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INTEGRATION OF BROWNIAN VECTOR FIELDS

BY YVES LE JAN AND OLIVIER RAIMOND

Université Paris-Sud

Using the Wiener chaos decomposition, we show that strong solutions
of non-Lipschitzian stochastic differential equations are given by random
Markovian kernels. The example of Sobolev flows is studied in some detail,
exhibiting interesting phase transitions.

0. Introduction. The purpose of this paper is to present an extended notion
of strong solutions of stochastic differential equations (SDEs) driven by Wiener
processes. These solutions can be defined on rather general spaces, in the context
of Dirichlet forms.

More interesting, they are not always given by flows of maps but by flows of
Markovian kernels, which means splitting can occur. Coalescent flows also appear
as solutions of these SDEs. Conditions are given under which coalescence and
splitting occur or not.

A variety of examples are studied. The case of isotropic Sobolev flows on the
sphere or on the Euclidean space shows in particular that splitting is related to
hyperinstability and coalescence to hyperstability. These notions (which will be
developed in Sections 9 and 10) are related to the explosion of the Lyapunov
exponent toward +∞ and −∞.

The typical example we have in mind is the Brownian motion on a Riemannian
manifold. We consider a covariance on vector fields which induces the Riemannian
metric on each tangent space. When the covariance function has enough regular-
ity, it is known that one can solve the linear SDE driven by the canonical Wiener
process associated with this covariance [or in other terms to the local characteris-
tics associated with this covariance (see Section 3 below)] and get a multiplicative
Brownian motion on the diffeomorphism group, which moves every point as a
Brownian motion (see [18] or [23]). However, models related to turbulence theory
produce natural examples where the regularity condition is not satisfied. Except
for the work of Darling [7], where strong solutions are not considered, these SDEs
have not been really studied. The idea is to define the solutions by their Wiener
chaos expansion in terms of the heat semigroup. We call it the statistical solution.
A similar expansion was given by Krylov and Veretennikov in [17], for SDEs with
strong solutions.

In this form, they appear as a semigroup of operators, and the fact that these
operators are Markovian is not clearly visible in the formula. To prove this, we
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consider an independent realization of the Brownian motion on the manifold
and couple it with the given Wiener process on vector fields using certain
martingales. Then the Markovian random operators which constitute the strong
solution are obtained by filtering the Brownian motion with respect to this Wiener
process. They determine the law of a canonical weak solution of the equation
given the Wiener process on vector fields. This construction has been adequately
generalized to be presented in the case of symmetric diffusions on a locally
compact metric space. It is a convenient and well-studied framework but this
assumption could clearly be relaxed (in particular to the framework of coercive
forms). Relations with particle representations and filtering of stochastic partial
differential equations (SPDEs) can be observed (see [19]).

The example of Sobolev flows is studied in detail on Euclidean spaces and
spheres and is of major interest especially in dimensions 2 and 3 where an
interesting phase diagram is given in terms of the two parameters determining the
Sobolev norm on vector fields: The differentiability index and the relative weight
of gradients and divergence free fields (compressibility).

Some of these results have been given in the note [21], and a preliminary
version of this work was released in [22]. They are directly connected and
partially motivated by a series of works of Gawedzki and Kupiainen on turbulent
advection [2, 13, 14].

1. Covariance function on a manifold. Let X be a manifold. A covariance
function C on T ∗X is a symmetric map from T ∗X2 in R such that, for any
(x, y) ∈X2, C restricted to T ∗x X× T ∗y X is bilinear and such that, for any n-tuples
(ξ1, . . . , ξn) of T ∗X, ∑

i,j

C(ξi, ξj )≥ 0.(1.1)

For any ξ = (x,u) ∈ T ∗X, let Cξ be the vector field such that, for any ξ ′ =
(y, v) ∈ T ∗X,

〈Cξ(y), v〉 =C(ξ, ξ ′).
Let H0 be the vector space generated by the vector fields Cξ . Let us define the

bilinear form on H0, 〈· , · 〉H such that

〈Cξ,Cξ ′〉H =C(ξ, ξ ′).(1.2)

As (1.1) is satisfied, the bilinear form 〈· , · 〉H is a scalar product on H0. We denote
by ‖ · ‖H the norm associated with 〈· , · 〉H .

Let H be the separate completion of H0 with respect to ‖ · ‖H . (H, 〈· , · 〉H) is
a separable Hilbert space and we will designate it as the self-reproducing space
associated with the covariance function C. H is constituted of vector fields on X
and, for any h ∈H and any ξ = (x,u) ∈ T ∗X,

〈Cξ,h〉H = 〈h(x), u〉.(1.3)
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Let (ek)k be an orthonormal basis of H , then (1.3) implies that, for any
ξ = (x,u) ∈ T ∗X,

Cξ =
∑
k

〈ek(x), u〉ek.(1.4)

This equation implies that, for any ξ ′ = (y, v) ∈ T ∗X,

C(ξ, ξ ′)=∑
k

〈ek(x), u〉〈ek(y), v〉.(1.5)

Therefore

C =∑
k

ek ⊗ ek.(1.6)

REMARK 1.1. On the other hand, if we start with a countable family of vector
fields (Vk)k , such that for any ξ = (x,u) ∈ T ∗X,

∑
k〈Vk(x), u〉2 <∞, it is possible

to define a covariance function on X by the formula

C =∑
k

Vk ⊗ Vk.

Examples of isotropic covariances are given in Sections 9 and 10. See also [1].
Now assume a Riemannian metric 〈· , · 〉x is given on X, the linear bundles TX

and T ∗X can be identified. We will now suppose that the covariance is bounded
by the metric, that is, that

C(ξ, ξ)≤ 〈u,u〉x
for any ξ = (x,u) ∈ T ∗X. Note that this condition implies that |h(x)|x ≤ ‖h‖H
for any h ∈H .

Let us denote by m(dx) the volume element on X. Given any differentiable
function f such that |∇f | is square integrable, we can map it linearly into
Df in the Hilbert tensor product L2(m)⊗̂H setting 〈Df,g ⊗ h〉 = ∫

X g(x)×
〈∇f (x),h(x)〉xm(dx) for all g ∈L2(m) and h ∈H .

Note that

‖Df ‖2
H (x)≤ |∇f (x)|2(1.7)

[this notation comes from the identification L2(m)⊗̂H with the L2-space of
H -valued functions on X] and that

‖Df ‖2
L2(m)⊗H ≤

∫
|∇f |2 dm.(1.8)
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2. Covariance function bounded by a Dirichlet form. We can extend these
notions to the framework of local Dirichlet forms. Let X be a locally compact
separable metric space and let m be a positive Radon measure on X such that
Supp[m] =X.

Let (E ,F ) be a regular Dirichlet space, F ⊂ L2(X,m). We suppose that the
Dirichlet form is local and conservative. We denote by Pt the associated Markovian
semigroup, by A its generator and by D(A) the domain of A. We also suppose
that m is an invariant measure, hence that Pt1= 1. We also assume that, for any
f ∈Fb =L∞(m) ∩F , there exists  (f,f ) ∈L1(m) such that, for any g ∈Fb,

2E(fg,f )− E(f 2, g)=
∫
g (f,f ) dm.(2.1)

 can be extended to F and we denote by  (f,g) the L1(m)-valued bilinear form
on F 2, where for any (f, g) ∈ F 2,  (f,g) = 1

4 ( (f + g,f + g) −  (f − g,

f − g)). A sufficient condition for the existence of  (see [3], Corollary 4.2.3) is
that D(A) contains a subspace E of D(A), dense in F , such that

∀f ∈E, f 2 ∈D(A).

Then, for (f, g) ∈E2,

 (f,g)=A(fg)− fAg − gAf.(2.2)

A necessary and sufficient condition for the existence of the energy density (or
carré du champ operator)  is given in Theorem 4.2.2 in [3].

FUNDAMENTAL EXAMPLE 2.1. X is a Riemannian manifold with metric
〈· , · 〉, m is the volume measure, F =H 1(X) and, for any (f, g) ∈F 2,

E(f, g)= 1
2

∫
X
〈∇f,∇g〉dm.

In this case,  (f,g)= 〈∇f,∇g〉.
Let H be a separable Hilbert space and D a linear map from F into the Hilbert

tensor product L2(m)⊗̂H such that, for any f ∈ F ,

‖Df (x)‖2
H ≤  (f,f )(x)(2.3)

m(dx)-a.e. The most interesting case is when there is equality in (2.3).
We define the covariance function C as a bilinear map from F × F into

L2(m⊗m) by

〈C(f,g), u⊗ v〉L2(m⊗m) =
∫
X2
〈Df(x),Dg(y)〉Hu(x)v(y)m(dx)m(dy).(2.4)

Note that

〈C(f,f ),u⊗ u〉L2(m⊗m) ≤ 2E(f,f )‖u‖2
L2(m)

.(2.5)

We say that C is a covariance function bounded by the Dirichlet form (E ,F ).
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REMARK 2.2. Alternatively, we could define the covariance as a positive
symmetric bilinear map from F × F in L2(m ⊗ m) [i.e., such that, for any
ui ∈ L2(m) and any fi ∈ F ,∫ ∑

i,j

ui ⊗ ujC(fi ,fj ) dm⊗2 ≥ 0](2.6)

such that

〈C(f,f ),u⊗ u〉L2(m⊗m) ≤ 2E(f,f )‖u‖2
L2(m)

(2.7)

and construct as before a Hilbert space such that (2.3) holds.
Indeed, we define H as the separated closure of the space H0 spanned by

elements of the form u ⊗ f , with u ⊗ f ∈ L2(m) ⊗ F , and equipped with the
(possibly degenerate) scalar product

〈u⊗ f, v⊗ g〉H = 〈C(f,g), u⊗ v〉L2(m⊗m).

And for f ∈ F , Df is defined such that for any u⊗ v⊗ g ∈ L2(m)⊗L2(m)⊗F ,

〈Df,u⊗ v⊗ g〉L2(m)⊗̂H = 〈C(f,g), u⊗ v〉L2(m⊗m).

For any h ∈ H and f ∈ F define Dhf = 〈Df,h〉H , which belongs to L2(m).
Then, for any orthonormal basis (ek)k of H,

C =∑
k

Dek ⊗Dek .(2.8)

Moreover, for any f ∈F ,

‖Df ‖2
H =

∑
k

(Dekf )
2.(2.9)

Note that condition (2.3) implies that, for any finite family (ui, fi)∈
L∞(m)×F , ∑

i,j

uiujD(fi,fj )≤
∑
i,j

uiuj (fi,fj ),(2.10)

where D(f,g) denotes 〈Df (x),Dg(x)〉H =∑
k Dekf (x)Dekg(x). When the ui

are step functions with discontinuities in a set of zero measure, (2.10) is satisfied
as
∑
i,j uiujD(fi, fj ) = |D(

∑
i uifi)|2. Then we can extend this result to any

family (ui) by density in L2( (f,f ) dm) for every f ∈F .

REMARK 2.3. It is clear that, given a covarianceC on T ∗X as in Section 1, we
can build the self-reproducing spaceH consisting of vector fields and the mapping
D: H 1(X)→ L2(m)⊗̂H so as to construct a covariance function as in Section 2.
Now suppose conversely that we have a separable Hilbert spaceH , a linear mapD
and a covariance C as in Section 2, and suppose we are in the Riemannian case.
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The condition ‖Df (x)‖2
H ≤  (f,f )(x) = |∇f (x)|2 implies that C(f,g)(x, y)

depends only on ∇f (x) and ∇g(y), and so there is a covariance C̃ say on T ∗X so
that C(f,g)(x, y)= C̃(∇f (x),∇g(y)). So in the Riemannian case, any Section 2
covariance function reduces to a Section 1 covariance function.

Further, we can now assume without any loss of generality that the separable
Hilbert spaceH is the self-reproducing space corresponding to C̃ and thus consists
of vector fields.

REMARK 2.4. The bilinear mapping D is a derivation: for any h ∈H and any
f ∈F such that f 2 ∈ F ,

Dhf
2 = 2fDhf.(2.11)

Note that in the Riemanian manifold case (Fundamental example 2.1), Dhf =
∇hf when  =D.

PROOF. We first make the remark that∑
k

(Dekf
2 − 2fDekf )

2 =D(f 2,f 2)− 4fD(f 2,f )+ 4f 2D(f,f ).

Integrating this relation with respect to m and using (2.10), we get that∫ ∑
k

(Dekf
2 − 2fDekf )

2 dm ≤
∫ (
 (f 2,f 2)− 4f (f 2,f )+ 4f 2 (f,f )

)
dm

= 0.

This implies that, for every k, Dekf
2 − 2fDekf = 0. �

3. Construction of the statistical solutions. In Fundamental example 2.1,
when X is a Riemannian manifold, C is smooth and, when equality holds in (2.3),
it is well known (see [18, 23]) that a stochastic flow of diffeomorphisms on X can
be associated with C. Then, with the notation of Definition 2.1 in [23], the local
characteristics of the flow are (A,L), where A=C and L is the Laplacian on X.

The object of this section is to show that, in the general situation considered
above, it is always possible to define a flow of Markovian kernels associated with C
and (E ,F ) (which is induced by the stochastic flow when C is smooth).

Let a covariance function C bounded by a Dirichlet form (E ,F ) on a locally
compact separable metric space be given as in the preceding section [(2.3) is
satisfied]. Let Wt be a cylindrical Brownian motion on H defined on some
probability space (#,A,P ), that is, a Gaussian process indexed by H × R+
with covariance matrix cov(Wt(h),Ws(h

′)) = s ∧ t 〈h,h′〉H . Set Wk
t = Wt(ek).

(Wk
t ; k ∈N) is a sequence of independent Wiener processes and we can represent

Wt by
∑
k W

k
t ek. Informally, the law of Wt is given by

1

Z
e−(1/2)

∫∞
0 ‖Ẇt‖2

H dtDW.

Let Ft = σ(Wk
s ; k ∈N; s ≤ t)= σ(Ws; s ≤ t).
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PROPOSITION 3.1. Let S0
t = Pt . We can define a sequence Snt of random op-

erators on L2(m) such thatE[(Snt f )2] ≤ Ptf 2 in L1(m) and Snt is Ft -measurable,
by the recurrence formula, in L2(m ⊗ P ) [i.e., in the Hilbert tensor product
L2(m)⊗̂L2(P )]

Sn+1
t f = Ptf +

∑
k

∫ t

0

(
Sns (DekPt−sf )

)
dWk

s .(3.1)

REMARK. The stochastic integral in (3.1) here makes sense as a Hilbert-
valued Itô integral. Recall that given a real Wiener process Wt and a Hilbert
space H , for any F progressively measurable in L2(PW ⊗ dt)⊗̂H and any
h ∈ H , 〈∫ ts F (u) dWu,h〉H = ∫ t

s 〈F(u),h〉H dWu and E[‖ ∫ ts F (u) dWu‖2
H ]=∫ t

s ‖F(u)‖2
H du.

PROOF OF PROPOSITION 3.1. Suppose we are given Snt , an Ft -measurable
random operator on L2(m) such that E[(Snt f )2] ≤ Ptf 2.

Let f ∈ L2(m). For any positive t , Ptf ∈ F and DekPt−sf is well defined and
belongs to L2(m),

E[(Sn+1
t f )2] = (Ptf )2+

∑
k

∫ t

0
E
[(
Sns (DekPt−sf )

)2]
ds, m-a.e.

≤ (Ptf )2+
∫ t

0
Ps(|DPt−sf |2) ds

≤ (Ptf )2+
∫ t

0
Ps
(
 (Pt−sf,Pt−sf )

)
ds.

For f ∈L∞(m) ∩L2(m), ∂
∂s
Ps((Pt−sf )2)= Ps( (Pt−sf,Pt−sf )) and

Ptf
2 = (Ptf )2+

∫ t

0
Ps
(
 (Pt−sf,Pt−sf )

)
ds.(3.2)

An approximation by truncation shows that (3.2) remains true for f ∈ L2(m) and
E[(Sn+1

t f )2] ≤ Ptf 2. �

REMARK. The definition of Snt is independent of the choice of the basis on H .

In the following, we use the canonical realization of the processes Wk
t . They

are defined as coordinate functions on #= C(R+,R)N, with the product Wiener
measure P . We denote by θt the natural shift on# such thatWk

t+s−Wk
t =Wk

s ◦θt .
Recall that an operator on L2(m) is called Markovian if and only if it preserves

positivity and maps 1 into 1 (or, more precisely, if m is not finite, its natural
extension to positive functions maps 1 into 1).
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THEOREM 3.2. The family of random operators Snt converges in L2(P )

toward a one-parameter family of Ft -adapted Markovian operators St such that
the following hold:

(a) St+s = St (Ss ◦ θt ), for any s, t ≥ 0;
(b) ∀f ∈ L2(m), Stf is uniformly continuous with respect to t in L2(m⊗P );
(c) E[(Stf )2] ≤ Ptf 2, for any f ∈L2(m);
(d) Stf = Ptf +∑k

∫ t
0 Ss(DekPt−sf ) dWk

s , for any f ∈ L2(m);
(e) Stf = f +∑k

∫ t
0 Ss(Dekf ) dW

k
s +

∫ t
0 Ss(Af )ds, for any f ∈D(A).

St is uniquely characterized by (c) and (d) or by (a), (c) and (e). When  =D, we
call it the statistical solution of the SDE [see (3.22) below]

∀f ∈D(A), df (Xt )=
∑
k

Dekf (Xt ) dW
k
t +Af (Xt) dt.(3.3)

Note that this SDE does not always have a strong solution in the usual sense.

PROOF. The convergence of Snt is immediate since, for any n ≥ 1, Jnt f =
Snt f − Sn−1

t f is in the Hilbert tensor product of the nth Wiener chaos of
L2(P ) with L2(m), Stf = Ptf +∑∞

n=1 J
n
t f and (Ptf )

2 +∑
n≥1E[(J nt f )2]=

limn→∞E[(Snt f )2] ≤ Ptf
2. It is clear that St is Ft -adapted and satisfies (c).

Part (d) is obtained by taking the limit in the recurrence formula of the proposition.
Since

Jnt f =
∑

k1,...,kn

∫
0<s1<···<sn<t

Ps1Dek1
Ps2−s1 · · ·Dekn

Pt−snf dWk1
s1
· · ·dWkn

sn

we have Jnt+s =
∑
k≤n J kt (J n−ks ◦ θt ) (the kth term corresponds to

∑
k1,...,kn

∫
0<s1<···<sk<s<sk+1<···<sn<t+s

Ps1Dek1
Ps2−s1 · · ·Dekn

Pt+s−snf

× dWk1
s1
· · ·dWkn

sn
).

We deduce (a) from this relation.
The uniqueness of a solution of (d) satisfying (c) follows directly from the

uniqueness of the Wiener chaos decomposition, obtained by iteration of (d): Let
Tt designate another solution of (d) and (c). Then, for any f ∈ L2(m) and any
integer n,

Ttf = Sn−1
t f + ∑

k1,...,kn

∫
0<s1<···<sn<t

Ts1Dek1
Ps2−s1 · · ·Dekn

Pt−snf dWk1
s1
· · ·dWkn

sn
.
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The second term of the right-hand side of the preceding equation is orthogonal
to the first one since its integrands are L2. Indeed,∑

k1,...,kn

E

[∫
0<s1<···<sn<t

(Ts1Dek1
Ps2−s1 · · ·Dekn

Pt−snf )2 ds1 · · ·dsn
]

≤ ∑
k1,...,kn

∫
0<s1<···<sn<t

Ps1(|Dek1
Ps2−s1 · · ·Dekn

Pt−snf |2) ds1 · · ·dsn

≤ ∑
k2,...,kn

∫
0<s2<···<sn<t

Ps2(|Dek2
Ps3−s2 · · ·Dekn

Pt−snf |2) ds2 · · ·dsn

using (2.3) and (3.2) and by induction is smaller than Ptf 2.
This proves that the Wiener chaos decompositions of Ttf and Stf are the same

and therefore Tt = St .

PROOF OF (b). Let us remark that, for any positive ε, St+ε − St = St(Sε ◦
θt − I ). As St and Sε ◦ θt are independent and m is invariant under Pt , for any
f ∈L2(m),∫

E[(St+εf − Stf )2]dm≤
∫
E[Pt(Sε ◦ θtf − f )2]dm

≤
∫
E[(Sε ◦ θtf − f )2]dm

(3.4)

≤
∫
(Pεf

2− 2f Pεf + f 2) dm

≤ 2‖f ‖L2(m)‖f − Pεf ‖L2(m).

Therefore, limε→0 ‖St+εf − Stf ‖L2(m⊗P) = 0, uniformly in t . �

REMARK 3.3. Note also the convergence in L2(m ⊗ P ) of PεStf toward
Stf when ε→ 0. Indeed ‖PεStf − Stf ‖2

L2(m⊗P) = E[‖PεStf − Stf ‖2
L2(m)

] and

‖PεStf − Stf ‖2
L2(m)

converges toward 0 when ε goes to 0 and is dominated by

4‖Stf ‖2
L2(m)

.

PROOF OF (e). Let us remark that, for any ε and t positive,

St+εf − Stf = St
(
Pεf +

∑
k

∫ ε

0
Su ◦ θt (DekPε−uf ) dWk

u ◦ θt − f
)

(3.5)

= St(Pεf − f )+
∑
k

∫ t+ε
t

Ss(DekPt+ε−sf ) dWk
s .
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Hence using (3.5) for t = i
n
t and ε = 1

n
t , for f ∈D(A),

Stf − f −
∑
k

∫ t

0
Ss(Dekf ) dW

k
s −

∫ t

0
Ss(Af )ds

=
n−1∑
i=0

[
S(i/n)t (Pt/nf − f )+

∑
k

∫ ((i+1)/n)t

(i/n)t
Ss(DekP((i+1)/n)t−sf ) dWk

s

−
∫ ((i+1)/n)t

(i/n)t
Ss(Af )ds −

∑
k

∫ ((i+1)/n)t

(i/n)t
Ss(Dekf ) dW

k
s

]
=A1(n)+A2(n)+A3(n),

with

A1(n)=
n−1∑
i=0

S(i/n)t

(
Pt/nf − f − t

n
Af

)
;(3.6)

A2(n)=
n−1∑
i=0

∫ ((i+1)/n)t

(i/n)t

(
S(i/n)t (Af )− Ss(Af ))ds;(3.7)

A3(n)=
n−1∑
i=0

∑
k

∫ ((i+1)/n)t

(i/n)t
Ss
(
Dek(P((i+1)/n)t−sf − f ))dWk

s .(3.8)

First, using the fact that m is Pt -invariant,

‖A1(n)‖L2(m⊗P) ≤ n
∥∥∥∥Pt/nf − f − t

n
Af

∥∥∥∥
L2(m)

= o(1).(3.9)

After, we remark that∥∥∥∥ ∫ ((i+1)/n)t

(i/n)t

(
S(i/n)t (Af )− Ss(Af ))ds∥∥∥∥2

L2(m⊗P)

≤ t

n

∫ ((i+1)/n)t

(i/n)t
‖S(i/n)t (Af )− Ss(Af )‖2

L2(m⊗P) ds.

As St(Af ) is uniformly continuous in L2(m ⊗ P ), there exists ε(x) such that
limx→0 ε(x) = 0 and ‖S(i/n)t (Af ) − Ss(Af )‖2

L2(m⊗P) ≤ ε( t
n
) for any s ∈ [ i

n
t,

i+1
n
t]. Hence we get∥∥∥∥ ∫ ((i+1)/n)t

(i/n)t

(
S(i/n)t (Af )− Ss(Af ))ds∥∥∥∥2

L2(m⊗P)
≤ t2

n2 ε

(
t

n

)
and ‖A2(n)‖L2(m⊗P) = o(1).
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At last, as the different terms in the sum in (3.8) are orthogonal,

‖A3(n)‖2
L2(m⊗P)

=
n−1∑
i=0

∑
k

∫
E

[(∫ ((i+1)/n)t

(i/n)t
Ss
(
Dek(P((i+1)/n)t−sf − f ))dWk

s

)2]
dm

≤
n−1∑
i=0

∫ ∫ ((i+1)/n)t

(i/n)t
|D(P((i+1)/n)t−sf − f )|2 ds dm

≤ n
∫ t/n

0

∫
|D(Psf − f )|2 dmds

≤ n
∫ t/n

0
E(Psf − f,Psf − f )ds.

As lims→0 E(Psf − f,Psf − f )= 0, ‖A3(n)‖L2(m⊗P) = o(1).
Taking the limit as n goes to∞, this shows that ‖Stf − f −∑k

∫ t
0 Ss(Dekf )×

dWk
s −

∫ t
0 Ss(Af )ds‖L2(m⊗P) = 0. �

PROOF THAT (a), (c) AND (e) IMPLY (d). Take f ∈ L2(m) and ε positive,
assuming (e),

StPεf − PtPεf −
∑
k

∫ t

0
Ss(DekPt−sPεf ) dWk

s

=
n−1∑
i=0

[
S((i+1)/n)t (Pt−((i+1)/n)tPεf )− S(i/n)t (Pt−(i/n)tPεf )

−∑
k

∫ ((i+1)/n)t

(i/n)t
Ss
(
Dek(Pt−sPεf )

)
dWk

s

]
= B1(n)+B2(n)+B3(n),

with

B1(n)=
n−1∑
i=0

∑
k

∫ ((i+1)/n)t

(i/n)t
Ss
(
Dek(Pt−((i+1)/n)tPεf − Pt−sPεf ))dWk

s ;(3.10)

B2(n)=−
n−1∑
i=0

S(i/n)t

(
Pt−(i/n)tPεf − Pt−((i+1)/n)tPεf

(3.11)

− t

n
APt−((i+1)/n)tPεf

)
;

B3(n)=
n−1∑
i=0

∫ ((i+1)/n)t

(i/n)t
(Ss − S(i/n)t )(APt−((i+1)/n)tPεf ) ds,(3.12)
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since

S((i+1)/n)t (Pt−((i+1)/n)tPεf )

= S(i/n)t (Pt−((i+1)/n)tPεf )+
∫ ((i+1)/n)t

(i/n)t
Ss(APt−((i+1)/n)tPεf ) ds

+∑
k

∫ ((i+1)/n)t

(i/n)t
SsDekPt−((i+1)/n)tPεf dW

k
s .

Since the different terms in the sum in (3.10) are orthogonal,

‖B1(n)‖2
L2(m⊗P) ≤

n−1∑
i=0

∫ ∫ ((i+1)/n)t

(i/n)t
|D(Pt−((i+1)/n)tPεf − Pt−sPεf )|2 ds dm

≤
n−1∑
i=0

∫ ((i+1)/n)t

(i/n)t
E(Pt−((i+1)/n)tPεf

(3.13)
− Pt−sPεf,Pt−((i+1)/n)tPεf − Pt−sPεf ) ds

≤ n
∫ t/n

0
E(PsPεf − Pεf,PsPεf − Pεf ) ds

as E(Ptf,Ptf )≤ E(f,f ) for any positive t and any f ∈ L2(m).
Equation (3.13) implies that ‖B1(n)‖L2(m⊗P) = o(1) [as lims→0 E(PsPεf −

Pεf,PsPεf − Pεf )= 0];

‖B2(n)‖L2(m⊗P)

≤
n−1∑
i=0

∥∥∥∥S(i/n)t(Pt−(i/n)tPεf − Pt−((i+1)/n)tPεf

− t

n
APt−((i+1)/n)tPεf

)∥∥∥∥
L2(m⊗P)

≤
n−1∑
i=0

(∫ (
P((i+1)/n)tPεf − P(i/n)tPεf − t

n
AP(i/n)tPεf

)2

dm

)1/2

≤ n
∥∥∥∥Pt/nPεf − Pεf − t

n
APεf

∥∥∥∥
L2(m)

,

hence, ‖B2(n)‖L2(m⊗P) = o(1).
Note that if Qtf =E[Stf ], (e) implies that, for any f ∈D(A),

Qtf = f +
∫ t

0
Qs(Af )ds.



838 Y. LE JAN AND O. RAIMOND

Then ∂
∂s
QsPt−sf = 0 for any f ∈L2(m) and 0< s < t [then Pt−sf ∈D(A)] and

we have Qtf = Ptf . With this remark and the fact that (a) and (c) are satisfied,
we see that (b) and (3.4) are satisfied [see the proof of (b)]. Using (3.4), we have

‖(Ss − S(i/n)t )(APt−((i+1)/n)tPεf )‖2
L2(m⊗P)

≤ 2‖APt−((i+1)/n)tPεf ‖L2(m)

×‖APt−((i+1)/n)tPεf − Ps−(i/n)tAPt−((i+1)/n)tPεf ‖L2(m)

≤ 2‖APεf ‖L2(m)‖APεf − Ps−(i/n)tAPεf ‖L2(m)

≤ 4‖APεf ‖2
L2(m)

.

Hence,

‖B3(n)‖2
L2(m⊗P)

≤
n−1∑
i=0

t

n

∫ ((i+1)/n)t

(i/n)t
‖(Ss − S(i/n)t )(APt−((i+1)/n)tPεf )‖2

L2(m⊗P) ds

≤ 4t2

n
‖APεf ‖2

L2(m)
.

Taking the limit as n goes to ∞, this shows that (d) is satisfied for Pεf , with
f ∈L2(m) and ε positive.

At last, since ‖StPεf − Stf ‖L2(m⊗P) ≤ ‖Pεf − f ‖L2(m) [because (c) is satis-
fied], ‖Pt+εf −Ptf ‖L2(m⊗P) ≤ ‖Pεf − f ‖L2(m) and ‖∑k

∫ t
0 Ss(DekPt−s(Pεf −

f )) dWk
s ‖2

L2(m⊗P) ≤ tE(Pεf − f,Pεf − f ). Taking the limit as ε goes to 0, we

prove that (d) is satisfied for any f ∈ L2(m). �

PROOF THAT St IS MARKOVIAN. A more concise proof of this fact has
been given in [21], relying on Wiener exponentials and Girsanov formula. The
advantage of the following proof is to be more explanatory, to give a relation with
weak solutions and to yield a construction of the process law associated with the
statistical solution St .

Let (#′,G,Gt ,Xt ,Px) be a Hunt process associated with (E ,F ) (see [11]); we
take a canonical version with #′ =C(R+,X). Let Wt =∑

k W
k
t ek be a cylindrical

Brownian motion on H , independent of the Markov process Xt .
Let M be the space of the martingales additive functionals, Gt -adapted such

that if M ∈M, Ex[M2
t ] <∞, Ex[Mt ] = 0 q.e. and e(M) <∞, where e(M) =

supt>0
1
2t Em[M2

t ] [with Pm = ∫
Px dm(x)]. (M, e) is a Hilbert space (see [11]).

For f ∈ F ,Mf ∈M denotes the martingale part of the semimartingale f (Xt)−
f (X0). For g ∈ CK(X)⊂ L2( (f,f ) dm) [CK(X) designates the space of func-
tions continuous with compact support], we denote by g.Mf ∈M the martingale∫ t

0 g(Xs) dM
f
s . Then M0 = {∑n

i=1 gi .M
fi ; n ∈N, gi ∈ CK(X), fi ∈F } is dense
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in M (see [11], Lemma 5.6.3), and e(
∑
i gi .M

fi ) = 1
2

∑
i,j

∫
gigj (fi, fj ) dm

(see [11], Theorem 5.2.3 and 5.6.1).

LEMMA 3.4. For every (M,N) ∈M ×M, there exists  (M,N) ∈ L1(m)

such that

〈M,N〉t =
∫ t

0
 (M,N)(Xs) ds,(3.14)

where 〈· , · 〉t is the usual martingale bracket. For (f, g) ∈ F ,  (Mf ,Mg)=
 (f,g).

Note that Lemma 3.4 implies that e(M,N)= 1
2

∫
 (M,N)dm.

In Fundamental example 2.1, Xt is the Brownian motion on X, Mf
t is the

Itô integral
∫ t

0 〈df (Xs), dXs〉,  is the inverse Riemannian metric and M can be
identified with the space of 1-forms equipped with the L2-norm associated with
the metric.

PROOF OF LEMMA 3.4. When f ∈ F , it follows from Theorem 5.2.3 in [11]
that

〈Mf ,Mf 〉t =
∫ t

0
 (f,f )(Xs) ds.

For M =∑i hi.M
fi , N =∑j kj .M

gj , two martingales of M0,

〈M,N〉t =
∑
i,j

∫ t

0
hikj (fi, gj )(Xs) ds =

∫ t

0
 (M,N)(Xs) ds,(3.15)

with  (M,N)=∑
i,j hikj (fi, gj ).  is a bilinear mapping from M0 ×M0 in

L1(m).  is continuous since, for any (M,N) ∈M0×M0,∫
| (M,N)|dm≤

∫
 (M,M)1/2 (N,N)1/2 dm

≤ 2e(M)1/2e(N)1/2.

It follows that  can be extended to M×M.
Take M ∈M and an approximating sequence Mn ∈ M0. Then e(Mn − M)

converges toward 0, Mn converges toward M in L2(Px) and 〈Mn,Mn〉t converge
in L1(Px) toward 〈M,M〉t for almost every x (see [11], Section 5-2). This proves
that 〈M,M〉t = ∫ t0  (M,M)(Xs) ds. �

LEMMA 3.5. Suppose m is bounded. Then for any h ∈ H , there exists a
unique continuous martingale in M, Nh such that, for any f ∈ F , e(Nh,Mf )=
1
2

∫
Dhf dm and d

dt
〈Nh,Mf 〉t = Dhf (Xt). In addition, e(Nh) ≤ 1

2m(X)‖h‖2

and 〈Nh〉t ≤ ‖h‖2t .
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In the Riemannian manifold case (Fundamental example 2.1), Nh
t =

∫ t
0 〈h(Xs),

dXs〉 when  =D.

PROOF OF LEMMA 3.5. For h=∑
k λkek ∈H , let us define a linear form αh

on M0 such that, for anyM =∑n
i=1 gi.M

fi ∈M0, αh(M)= 1
2
∑n
i=1

∫
giDhfi dm;

(αh(M))2 =
(∑

k

λk
1
2

n∑
i=1

∫
giDekfi dm

)2

≤ 1
4‖h‖2m(X)

∑
i,j

∫
gigjD(fi,fj ) dm≤ 1

2‖h‖2m(X)e(M).

This proves that αh is continuous on M0 and can be extended to a continuous linear
form on M such that αh(M) ≤ 1√

2
‖h‖√m(X)e(M). With this form is associated

a unique Nh ∈M such that αh(M)= e(Nh,M).
Note that, for any g ∈ CK(X) and f ∈ F , we have

∫
gDhf dm = ∫

 (Nh,

g.Mf )dm= ∫ g (Nh,Mf )dm. This is satisfied for every g ∈CK(X); therefore,
for any f ∈ F ,  (Nh,Mf )=Dhf .

Note that we also have, for M ∈M0,

 (Nh,M)≤ ‖h‖  (M,M)1/2,

which implies that 〈Nh〉t ≤ ‖h‖2t . �

REMARK 3.6. When m is not bounded, Nh can be defined as a local
martingale such that, for any compact K and any f ∈ F , 1K.Nh ∈ M,
e(1K.Nh,Mf )= 1

2

∫
K Dhf dm. In addition, e(1K.Nh)≤ 1

2m(K)‖h‖2.

Let γkl be a function on X such that d
dt
〈Nel ,Nek 〉t = γkl(Xt ). Lemma 3.5

implies that the matrix A = ((δkl − γkl)) is positive (as d
dt
〈Nh〉t ≤ ‖h‖2).

Therefore, it is possible to find a matrix R such that R2 =A.

REMARK 3.7. If for any f ∈F ,  (f,f )= ‖Df ‖2
H , then for any f ∈ Fb,

M
f
t =

∑
k

∫ t

0
Dekf (Xs) dN

ek
s ,(3.16)

Dekf =
∑
l Delf γkl(Xt ) and the positive symmetric matrix P = ((γkl)) is

a projector. In this case, R = I − P .

PROOF. Set Qf
t = ∑

k

∫ t
0 Dekf (Xs) dN

ek
s , Qf ∈ M. Then, for any M=∑n

i=1 gi.M
fi ∈M0,
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〈Qf ,M〉t =
∑
k

∫ t

0
Dekf (Xs) d〈Nek,M〉s

=∑
k

n∑
i=1

∫ t

0
Dekf (Xs)gi(Xs)Dekfi(Xs) ds

=
n∑
i=1

∫ t

0
gi(Xs)D(f,fi)(Xs) ds = 〈Mf ,M〉t .

This implies that, for any M ∈M, e(Qf ,M)= e(Mf ,M) and Qf =Mf .
Since, by Lemma 3.5, d

dt
〈Mf ,Nek〉t =Dekf (Xt ), we get that

Dekf (Xt )=
d

dt
〈Qf ,Nek〉t =

∑
l

Delf (Xt )
d

dt
〈Nel ,Nek 〉t =

(∑
l

Delf γkl

)
(Xt ).

This relation implies that Nek
t = ∑

l

∫ t
0 γkl(Xs) dN

el
s (this is easy to check,

considering d
dt
〈Nek,M〉t with M ∈M0). From this, we see that γkl =∑

i γkiγil

(i.e., P 2 = P ). �

Set W̃ k
t =Nek

t +∑l

∫ t
0 Rkl(Xs) dW

l
s and W̃t =∑k W̃

k
t ek.

In the Riemannian manifold case, when  (f,f ) = ‖Df ‖2
H for any f ∈ F ,

denoting Cξ by C(x,u) when u ∈ TxX and ξ = (x,u) we have

dW̃t = dWt +C(Xt ,dXt ) −C(Xt ,dWt (Xt ))

and

dW̃ k
t = dWk

t + 〈ek(Xt ), dXt 〉 −
∑
l

〈ek(Xt ), el(Xt )〉dWl
t .

In this case, R is a projector (see the remark above).

LEMMA 3.8. (W̃ k
t )k is a sequence of independent Brownian motion.

PROOF. Since W̃ k
t is a continuous martingale, we just have to compute

d
dt
〈W̃ k

t , W̃
l
t 〉t :

d

dt
〈W̃ k

t , W̃
l
t 〉t = γkl +R2

kl = δkl.
This implies the lemma. �

Let µ be an initial distribution of the form hm, with h a positive function in
L2(m)∩L1(m) and for f ∈ L2(m) define S̃t f by the conditional expectation

S̃t f (X0)=Eµ[f (Xt )|σ(X0, W̃
k
s ; k ∈N; s ≤ t)].(3.17)
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(One can check easily that this definition does not depend on h.) Remark that, as
Xt is Markovian and Wt has independent increments,

S̃t f (X0)=Eµ[f (Xt)|σ(X0, W̃
k
s ; k ∈N; s ≥ 0)

]
.(3.18)

In the same way, we see that S̃t satisfies the multiplicative cocycle property (a).

LEMMA 3.9. For any f ∈ D(A) and µ an initial distribution absolutely
continuous with respect to m,

S̃t f = f +
∑
k

∫ t

0
S̃s(Dekf ) dW̃

k
s +

∫ t

0
S̃s (Af )ds, Pµ-a.s.

PROOF. For any f ∈D(A), we have

f (Xt)= f (X0)+Mf
t +

∫ t

0
Af (Xs) ds.(3.19)

It is clear that E.[∫ t0 Af (Xs) ds|σ(W̃ k
s ; k ∈ N; s ≤ t)] = ∫ t

0 S̃sAf (Xs) ds,

as (3.17) is satisfied. Let Zt =∑k

∫ t
0 H

k
s dW̃

k
s ∈ L2(σ (W̃ k

s ; k ∈N; s ≤ t)),
E.[ZtMf

t ] =
∑
k

E.

[∫ t

0
Hk
s d〈W̃ k,Mf 〉s

]

=∑
k

E.

[∫ t

0
Hk
s Dekf (Xs) ds

]

=∑
k

E.

[∫ t

0
Hk
s S̃s(Dekf ) ds

]

= E.
[
Zt
∑
k

∫ t

0
S̃s(Dekf ) dW̃

k
s

]
.

This proves that E.[Mf
t |σ(W̃ k

s ; k ∈N; s ≤ t)] =∑k

∫ t
0 S̃sDekf dW̃

k
s . �

Now, using uniqueness in Theorem 3.2 and the isomorphism j between
L2(σ (W̃ k

t ; t ≥ 0; k ∈ N)) and L2(σ (Wk
t ; t ≥ 0; k ∈ N)), we see that j S̃t = St ,

which implies that St is Markovian. �

PROPOSITION 3.10. For any f ∈Fb, the martingale

P
f
t =Mf

t −
∑
k

∫ t

0
Dekf (Xs) dW̃

k
s(3.20)

is orthogonal to the family of martingales {W̃ k
t ; k ∈ N}, in the sense of the

martingale bracket (i.e., for any k, 〈P f , W̃ k〉. = 0). For any (f, g) ∈F 2
b ,

〈P f ,P g〉t =
∫ t

0

(
 (f,g)(Xs)−D(f,g)(Xs))ds.(3.21)
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PROOF. We just have to show that 〈P f , W̃ k〉t = 0 for every f ∈Fb and every
k ∈N, which is true as

〈Mf , W̃ k〉t = 〈Mf ,Nek 〉t =
∫ t

0
Dekf (Xs) ds.

Let (f, g) ∈ F 2
b . Then

〈P f ,P g〉t = 〈P f ,Mg〉t
= 〈Mf ,Mg〉t −

∑
k

∫ t

0
Dekf (Xs) d〈W̃ k,Mg〉s

=
∫ t

0
 (f,g)(Xs) ds −

∑
k

∫ t

0
Dekf (Xs)Dekg(Xs) ds

=
∫ t

0
 (f,g)(Xs) ds −

∫ t

0
D(f,g)(Xs) ds. �

REMARK 3.11. In the case  (f,f ) = ‖Df ‖2
H for any f ∈ F , Proposi-

tion 3.10 implies that P f
t = 0 and that

M
f
t =

∑
k

∫ t

0
Dekf (Xs) dW̃

k
s .

From this, we see that the diffusion Xt satisfies the SDE

f (Xt)− f (X0)=
∑
l

∫ t

0
Delf (Xs) dW̃

k
s +

∫ t

0
Af (Xs) ds(3.22)

for every f ∈D(A). Therefore (Xt , W̃t ) appears as a weak solution of this SDE
and S̃t is defined by filtering Xt with respect to W̃t .

Let Px,ω̃(dω′) be the conditional law of the diffusion Xt , given X0 and {W̃t ;
t ∈ R+} (it is independent of the choice of the initial distribution). Using the
identity in law between W and W̃ , we get a family of conditional probabilities
Px,ω(dω

′) on C(R+,X) defined m⊗ P -a.e.
Remark that [with Xt(ω′)= ω′(t)]

Stf (x,ω)=
∫
f
(
Xt(ω

′)
)
Px,ω(dω

′), m⊗P -a.s.(3.23)

Under Px,ω(dω′)P (dω), Xt(ω′) satisfies the SDE (3.3). It is a canonical weak
solution of the SDE (3.3) on a canonical extension of the probability space on
which W is defined. St is obtained by filtering Xt with respect to W .
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4. The n-point motion. Let P (n)
t be the family of operators on L∞(m⊗n)

such that, for any (fi)1≤i≤n ∈ L∞(m),
P
(n)
t f1 ⊗ · · · ⊗ fn =E[Stf1 ⊗ · · · ⊗ Stfn].(4.1)

P
(n)
t is a Markovian semigroup on L∞(m⊗n) as St is Markovian and satisfies

Theorem 3.2. It is easy to check that P (2)
t maps tensor products of L2(m) functions

into L2(m⊗2).

PROPOSITION 4.1. For any family of probability laws on X absolutely
continuous with respect to m, (µi; 1≤ i ≤ n),

P
(n)
µ1⊗···⊗µn(dω

′
1, . . . , dω

′
n)=

∫
#
P (dω)

n⊗
i=1

Pµi,ω(dω
′
i)(4.2)

defines a Markov process on Xn (with initial distribution
⊗n

i=1µi) associated

with P (n)
t . We call this Markov process on Xn the n-point motion.

PROOF. For every family of functions in L∞(m), (fi) 1≤i≤n, m⊗n ⊗ P -a.e.
[with Xi

t (ω
′
i )= ω′i (t)],

S⊗nt f1 ⊗ · · · ⊗ fn(x1, . . . , xn,ω)=
n∏
i=1

Stfi(xi,ω)

(4.3)

=
∫ n∏

i=1

fi
(
Xi
t (ω

′
i )
) n⊗
i=1

Pxi,ω(dω
′
i).

We get the result by integrating both members of (4.3) with respect to P (dω). �

Let D(n) be the linear map from H × F ⊗n in L2(m⊗n) such that, for any
(fi)1≤i≤n ∈F and h ∈H ,

D
(n)
h f1 ⊗ · · · ⊗ fn =

n∑
i=1

f1⊗ · · · ⊗Dhfi ⊗ · · · ⊗ fn.(4.4)

PROPOSITION 4.2. For any (fi)1≤i≤n ∈D(A)∩L∞(m),

S⊗nt f1⊗ · · · ⊗ fn = f1 ⊗ · · · ⊗ fn +
∑
k

∫ t

0
S⊗ns (D(n)

ek
f1 ⊗ · · · ⊗ fn) dWk

s

+
∫ t

0
S⊗ns (A(n)f1 ⊗ · · · ⊗ fn) ds,
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where

A(n)f1⊗ · · · ⊗ fn =
n∑
i=1

f1 ⊗ · · · ⊗Afi ⊗ · · · ⊗ fn

+ ∑
1≤i<j≤n

∑
k

f1⊗ · · · ⊗Dekfi ⊗ · · · ⊗Dekfj ⊗ · · · ⊗ fn.

REMARK 4.3. (a) For n = 2, the formula extends to functions in D(A) and
A(2)f ⊗ g =Af ⊗ g + f ⊗Ag +C(f,g), where (f, g) ∈ (D(A))2.

(b) Taking the expectation, we see that A(n) is the infintesimal generator of P (n)
t

on (D(A)∩L∞(m))⊗n.
(c) The formula extends to C2

K(X
n) in the Riemannian manifold case (using

for example the uniform density of sums of product functions and the regularizing
effect of P⊗nε ).

PROOF OF PROPOSITION 4.2. This is just a straightforward application of
Itô’s formula applied to Stf1 ⊗ · · · ⊗ Stfn, using the differential form of the
equation satisfied by St , Theorem 3.2(e). Taking the expectation and differentiating
with respect to t , we get

d

dt

∣∣∣∣
t=0

P
(n)
t f1 ⊗ · · · ⊗ fn = d

dt

∣∣∣∣
t=0

E[S⊗nt f1 ⊗ · · · ⊗ fn]

=A(n)f1⊗ · · · ⊗ fn. �

REMARK 4.4. In general, m⊗n is not invariant under P (n)
t .

5. Measure-preserving case. We say that the statistical solution St is mea-
sure preserving if and only if mSt = m a.s. for all t (i.e., m is invariant for St ).
When m(X) = ∞, we use the natural extension of St to L1(m) or to positive
functions defined m-a.e.

Let us denote by FK the set of functions of F which have compact support.

PROPOSITION 5.1. St is measure preserving if and only if
∫
C(f,g) dm⊗2

vanishes for all f , g in FK . Moreover, define rt on L2(Ft ) by Wk
s ◦ rt =

Wk
t−s −Wk

t . Then the adjoint of St in L2(m) is S∗t = St ◦ rt .

REMARK 5.2. (a) When f ∈ FK , C(f,f ) ∈ L1(m⊗2).
(b) In the Riemannian manifold case, the condition that

∫
C(f,g) dm⊗2

vanishes for all f , g in FK is equivalent to assuming that Wt is divergence free in
the weak sense, that is, that for any f ∈ FK ,

∫ 〈Wt,∇f 〉dm= 0. (It follows from
the identity E[(∫ 〈Wt,∇f 〉dm)2] = t ∫ C(f,f ) dm⊗2.)



846 Y. LE JAN AND O. RAIMOND

LEMMA 5.3. Assume that
∫
C(f,g) dm⊗2 vanishes for all f , g in FK . Then,

for every h ∈H , f , g in F ,∫
gDhf dm=−

∫
fDhg dm.(5.1)

PROOF. For every h ∈H , (g, f ) !→ ∫
gDhf dm is a continuous bilinear form

on F ×F since ‖Dhf ‖2
L2(m)

≤ E(f, f )‖h‖2
L2(m)

.
Take f , g in FK ∩ L∞(m). Then fg ∈ FK (as the bounded functions of

a Dirichlet space form an algebra) and, since Dek is a derivation, Dek(fg) =
gDekf + fDekg. Using this property, we get∑

k

(∫
(gDekf + fDekg) dm

)2

=∑
k

(∫
Dek(fg) dm

)2

=
∫
C(fg,fg) dm⊗2 = 0.

This implies that, for every k,
∫
gDekf dm = −

∫
fDekg dm. To conclude we

observe that both members of (5.1) are continuous in f and g and that FK ∩
L∞(m) is dense in F (since the Dirichlet form is regular; see [11], Sec-
tion 1.1). �

PROOF OF PROPOSITION 5.1. Assume
∫
C(f,g) dm⊗2 = 0 holds for every

f and g in FK .
Let us remark that the expression of the nth chaos of Stf is given by the

expression

Jnt f =
∫

0≤s1≤s2≤···≤sn≤t
∑

k1,...,kn

Ps1Dek1
Ps2−s1Dek2

· · ·Dekn
Pt−snf

(5.2)
× dWk1

s1
· · ·dWkn

sn
.

From this expression, using Lemma 5.3 and the fact that Pt is self-adjoint in
L2(m), we get that, for f and g in L2(m),∫

gJnt f dm

=
∫ ∫

0≤s1···≤sn≤t
f

∑
k1,...,kn

(−1)nPt−snDekn
Psn−sn−1 · · ·Ps2−s1Dek1

Ps1g(5.3)

× dWk1
s1
· · ·dWkn

sn
dm.

Making the change of variable un−i+1 = t − si , we get that the adjoint of Jnt is
given by

(J n)∗t g =
∫

0≤u1≤u2≤···≤un≤t
∑

k1,...,kn

Pu1Dek1
Pu2−u1Dek2

· · ·Dekn
Pt−ung

(5.4)
×dWk1

u1
◦ rt · · ·dWkn

un
◦ rt .
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From this it is easy to see that S∗t g = (St ◦ rt )g (as they have the same chaos
expansion).

Notice that S∗t 1= 1. A priori the constant functions are not in L2(m), but there
exists an increasing sequence in L2(m), gn such that gn converges toward 1. For
any nonnegative function f ∈L2(m),∫

Stfgn dm=
∫
f S∗t gn dm.(5.5)

This equation implies, taking the limit as n goes to∞, that

mSt(f )=
∫
f S∗t 1dm=m(f ),(5.6)

and we get that mSt =m a.s., which ends the first part of the proof.
Conversely, it follows from Proposition 4.2 that, for all f,g in D(A),

S⊗2
t f ⊗ g − Stf ⊗ g − f ⊗ Stg+ f ⊗ g −

∫ t

0
S⊗2
s C(f, g) ds

is a square integrable martingale. This result extends to f,g in F . Taking f,g

in FK , integrating with respect to m⊗2 and taking expectation, we get that∫
C(f,g) dm⊗2 vanishes. �

REMARK 5.4. When St is measure preserving, P (n)
t is self-adjoint in

L2(m⊗n) and in particular m⊗n is invariant under P (n)
t . The associated local

Dirichlet form E (2) is such that

E (2)(f ⊗ g,f ⊗ g)= E(f,f )‖g‖2
L2(m)

+ E(g,g)‖f ‖2
L2(m)

+ 2
∫
C(f,g)f ⊗ g dm⊗2

for any (f, g) ∈ F 2 and a similar expression can be given for E (n).

6. Existence of a flow of maps. Let (St )t≥0 denote the statistical solution.

DEFINITION 6.1. We say that (St )t≥0 is a flow of maps if and only if there
exists a family of measurable mappings (ϕt )t≥0 from X ×# in X such that, for
any f ∈L2(m) and any positive t , Stf = f ◦ ϕt .

Note that if (St )t≥0 is a flow of maps, Px,w is the Dirac measure on the path
{ϕt (x); t ≥ 0}.

DEFINITION 6.2. We say that (St )t≥0 is a coalescent flow of maps if and only
if (St )t≥0 is a flow of maps and, for every (x, y) ∈ X2, with positive probability
there exists T such that ϕt (x)= ϕt (y) for all t ≥ T .
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Let ((Xt , Yt ))t≥0 designate the two-point motion associated with the statistical
solution.

DEFINITION 6.3. We say that (St )t≥0 is diffusive without hitting if and only
if (St )t≥0 is not a flow of maps and starting from (x, x), for all positive t , Xt "= Yt .

DEFINITION 6.4. We say that (St )t≥0 is diffusive with hitting if and only
if (St )t≥0 is not a flow of maps and (Xt , Yt )t≥0 hits the diagonal with positive
probability.

In this section, we give conditions under which the statistical solution is a flow
of maps or not.

LEMMA 6.5. (St )t≥0 is a flow of maps if and only if, for any f ∈ L2(m) and
any positive t , E[(Stf )2] = Ptf 2.

PROOF. It is clear that there exist Markovian kernels on X, st (x,ω, dy), such
that Stf (x) = ∫

f (y)st (x,ω, dy). Also, st (x,ω, dy) is the law of Xt(ω′) under
Px,ω(dω

′). As m⊗P -a.e,

(Stf
2)(x)− (Stf )2(x)=

∫ (
f (y)−

∫
f (z)st (x,ω, dz)

)2

st (x,ω, dy),(6.1)

if E[(Stf )2] = Ptf
2,

∫
(f (y) − ∫

f (z)st (x,ω, dz))
2st (x,ω, dy) = 0 and

st (x,ω, dz) is a Dirac measure δϕt (x,ω), where ϕt (x,ω) is defined m⊗ P -a.e. �

Let h ∈ L1(m) be a positive function such that
∫
hdm= 1. For any positive t ,

let µt be a probability on the Borel sets of X × X such that, for any (f, g) ∈
L2(m)×L2(m), µt(f ⊗ g)= ∫ E[Stf Stg]hdm.

REMARK 6.6. (St )t≥0 is a flow of maps if and only if, for all positive t ,
µt(C)= 1, where C= {(x, x); x ∈X}.

PROOF. If (St )t≥0 is a flow of maps, there exists ϕt such that Stf = f ◦ ϕt .
If A and B are disjoint Borel sets of finite measure,

µt(A×B)=
∫
E
[
1A
(
ϕt (x)

)
1B
(
ϕt (x)

)]
h(x) dm(x)= 0.

This implies that µt(X×X−C)= 0 and as µt is a probability that µt(C)= 1.
If µt(C)= 1, for f ∈ L2(m), µt(f 2⊗1− 2f ⊗ f + 1⊗ f 2)= 0. This implies

that ∫
X
Ptf

2hdm=
∫
X
E[(Stf )2]hdm(6.2)

and that E[(Stf )2] = Ptf 2. Hence (St )t≥0 is a flow of maps. �

Recall that we denoted by P (2)
(·,·) the law of the two-point motion ((Xt , Yt ))t≥0.
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PROPOSITION 6.7. (St )t≥0 is a flow of maps if, for any positive r and any
positive t ,

lim
y→x

P
(2)
(x,y)[d(Xt , Yt)≥ r] = 0, m(dx)-a.e.

PROOF. For ε > 0, let νε be the measure on X×X such that, for any (f, g) ∈
L2(m)×L2(m), νε(f ⊗ g)= ∫ f Pεghdm. For any (f, g) ∈L2(m)×L2(m),

νεP
(2)
t (f ⊗ g)=

∫
E[Stf PεStg]hdm.(6.3)

As PεStg converges in L2(m⊗ P ) toward Stg (see Remark 3.3),

lim
ε→0

νεP
(2)
t (f ⊗ g)=

∫
E[Stf Stg]hdm.(6.4)

Therefore, the family of measure (νεP
(2)
t )ε>0 converges weakly toward µt as ε

goes to 0.
Assume that, for any positive r and any t , limy→x P

(2)
(x,y)[d(Xt , Yt ) ≥ r] = 0.

Let A and B be two disjoint Borel sets such that d(A,B)≥ r . Then

νεP
(2)
t (A×B)=

∫
X
fε(x)h(x) dm(x),

with

fε(x)=
∫
P
(2)
(x,y)[Xt ∈A and Yt ∈ B] pε(x, dy),

where pε(x, dy) is the kernel given by Pε.
As d(A,B)≥ r ,

fε(x)≤
∫
P
(2)
(x,y)[d(Xt , Yt)≥ r] pε(x, dy).

For any positive β , for m-almost every x, there exists α(x) such that d(x, y) ≤
α(x) implies that P (2)

(x,y)[d(Xt , Yt )≥ r] ≤ β . Note that

fε(x)≤
∫
{d(x,y)>α(x)}

pε(x, dy)+
∫
{d(x,y)≤α(x)}

P
(2)
(x,y)[d(Xt , Yt)≥ r] pε(x, dy).

It is clear that

lim
ε→0

∫
{d(x,y)>α(x)}

pε(x, dy)= 0, m(dx)-a.e.

Hence, lim supfε(x)≤ β m(dx)-a.e. and this holds for any positive β . Therefore,
limε→0 fε(x)= 0 m(dx)-a.e. and, by dominated convergence (|fε(x)| ≤ 1),

lim
ε→0

νεP
(2)
t (A×B)= 0.

This implies that µt(X×X−C)= 0 and that (St )t≥0 is a flow of maps. �



850 Y. LE JAN AND O. RAIMOND

PROPOSITION 6.8. If there exist a positive t , a positive r and p ∈]0,1] such
that, for m⊗2-almost every (x, y), P (2)

(x,y)[d(Xt , Yt ) > r] ≥ p, then (St )t≥0 is not
a flow of maps.

PROOF. Suppose there exist a positive t , a positive r and p ∈]0,1] such that
for m⊗2-almost every (x, y), P (2)

(x,y)[d(Xt , Yt) > r] ≥ p.
Let (Bi)i∈N be a partition of X such that the diameter of Bi is lower than r .
Let us suppose that µt(C)= 1 [or that (St )t is a flow of maps]. Then we have∑
i µt (Bi ×Bi)= 1, and for any positive α, there exists N such that

N∑
i=1

µt(Bi ×Bi)≥ 1− α.

Since νεP
(2)
t converges weakly toward µt ,

N∑
i=1

µt(Bi ×Bi)

= lim
ε→0

νεP
(2)
t (Bi ×Bi)

= lim
ε→0

N∑
i=1

∫
X×X

P
(2)
(x,y)[(Xt , Yt ) ∈Bi ×Bi] pε(x, dy)h(x) dm(x)

≤ lim
ε→0

N∑
i=1

∫
X×X

P
(2)
(x,y)[Xt ∈Bi; d(Xt , Yt)≤ r]pε(x, dy)h(x) dm(x)

≤ lim
ε→0

∫
X×X

P
(2)
(x,y)[d(Xt , Yt )≤ r]pε(x, dy)h(x) dm(x)≤ 1− p.

Choosing α < p, we get a contradiction. Henceµt(C) < 1 and (St )t≥0 is not a flow
of maps. �

7. A one-dimensional example. Let X = R, let Pt be the semigroup of the
Brownian motion on R and let the covariance function C(x, y) = sgn(x) sgn(y)
[where sgn(x) denotes the sign of x with the convention sgn(0) = 1]. Here, we
have Wt(x) = sgn(x)Wt , where Wt is a Brownian motion starting from 0. Set
Lxt = sups≤t {−sgn(x)(x+Ws)}∨0 andRxt = x+Wt+sgn(x)Lxt (it is a Brownian
motion starting from x, reflected at 0).

PROPOSITION 7.1. The statistical solution St can be written as

Stf (x)= f (Rxt )1Lxt =0 + 1
2 [f (Rxt )+ f (−Rxt )]1Lxt >0.(7.1)
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PROOF. On an extension of the probability space, it is possible to build a
Brownian motion starting from x, Xt , such that Wt = ∫ t

0 sgn(Xs) dXs [then Xt is
a weak solution of the SDE dXt = sgn(Xt ) dWt ]. Then Stf (x)= E[f (Xt)|F B],
with F B = σ(Wu;u≥ 0). Let us remark that Lxt is the local time ofX at 0 and that
Rxt = sgn(x)|Xt |. Set T = inf{t; Lxt > 0} = inf{t; Xt = 0}. Formula (7.1) follows
simply from the fact that

E
[
f (Xt )1t≥T

∣∣ |Xt |]= 1
2

(
f (Xt )+f (−Xt))1t≥T . �

8. The Lipschitz case. Assume X is a Riemannian manifold with injectivity
radius ρ > 0. Let Pt be the semigroup of a symmetric diffusion on X with
generatorA. LetC be a covariance inducing the metric [i.e., with equality in (1.7)].

We will say that C is Lipschitz if and only if there exist a positive constant k
and 0< ε < ρ such that, for any (x, y) ∈X2, with d(x, y) < ε,

A(2) d2(x, y)≤ k d2(x, y).(8.1)

REMARK. (a) d2(x, y) is smooth on {(x, y) ∈X2, d(x, y) < ρ} since ρ is the
injectivity radius.

(b) On Rd , the condition (8.1) will be checked as soon as

A= 1

2

d∑
1≤i,j≤d

Cij (x, x)∂i∂j +
∑
i

bi(x)∂i,

d∑
i=1

(
Cii(x, x)+Cii(y, y)− 2Cii(x, y)

)≤ k

2
d(x, y)2(8.2)

and bi is a Lipschitz function for all i.
Equation (8.2) is satisfied whenC isC2 or whenC =∑n

α=1Xα⊗Xα , whereXα
are Lipschitz vector fields. In the latest case, the flow of maps can be constructed
by the usual fixed point method for solutions of SDEs based on Gronwall’s lemma.

Let (Xt , Yt ) be the two-point motion associated with the statistical solution. Set
τ = inf{t, d(Xt , Yt )≥ ε} and Ht = d2(Xt∧τ , Yt∧τ ).

LEMMA 8.1. E
(2)
(x,y)(Ht )≤ ekt d2(x, y).

PROOF. By Itô’s formula,

Ht −H0 =Mt +
∫ t∧τ

0
A(2) d2(Xs,Ys) ds,

where Mt is a martingale. Hence

Ht −H0 ≤Mt +
∫ t∧τ

0
k d2(Xs,Ys) ds

≤Mt +
∫ t

0
kHs ds.
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This implies that E(2)
(x,y)(Ht) − d2(x, y) ≤ k

∫ t
0 E

(2)
(x,y)(Hs) ds. Hence the lem-

ma. �

THEOREM 8.2. Assume (8.1) is satisfied. Then the statistical solution
associated with Pt and C is a flow of maps.

PROOF. Indeed, for any r < ε,

P
(2)
(x,y)[d(Xt , Yt )≥ r] ≤ P (2)

(x,y)[d(Xt , Yt )≥ r or t ≥ τ ] ≤ 1

r2E
(2)
(x,y)(Ht )

≤ ekt

r2 d(x, y)
2,

which goes to 0 as d(x, y) goes to 0. We conclude using Theorem 6.7. �

9. Isotropic statistical solution on Sd .

9.1. Isotropic covariance function on Sd . On Sd with d ≥ 2, isotropic
covariance functions are given by the formula (see [25])

C
(
(x,u), (y, v)

)= α(t)〈u, v〉 + β(t)〈u,y〉〈v, x〉,(9.1)

with (x, y) ∈ Sd × Sd , t = 〈x, y〉 = cosϕ and (u, v) ∈ TxSd × TySd . α and β are
given by

α(t)=
∞∑
l=1

alγl(t)+
∞∑
l=1

bl

(
tγl(t)− 1− t2

d − 1
γ ′l (t)

)
,(9.2)

β(t)=
∞∑
l=1

alγ
′
l (t)+

∞∑
l=1

bl

(
−γl(t)− t

d − 1
γ ′l (t)

)
,(9.3)

where γl(t) = C
(d+1)/2
l−1 (t)/C

(d+1)/2
l−1 (1), Cpl is a Gegenbauer polynomial, and al

and bl are nonnegative such that
∑
l al <∞ and

∑
l bl <∞. Using the integral

form of the Gegenbauer polynomials (see [27], page 496),

γl(cosϕ)=
∫ π

0
[z(ϕ, θ)]l−1 sind θ

dθ

cd
,(9.4)

with cd = ∫ π0 sind θ dθ and z(ϕ, θ)= cosϕ − i sinϕ cosθ .
In [12], it is proved that the spectrum of the Laplacian C acting on the

L2-vector fields is {−l(l + d − 1), l ≥ 1} ∪ {−(l + 1)(l + d − 2), l ≥ 1}.
Let Gl and Dl be respectively the eigenspaces corresponding to the eigenvalues
−l(l + d − 1) and −(l + 1)(l + d − 2). Gl is constituted of gradient vector
fields and Dl of divergence-free vector fields. These spaces can be isometrically
identified with the spaces Hd+1,l and Fd+1,l used in [25] and can be used as carrier
spaces of the irreducible representations of SO(d + 1), T l and Ql .
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Let (αlM)M and (ωlM)M be orthonormal bases of Gl and Dl . Then, if (zlM,d)l,M

and (zlM,δ)l,M are independent families of independent normalized centered
Gaussian variables,

W =∑
l≥1

√
dal

dimGl

∑
M

zlM,dα
l
M +

∑
l≥1

√
dbl

dimDl

∑
M

zlM,δω
l
M(9.5)

is an isotropic Gaussian vector field of covarianceC given by (9.1), (9.2) and (9.3).

SKETCH OF PROOF. The covariance of W is∑
l≥1

dal

dimGl

∑
M

αlM ⊗ αlM +
∑
l≥1

dbl

dimDl

∑
M

ωlM ⊗ωlM.

Let us choose (αlM)M such that αlM = c1(l, d)∇MlM (where (MlM)M is the basis of
Hd+1,l given in [25]). Then, using the fact that MlM(p)= 0 if M "= 0, for x = g1p

and y = g2p [with p = (0, . . . ,0,1)],∑
M

MlM(x)M
l
M(y)=

∑
M,N,K

T lMN(g1)T
l
MK(g2)M

l
N(p)M

l
K(p)

= T l00(g
−1
2 g1)

(
Ml0(p)

)2
.

In [27, 25], T l00(g) is computed and it is easy from this to give the covariance
of the gradient part of W . We can calculate the covariance of the divergence-
free part similarly. We choose the orthonormal basis (ωlM)M of Dl such that, for
M /∈ {1, . . . , d}, ωlM(p) = 0 and such that, for 1 ≤ i ≤ d , ωli(p)= c2(l, d)ei (this
basis corresponds to the basis of Fd+1,l given in [25]). Then one has, for x = gp
and g ∈ SO(d),

ωlM(x)=
d∑
i=1

Ql
Mi(g)g

(
ωli(p)

)= c2(l, d)Q
l
Mi(g)g(e

i).(9.6)

Then, for every (x,u) and (y, v) in T Sd ,∑
M

〈ωlM(x),u〉〈ωlM(y), v〉
(9.7)

= (
c2(l, d)

)2∑
M

Ql
Mi(g1)Q

l
Mj (g2)〈g1(e

i), u〉〈g2(e
j ), v〉

= (
c2(l, d)

)2
Ql
ji(g)〈g1(e

i), u〉〈g2(e
j ), v〉,(9.8)

with g = g−1
2 g1. In [25], the matrix elements Ql

ji(g) are calculated and it is easy
from this to give the covariance of the divergence-free part of W . �
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Let us now introduce Sobolev spaces and related covariances.
Let H 2,s be the Sobolev space obtained by completion of the smooth

vector fields with respect to the norm 〈(−C + m2)sV ,V 〉2 [with 〈V,V 〉2 =∫ ‖V (x)‖2 dx], where m is positive. Note that the definition of H 2,s does not
depend on m.

Let a and b be nonnegative reals. Take al = a
(l−1)α+1 and bl = b

(l−1)α+1 for l ≥ 1

and a1 = b1 = 0. For α > 0, set G(ϕ)=∑l≥2
1

(l−1)α+1 γl(cosϕ). The function G is
well defined on [0, π ] as |γl| ≤ 1.

Let Fd and Fδ be real functions such that, for all l ≥ 2,

(l − 1)α+1 dimGl·Fd(−l(l + d − 1)
)= d,(9.9)

(l − 1)α+1 dimDl·Fδ(−(l + 1)(l + d − 2)
)= d(9.10)

and Fd(−d)= Fδ(−2(d − 1))= 0. Note that, when d = 2, Fd = Fδ .
Let O be the orthonormal projection on the space of the L2-gradient vector

fields.

PROPOSITION 9.1. The covariance function defined by the sequences (al) and
(bl) is given by (9.1) with the functions

α(cosϕ)= aG(ϕ)+ b
(

cosϕ G(ϕ)+ sinϕ

d − 1
G′(ϕ)

)
,(9.11)

β(cosϕ)=− a

sinϕ
G′(ϕ)+ b

(
−G(ϕ)+ cosϕ

(d − 1) sinϕ
G′(ϕ)

)
.(9.12)

When a and b are positive, the associated self-reproducing space is H 2,(α+d)/2

equipped with a different (but equivalent) norm, namely

‖V ‖2
H =

1

a
‖OV ‖2

d +
1

b
‖(I −O)V ‖2

δ ,

where ‖V ‖2
d = 〈Fd(C)−1V,V 〉2 and ‖V ‖2

δ = 〈Fδ(C)−1V,V 〉2.

PROOF. It is not difficult to see that the norm ‖ · ‖H given in the proposition
is the norm on the self-reproducing space associated with C.

Now since (see [12])

dimGl = (d + l − 3)!
(d − 1)!(l − 1)!(d + 2l − 3)(d + 1),

dimDl = (d + l − 3)!
(d − 1)!(l − 1)!(d + 2l − 3)

d(d + 1)

2
,

for λ → ∞, λ(α+d)/2Fd(λ) = O(1) and λ(α+d)/2Fδ(λ) = O(1). This implies
that ‖ · ‖H and the norm used to define H 2,(α+d)/2 are equivalent (when a

and b are positive). We get that the self-reproducing space associated with C is
H 2,(α+d)/2. �
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REMARK 9.2. If a or b vanishes, the self-reproducing space is H 2,(α+d)/2

restricted to divergence-free vector fields or gradient vector fields.

9.2. Phase transitions for the Sobolev statistical solution. Let Pt be the
semigroup of the Brownian motion of variance (a+b)G(0) and St be the statistical
solution associated with Pt and C.

Let (Xt , Yt ) be the two-point motion. Let ψt = d(Xt, Yt ). Since h(x, y) =
d2(x, y) is a C2-function, h belongs to D(A(2)) and since Xt and Yt are solutions
of an SDE like (3.3), ψ2

t is a diffusion on [0, π2] and is a solution of an SDE; ψt is
also a diffusion on [0, π ] [note that d(x, y) a priori does not belong to D(A(2))].
This diffusion is eventually reflected (or absorbed) in 0 and π . Its generator is

L= σ 2(ϕ) d
2

dϕ2 + b(ϕ) ddϕ (see [25]), with

σ 2(ϕ)= α(1)− α(cosϕ) cosϕ + β(cosϕ) sin2 ϕ,(9.13)

b(ϕ)= (d − 1)

sinϕ

(
α(1) cosϕ − α(cosϕ)

)
.(9.14)

The generator of ψ2
t is L′ = σ̃ 2(x) d

2

dx2 + b̃(x) ddx , with

σ̃ 2(x)= 4xσ 2(
√
x),(9.15)

b̃(x)= 2σ 2(
√
x)+ 2

√
xb(
√
x).(9.16)

LEMMA 9.3. If α > 2, the statistical solution is a flow of maps.

PROOF. We have A(2)d2(x, y) = 2σ 2(d(x, y)) + 2b(d(x, y)) d(x, y). When
α > 2, then G is C2; this implies that α is C2 and β is continuous. Hence (8.1) can
be checked. �

Suppose a+ b > 0 and let η= b
a+b .

THEOREM 9.4. For any α ∈]0,2[, the following hold:

(a) For d = 2 or 3 and η < 1− d
α2 , the statistical solution is a coalescent flow

of maps.
(b) For d = 2 or 3 and 1 − d

α2 < η < 1
2 − (d−2)

2α , the statistical solution is
diffusive with hitting.

(c) For d = 2 or 3 and η > 1
2 − (d−2)

2α or for d ≥ 4, the statistical solution is
diffusive without hitting.

REMARK. The same phase transition appears in the Rd case (see Theo-
rem 10.1 below). It has been independently observed, in the context of the ad-
vection of a passive scalar, by Gawedzky and Vergassola [14].
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LEMMA 9.5. For α ∈]0,2[, we have the following:

(a) G is differentiable on ]0, π [;
(b) limϕ→0+ G(0)−G(ϕ)

ϕα
= ∫ π

0
∫∞

0
cos2 θ

t2+cos2 θ
tα−1 sind θ dt dθ

 (α+1)cd
=KG(0);

(c) limϕ→0+ G′(ϕ)
ϕα−1 =−α

∫ π
0
∫∞

0
cos2 θ

t2+cos2 θ
tα−1 sind θ dt dθ

 (α+1)cd
=−αKG(0).

The proof of Lemma 9.5 is in Appendix A. From this lemma, we get, as ϕ goes
to 0,

α(cosϕ)= (a + b)G(0)−
(
a +

(
1+ α

d − 1

)
b

)
KG(0)ϕα + o(ϕα),(9.17)

β(cosϕ)= α
(
a− b

d − 1

)
KG(0)ϕα−2+ o(ϕα−2).(9.18)

Hence,

σ 2(ϕ)= (a + b)KG(0)(α+ 1− αη)ϕα(1+ o(1)),(9.19)

b(ϕ)= (a + b)KG(0)(d − 1+ αη)ϕα−1(1+ o(1)).(9.20)

To prove Theorem 9.4, we need to study the two-point motion. Because of
isotropy, it is enough to study the diffusion ψt . This diffusion satisfies an SDE
until it exits ]0, π [.

Let s be the scale function of the diffusion ψt ,

s(x)=
∫ x

x0

exp
[
−
∫ y

x0

b(ϕ)

σ 2(ϕ)
dϕ

]
dy with (x0, x) ∈]0, π [2.

Let x ∈ {0, π} and Tx = inf{t > 0; ψt = x}. Using Breiman’s terminology
(see [4], pages 368–369), x is an open boundary point if Tx =∞ and is a closed
boundary point if Tx <∞. Note that x is an open boundary point if |s(x)| =∞ .

First we are going to show that π is an open boundary point. Then:

1. when d = 2 or 3 and η < 1− d
α2 , we prove that 0 is an exit boundary point (this

implies that the statistical solution is a coalescent flow of maps);
2. when d = 2 or 3 and 1 − d

α2 < η < 1
2 − (d−2)

2α , we prove that 0 is
an instantaneously reflecting regular boundary point (this implies that the
statistical solution is diffusive with hitting);

3. when η > 1
2 − (d−2)

2α , we prove that 0 is an open entrance boundary point (this
implies that the statistical solution is diffusive without hitting).

LEMMA 9.6. π is an open boundary point.

PROOF. It is easy to check that s(π−) = ∞ using the fact that α(1)+
α(−1) > 0:

α(1)+ α(−1)= (a + b)G(0)+ (a− b)G(π)
> (a + b)G(π)+ (a− b)G(π)≥ 0. �
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Since π is an open boundary point, we now study the behavior of ψt at and
near 0.

LEMMA 9.7. If η > 1
2 − (d−2)

2α , s(0+) = −∞ and if η < 1
2 − (d−2)

2α ,
s(0+) >−∞.

PROOF. Let us note µ= d−1+αη
α+1−αη . Then we have that b(ϕ)

σ 2(ϕ)
= µ

ϕ
(1+ o(1)) and

for any positive ε there exist positive constants C1 and C2 such that, for y ≤ x0,

C1y
−µ+ε ≤ exp

[
−
∫ y

x0

b(ϕ)

σ 2(ϕ)
dϕ

]
≤C2y

−µ−ε.(9.21)

From this, we see that s(0+)= −∞ if µ > 1 (or if η > 1
2 − (d−2)

2α ) and s(0+) is

finite if µ< 1 (or if η < 1
2 − (d−2)

2α ). �

Lemmas 9.6 and 9.7 imply that (see [16], Theorem VI-3.1) if η < 1
2 − (d−2)

2α , we

have T0 <∞, Tπ =∞ a.s. and if η > 1
2 − (d−2)

2α , 0 is an open boundary point and
we have lim infψt = 0 and lim supψt = π a.s. (ψt is recurrent).

REMARK 9.8. When d ≥ 4 and α ∈]0,2[, 1
2 − (d−2)

2α < 0. This implies that
lim infψt = 0 and lim supψt = π a.s.

Since π is an open boundary point, ψt ∈ [0, π [ for every positive t and ψ2
t is

a solution of the SDE

dψ2
t =

√
2σ̃ (ψ2

t ) dBt + b̃(ψ2
t ) dt.(9.22)

Note that 0 is a solution of this SDE [since σ̃ (0)= b̃(0)= 0]. The solutions of this
SDE might be not unique.

Let m(dx) be the speed measure of the diffusion

m(dx)= 1]0,π [(x) exp
[∫ x

x0

b(ϕ)

σ 2(ϕ)
dϕ

]
dx

σ 2(x)
+m({0})δ0 = g(x) dx +m({0})δ0,

with x0 ∈]0, π [.

LEMMA 9.9. If η > 1
2 − (d−2)

2α , 0 is an entrance open boundary point.

PROOF. When η > 1
2 − (d−2)

2α , 0 is an open boundary point. From [4, Proposi-
tion 16.45], 0 is an entrance boundary point if and only if

∫
0+ |s(x)|m(dx) <∞.

For any positive ε, there exists a positive constant D such that, for any x ∈]0, x0[,
|s(x)g(x)| ≤D x(e/c−α−ε)∧0x−e/c−ε+1 ≤D x1−α−2ε.

This shows that
∫

0+ s(x)m(dx) <∞ (choose ε such that 2ε ≤ 2− α). �
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This lemma implies that, when η > 1
2 − (d−2)

2α , there exist a positive t , a positive
α and p ∈]0,1[ such that, for any x ∈]0, π [, Px[ψt > α] > p. Proposition 6.8
implies that St is not a flow of maps and since 0 is open, St is diffusive without
hitting.

Now let d ∈ {2,3} (when d ≥ 4 we always have η > 1
2 − (d−2)

2α ).

LEMMA 9.10. If η < 1
2 − (d−2)

2α , 0 is a closed boundary point.

PROOF. From Proposition 16.43 in [4], page 366, T0 is finite or the boundary
point 0 is closed if, and only if, for any b ∈]0, π [, ∫ b0 |s(x)− s(0)|m(dx) is finite.

We have

|s(x)− s(0)|g(x)∼
∫ x

0
exp

[
−
∫ y

x0

b(ϕ)

σ 2(ϕ)
dϕ

]
1

σ 2(x)
exp

[∫ y

x0

b(ϕ)

σ 2(ϕ)
dϕ

]
dy.

Hence |s(x)− s(0)|g(x) = O(x1−α). This implies that
∫ b

0 |s(x) − s(0)|m(dx) is
finite. This proves that T0 is finite a.s. �

LEMMA 9.11. If η < 1− d
α2 , 0 is an exit boundary point.

PROOF. In [4], 0 is an exit boundary point if and only if m(]0, x[)=∞ for all
x ∈]0, π [. This is the case if µ− α <−1 (or if η < 1− d

α2 ). Note that, for d = 2

or 3 and α ∈]0,2[, 1− d
α2 <

1
2 − (d−2)

2α . �

Lemma 9.11 implies that, when η < 1− d
α2 , the diffusion ψt is absorbed at 0,

and, for any positive r ,

lim
d(x,y)→0

P
(2)
(x,y)[d(Xt , Yt ) > r] = lim

ϕ→0
Pϕ[ψt > r] = 0.

Now, applying Proposition 6.7, we prove that the statistical solution is a flow of
maps and this is a coalescent flow of maps (since 0 is an exit boundary point).

LEMMA 9.12. If η ∈]1− d
α2 ,

1
2 − (d−2)

2α [, 0 is a regular boundary point.

PROOF. In [4], we see that 0 is regular if m(]0, x[) <∞ for all x ∈]0, π [,
which is the case when η ∈]1− d

α2 ,
1
2 − (d−2)

2α [. �

When η ∈]1− d
α2 ,

1
2 − (d−2)

2α [, the two-point motion hits the diagonal. However,
there is no uniqueness of the solution of the SDE satisfied by ψt since 0 might
be absorbing or (slowly or instantaneously) reflecting. To finish the proof of
Theorem 9.4, we prove that 0 is instantaneously reflecting.

To prove this, for ε ∈]0,1[, let us introduce the covariance Cε = (1 − ε)2C

[then, if Wt is the cylindrical Brownian motion associated with C, (1 − ε)Wt is
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the cylindrical Brownian motion associated with Cε], and let Sεt be the statistical
solution associated with Pt and Cε.

For f ∈ L2(dx), Sεt f =
∑
n≥0 J

n,ε
t f , where J

n,ε
t f is the nth chaos in the

chaos expansion of Sεt f . [Note that Sεt =Qlog(1−ε)St , where Qα is the Ornstein–
Uhlenbeck operator on the Wiener space (used in Malliavin calculus; see [24]).] It
is easy to see that Jn,εt f = (1− ε)nJ nt f , where Jnt f is the nth chaos in the chaos
expansion of Stf ; hence

E[(Sεt f − Stf )2] =
∑
n≥1

(
1− (1− ε)2n)E[(J nt f )2].(9.23)

Hence it is clear that the L2(P )-limit of Sεt f as ε goes to 0 is Stf .

Let (Xε
t , Y

ε
t ) be the Markov process associated with P

(2),ε
t = E[Sε⊗2

t ] and
let ψε

t = d(Xε
t , Y

ε
t ). ψ

ε
t is a diffusion with generator Lε . It is easy to see that

Lε = (1− (1−ε)2)L1+ (1−ε)2L [note that A(2)ε =A⊗ I + I ⊗A+ (1−ε)2C =
A
(2)
1 + (1− ε)2(A(2) −A(2)1 )], and Lε = σ 2

ε (ϕ)
d2

dϕ2 + bε(ϕ) ddϕ , with

σ 2
ε (ϕ)=

(
1− (1− ε)2)σ 2

1 (ϕ)+ (1− ε)2σ 2(ϕ),(9.24)

bε(ϕ)= (
1− (1− ε)2)b1(ϕ)+ (1− ε)2b(ϕ).(9.25)

Let us remark that L1 is the generator of the diffusion distance between two
independent Brownian motions on Sd . Note that, as ϕ goes to 0,

σ 2
1 (ϕ)∼ σ 2

1 (0)= 2(a+ b)KG(0) and b1(ϕ)∼ 2(d − 1)

ϕ
(a + b)KG(0)(9.26)

and σ 2
ε (ϕ)= (1−(1−ε)2)σ 2

1 (ϕ)(1+O(ϕα)) and bε(ϕ)= (1−(1−ε)2)b1(ϕ)(1+
O(ϕα)). Studying the scale function sε of ψε

t , we get that sε(0+)= s1(0+)=−∞
(as two independent Brownian motions cannot meet each other on Sd ). We still
have sε(π−)=∞. Hence ψε

t ∈]0, π [ for all positive t .
Let mε be the speed measure of ψε

t . Let gε(x) = mε(dx)/dx. As mε(]0, π [)
<∞, mε is an invariant finite measure for the diffusion ψε

t . As limε→0 σ
2
ε = σ 2

and limε→0 bε = b, we get that limε→0 gε(x)= g(x). Let us note ε′ = 1− (1− ε)2
and let

f (ε′, ϕ)= ε′b1(ϕ)+ (1− ε′)b(ϕ)
ε′σ 2

1 (ϕ)+ (1− ε′)σ 2(ϕ)
.(9.27)

This function increases with ε′ if b1(ϕ)

σ 2
1 (ϕ)

≥ b(ϕ)

σ 2(ϕ)
. As b1(ϕ)

σ 2
1 (ϕ)

− b(ϕ)

σ 2(ϕ)
∼ (d − 1−µ) 1

ϕ

as ϕ goes to 0 and as (d − 1− µ) is positive, there exists ϕ0 such that, for any
ϕ < ϕ0, f (ε′, ϕ)≥ b(ϕ)

σ 2(ϕ)
= f (0, ϕ) and, for ε′ < 1/2,

gε(x)≤ 2

σ 2(x)
exp

(
−
∫ ϕ0

x

b(ϕ)

σ 2(ϕ)
dϕ

)
Cϕ0,
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where Cϕ0 = supε∈ [0,1] exp (
∫ x0
ϕ0
f (ε′, ϕ) dϕ) < ∞. The Lebesgue dominated

convergence theorem implies that gε converges in L1([0, π ]) toward g.
Let f and g be continuous functions. Then E[f (Xε

t )g(Y
ε
t )] = E[Sεt f (x)×

Sεt g(y)]. Since Sεt f and Sεt g converge respectively toward Stf and Stg when
ε goes to 0 in L2(P ), we get that (Xε

t , Y
ε
t ) converges in distribution toward (Xt , Yt )

when ε goes to 0. This also implies that ψε
t converges in distribution toward ψt

when ε goes to 0.
Since mε is an invariant measure, for any continuous function f on [0, π ], we

have ∫
E[f (ψε

t )|ψε
0 = x] mε(dx)=

∫
f dmε.(9.28)

Since ∣∣∣∣ ∫ E[f (ψε
t )|ψε

0 = x]mε(dx)−
∫
E[f (ψt )|ψ0 = x]g(x) dx

∣∣∣∣
≤ ‖f ‖∞

∫ π

0
|gε(x)− g(x)|dx

+
∣∣∣∣ ∫ π

0

(
E[f (ψε

t )|ψε
0 = x] −E[f (ψt )|ψ0 = x])g(x) dx∣∣∣∣,

we get that (because gε converges in L1([0, π ]) toward g and ψε
t converges in

distribution toward ψt )∫
E[f (ψt )|ψ0 = x] m(dx)= lim

ε→0

∫
E[f (ψε

t )|ψε
0 = x]mε(dx)

= lim
ε→0

∫
f dmε =

∫
f dm.

This implies that g(x) dx is an invariant measure for ψt and m(dx) = g(x) dx.
Since m(]0, x[) <∞ for all x ∈]0, π [, the diffusion ψt is not absorbed in 0 and is
reflected in 0.

In this case, 0 is a closed regular boundary point. This point is instantaneously
reflecting since m({0})= 0. This implies the existence of a positive t , a positive r
and p ∈]0,1] such that, for any x ∈]0, π [, Px[ψt ≥ r] ≥ p. Then, applying
Proposition 6.8, the statistical solution is not a flow of maps. This completes the
proof of Theorem 9.4. �

For α > 2, the statistical solution is an isotropic Brownian flow of diffeomor-
phisms. In [25], the Lyapunov exponents of this flow are computed. The sign of the
first Lyapunov exponent λ1(α, d) describes the stability of the flow. It is unstable
if λ1 ≥ 0 and stable if λ1 < 0. The computation of λ1(α, d) gives

λ1 = (d − 4)a+ db
d + 2

ζ(α − 1)+
(
d − 1

d + 2

)
[(d − 4)a + db]ζ(α)

(9.29)

− d
(

2(d − 1)a + db
d + 2

)
ζ(α + 1),
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where ζ(α)=∑l≥1
1
lα

is the zeta function. Therefore, we have λ1(α, d)= 0 if and
only if

η = η(α, d)
= −(d − 4)ζ(α − 1)− (d − 1)(d − 4)ζ(α)+ 2d(d − 1)ζ(α + 1)

4ζ(α − 1)+ 4(d − 1)ζ(α)+ d(d − 2)ζ(α + 1)
.

(9.30)

It is easy to see that, for fixed η, limα→2+ λ1(α, d) = +∞ if d ≥ 4 or if
η > 1

2 − d−2
4 = 4−d

4 and that limα→2+ λ1(α, d) = −∞ if η < 4−d
4 . Note that

limα→2− 1− d
α2 = limα→2− 1

2− (d−2)
2α = 4−d

4 . This shows that coalescence appears
when λ1 goes to −∞ and splitting appears when λ1 goes to +∞.

The results of this section are given by phase diagrams in Appendix B.

10. Isotropic statistical solution on R
d .

10.1. Stationary and isotropic covariance functions on Rd . On Rd with d ≥ 2,
the stationary isotropic covariance functions C are (see [20]) such that Cij (x, y)=
Cij (x − y), for (x, y) ∈Rd ×Rd , with

Cij (z)= δijBN(‖z‖)+ zizj

‖z‖2

(
BL(‖z‖)−BN(‖z‖)),(10.1)

with

BL(r)=
∫ ∫

cos(ρu1r)u
2
1ω(du)

(
FL(dρ)− FN(dρ))

(10.2)

+
∫ ∫

cos(ρu1r)ω(du)FN(dρ),

BN(r)=
∫ ∫

cos(ρu1r)u
2
2ω(du)

(
FL(dρ)− FN(dρ))

(10.3)

+
∫ ∫

cos(ρu1r)ω(du)FN(dρ),

FL and FN being finite positive measures on R+. ω(du) is the normalized
Lebesgue measure on Sd−1. FL and FN represent respectively the gradient part
and the zero-divergence part of the associated Gaussian vector field.

For α and m positive reals, let

F(dρ)= ρd−1

(ρ2 +m2)(d+α)/2
dρ,

FL(dρ)= aF (dρ) and FN(dρ)= b

d − 1
F(dρ),
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where a and b are nonnegative. In the Fourier representation (c is a positive
constant),

Ĉij (k)= c(‖k‖2 +m2)−(d+α)/2
(
a
kikj

‖k‖2
+ b

d − 1

(
δij − kikj

‖k‖2

))
.(10.4)

Notice that, in the Fourier representation, the Laplace operator on vector fields
is given by the multiplication by −‖k‖2 and the projection π on gradient vector
fields (in the L2-space) by kikj

‖k‖2 [i.e., if V is a vector field and V̂ i(k) its Fourier

transform, ˆ(πV )i(k)=∑j
kikj

‖k‖2 V̂
j (k).]

Therefore, given an L2 vector field, Uj(y) = ∫ ∑
i C

ij (x − y)V i(x) dx can
be expressed as c(−C +m2)−(d+α)/2(aπV + b

d−1 (I − π)V ). Since 〈U,U 〉H =
〈U,V 〉2 = ∫ 〈U(x),V (x)〉dx, the self-reproducing space appears to be the
L2-Sobolev space of order s = d+α

2 (defined the same way as in Section 9.1)
equipped with the norm

‖V ‖2 = 1

a
‖πV ‖2

s +
d − 1

b
‖(I − π)V ‖2

s ,

where

‖V ‖2
s =

1

c
〈(−C+m2)sV ,V 〉2.

Note that if a or b vanishes, the self-reproducing space is H 2,(α+d)/2 restricted to
divergence-free vector fields or gradient vector fields.

10.2. Phase transitions for the Sobolev statistical solution. Let Pt be the
semigroup of a Brownian motion on Rd with variance (a + b)F (R+). Let St be
the statistical solution associated with Pt and C. If α > 2, C is C2. Hence (8.2) is
satisfied and the statistical solution St is a flow of maps.

Suppose a + b > 0 and let η = b
a+b . Then we have the following theorem.

THEOREM 10.1. For any α ∈]0,2[, the following hold:

(a) For d = 2 or 3 and η < 1− d
α2 , the statistical solution is a coalescent flow

of maps.
(b) For d = 2 or 3 and 1 − d

α2 < η < 1
2 − (d−2)

2α , the statistical solution is
diffusive with hitting.

(c) For d = 2 or 3 and η > 1
2 − (d−2)

2α or for d ≥ 4, the statistical solution is
diffusive without hitting.

REMARK. The results of this theorem are exactly the same as for the sphere.
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PROOF OF THEOREM 10.1. Let us study the two-point motion (Xt , Yt )

starting from (x, y) (with x "= y). Then rt = d(Xt, Yt ) is a diffusion in R+
(eventually reflected in 0), with generator L= σ 2(r) d

2

dr2 + b(r) ddr (see [20]), with

σ 2(r)= B −BL(r),(10.5)

b(r)= (d − 1)
B −BN(r)

r
,(10.6)

where B = BL(0)= BN(0)= a+b
d
F (R+).

LEMMA 10.2. For α ∈]0,2[, as r goes to 0, the following hold:

(i)
∫∫

cos(ρu1r)ω(du)F (dρ)= F(R+)− α1r
α + o(rα);

(ii)
∫∫

cos(ρu1r)u
2
1ω(du)F (dρ)= F(R+)

d
− α2r

α + o(rα);
(iii)

∫∫
cos(ρu1r)u

2
2ω(du)F (dρ)= F(R+)

d
− α3r

α + o(rα);
with α2 = α+1

d+αα1, α3 = 1
d+αα1 and

α1 = cd
(∫ ∞

0
(1− cosx)

dx

xα+1

)(∫ π/2

0
(cos θ)α(sin θ)d−2 dθ

)
.

PROOF. For r > 0, making the change of variable x = ρu1r ,∫ ∫ (
1− cos(ρu1r)

)
ω(du)F (dρ)

= cd
∫ 1

0

∫ ∞
0

(
1− cos(ρu1r)

)
(1− u2

1)
(d−2)/2 du1

ρd−1 dρ

(ρ2 +m2)(d+α)/2

= rαcd
∫ 1

0

(∫ ∞
0
(1− cosx)

xd−1 dx

(x2 + r2u2
1m

2)(d+α)/2

)
uα1 (1− u2

1)
(d−2)/2 du1.

As

lim
r→0

∫ ∞
0
(1− cosx)

xd−1

(x2 + r2u2
1m

2)(d+α)/2
dx =

∫ ∞
0
(1− cosx)

dx

xα+1
<∞,

we get that

lim
r→0

1

rα

∫ ∫ (
1− cos(ρu1r)

)
ω(du)F (dρ)

= cd
(∫ ∞

0
(1− cosx)

dx

xα+1

)
I (d − 2, α)= α1,

with I (n, t) = ∫ π/2
0 (cosθ)t (sin θ)n dθ = 1

2B(
n+1

2 , t+1
2 ) for t ≥ 0 and n ∈ N, and

B(x, y) =  (x) (y)
 (x+y) . This shows (i). Statements (ii) and (iii) can be obtained the
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same way with

α2 = cd
∫ ∞

0
(1− cosx)

dx

xα+1
I (d − 2, α+ 2)

and α1 = α2+ (d−1)α3 [note that
∫
u2

1ω(du)= 1
d

]. It is easy to see that, for α > 0
and d ≥ 1,

I (d − 2, α+ 2)= α+ 1

d + αI (d − 2, α).

Therefore, α2 = α+1
d+αα1. With the relation α1 = α2 + (d − 1)α3, we get that

α3 = 1
d+αα1. �

REMARK 10.3. As z goes to 0,

Cij (z)= Bδij − α1

d − 1

[(
(d − 1)a+ (d + α − 1)b

)
δij

− α((d − 1)a − b) zizj‖z‖2

]
‖z‖α(1+ o(1)).

Let us note that the dependence on m only appears in B .

From this lemma, it is easy to see that, as r goes to 0,

σ 2(r)= (a + b)α1

d + α (α + 1− αη)rα(1+ o(1)),(10.7)

b(r)= (a + b)α1

d + α (d − 1+ αη)rα−1(1+ o(1)).(10.8)

Note that we get the same behavior of σ and b around 0 as in Section 9.2.
As in Section 9.2, let us study s, the scale function of the diffusion rt .
SinceBL(r) andBN(r) converge toward 0 as r goes to∞ (as Fourier transforms

of finite measures), we get that, as r goes to ∞, log(s′(r)) ∼ (1 − d) log(r).
Therefore s(+∞) is finite if and only if d ≥ 3.

We also see that s(0+)=−∞ if η > 1
2 − (d−2)

2α and s(0+) is finite if η < 1
2 −

(d−2)
2α .
Let m be the speed measure of the diffusion. Let us study the boundary point 0.
As m(]0, x[) < −∞ for any positive x if η > 1− d

α2 , as in Section 9.2, with

a similar proof, we can prove that if η ∈]1 − d
α2 ,

1
2 − (d−2)

2α [, the diffusion rt is
instantaneously reflecting at 0. The only thing there is to change in the proof is
to take the test function f in (9.28) with compact support and to remark that gε
converges toward g in L1

loc(R
+).

If η < 1− d
α2 (note that 1− d

α2 ≤ 1
2 − d−2

α
), 0 is an exit boundary point and the

diffusion is absorbed by 0.
Therefore, we get that the following hold:
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(i) if d ≥ 3 and η ∈]1− d
α2 ,

1
2 − (d−2)

2α [, rt is instantaneously reflecting at 0
and is transient. In this case, as in Section 9.2, (St )t≥0 is diffusive with hitting;

(ii) if d = 2 and η ∈]1− d
α2 ,

1
2 − (d−2)

2α [, rt is instantaneously reflecting at 0
and is recurrent. In this case, as in Section 9.2, (St )t≥0 is diffusive with hitting;

(iii) if d ≥ 3 and η < 1− d
α2 , rt is absorbed at 0 with probability s(∞)−s(r0)

s(∞)−s(0) and

converges toward +∞ with probability s(r0)−s(0)
s(∞)−s(0) . In this case, as in Section 9.2,

(St )t≥0 is a coalescent flow of maps;
(iv) if d = 2 and η < 1 − d

α2 , rt is absorbed at 0 a.s. In this case, as in
Section 9.2, (St )t≥0 is a coalescent flow of maps.

If η > 1
2 − d−2

2α , then we have that s(0) = −∞. In this case, 0 is an entrance
boundary point as

∫
0+ |s(x)|dm(x) <∞. rt is recurrent if d = 2 and transient if

d ≥ 3. As in Section 9.2, we prove that (St )t≥0 is diffusive without hitting. �

For α > 2, the statistical solution is a stationary isotropic Brownian flow of
diffeomorphisms. In [20], the Lyapunov exponents of this flow are computed. The
sign of the first Lyapunov exponent λ1(α, d) describes the stability of the flow.
It is unstable if λ1 ≥ 0 and stable if λ1 < 0. The computation of λ1(α, d) gives
(see [20])

λ1 = 1

2(d + 2)

(
(d − 4)a+ db) ∫ ρ2F(dρ).(10.9)

Therefore, we have λ1(α, d)= 0 if and only if d ≤ 4 and

η= η(d)= 4− d
4

.(10.10)

As in Section 9.2, we see that, for fixed η, limα→2+ λ1(α, d) = +∞ if d ≥ 4 or
if η > 1

2 − d−2
4 = 4−d

4 and that limα→2+ λ1(α, d)=−∞ if η < 4−d
4 . This shows

that coalescence appears when λ1 goes to −∞ and splitting appears when λ1 goes
to +∞.

Note that limα→2− 1− d
α2 = limα→2− 1

2 − (d−2)
2α = 4−d

4 .
The results of this section are given by phase diagrams in Appendix B.

11. Reflecting flows. Let D be an open convex domain in Rd with C1

boundary ∂D. Let d be the Euclidean metric in Rd . For any x ∈ ∂D, we denote by
n(x) the directed inward unit normal vector to ∂D.

Let Pt be the semigroup of the Brownian motion in D reflected on ∂D.
Pt is associated with the Dirichlet form (E ,F ), where F = H 1(D) = {f ∈
L2(D,dx), |∇f | ∈ L2(D,dx)} equipped with the form 1

2

∫
D |∇f |2 dx (see [11],

1.3.2). Let C(x, y) be a covariance function in D ×D such that Cij (x, x) = δij

and satisfying (8.1).
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We can construct a statistical solution associated with Pt and C. Let P (2)
t be the

semigroup of the two-point motion (Xt , Yt ). Let P (2)
(·,·) be the law of the two-point

motion.
We know that Xt and Yt are two diffusions in D reflected on ∂D. Let ϕt and ψt

denote the local times of Xt and Yt on ∂D.

LEMMA 11.1. For h(x, y)= d2(x, y), P (2)
t h(x, y)≤ h(x, y)eCt .

PROOF. Let us note that

L(2) =Ax +Ay +
∑
i,j

Cij (x, y)∂xi ∂xj .

From (8.1) and the Lipschitz conditions, we get that

L(2)h(x, y)≤ C h(x, y).

Using Tanaka’s formula, there exists a martingale Mt such that

h(Xt , Yt )− h(x, y)=Mt +
∫ t

0
L(2)h(Xs,Ys) ds(11.1)

+
∫ t

0
〈∇xh(Xs,Ys), n(Xs)〉dϕs

(11.2)

+
∫ t

0
〈∇yh(Xs,Ys), n(Ys)〉dψs.

As ∇xh(x, y)= 2(x− y), using the fact that D is convex, we get that, for x ∈ ∂D,

〈∇xh(x, y), n(x)〉< 0.

This implies that

h(Xt , Yt)− h(x, y)≤Mt +C
∫ t

0
h(Xs,Ys) ds.

Taking the expectation, we get that P (2)
t h(x, y) − h(x, y) ≤ C ∫ t0 P (2)

s h(x, y) ds.
Hence we have the lemma. �

THEOREM 11.2. The statistical solution is a flow of maps.

PROOF. This is the same proof as the proof of Theorem 8.2. �
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APPENDIX A

Proof of Lemma 9.5. Take ϕ ∈]0, π [. At first, we are going to prove that
I (ϕ)=∑

l≥2
1

(l−1)α+1 | ddϕ γl(cosϕ)| is finite. As 1
lα
= ∫∞

0 e−lssα−1 ds
 (α)

,

I (ϕ)≤
∫ π

0

∫ ∞
0

∑
l≥1

[e−s |z(ϕ, θ)|]l |
d
dϕ
z(ϕ, θ)|

|z(ϕ, θ)| s
α−1 sind θ

ds dθ

 (α)cd
(A.1)

≤
∫ π

0

∫ ∞
0

fϕ,θ (s) ds dθ = 2
∫ π/2

0

∫ ∞
0

fϕ,θ (s) ds dθ,(A.2)

with

fϕ,θ (s)=
e−s| d

dϕ
z(ϕ, θ)|

1− e−s |z(ϕ, θ)|
sα−1

 (α)cd
.

It is easy to see that∫ ∞
1

fϕ,θ (s) ds ≤ 1

 (α)cd

∫ ∞
1

e−ssα−1

(1− e−s) ds <∞.(A.3)

On the other hand,∫ 1

0
fϕ,θ (s) ds ≤ 1

 (α)cd

∫ 1

0

ds

1− e−s|z(ϕ, θ)| =
1

 (α)cd
Fϕ(θ).(A.4)

Let xϕ(θ)=− log |z(ϕ, θ)|, then Fϕ(θ)= ∫ xϕ(θ)+1
xϕ(θ)

dt
1−e−t . As limθ→0+ xϕ(θ)= 0,

we have Fϕ(θ) ∼ − logxϕ(θ) as θ goes to 0. From this, we see that Fϕ(θ) =
O(log θ) as θ goes to 0. This implies that I (ϕ) is finite.

Now, applying the derivation under the integral theorem, we prove that G is
differentiable on ]0, π [ and that, for ϕ ∈]0, π [,

G′(ϕ)=∑
l≥1

∫ π

0

[z(ϕ, θ)]l−1 d
dϕ
z(ϕ, θ)

lα
sind θ

dθ

cd
(A.5)

=
∫ π

0

∫ ∞
0

∑
l≥1

[e−sz(ϕ, θ)]l
d
dϕ
z(ϕ, θ)

z(ϕ, θ)
sα−1 sind θ

ds dθ

 (α)cd
(A.6)

=
∫ π

0

∫ ∞
0

e−s d
dϕ
z(ϕ, θ)

1− e−sz(ϕ, θ)s
α−1 sind θ

ds dθ

 (α)cd
.(A.7)

As z(ϕ,π − θ)= z(ϕ, θ),

G′(ϕ)=−
∫ π/2

0

∫ ∞
0

a(s,ϕ)− sin2 θ

b(s, ϕ)+ cos2 θ

cosϕ

sinϕ
sα−1 sind θ

2ds dθ

 (α)cd
,
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with a(s,ϕ)= 1
e−s cosϕ and b(s,ϕ)= (1−e−s cosϕ)2

e−2s sin2 ϕ
. Changing variables (s = tϕ),

−G
′(ϕ)

ϕα−1
=
∫ π/2

0

∫ ∞
0

a(tϕ,ϕ)− sin2 θ

b(tϕ,ϕ)+ cos2 θ

ϕ cosϕ

sinϕ
tα−1 sind θ

2dt dθ

 (α)cd
(A.8)

=
∫ π/2

0

∫ ∞
0

I (t, ϕ, θ) dt dθ.(A.9)

Let ε > 0. There exists a positive constant Cε such that, for any t ∈ [0, ε],
0≤ I (t, ϕ, θ)≤ Cεtα−1.(A.10)

Note also that

I (t, ϕ, θ)≤ Cd,α t2ϕ2e−tϕ

(1− e−tϕ)2 t
α−3,(A.11)

where Cd,α is a positive constant. Let C = Cd,α supx>0
x2e−x

(1−e−x)2 <∞. Then, for
any positive t ,

0≤ I (t, ϕ, θ)≤ C tα−3.(A.12)

As F(t)= Cεtα−110<t≤ε + Ctα−31t>ε belongs to L1(dθ ⊗ dt) for α ∈]0,2[,
limϕ→0 a(tϕ,ϕ) = 1 and limϕ→0 b(tϕ,ϕ) = t2, by the Lebesgue dominated
convergence theorem,

lim
ϕ→0

G′(ϕ)
ϕα−1

=−
∫ π/2

0

∫ ∞
0

cos2 θ

t2 + cos2 θ
tα−1 sind θ

2dθ dt

cd (α)
=−αK.(A.13)

We have proved the second limit. The first limit is easy to obtain as

G(0)−G(ϕ)=−
∫ ϕ

0
G′(x) dx

=−K ϕα + o(ϕα).
This finishes the proof of the lemma. �

APPENDIX B

Phase diagrams for the Sobolev statistical solutions. Figures 1–7 give
results of Sections 9 and 10.

Let us remark that, when α < 2, the diagrams are exactly the same for the sphere
and for the plane. For the sphere, we see that, for α > 2 and η ≤ 2− ζ(α)

ζ(α+1) , the
flow becomes stable when d goes to ∞: (9.30) implies that limd→∞ η(α, d) =
2 − ζ(α)

ζ(α+1) for α > 2. We see that, for any d and η ∈ [0,1[, the flow becomes
stable when α goes to∞: (9.30) implies that limα→∞ η(α, d)= 1.
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FIG. 1. Phase diagram on S2.

FIG. 2. Phase diagram on R2.
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FIG. 3. Phase diagram on S3.

FIG. 4. Phase diagram on R3.
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FIG. 5. Phase diagram on S4.

FIG. 6. Phase diagram on S5.
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FIG. 7. Phase diagram on S50.
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