one would like to do, to prove
absence of critical percolation, is set p � p and then show that absence ofc
percolation when p� � 0 implies its absence when p� � p ; what we doc

Ž .instead is more in the direction of showing that something stronger than
absence of percolation when p� � p implies its absence when p� � p .c c

In Section 1, we state precisely the inhomogeneous percolation models we
consider and our results about those models. In Section 2 we present related
results for inhomogeneous contact processes on �d. We remark that it is
possible to extend our results to inhomogeneous models on other lattices than
�d and this will be done in a future paper. Such models include percolation

�on the product of � with a homogeneous tree see Grimmett and Newman
Ž . Ž .� �1990 and Wu 1993 and the contact process on a homogeneous tree see

Ž . Ž . Ž .Pemantle 1992 , Morrow, Schinazi and Zhang 1994 , Liggett 1995 and Wu
Ž .�1995 .

To avoid confusion, it should be noted that the percolation models we treat
Žin Section 1 differ from the ones described above but in a manner insignifi-

.cant for our results in that the inhomogeneous bonds are taken within
a hyperplane rather than between two adjacent hyperplanes. A more
significant feature is that our results are not applicable to hyperplanes of
dimension d � 1 but only for dimensions strictly below d � 2.

1. Percolation. We consider the following inhomogeneous nearest
neighbor independent bond percolation model on �d with d � 2: each bond in
� 4d�s s Ž . Ž .0 � � where 1 � s � d � 1 is open respectively, closed with probabil-

Ž . d Žity p respectively, 1 � p and each remaining bond in � is open respec-1 1
. Ž . dtively closed with probability p respectively 1 � p : all bonds of � are2 2

Ž .independent of each other. We call this a p , p -model and shall assume1 2
that 0 � p , p � 1 unless stated otherwise. The resulting probability meas-1 2
ure will be denoted by P and expectation with respect to P denotedp , p p , p1 2 1 2

by E . Two sites, x and y, of �d are said to be connected if there is a pathp , p1 2
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of open bonds in �d from x to y, and we denote this event by x � y. The
Ž .open cluster C x of x is defined to be the random set of sites connected to x.

Ž . � Ž . �The number of sites in C x is denoted by C x . The percolation probability
s Ž .� or simply � is then defined by

1.1 � p , p � P C o � � ,Ž . Ž . Ž .Ž .1 2 p , p1 2

d Ž � Ž . � .where o is the origin of � . Although the probability P C x � �p , p1 2

depends on the site x because of the inhomogeneity of the model, it is easy
� Ž . �to show by Fortuin�Kasteleyn�Ginibre FKG inequalities that either

Ž � Ž . � . dP C x � � � 0 for every x in � or it is identically 0. Percolationp , p1 2
Ž .occurs if � p , p � 0. When p � p � p, the model becomes the standard1 2 1 2

homogeneous one. As mentioned above, it is a fundamental result that there
Ž d . Ž .exists a critical value p � p � in 0, 1 such thatc c

� p , p � 0 if p � p ,Ž . c

� p , p � 0 if p � p .Ž . c

1.2Ž .

� Ž . Ž . �See e.g., Grimmett 1989 or Kesten 1982 . It has been long conjectured
that
1.3 � p , p � 0.Ž . Ž .c c

Ž . � Ž . Ž .�However, 1.3 is only proved for d � 2 see Harris 1960 and Kesten 1980
�and for sufficiently large d d � 19 is large enough; see Hara and Slade

Ž .�1990 .
Ž d .In this paper, we consider the model in which p is fixed to be p � p �2 c c

while p varies. For s � 2, it is natural to conjecture that there is a new1
s Ž . s Ž s.critical value p for p with p � p � p � such thatc 1 c c c

1.4a � p , p � 0 if p � ps ,Ž . Ž .1 c 1 c

1.4b � p , p � 0 if p � ps .Ž . Ž .1 c 1 c

� Ž .�We will prove this for d sufficiently large as in Hara and Slade 1990 and
Ž . Ž s .2 � s � d � 3. Notice that 1.4a with p � p is a stronger statement thanc c

Ž .1.3 . For s � 1, we will show that for d sufficiently large,

1.5 � p , p � 0 for any p � 0, 1 .Ž . Ž . .1 c 1

Ž .Madras, Schinazi and Schonmann 1994 have considered the s � 1 case
from a different point of view. They proved, among many other things, that

Ž . Ž .for any fixed p in p , 1 the model with p as the single parameter has1 c 2
the same critical value as that of the homogeneous model on �d. That is, for

Ž .any p � p , 11 c

1.6a � p , p � 0 if p � p ,Ž . Ž .1 2 2 c

1.6b � p , p � 0 if p � p .Ž . Ž .1 2 2 c

� Ž . � Ž .Of course, 1.6b is obvious. Equation 1.5 is one of their conjectures. In two
Ž . Ž .dimensions, 1.5 has been proved by Zhang 1994 by a careful extension of

Ž .the dual contour argument. We remark that 1.6 is also valid for 0 � p � p .1 c
Ž . Ž .The p � p case of 1.6a is obvious while the p � p case of 1.6b follows1 c 1 c
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from the fact that the critical probability for the half space equals the critical
� Ž .probability for the full space see Harris 1960 for d � 2 and Grimmett and

Ž . � Ž .Marstrand 1990 for d � 2 ; this is so because � 0, p is positive if there is2
percolation in a half space at p � p . Finally, the p � p case follows by2 1 c
simple comparisons to the p � p and p � p cases.1 c 1 c

We state our results in the following two theorems and their corollaries
after introducing some more notation. Define

� x , y � P x � yŽ . Ž .p , p p , p1 2 1 2

to be the connectivity function between two sites x and y of �d and write
Ž . Ž .� x, y for � x, y , the critical connectivity function in the homogeneousp p , pc c c

model. Note that by uniqueness of the infinite cluster and the FKG in-
equalities,

� x , y � P C x �C yŽ . Ž . Ž .Ž .p p , pc c c

� P C x � C y , C x � � � C yŽ . Ž . Ž . Ž .Ž .p , pc c

� P C x � �, C y � �Ž . Ž .Ž .p , pc c

2� P C x � � P C y � � � � p , p ;Ž . Ž . Ž .Ž . Ž .p , p p , p c cc c c c

thus the hypotheses of either of our two theorems automatically imply that
Ž .� p , p � 0.c c

THEOREM 1. Let d � 2 and s � 1. If

� 0, . . . , 0, l , 0, . . . , 0, m � �,Ž . Ž .Ž .Ý pc
l�0, m�1

then
�1.7 � p , p � 0 for any p � 0, 1 .Ž . Ž . .1 c 1

Ž . Ž .d� s sTHEOREM 2. Let d � 2 and d � s � 2. If Ý � o, x � �, thenx � �04 �� pcs Ž Ž s..there exists a new critical value p in p , p � such thatc c c

� p , p � 0 if p � ps ,Ž .1 c 1 c

� p , p � 0 if p � ps .Ž .1 c 1 c

1.8Ž .

Theorems 1 and 2 will be proved in Section 3. We remark, as explained at
the very end of Section 3, that an extension of arguments used by Aizenman

Ž . sand Newman 1984 for homogeneous percolation yields the inequality � � 1
for a critical exponent describing cluster size divergence. We also note that
the proof of Theorem 2 shows that for s � 1, its summability hypothesis
suffices to yield p1 � p ; however, our current proof of the stronger conclusionc c

1 � Ž .�that p � 1 i.e., 1.7 requires the stronger summability hypothesis ofc
Theorem 1. The following is our main application of Theorems 1 and 2.

COROLLARY 1. If d is sufficiently large, then

Ž . Ž . � .a for s � 1, � p , p � 0 for any p � 0, 1 ;1 c 1
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Ž . s Ž Ž s.. Ž .b for 2 � s � d � 3, there exists p in p , p � such that 1.8 isc c c
valid.

Ž .PROOF. A major ingredient in the results of Hara and Slade 1990 on
Žpercolation critical exponents for high d is the highly nontrivial estimate see

.their Theorem 1.1. that when d is sufficiently large, than

C
1.9 � x , y � ,Ž . Ž .p d�2c � �x � y

� � � � � 4where C � C � � and x � max x : i � 1, . . . , d . Thusd i

C
1.10 � 0, . . . , 0, l , 0, . . . , 0, m �Ž . Ž . Ž .Ž .Ý Ýp d�2c m � lŽ .l�0, m�1 l�0, m�1

Ž .A simple calculation shows that the right-hand side of 1.10 is finite for
Ž . Ž . Ž .d � 4. Part a then follows from Theorem 1. For part b , applying 1.9

again, we have that

� 1
s�1� o , x � C� n ,Ž .Ý Ýp d�2c nd�s s n�1� 4x� 0 ��

Ž .which is finite when s � d � 2. Part b then follows from Theorem 2. �

For oriented percolation on �d � �, which may be regarded as a discrete
time contact process on �d, analogues of Theorems 1 and 2 follow from
analogous arguments. The analogue of Corollary 1 then follows by applying

Ž . Ž .the Nguyen and Yang 1993 analogue of the infrared bound 1.9 . The
continuous time contact process will be the subject of Section 2.

The rest of this paper is organized as follows. In Section 2, we present the
Ž .analogues of Theorems 1 and 2 for the continuous time contact process and

discuss the status of the analogue of Corollary 1. The proofs of Theorems 1
and 2 and of the contact process analogues are given in Section 3.

We conclude this section with a brief discussion of some open problems.
Ž .Part a of Corollary 1, conjectured for all d � 2 by Madras, Schinazi and

Ž . Ž .Schonmann 1994 , was proved by Zhang 1994 for d � 2 and is proved in
this paper for large d; it is an open problem to prove it for intermediate
values of d. We note in this regard that the summability condition of

Ž .Theorem 1 is not expected to be valid for d � 3. We conjecture that Part b of
Corollary 1 is valid for all d � 3 and 2 � s � d � 1. The upper bound

s Ž s. Ž .p � p � , which follows from the results of Aizenman and Grimmett 1991 ,c c
is valid for all these cases. It is an open problem to obtain the lower bound

s Ž d .p � p � both for large d and s � d � 2 or d � 1 and for intermediate dc c
and any s with 1 � s � d � 1. We remark that in the former case, the
summability condition of Theorem 2 is not valid. Another set of open prob-
lems is to extend Theorems 1 and 2 to the case of Ising models with
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low-dimensional inhomogeneity. In that context, we have obtained only par-
tial results, which we do not present here.

2. Contact process. The contact process on �d can be defined by the
d � .usual graphical representation, as follows. Consider the space � � 0, � , in

d � .which � represents the spatial component and 0, � represents time. Along
� 4 � .each vertical time line x � 0, � is positioned a Poisson process of points,

Ž . � 4 � .called deaths, with density � x ; between each ordered pair x � 0, � and1
� 4 � .x � 0, � of nearest neighbor lines, there is a Poisson process, with density2
�, of bonds oriented in the direction x to x . All these Poisson processes are1 2
taken to be independent of each other.

We are interested in the following two cases:

Ž . Ž . d � 4CASE 2a. � o � � and � x � 1 for any x � � � o , where o denotes
the origin of �d.

Ž . � 4d�s s Ž .CASE 2b. � x � � for any x � 0 � � and � x � 1 for any
d Ž� 4d�s s.x � � � 0 � � , where 1 � s � d � 1.

Ž .We call this a � , � -model and write P for the resulting probability� , �

measure and E for the corresponding expectation. The case � � 1 corre-� , �

sponds to the homogeneous model, for which we will simply write P rather�

Ž . d � .than P . A point x, t in � � 0, � is said to be connected to another1, � 1
Ž . Ž . Ž .point y, t with t � t if there is a path from x, t to y, t using vertical2 1 2 1 2

line segments touching no points of death, traversed in the upward direction,
Ž . Ž .and oriented horizontal bonds. We denote this event by x, t � y, t .1 2

d Ž . d � .Let 	 be the set of sites x in � such that the origin o, 0 of � � 0, � ist
Ž .connected to x, t . If we treat the contact process in the usual way as a model

for the spread of infection, then 	 is the set of infected sites at time t whent
initially only the origin is infected. Let

C x , t � y , s : x , t � y , s� 4Ž . Ž . Ž . Ž .
Ž . Ž .denote the cluster of x, t . We write C for C o, 0 . Define the survival

probability to be

2.1 � � , � � P 	 is nonempty for all t ;Ž . Ž . Ž .� , � t

Ž .then the critical value for the homogeneous model is defined by

2.2 � � � �d � inf �: � 1, � � 0 .� 4Ž . Ž . Ž .c c

Ž .A fundamental theorem of Bezuidenhout and Grimmett 1990 states that

2.3 � 1, � � 0.Ž . Ž .c

Ž .Madras, Schinazi and Schonmann 1994 considered Case 2a and proved that
if � � � , thenc

�� � , � � 0 for any � � 0, 1 .Ž . Ž
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They conjectured that

�2.4 � � , � � 0 for any � � 0, 1 .Ž . Ž . Žc

We remark that this conjecture, which would be a strengthening of the
Bezuidenhout and Grimmett result, has not been proved even for the one-
dimensional contact process, although for percolation, the analogous result

Ž .for two-dimensional nonoriented percolation has been proved by Zhang 1994 .
The next theorem addresses this conjecture, and the following one deals

� .with Case 2b. For technical reasons, we extend the time coordinate from 0, �
Ž .to � � ��, � . It should be clear that the graphical representation can be

extended to �d � �.

THEOREM 3. In Case 2a, if

�0
2.5 P o , t � o , u du dt � �Ž . Ž . Ž .Ž .H H �c�� 1

then

�2.6 � � , � � 0 for any � � 0, 1 .Ž . Ž . Žc

THEOREM 4. In Case 2b, if

�

2.7 P o , 0 � x , t dt � �,Ž . Ž . Ž .Ž .Ý H �c
0d�s s� 4x� 0 ��

s Ž Ž d . Ž s. .then there exists � in � � 	� � , 1 such thatc c c

� � , � � 0 if � � � s ,Ž .c c

� � , � � 0 if � � � s .Ž .c c

2.8Ž .

The proofs of Theorems 3 and 4 are closely related to those of Theorems 1
and 2. We give the proof of Theorem 3 and sketch the proof of Theorem 4 in
Section 3. At the end of Section 3, there is a remark about a critical exponent
inequality.

Ž . Ž . Ž .As in Corollary 1, a sufficient condition for 2.5 and 2.7 for large d
would be an infrared bound for the homogeneous contact process,

C
2.9 P x , t � y , u � ,Ž . Ž . Ž .Ž .� Ž .d�1 �2c x , t � y , uŽ . Ž .

� Ž .which is expected to be true when d � 4 see Obukhov 1980 and Nguyen
Ž .� Ž .and Yang 1993 . More precisely, if 2.9 holds for a given d, then we have:

Ž . Ž .1. For d � 4, 2.5 and hence 2.6 hold;
Ž . Ž .2. For s � d � 3, 2.7 holds and hence 2.8 holds when 1 � s � d � 3.

Ž .However 2.9 has not yet been rigorously proved.
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3. Proofs of theorems.

Ž .PROOF OF THEOREM 1. We follow an approach taken by Schulman 1983
� Ž .�extended by Aizenman and Newman 1986 in the context of long range

Ž . � 4d�1one-dimensional percolation. We call a site 0, . . . , 0, n of 0 � � a break-
�Ž . � 4d�1 4point if the half line 0, . . . , 0, l � 0 � �: l � n is not connected to the

�Ž . � 4d�1 4half line 0, . . . , 0, m � 0 � �: m � n � 1 . Write B for the event that
Ž . Ž . Ž .the nearest neighbor bond between 0, 0, . . . , 0 and 0,, . . . , 0, 1 is closed and

Ž . Ž . d Ž� 4d�1 .write ‘‘ 0, . . . , 0, l �
 0, . . . , 0, m in � � 0 � � ’’ for the complement of
the event that there is a path of open bonds, not using any bonds in
� 4d�1 Ž . Ž .0 � �, connecting 0, . . . , 0, l and 0, . . . , 0, m . Using the FKG inequali-
ties, we have

P 0, 0, . . . , 0 is a breakpointŽ .Ž .p , p1 c

� P B � 0, . . . , 0, l �
 0, . . . , 0, m� 4Ž . Ž .�p , p1 cž
l�0, m�1

d�1d � 4in � � 0 � �Ž . /
� P B P 0, . . . , 0, l �
 0, . . . , 0, mŽ . Ž . Ž .Ł žp , p p , p1 c 1 c

l�0, m�13.1Ž .
d�1d � 4in � � 0 � �Ž . /

� 1 � p P 0, . . . , 0, l �
 0, . . . , 0, mŽ . Ž . Ž .Ł ž1 p , pc c
l�0, m�1

d�1d � 4in � � 0 � �Ž . /
� 1 � p 1 � � 0, . . . , 0, l , 0, . . . , 0, m .Ž . Ž . Ž .Ž .Ž .Ł1 pc

l�0, m�1

Ž .The right-hand side of 3.1 is a strictly positive constant by the hypothesis
of Theorem 1. So from the ergodicity and translation invariance in the last
coordinate direction,

P 0, . . . , 0, n is a breakpoint for infinitelyŽ .Žp , p1 c

many positive and infinitely many negative n � 1..
3.2Ž .

Ž . dA consequence of 3.2 is that a.s. every cluster in � can only intersect the
� 4d�1line 0 � � at only finitely many places. Note that if there exists an

d � 4d�1infinite cluster in � which intersects 0 � � at only finitely many places,
d Ž� 4d�1 .then there exists an infinite cluster in � � 0 � � . Therefore, if

Ž . d Ž� 4d�1 .� p , p � 0, then there exists a.s. an infinite cluster in � � 0 � � ;1 c
that is,

d�1d � 43.3 P there exists an infinite cluster in � � 0 � � � 1.Ž . Ž .ž /p , p1 c

Ž . Ž dBut 3.3 is equivalent to P there exists an infinite cluster in � �p , pc c
Ž� 4d�1 .. Ž . Ž0 � � � 1, a contradiction to � p , p � 0 which itself follows fromc c

.the hypothesis of the theorem . This proves Theorem 1. �
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Ž s.PROOF OF THEOREM 2. First, it is clear that if p � p � then1 c
Ž . � 4d�s s� p , p � 0, since there is already percolation in 0 � � , and hence1 c

d s Ž s. s Ž s.there is percolation in � . Thus p � p � . The strict inequality p � p �c c c c
Ž .follows from Theorem 1 of Aizenman and Grimmett 1991 , because the bonds

d Ž� 4d�s s. Ž .on � � 0 � � each of which has probability p to be open provide anc
‘‘essential enhancement’’ of the percolation model on � s. It remains to show
that there exists 
 � 0 such that
3.4 � p � 
 , p � 0.Ž . Ž .c c

� 4d�s sWrite S for 0 � � . Let
d� 43.5 C � C o � S � x � S : o � x in �Ž . Ž .

be the intersection of S and the cluster of the origin. From the hypothesis of
the theorem,

� �3.6 � � E C � � o , x � �.Ž . Ž .Ýp , p pc c c
x�s

Ž .The idea of proving 3.4 is to show that

� �3.7 E C � �.Ž . p �
 , pc c

Ž . Ž .To see how 3.4 follows from 3.7 , decompose the event that the origin is in
an infinite cluster as

� � � �3.8 C o � � � C o � � and C � � � C � � .� 4� 4Ž . Ž . Ž .� 4
Ž .From 3.7 , we have

� �3.9 P C � � � 0.Ž . Ž .p �
 , pc c

Moreover,

� �P C o � � and C � �Ž .Ž .p �
 , pc c

� P there exists an infinite cluster in �d � SŽ .p �
 , pc c3.10Ž .
� P there exists an infinite cluster in �d � SŽ .p , pc c

� � p , p � 0.Ž .c c

Ž .The vanishing of � p , p follows from the hypothesis of the theorem, asc c
explained just before the statement of Theorem 1 in Section 1. Combining
Ž . Ž . Ž . Ž .3.8 � 3.10 proves 3.4 . We now turn to the proof of 3.7 .

Ž .The p � 
 , p -model can be thought of as follows. Independently colorc c
Ž . dpart of each bond of � blue with probability p , and then independentlyc

Ž . Ž .color a different part of each bond of S red with probability 
	 1 � p ; thec
blue-coloring and red-coloring processes are independent of each other, so

Ž .bonds can be both colors or one color or neither . Write P for the resulting
probability measure and E for the corresponding expectation. Declare each

d Ž .bond of � to be open if it is either blue or red or both . Let

3.11 C 0 � y � S : o � y by a blue path in �d� 4Ž .
and call it the level-0 cluster. Define

3.12 � C 0 � y � S : y � C 0 but y is a neighbor of some site of C 0� 4Ž .
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0 � 0 � � 0 �to be the boundary of C within S. Then � C � 2 s C , so

0 0� � � � � �3.13 E � C � 2 sE C � 2 sE C � 2 s� .Ž . p , pc c

For each x in � C 0 which is connected by a red bond to C 0, define

3.14 C1 x � y � S � C 0 : x � y by a blue path in �d� 4Ž . Ž .
and call it a level-1 cluster.

� 1Ž . �We proceed to stochastically bound C x by a type of argument using
‘‘self-determined’’ sets that is quite standard in the percolation theory litera-

� Ž .� 0ture see, e.g., Section 4.2 of Aizenman and Newman 1984 . Denote by CB
the blue cluster of o, that is, the set of sites in �d connected to o by a blue

d Ž . � 1Ž . �path in � . We claim that conditionally on the blue cluster of o each C x
� 0 �is stochastically dominated by C ; that is, for A any finite connected subset

of �d containing o,

1 0 0� �3.15 P C x � k  C � A � P C � kŽ . Ž . Ž .Ž .B

0 Ž 0 .for every x in � C with � C determined here by A and every k. This is
0 d 1Ž .because C is formed in � but C x is formed in the smaller region,

�d � C 0 ; that is, conditioned on C 0 � A and for any x in the resulting � C 0,B B
1Ž .the distribution of C x is the same as that of

y � S : x � y by a blue path in �d � A .� 4
That is so because, conditioned on C 0 � A, all bonds touching both A and itsB

1Ž .complement must be nonblue. Note that the union of the C x ’s together
with C 0 are those y ’s in S connected to o by a path of bonds which are either

Ž . Ž .blue or red or both with at most one red but not blue bond.
Continue this procedure to define level-i clusters for any i � 2. The size of

Ž .any level-i cluster, for i � 1, is again conditionally stochastically dominated
� 0 � i�1 dby C . Here we condition on C , the set of sites in � connected to o by aB

Ž . Žpath of bonds that are either blue or red or both with at most i � 1 red but
˜.not blue bonds. Define C to be the union of all level-i clusters, for i �

˜0, 1, 2, . . . . The definitions are such that C is the set of those y ’s in S
Ž .connected to o by paths whose bonds are blue or red or both with no

˜restriction on the number of purely red bonds. Thus C � C and

˜� � � �3.16 E C � E C .Ž . p �
 , pc c

Ž .We will bound the right-hand side of 3.16 as follows. Consider the
Galton�Watson tree where each node v has a random number 2 sW of bondsv

� 0 � Ž � 0 �going forward, where W has the distribution of C recall that � C �v
� 0 �. Ž2 s C . Independently declare each bond to be open with probability 
	 1 �
.p . Then the expected number of nodes connected to the root by open paths isc
Ž Ž Ž .. . Ž Ž .. Ž1	 1 � 
	 1 � p 2 s� when 
	 1 � p 2 s� � 1, that is when 
 � 1 �c c
. Ž .p 	 2 s� . Let H denote the expected sum of the W ’s over these nodesc v

Ž Žconnected to the root by open paths. Then it is easily seen that � � 
	 1 �
.. Ž Ž Ž .. .p 2 s� H � H so H � �	 1 � 
	 1 � p 2 s� . Finally, from the construc-c c
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tion of the Galton�Watson tree and stochastic domination, it follows that
�˜� �3.17 E C � H � .Ž .

1 � 
	 1 � p 2 s�Ž .Ž .c

Ž . Ž .Therefore, 3.7 is valid when 0 � 
 � 1 � p 	2 s� . This completes the proofc
of Theorem 2. �

PROOF OF THEOREM 3. The proof is parallel to that of Theorem 1. We will
Ž � � 4 Ž � � 4write a, b for o � a, b , an interval on the vertical line o � �, located at
d � 4 Ž . � 4o of � . We write o � t instead of o, t for a point on o � � in order to

� 4 Ž � Ž �distinguish a point from an interval on o � � and we write a, b � a�, b�
� 4 � 4to denote the event that for some a � t � b and a� � t� � b�, o � t � o �

t�. It is not hard to show that
�0 � 4 � 4P o � t � o � u du dtŽ .H H �

�� 1

� �� P l � 1, l � m , m � 1Ž ŽŽ .Ý �
l�0, m�1

3.18Ž .

�0 � 4 � 4� c P o � t � o � u du dt ,Ž .H H �
�� 1

� 4 Ž �where c is a finite constant. To see this, observe that for any o � t � l � 1, l
� 4 Ž �and any o � u � m, m � 1 ,

� �� 4 � 43.19 P o � t � o � u � P l � 1, l � m, m � 1 ,Ž . Ž . Ž ŽŽ .� �

Ž .which implies the first inequality in 3.18 . On the other hand, by the FKG
� Ž .�inequalities see Section 2 of Bezuidenhout and Grimmett 1991

� � � 4P l � 1, l � m, m � 1 � cP o � t � 1Ž .Ž Ž ŽŽ .� �3.20Ž .
� 4� o � u � 1Ž . .

Ž Ž � Ž �.with c � 1	P no death in l � 2, l � m, m � 2 . The second inequality in�

Ž .3.18 then follows.
� 4 � 4 ŽAnalogously to the proof of Theorem 1, call a point o � n of o � � with

. Ž � Ž . Ž �n an integer a breakpoint if ��, n � 1 �
 n, � . Denote by ‘‘ l � 1, l �

Ž � Ž d � 4.m, m � 1 in � � o � �’’ the complement of the event that there exist
� 4 Ž � � 4 Ž � � 4o � t � l � 1, l and o � u � m, m � 1 such that o � t is connected to
� 4 � 4 � 4 � 4o � u by a path � which intersects o � � only at o � t and o � u. Note

� 4that this event is independent of the Poisson process of deaths on o � �. Let
Ž .B be the event that there is a death in the interval 0, 1 and there is no bond

Ž �leaving or entering 0, 1 . Then by the FKG inequalities, we have for any
0 � � � 1 that

� 4P o � 1 is a breakpointŽ .� , �c

� d � 4� P B occurs, and ��, 0 �
 1, � in � � o � �Ž .Ž Ž .Ž .� , �c

� �� P B P l � 1, l �
 m, m � 1Ž . Ž ŽŽŁ� , � � , �c c
l�0, m�1

d � 4in � � o � �Ž . .3.21Ž .
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� �� P B P l � 1, l �
 m , m � 1Ž . Ž ŽŽŁ� , � 1, �c c
l�0, m�1

d � 4in � � o � �Ž . .
� �� P B 1 � P l � 1, l � m , m � 1 .Ž . Ž ŽŽ .Ž .Ł� , � 1, �c c

l�0, m�1

Ž . Ž .The right-hand side of 3.21 is nonzero by the second inequality of 3.18 and
the hypothesis of Theorem 3. Thus from the ergodicity and translation
invariance along the time coordinate,

� 4P o � n is a breakpoint for infinitely many� , �c

both positive and negative n � 1Ž .
3.22Ž .

Arguing similarly to the last part of the proof of Theorem 1, it follows that
Ž . Ž �� � , � � 0 for any � � 0, 1 . This completes the proof of Theorem 3. �c

SKETCH OF PROOF OF THEOREM 4. First, it is not hard to see that if
Ž d . Ž s. Ž . Ž s. Ž s.� � � � 	� � then � � , � � 0, since if � � � 	� � then � 	� � � �c c c c c c c

� 4d�s s Ž s.and hence the infection already survives on 0 � � . Thus � � � 	� � .c c c
Ž s.The strict inequality � � � 	� � again follows from the results ofc c c

�Aizenman and Grimmett, but now applied to the contact process see pages
Ž .�826 and 827 of Aizenman and Grimmett 1991 . It remains to show that

there exists 
 � 0 such that

3.23 � 1 � 
 , � � 0.Ž . Ž .c

� 4d�s sAgain write S for 0 � � . Let

C* � C o , 0 � S � ��Ž . Ž .
� x , t : x � S, o , 0 � x , t in Zd � ��� 4Ž . Ž . Ž .

3.24Ž .

� � 4 �be the intersection of the cluster of the origin with S � � . For A � x � � ,x
Ž . d �we denote by l A the Lebesgue measure of A and then for A � � � � ,x x

we define

� 4 �3.25 l A � l A � x � � .Ž . Ž . Ž .Ž .Ý
dx��

From the hypothesis of the theorem,

3.26 �* � E l C* � �.Ž . Ž .1, �c

Ž .The idea of proving 3.23 is to show that

3.27 �* 
 � E l C* � �.Ž . Ž . Ž .1�
 , �c

Ž . Ž .The reasoning for how 3.27 implies 3.23 is similar to that explained right
Ž .after 3.7 , except that one needs to use the simple fact that for each finite t,

the set 	 of infected sites is almost surely finite.t
Ž . Ž .A proof that �* 0 � � implies �* 
 � � for small 
 can be constructed

which closely parallels the proof of Theorem 2. However, we find it more
convenient to instead reformulate the earlier proof and then extend the
reformulation to the contact process. The reformulation, itself a direct exten-

Ž . Žsion of arguments used by Aizenman and Newman 1984 see especially
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.Lemma 3.1 there , is based on the differential inequality

d d2 �13.28 0 � � 
 � 2 s � 
 or 0 � � 
 � �2 s,Ž . Ž . Ž . Ž . Ž . Ž .
d
 d


where

� �3.29 � 
 � E C � � 0, x .Ž . Ž . Ž .Ýp �
 , p p �
 , pc c c c
x�S

Ž .�1This implies that � 
 cannot jump discontinuously from a strictly positive
Ž .value to zero and hence that � 
 cannot jump from a finite value to infinity.

Ž .�1 �1More specifically � 0 � � � 0 implies the following slight improvement
Ž .of 3.17 :

��1 �13.30 � 
 � � � 2 s
 or � 
 �Ž . Ž . Ž .
1 � 
 2 s�

Ž .�1 Ž .for 0 � 
 � 2 s� . Issues related to the differentiability of � 
 can be
Ž .handled as in Aizenman and Newman 1984 .

The above argument extends to the contact process because

d 23.31 0 � �* 
 � �* 
 .Ž . Ž . Ž . Ž .
d


Ž .This differential inequality can be derived analogously to 3.28 , for example,
Ž . �by the arguments used in Barsky and Wu 1995 see also Section 2 of

Ž .� Ž .Bezuidenhout and Grimmett 1991 to obtain see their Proposition 3.2

d 23.32 E l C o , 0 � 2 d E l C o , 0 .Ž . Ž . Ž .Ž . Ž .1, � 1, �d�

Ž . Ž .We note that there is no factor of 2 d or 2 s in 3.31 because the derivative
Ž .there is with respect to the death rate in S rather than the infection

transmission rate �. �

Ž . Ž .REMARK. As in Proposition 3.1 of Aizenman and Newman 1984 , 3.28
Ž . Ž . � s ��1implies that � 
 diverges at least as fast as a constant times 
 � 
 asc


 �
 s so that the critical exponent � s for mean cluster size divergencec
s s Ž .satisfies � � 1. Here 
 is the minimum value of 
 such that � 
 � �. Thisc

should equal ps � p , but we have not investigated the issue of ruling out thec c
Ž .possibility analogously to the situation for homogeneous percolation that


 s � ps � p . Finally, we note that a similar critical exponent inequalityc c c
Ž .follows for the inhomogeneous contact process from 3.31 .
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