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RANDOM WALKS ON DISCRETE GROUPS
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Let µ be a probability measure with finite support on a discrete group �
of polynomial volume growth. The main purpose of this paper is to study the
asymptotic behavior of the convolution powers µ∗n of µ. If µ is centered,
then we prove upper and lower Gaussian estimates. We prove a central
limit theorem and we give a generalization of the Berry–Esseen theorem.
These results also extend to noncentered probability measures. We study the
associated Riesz transform operators. The main tool is a parabolic Harnack
inequality for centered probability measures which is proved by using ideas
from homogenization theory and by adapting the method of Krylov and
Safonov. This inequality implies that the positive µ-harmonic functions are
constant. Finally we give a characterization of the µ-harmonic functions
which grow polynomially.

1. Introduction and statement of the results. Let � be a finitely generated
discrete group of polynomial volume growth, let µ be a probability measure with
finite support on � and let µ∗n =µ∗µ∗ · · ·∗µ be the nth convolution power of µ.

The main purpose of this paper is to study the asymptotic behavior of µ∗n. We
obtain generalizations of certain results concerning the lattice valued distributions
in R

n (cf. [20, 34]). We shall also extend certain results of [2, 15, 23] to
nonsymmetric probability measures.

The measure µ can be either centered or not centered. It turns out that if µ is not
centered, then we can conjugate µ by a multiplicative function and obtain another
centered measure µ′. So it is enough to consider only centered measures.

According to a famous theorem of Gromov [22], � is a finite extension
of a nilpotent subgroup �N ��. By considering a subgroup of �N if necessary we
can assume that �N can be embedded as a lattice in a simply connected nilpotent
Lie group N . We can associate with µ a centered left invariant sub-Laplacian
on N denoted by LHµ. LHµ is defined by a formula similar to the one we have in
classical homogenization theory (cf. [13, 26]).

Let pHµ
t (x, y) be the heat kernel LHµ [i.e., of the fundametal solution of the

associated heat equation ( ∂
∂t
+L)u= 0]. Comparing µ∗n with p

Hµ
t (x, y), we can

obtain information on the distribution of the mass of µ∗n. Using this information,
together with a result of Varopoulos [49] which gives a uniform upper bound
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on µ∗n, it is possible to adapt the method of Krylov and Safonov (cf. [29, 30,
41]) and obtain a parabolic Harnack inequality.

Applying this inequality we can obtain upper and lower Gaussian bounds
for µ∗n. We can also prove, adapting some ideas of Bergström (cf. [14, 41]), that as
n→∞, the values of µ∗n approach the values of pHµ

t (x, y) with uniform speed
1/nγ/2, for some γ ∈ (0,1]. Of course by the classical Berry–Esseen theorem
(cf. [20, 34]), the optimal rate of convergence is 1/

√
n. This is proved with the

same method a posteriori, once we have the appropriate estimate for the space
differences of µ∗n.

The Berry–Esseen estimate implies that, on large balls, the µ-harmonic
functions look like LHµ-harmonic functions. Using this observation, we can adapt
some ideas of Avellaneda and Lin [3, 4, 8–10] and prove a Taylor formula for
the µ-harmonic functions. This formula gives Harnack inequalities for the time
and space differences of µ∗n. It can also be used to obtain a caracterization of the
µ-harmonic functions which grow polynomially.

Finally, we prove Berry–Esseen estimates for the time and space differences
of µ∗n. We apply these estimates to study the associated Riesz transform operators.

1.1. Centered probability measures. The group �/[�,�] is finitely generated
and Abelian and hence it can be written as a direct product Z

k×A, whereA is finite
and Abelian. Let π be the canonical projection π :G→ Z

k and let H =Ker(π).
Let µ be a probability measure on � whose support is finite and generates �.

We say that µ is centered if the first order moments of its projection π(µ) on Z
k

vanish, that is, if
∑

x∈� π(x)iµ(x)= 0, 1 ≤ i ≤ k, where yi is the ith coordinate
of the element y = (y1, . . . , yk) ∈ Z

k , 1≤ i ≤ k.

1.2. The passage from a noncentered to a centered probability measure. We
say that χ :�→ R

+ is multiplicative if χ(xy) = χ(x)χ(y), x, y ∈ �. Note that
then χ can be written as

χ = φ ◦ π with φ(x)= e〈b,x〉,

where π is the quotient map π :G→ Z
k ∼=G/H and where 〈b, x〉 = b1x1+ · · · +

bkxk for b= (b1, . . . , bk), x = (x1, . . . , xk) ∈R
k.

Let µ be a probability measure on � whose support is finite and generates �.
We have the following well-known lemma.

LEMMA 1.1. If µ is not centered, there are a multiplicative function χ ,
a constant βµ > 0 and another centered probability measure µ′ on � such that

µ(x)= e−βµµ′(x)χ(x), x ∈ �.(1.1)
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Note that (1.1) implies that

µ∗n(x)= e−βµnµ′∗n(x)χ(x), x ∈ �.(1.2)

PROOF. Let π(µ) be the image of µ under the quotient map π :�→ Z
k ∼=

G/H and let us consider the function

F(a)= ∑
x∈Zk

π(µ)(x)e〈a,x〉,

where 〈a, x〉 = a1x1 + · · · + akxk for a = (a1, . . . , ak), x = (x1, . . . , xk) ∈R
k.

We observe that F is a positive smooth function on R
k and that F(a)→∞

as |a| → ∞. So F attains its minimum bϕ = min{F(a) :a ∈ R
k} at some point

a0 ∈ R
k. Also F(0) = 1 and, since ϕ is not centered, ∇F(0) �= 0. Hence bϕ =

F(a0) < 1 and a0 �= 0. The lemma follows by taking

βµ =− logbµ, χ(x)= e−〈a0,π(x)〉

and

µ′(x)= 1

bµ
µ(x)e〈a0,π(x)〉, x ∈ �.

The fact that ∇F(a0) = 0 implies that µ′ is indeed a centered probability
measure. �

1.3. The geometry of � and the sub-Laplacian LHµ. Let us fix a subset U
of � such that the following hold:

1. U is finite and generates �;
2. e ∈ U (e is the identity element of �);
3. U is symmetric; that is, x ∈ U if and only if x−1 ∈U .

Let Un = {x1x2 · · ·xn :xi ∈U,1≤ i ≤ n} and set

|x|� =min{n :x ∈Un}.
Also, let |A| denote the number of elements of A⊆ �.
In this article we assume that � has polynomial volume growth, that is, that there

are constants c > 0 and A ∈ N such that |Un| ≤ cnA, for all n ∈ N. By a theorem
of Gromov [22], this assumption implies that there is a nilpotent subgroup �N ��
such that |�/�N | <∞. Hence, by a theorem of Bass [11], there is an integer
D ≥ 0 such that

1

c
nD ≤ |Un| ≤ cnD, n ∈N.(1.3)

We call D the homogeneous dimension of �. Note that D does not depend on
the choice of U .
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Let π the quotient map π :� → �/�N and let us choose elements g0 = e,
g1, . . . , gk ∈ � such that

�/�N = {π(g0),π(g1), . . . , π(gk)}.
Every element g ∈ � can be written uniquely as g = ygj , with y ∈ �N ,

0≤ j ≤ k. We set

g = gj and gN = y.

�N has a torsion-free subgroup �1
N � �N of finite index, that is, such that

|�N/�1
N |<∞ (cf. [35]). Let �2

N =
⋂

0≤i≤k gi�1
Ng

−1
i . Then �2

N is still nilpotent
and torsion free. Furthermore, �2

N � � and |�/�2
N | <∞. So by replacing �N

with �2
N , if necessary, we assume that �N has the following properties:

1. �N � �;
2. |�/�N |<∞;
3. �N is finitely generated, nilpotent and torsion free.

Let U�N ⊆ �N be a finite and symmetric subset which generates �N and set

|x|�N =min{n ∈N :x ∈Un
�N
}, x ∈ �N.(1.4)

Then there is a c≥ 1 such that

1

c
|x|�N ≤ |xgi|� ≤ c|x|�N(1.5)

for all x ∈ �N and 0≤ i ≤ k, or more generally

1

c
|x−1y|�N ≤ |g−1h|� ≤ c|x−1y|�N(1.6)

for all g = xgi , h= ygj ∈ �, x, y ∈ �N , 0≤ i, j ≤ k.
Property 3 above implies that �N is isomorphic to (and hence can be identified

with) a uniform lattice in a simply connected nilpotent Lie group N (cf.
[35]). Note that N/�N is a compact neighborhood. Let us fix a fundamental
domain ( for �N and let dg be the Haar measure on N which satisfies
dg-measure(()= vol(N/�N)= 1.

Let V be a compact neighborhood of the identity element e of N and set

|x|N =min{n ∈N :x ∈ V n, x ∈N}.(1.7)

Then there is a c≥ 1 such that

1

c
|x|�N ≤ |x|N ≤ c|x|�N , x ∈ �N.(1.8)

The isomorphisms y→ giyg
−1
i , 0 ≤ k ≤ k, can be extended to isomorphisms

of N (cf. [35]). So we can consider the group

G= {ygi, y ∈N, 0≤ i ≤ k}
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with multiplication law defined by

xgiygj = xgiyg
−1
i (gigj )Ngigj , x, y ∈N, 0≤ i, j ≤ k.

If � is nilpotent, then a better way to proceed is to consider the torsion subgroup
τ (�) of � (cf. [12]). τ (�) is the set of elements of finite order in �, it is a normal
subgroup of � and �/τ(�) is torsion free. So, we can set �N = �/τ(�).

Let n be the Lie algebra of N . We identify n with the left invariant vector fields
on N .

By a left invariant sub-Laplacian on N , we mean an operator

L=−(E2
1 + · · · +E2

p)+E0,

where E0,E1, . . . ,Ep are left invariant vector fields on N and where the vector
fields E1, . . . ,Ep satisfy Hörmander’s condition; that is, they generate together
with their successive Lie brackets [Ei1, [Ei2 , [. . . ,Eik ] . . .]]],1 ≤ ij ≤ p,1 ≤
j ≤ k, the Lie algebra n of N .

We shall say that L is centered if E0 ∈ [n,n].
Let us fix a discrete probability measure µ on �, let supp(µ) = {g ∈ G :

µ(g) > 0} and let us assume that the following hold:

1. | supp(µ)|<∞;
2. U ⊆ supp(µ);
3. µ is centered.

Our goal is to associate with µ a centered left invariant sub-Laplacian LHµ

on N , in such a way that the asymptotic behavior of the convolution powers µ∗n
can be compared to the large-time behavior of the heat kernel pHµ

t (x, y) of LHµ.
If � = �N or G is nilpotent, then the definition of LHµ is rather straightforward
(cf. [19]). In this case we use the notation Lµ and p

µ
t (x, y) instead of LHµ and

p
Hµ
t (x, y), respectively. If � is not nilpotent, then LHµ is defined by a method

inspired by the theory of the homogenization (cf. [13, 26]). We call LHµ the
homogenized sub-Laplacian (associated with µ).

1.4. Notation. Given another measure ν we define the convolution µ ∗ ν by
µ ∗ ν(x)=∑

y∈� µ(y)ν(y−1x) dy, x ∈ �.
Given a kernel K(x,y) we set

K(x,A)=∑
y∈A

K(x, y) and Kf (x)=∑
y∈�

K(x, y)f (y).

If S(x, y) is another kernel, then we denote by KS the kernel

KS(x, y)=∑
z∈�

K(x, z)S(z, y).
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We also set

‖K‖1 = sup
{‖K(x, .)‖1,‖K(., y)‖1; x, y ∈ �},

‖K‖∞ = sup
{|K(x,y)| :x, y ∈ �}.

To simplify the notation, we set µ∗n = µn, n ∈N, and µ0 = δe , where δx is the
Dirac mass at x. We also denote by µn the kernel

µn(x, y)=µ∗n(x−1y), x, y ∈ �.
For n= 1, we just write µ(x, y) instead of µ1(x, y).

Note that µn+1 = µµn and that

µnf (x)=∑
y∈�

µn(x, y)f (y)=∑
y∈�

µ∗n(y)f (xy).

We say that a function u is µ-harmonic in A⊆ � if µu(x)= u(x), x ∈A.
We say that a function u is a space–time µ-harmonic function in A⊆ Z× � if

(µu(n, ·))(x)= u(n+ 1, x), (n, x) ∈A.
We denote by ∂1 and ∂z, z ∈ �, respectively the difference operators

∂1u(n, x)= u(n+ 1, x)− u(n, x) and ∂zu(n, x)= u(n, xz)− u(n, x).

Note that u is a space–timeµ-harmonic function if and only if (∂1+(I−µ))u= 0.
We also set

∂zµ
∗n(x)=µ∗n(xz)−µ∗n(x) and ∂1µ

∗n(x)=µ∗(n+1)(x)−µ∗n(x).

If A⊆ �, then we set

∇Au(n, x)= sup
{|∂zu(n, x)|; z ∈U}.

We say that a function f is of type P if f (xg)= f (g), x ∈ �N , g ∈ �.
If f is such a function, then we denote by 〈f 〉 its mean value

〈f 〉 = 1

k+ 1

∑
0≤i≤k

f (gi).

Note that if f is a function of type P, then µf is also a function of type P. If we
also have 〈f 〉 = 0, then the function

u=∑
n≥0

µnf

is well defined and satisfies

(I −µ)u= f.

If � is nilpotent and we set �N = �/τ(�), then the type P functions will just be
the constant functions.



RANDOM WALKS ON GROUPS 729

If K(x,y) is a kernel initially defined on N , then we use the same notation
K(x,y) to denote its restriction to �N and its extension to �. The extension of
K(x,y) to � is defined by

K(xgi, ygj )= 1

k + 1
K(x,y), x, y ∈N, 0≤ i, j ≤ k.

If � is nilpotent and we set �N = �/τ(�), then we extend K(x,y) to � by setting

K(zx,wy)= 1

|τ (�)|K(ẋ, ẏ),

where z,w ∈ τ (�) and ẋ = xτ(�), ẏ = yτ(�), x, y ∈ �.
In particular, we use this notation for the heat kernels pHµ

t (x, y), pµt (x, y) and
their derivatives X1 · · ·Xnp

Hµ
t (x, y), X1 · · ·Xnp

µ
t (x, y), X1, . . . ,Xn ∈ n.

A function f on �N will be extended to � by setting

f (xgi)= f (x), x ∈ �N, 0≤ i ≤ k.

If � is nilpotent and we set �N = �/τ(�), then we extend f to � by setting
f (zx)= f (ẋ), for z ∈ τ (�) and ẋ = xτ(�), x ∈ �.

We do this, in particular, when f is a harmonic function or a polynomial.
We denote by [[a, b]] the interval [a, b] ∩Z.
Given a nonempty subset A of � we set A0 = {e} and Ar =A[r], r > 0.
The different constants are always denoted by the same letter c. When their

dependence or independence is significant, it is clearly stated.

1.5. A parabolic Harnack inequality. The following Harnack inequality plays
a central role in this article.

THEOREM 1.2. For all a, b ≥ 1 there are β > α > 1, c > 1 and λ > 0 such
that, for all r ≥ 1 and all u≥ 0 satisfying(

∂1 + (I −µ)
)
u= 0 in [[0, (β + b2)r2]] ×Ucr,

we have

sup
{
u; [[αr2, (α+ a2)r2]] ×Uar

}≤ λ inf
{
u; [[βr2, (β + b2)r2]] ×Ubr

}
.(1.9)

For the case when µ is symmetric [i.e., µ(x−1) = µ(x), x ∈ �], the above
inequality was proved in [23] by a different method.

We prove this inequality by adapting the method of Krylov and Safonov [29].
This method uses certain information on the growth of the positive space–time
µ-harmonic functions. To obtain this information we use the following three
results.
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The first two results concern the distribution of the mass of the convolution
powers µ∗n as n→∞:

PROPOSITION 1.3. For all a > 1 there are r0 ≥ 1 and ∂ > 0 such that∑
y∈Ur

µn(x, y) > ∂,(1.10)

for all (n, x) ∈ [[a−2r2, a2r2]] ×Uar , r ≥ r0.

PROPOSITION 1.4. For all ∂ > 0 there is an a > 1 such that∑
y /∈Uar

µn(e, y) < ∂,(1.11)

for all k ∈ [[1, r2]].

The third result is a theorem of Varopoulos [49] which asserts that the
convolution powers µ∗n decay with a certain uniform speed as n→∞:

THEOREM 1.5 [49]. Letµ be a (not necessarily centered) probability measure
whose support generates �. Then there is a constant c > 0 such that

‖µ∗n‖∞ ≤ c n−D/2, n ∈N.(1.12)

If u is a function defined on B ⊆ Z×�, then let us set

Osc(u,B)= sup
{|u(k, x)− u(m,y)| : (k, x), (m,y) ∈B}.

To prove Theorem 1.2, we proceed as follows. Using the above three results, we
prove an analogue of the first growth lemma of [29]. From this and arguing in the
same way as in [29] we obtain a second growth lemma.

A direct consequence of the second growth lemma is the following:

PROPOSITION 1.6. There are c ≥ 1 and γ ∈ (0,1] such that, for all t ∈ R,
r ≥ 1 and all functions u satisfying (∂1+ (I −µ))u= 0 in [[t − c2r2, t]] ×Ucr ,

Osc
(
u, [[t − r2, t]] ×Ur

)≤ γ Osc
(
u, [[t − c2r2, t]] ×Ucr

)
.(1.13)

Theorem 1.2 follows from the second growth lemma and the above proposition
by a standard argument (see, e.g., [7, 30, 40, 44]). It can also be proved by arguing
in the same way as in [29] (but this is less obvious).

An immediate consequence of (1.9) and (1.13) is the following:

COROLLARY 1.7. Every positive µ-harmonic function is constant.
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1.6. Gaussian estimates. Making use of the Harnack inequality (1.9) we prove
the following upper Gaussian estimate:

THEOREM 1.8. There is a constant c > 0 such that

µ∗n(x)≤ c n−D/2 exp
(
−|x|

2
�

cn

)
, x ∈ �, n ∈N.(1.14)

Once we have the upper Gaussian estimate then, again by using the Harnack
inequality (1.9), we can obtain a lower Gaussian estimate (cf. [23] and [50],
pages 47–50):

COROLLARY 1.9. There is a constant c > 0 such that

µ∗n(x)≥ 1

c
n−D/2 exp

(
−c |x|

2
�

n

)
(1.15)

for all n ∈N and x ∈ � satisfying |x|� ≤ n/c.

Combining (1.2) and (1.14) we have the following:

COROLLARY 1.10. Let us assume that µ is not centered and let βµ and χ be
as in Lemma 1.1. Then there is a c > 0 such that

µ∗n(x)≤ cn−D/2 exp(−βµn)χ(x) exp
(
− |x|

2
�

cn

)
(1.16)

for all x ∈ � and n ∈N.

1.7. A Taylor formula for the space–time µ-harmonic functions. Using the
exponential coordinates we shall identify N , as a differential manifold, with R

q .
So a monomial P (x) on N will be just a monomial on R

q . A monomial P (x)
on �N will be just the restriction to �N of a monomial P (x) on N . We extend the
monomials P (x) to � by setting P (xgi)= P (x), x ∈ �N,1≤ i ≤ k.

In the rest of this article, we do not make any distinction between the restriction
of a monomial P (x) to �N and its extension to �.

For every monomial P (x), there are an integer d ≥ 0 and a constant c > 0 such
that

1

c
nd ≤ sup{|P (x)|, x ∈ Un} ≤ cnd, n ∈N.(1.17)

We say then that P (x) has homogeneous degree degH P = d .
We say that P (t, x) is a monomial on Z×� (resp. R×G) if P (t, x)= tmQ(x),

with Q(x) a monomial on � (resp. G). We define the homogeneous degree
degH P (t, x) of P (t, x) by

degH P (t, x)= 2m+ degH Q(x).
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By polynomials we of course mean linear combinations of monomials. The
homogeneous degree of a polynomial is therefore the maximum of the homo-
geneous degrees of its monomials.

To fix the notation, we use

P0(t, x),P2(t, x), . . . ,Pνd (t, x)

from now on to denote the monomials with homogeneous degree less than or equal
to d . With every such monomial Pi(t, x) we associate another, more convenient
“corrected” monomial Qψ

Pi
(t, x) written as

Q
ψ
Pi
(t, x)= Pi(t, x)+

∑
0≤j≤νk−1

ψi
j (x)Pj (t, x),

where k = degH Pi and where the functions ψi
j are of type P.

Note that when � is nilpotent the ψi
j will just be constant functions.

The following result gives a Taylor formula for the space–time µ-harmonic
functions.

THEOREM 1.11. For all n ∈ N there is a constant cn > 0 such that, for all
R ≥ r ≥ 1 and all functions u satisfying(

∂1 + (I −µ)
)
u= 0 in [[−R2,R2]] ×UR,

we have

sup

{∣∣∣∣∣u−
∑

0≤i≤νn
AiR

−degH PiQ
ψ
Pi

∣∣∣∣∣; [[r2, r2]] ×Ur

}

≤ cn

(
R

r

)−(n+1)

‖u‖∞,
(1.18)

where the constants Ai satisfy

|Ai | ≤ cn‖u‖∞,
for all 0≤ i ≤ νn, and

(
∂1+ (I −µ)

)( ∑
νd−1<i≤νd

AiQ
ψ
Pi

)
= 0,

for all 1≤ d ≤ n.

The proof of the above result is based on ideas of Avellaneda and Lin (cf. [9,
10]). These ideas have already been used in the context of Lie groups in [3, 4, 8].
The interest of the method lies in the fact that we do not make use of any a priori
control on the differences.
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1.8. µ-harmonic functions of polynomial growth. We say that a function u

on � grows polynomially if there is a c > 0 such that

sup{|u|;Un} ≤ cnc, n ∈N.(1.19)

The following result is a consequence of Theorem 1.11:

THEOREM 1.12. Every µ-harmonic function u which grows polynomially is
equal to a linear combination of the monomials Qψ

Pi
.

A result of this type was first proved by Avellaneda and Lin [10] in the case of
differential operators with periodic coefficients in R

n. It was generalized in [8] in
the context of connected Lie groups of polynomial volume growth, where it was
used to prove a Sobolev inequality. We state below the discrete analogue of that
inequality. The proof is similar and is omitted.

COROLLARY 1.13. Let f be a function, not necessarily with compact
support, such that ∇Uf ∈ Lp , 1 < p < D. Then there are a universal constant
c > 0 and a constant Cf depending on f such that f −Cf ∈LDp/(D−p), and

‖f −Cf ‖Dp/(D−p) ≤ c‖∇Uf ‖p.
1.9. Harnack inequalities for the differences. A consequence of Theorem 1.11

is the following result:

THEOREM 1.14. For all a, b ≥ 1 and all k ∈ N there are β > α > 1, c > 1
and λ > 0 such that, for all z ∈U , r ≥ 1 and all u≥ 0 satisfying(

∂1 + (I −µ)
)
u= 0 in [[0, cr2]] ×Ucr,

we have

sup
{|∂k1∂zu|; [[αr2, (α+ a2)r2]] ×Uar

}
≤ λr−2k−1 inf

{
u; [[βr2, (β + b2)r2]] ×Ubr

}
.

(1.20)

If � is nilpotent, then we can also control higher order spacial differences:

THEOREM 1.15. If � = �N , then for all a, b ≥ 1 and all k,m ∈ N there are
β > α > 1, c > 1 and λ > 0 such that, for all z1, . . . , zm ∈ U , r ≥ 1 and all u≥ 0
satisfying (

∂1 + (I −µ)
)
u= 0 in [[0, cr2]] ×Ucr,

we have

sup
{|∂k1∂z1 · · · ∂zmu|; [[αr2, (α + a2)r2]] ×Uar

}
≤ λr−2k−m inf

{
u; [[βr2, (β + b2)r2]] ×Ubr

}
.

(1.21)
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Note that if � is not nilpotent, then (1.21) is not necessarily true for m ≥ 2.
This is due to the existence of the functions ψi

j in the definition of the monomials
Q
ψ
Pi

[see Sections 1.7 and 19 as well as (1.30) below].

1.10. Berry–Esseen estimates. Let p
Hµ
t (x, y) be the heat kernel of the

homogenized sub-Laplacian LHµ associated with µ. As mentioned in Section 1.4,

we extend pHµ
t (x, y) to G, by setting

p
Hµ
t (xgi, ygj )= 1

k + 1
p
Hµ
t (x, y), x, y ∈N, 0≤ i, j ≤ k.(1.22)

We have the following analogue of the Berry–Esseen theorem (cf. [20, 26, 28,
34, 51]):

THEOREM 1.16. There is a c > 0 such that

|µn(x, y)− pHµ
n (x, y)| ≤ cn−(D+1)/2(1.23)

for all x, y ∈ � and n ∈N.

The reader can observe that by a straightforward adaptation of the proof of the
above result we can also obtain a similar L1 estimate, that is, that there is a c > 0
such that

‖µn− pHµ
n ‖1 ≤ c/

√
n, n ∈N.

It was proved in [2, 7] that there are constants c,CL ≥ 0 such that

|pHµ
t (e, e)−CLHµ

t−D/2| ≤ ct−(D+1)/2, t ≥ 1.(1.24)

Combining (1.23) and (1.24) we have the following:

COROLLARY 1.17. There are constants c,Cµ ≥ 0 such that

|µ∗n(e)−Cµn
−D/2| ≤ cn−(D+1)/2, n ∈N.(1.25)

Combining (1.2) and (1.25) we have the following:

COROLLARY 1.18. Let us assume that µ is not centered and let βµ be as in
Lemma 1.1. Then there are constants c,Cµ ≥ 0 such that

|µ∗n(e)−Cµn
−D/2e−βµn| ≤ cn−(D+1)/2e−βµn, n ∈N.(1.26)

By interpolating (1.14) and (1.22) we can have the following:
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COROLLARY 1.19. For all ε ∈ (0,1) there is a c > 0 such that

|µn(x, y)− pHµ
n (x, y)| ≤ cn−(D+ε)/2 exp

(
−|x

−1y|2�
cn

)
(1.27)

for all x, y ∈ � and n ∈N.

Concerning the space and time differences we have the following results:

THEOREM 1.20. There is a constant c > 0 such that

|∂1µ
n(x, y)− ∂1p

Hµ
n (x, y)| ≤ cn−(D+3)/2(1.28)

for all x, y ∈ � and n ∈N.

THEOREM 1.21. If � is nilpotent, then there is a constant c > 0 such that, for
all z ∈U and all x, y ∈ � and n ∈N,

|∂zµn(x, y)− ∂zp
µ
n (x, y)| ≤ cn−(D+2)/2.(1.29)

If � is not nilpotent, then the situation is quite different. More precisely, if
X1, . . . ,Xq is a convenient basis of n and if ψ1, . . . ,ψn1 are the associated
first order correctors (see Section 14 for the exact definitions), then we have the
following result:

THEOREM 1.22. There is a c > 0 such that, for all z ∈U and all x, y ∈ � and
n ∈N, ∣∣∣∣∣∂zµn(x, y)− ∂zp

Hµ
n (x, y)− ∑

1≤j≤n1

(
∂zψ

j (x)
)
Xjp

Hµ
n (x, y)

∣∣∣∣∣
≤ cn−(D+2)/2.

(1.30)

Combining (1.14) and (1.30) we have the following:

COROLLARY 1.23. For all ε ∈ (0,1) there is a constant c > 0 such that, for
all z ∈U and all x, y ∈ � and n ∈N,∣∣∣∣∣∂zµn(x, y)− ∂zp

Hµ
n (x, y)− ∑

1≤j≤n1

(
∂zψ

j (x)
)
Xjp

Hµ
n (x, y)

∣∣∣∣∣
≤ cn−(D+1+ε)/2 exp

(
−|x

−1y|2�
cn

)
.

(1.31)

Inequalities (1.27) and (1.31) above actually hold with ε = 1. This can be proved
by arguing in a similar way as in the proofs of Theorems 1.16 and 1.22. However,
the proofs become much more technical, while (1.27) and (1.31) are sufficient for
the application that we have in mind, namely the proof of Theorem 1.24.
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1.11. Riesz transforms. Let us denote by (I −µ)−1/2 the operator defined by
(I −µ)−1/2 =∑

n≥0 anµ
n, where the an’s are as in (1− t)−1/2 =∑

n≥0 ant
n.

THEOREM 1.24. For all z ∈ � the Riesz transform operators Rz = ∂z(I −
µ)−1/2 and R∗z = (I −µ)−1/2∂z are bounded on Lp, for 1 <p <∞ and from L1

to weak-L1.

If � is nilpotent, then we can also consider higher order Riesz transforms.

THEOREM 1.25. If � is nilpotent, then for all z1, . . . , zk ∈ � the Riesz
transform operators Rk = ∂z1 · · · ∂zk (I −µ)−k/2 and R∗k = (I −µ)−k/2∂zk · · · ∂z1 ,
are bounded on Lp , for 1 <p <∞ and from L1 to weak-L1 .

If � is not nilpotent then, as we can see from (1.31), the second order Riesz
transforms R2 = ∂z1∂z2(I − µ)−1 and R∗2 = (I − µ)−1∂z2∂z1 may be unbounded
even on L2 (cf. [3]).

2. Organization of the article. We have tried to give the proof of the results
in the simplest possible context. The proof of the parabolic Harnack inequality
(1.9) from Varopoulos’s theorem (Theorem 1.5) and by assuming Propositions 1.3
and 1.4, does not use any particular result from the structure of � and so it is given
already in Section 3. The construction of the operator LHµ is much simpler when
� = �N . So those proofs that are essentially the same, whether � = �N or not, are
only given in the case � = �N . This is the case for the Gaussian estimate (1.14),
the Taylor formula (1.18) and the main part of the proof of Propositions 1.3 and
1.4.

The proof of the Berry–Esseen estimate (1.23) is much more complicated when
� �= �N . So, to illustrate the ideas better, we also give the proof in the case� = �N .

3. The proof of the Harnack inequality from Varopoulos’s theorem and
Propositions 1.3 and 1.4. In this section we give the proof of Theorem 1.2 from
Varopoulos’s theorem (Theorem 1.5) and by assuming Propositions 1.3 and 1.4.
This has already been done in [7] in the context of left invariant sub-Laplacians on
connected Lie groups of polynomial volume growth. We give below an adaptation
of that proof in the context of discrete groups.

We first prove an analogue of the first growth lemma of [29] by using (1.10),
(1.11) and (1.12).

Next, we prove an analogue of the second growth lemma of [29]. To do this, we
follow closely [29] and we adapt in our context their covering lemmas.

The proof of Proposition 1.6 and of Theorem 1.2 from the second growth lemma
is standard in the literature (cf. [7, 30, 40, 44]; since it is also long, it will be
omitted. We point out again that the argument given in [29] can also be used.
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If A⊆ Z×�, then we denote by |A| the number of its elements.
If A⊆R×�, then we set

|A| =∑
x∈�

|Ax|,

where |Ax | is the Lebesgue measure of Ax =A ∩R× {x}.

3.1. The first growth lemma. If B ⊆ Z × �, A ⊆ B and (t, x) ∈ B then,
adopting the notation of [29], we set

B
(
(t, x),A,B

)= inf
{
u(t, x) :u≥ 0, u(s, y)≥ 1 for (s, y) ∈A

and
(
∂1+ (I −µ)

)
u= 0 in B

}
.

If A′ ⊆ B , then we set

B(A′,A,B)= inf
{
B
(
(t, x),A,B

)
: (t, x) ∈A′}.

Note that if v ≥ 0, u=µv and a =min{µ(x), x ∈U }, then

u(x)≥ av(xy), y ∈ U.(3.1)

LEMMA 3.1 (First growth lemma). For all a > 1, there are r0 ≥ 1, c > a and
∂, ξ ∈ (0,1) such that

B
([[a−2r2, a2r2]] ×Uar,A, [[0, a2r2]] ×Ucr

)
> δ(3.2)

for all r ≥ r0 and every A⊆ [[0, r2]] ×Ur satisfying

|A|> ξ |[[0, r2]] ×Ur |.

An immediate consequence of (3.1) and (3.2) is the following:

COROLLARY 3.2. For all a > 1 there are c > a, r0 ≥ 1, m ∈ N and ∂ > 0
such that for all r ≥ r0 and all u≥ 0 satisfying(

∂1+ (I −F)
)
u= 0 in [[0, a2r2]] ×Ucr

we have

inf
{
u; [[a−2r2, a2r2]] ×Uar}≥ δu(1, e)r−m.(3.3)

Moreover, if for some 1≤R ≤ r ,

inf
{
u; [[0,R2]] ×UR

}≥ 1,

then

inf
{
u; [[a−2r2, a2r2]] ×Uar

}≥ δ

(
R

r

)m
.(3.4)



738 G. K. ALEXOPOULOS

3.2. Proof of Lemma 3.1. The following lemma is an immediate consequence
of Theorem 1.5 and Proposition 1.3.

LEMMA 3.3. For all a > 1 there are r0 ≥ 1, ∂ > 0 and ξ ∈ (0,1) such that∑
y∈A

µn(x, y) > δ(3.5)

for all r ≥ r0, (n, x) ∈ [[a−2r2, a2r2]] ×Uar and A⊆Ur satisfying

|A|> ξ |Ur |.

Let Zn be the random walk with transition probabilities

P [Zn+1 = y|Zn = x] = µ(x, y).

Let us also denote by Px , x ∈G, the probability measures satisfying

Px[Z0 = x] = 1 and Px[Zn = y] =µn(x, y).

If r > 0 and x ∈ �, then we denote by τ xr the first exit time

τ xr =min{n ∈N :Zn /∈ xUr}.

LEMMA 3.4. For all ε > 0 there is a constant c = c(ε) > 0 such that, for all
r ≥ 1,

Px[τ xcr ≤ r2] ≤ ε.(3.6)

PROOF. By Proposition 1.3, there is a δ > 0 such that, for all r ≥ 1,∑
y∈Ur

µn(e, y)≥ ∂, 1≤ n≤ r2.

Let us fix ε > 0. Then, by Proposition 1.4, there is a c ≥ 1 such that, for all
r ≥ 1, ∑

y /∈Ucr

µr2
(e, y)≤ εδ.

By choosing a larger constant c if necessary we can also assume that xUr ∩ Ucr

=∅ for x /∈ U2cr , r ≥ 1.
We have

εδ ≥ ∑
y /∈xUcr

µr2
(x, y)

= Px[Zr2 /∈ xUcr ]
≥ EPx

[
µr2−τx2cr (Zτx2cr

,G \Ucr); τ x2cr ≤ r2]
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≥ EPx
[
µr2−τx2cr (Zτx2cr

,Zτx2cr
Ur); τ x2cr ≤ r2]

= EPx
[
µr2−τx2cr (e,Ur); τ x2cr ≤ r2]

≥ δPx[τ x2cr ≤ r2]
and hence

Px[τ x2cr ≤ r2] ≤ ε,

which proves the lemma. �

PROOF OF LEMMA 3.1. Let t0 ∈ [[0, 1
2a
−2r2]] and let

At0 =A ∩ {t0} ×Ur.

Let c > a and let u ≥ 0 satisfy u(s, y) ≥ 1, for (s, y) ∈ A and (∂1 + (I − µ))

u= 0 in [[0, a2r2]] ×U2cr . Then, for all (t, x) ∈ [[a−2r2, a2r2]] ×Uar ,

u(t, x)≥ EPx [u(t0,Zt−t0); τ xcr > t − t0]
≥ EPx [1At0

(Zt−t0); τ xcr > t − t0]
= µt−t0(x,At0)− Px[τ xcr ≤ t − t0].

(3.7)

Now, by Lemma 3.3, there are ∂ > 0, r0 ≥ 1 and ξ0 ∈ (0,1) such that

µt−t0(x,At0) > 2δ

for all (t, x) ∈ [[a−2r2, a2r2]] ×Uar , if r ≥ r0 and At0 satisfies

|At0 |> ξ0|Ur |.(3.8)

If we assume that |A| > ξ |[[0, r2]] × Ur |, with ξ ∈ [ξ0,1) close enough to 1,
then A will always have a section At0 with t0 ∈ [[0, 1

2a
−2r2]] and satisfying (3.8).

Also, by Lemma 3.4, if the constant c is large enough, then there is a δ > 0 such
that

Px[τ xcr ≤ t − t0]< δ, t ∈ [[a−2r2, a2r2]],
and hence, for all (t, x) ∈ [[a−2r2, a2r2]] ×Uar ,

u(t, x)≥ µt−t0(x,At0)− Px[τ xcr ≤ t − t0]
≥ 2δ− δ = δ,

which proves the lemma. �
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3.3. The second growth lemma.

LEMMA 3.5 (Second growth lemma). For all b > 1, there are β > 1, c > 1,
δ > 0 and m ∈N such that

B
([[βr2, (β + b2)r2]] ×Ubr,A, [[0, (β + b2)r2]] ×Ucr

)
> δ

( |A|
|[[1, r2]] ×Ur |

)m(3.9)

for all r ≥ 1 and every A⊆ [[1, r2]] ×Ur .

The above lemma will actually be a consequence of the following:

LEMMA 3.6. For all b≥ 1, there are c,β > 0, δ > 0, δ′ > 0, θ > 0 and m ∈N

such that for all r ≥ 1 and every A⊆ [[1, r2]] ×Ur either

B
([[βr2, (β + b2)r2]] ×Ubr,A, [[0, (β + b2)r2]] ×Ucr

)
> ∂

( |A|
|[[1, r2]] ×Ur |

)m(3.10)

or there is an A0 ⊆ [[1, r2]] ×Ur such that

|A0|> (1+ θ)|A|(3.11)

and

B
(
A0,A, [[0, r2]] ×Ucr )> δ′.(3.12)

3.4. Proof of Lemma 3.6. We use the notation

Q(s, t, x)= [[
t − 1

2s
2, t + 1

2s
2]]× xUs.

By Lemma 3.1, there are s0 ≥ 1, δ1, ξ ∈ (0,1) and c1 > 4 such that

B
([[ 1

16s
2,16s2]]×U4s, V , [[0,16s2]] ×Ucs)> δ1(3.13)

for all s ≥ s0 and every measurable subset V ⊆ [[0, s2]] ×Us satisfying

|V | ≥ ξ |[[0, s2]] ×Us |.
Let us fix r0 > 3s0. Then by (3.1) there are k > r2

0 , c2 ≥ 1 and δ2 > 0 such that

B
(
Q(r0,2k, x), {(k, x)}, [[0,2k+ 1

2r
2
0
]]× xUc2r0

)
> δ2.(3.14)

Let us assume that r2 ≥ 6k, c > c1 + c2 and consider the sets

A1 =A ∩ [[3k, r2 − 3k]] ×Ur and A2 =A \A1.

Note that for r2 < 6k the lemma follows from (3.1).
Let η ∈ (0,1) be determined later.
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Case I (|A1| ≤ η|A|). Then |A2|> (1− η)|A| and hence

|A|
|[[1, r2]] ×Ur | ≤

1

1− η

|A2|
|[[1, r2]] ×Ur |

≤ 1

1− η

|[[1,3k]] ×Ur | + |[[r2 − 3k, r2]] ×Ur |
|[[1, r2]] ×Ur |

≤ 6k + 2

(1− η)r2
.

If A �=∅, then there is a (t, x) ∈ [[1, r2]] ×Ur such that u(t, x) ≥ 1 and so (3.10)
follows from (3.3).

Case II (|A1|> η|A|). Let

Ak = {(t, x) : (t − k, x) ∈A1}.
Then

Ak ⊆ [[4k, r2 − 2k]] ×Ur and |Ak| = |A1|> η|A|.
We set

Aδ2 =
⋃

(t,x)∈Ak

Q(r0, t, x) ∩ [[1, r2]] ×Ur.

Then of course Ak ⊆Aδ2 and, by (3.14),

B
(
Aδ2,A, [[0, r2]] ×Ucr

)
> δ2.(3.15)

We consider the set of balls

Q= {[[t, t + s2]] × xUs ⊆ [[1, r2]] ×Ur : s ≥ s0,

|x|� + |y|� ≤ r, y ∈ Us and |Q ∩Aδ2| ≥ ξ |Q|}.
With every ball Q= [[t, t + s2]] × xUs ∈Q we associate a ball Q0 as follows:
If s + |x|� < r , then we set Q′ = [[t, t + (s + 1)2]] × xUs+1. If s + |x|� ≥ r ,

then we consider y1, . . . , y|x|� ∈ U such that x = y1 · · ·y|x|� and we set x′ =
y1 · · ·y|x|�−1 and Q′ = [[t, t + (s + 1)2]] × x′Us+1. If Q′ = |Q′ ∩ Aδ2 | < ξ |Q′|,
then we take Q0 =Q′. If not, then we repeat the same proceedure.

We set

Q0 = {Q0 :Q ∈Q} and W 0 = ⋃
Q0∈Q0

Q0.

Note that Ak ⊆W 0.
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LEMMA 3.7. There is a θ1 = θ1(ξ) > 0 such that

|W 0|> (1+ θ1)|Ak|(3.16)

and hence

|W 0|> (1+ θ1)η|A|.(3.17)

The proof of the above lemma is given later.
By using (3.13) repeatedly, we can see that there are δ3 > 0, δ3 ≤ min(δ1, δ2)

and m ∈N such that, for all σ ≥ 1 and s ≥ s0,

B([[s2,16σ 2s2]] ×U4s, [[s2,16s2]] ×U4s, [[s2,16σ 2s2]] ×Ucσs)

≥ δ3σ
−m.

(3.18)

Let us fix σ > 2 such that

(1+ θ1)
16(σ − 1)2 − 1

16(σ − 1)2
> 1+ θ1

2
.(3.19)

If Q0 = [[t, t + s2]] × xUs ∈Q0, then we set

Q1 = [[t, t + 16σ 2s2]] × xUs, Q1 = {Q1,Q0 ∈Q0}
and

W 1 = ⋃
Q1∈Q1

Q1.

We also set

Q1
R
= (

t, t + 16(σ − 1)2s2)× xUs

and define Q1
R

and W 1
R

similarly.
If Q1 = [[t, t + 16σ 2s2]] × xUs ∈Q1, then we set

Q2 = [[t + s2, t + 16σ 2s2]] × xUs, Q2 = {Q2,Q1 ∈Q1}
and

W 2 = ⋃
Q2∈Q2

Q2.

We also set

Q2
R
= (

t + s2, t + 16(σ − 1)2s2)× xUs

and define Q2
R

and W 2
R

similarly.
It follows from (3.15) and (3.18) that if δ4 = δ1δ3σ

−m, then

B
(
W 2,A, [[0, c2r2]] ×Ucr )> δ4.(3.20)

Let

γ = |A|
|[[1, r2]] ×Ur |

and let ω ∈ (0,1) be determined later.
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Case IIa (|W 2 \ [[1, r2]] ×Ur | ≥ ω|A|). This assumption implies that

|W 2 \ [[1, r2]] ×Ur | ≥ ωγ |[[1, r2]] ×Ur |.
So there is a ball

Q2 = [[t + s2, t + 16σ 2s2]] × xUs ∈Q2

such that

16σ 2s2 ≥ ωγ r2.

Now, by Corollary 3.2, for all a1 > 0, there are c ≥ a1, δ5 > 0 and m ∈N such that
if s0 is chosen large enough and R ≥ 4σs,

B
([[t +R2, t + (1+ a2

1)R
2]] × xUa1R,Q2, [[t, t + (1+ a2

1)R
2]] × xUcR

)
≥ δ5

(
4σs

R

)m

≥ δ5ω
m/2

(
r

R

)m
γm/2.

(3.21)

The lemma follows from (3.21) above, by taking a1 large enough and by replacing
R by an appropriate multiple of r .

Case IIb (|W 2 \ [[1,1+ r2]] ×Ur |<ω|A|). Let us first observe that

|W 0| ≤ |W 1
R
|(3.22)

and that

|W 2
R
| ≤ |W 2|.(3.23)

The following lemma is the analogue of Lemma 2.3 in [29], page 158.

LEMMA 3.8.

|W 1
R
| ≤ 16(σ − 1)2

16(σ − 1)2 − 1
|W 2

R
|.(3.24)

The proof of the above lemma is given in Section 3.6.
Combining (3.19), (3.22), (3.23) and (3.24) we have

|W 2| ≥ 16(σ − 1)2 − 1

16(σ − 1)2
|W 0|

≥ 16(σ − 1)2 − 1

16(σ − 1)2
(1+ θ1)η|A|

≥
(

1+ θ1

2

)
η|A|.
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We set

A0 =W 2 ∩ [[1, r2]] ×Ur.

Then

|A0| = |W 2 ∩ [[1, r2]] ×Ur |
= |W 2| − |W 2 \ [[1, r2]] ×Ur |
≥ |W 2| −ω|A|
≥
(

1+ θ1

2

)
η|A| −ω|A|

≥
[(

1+ θ1

2

)
η−ω

]
|A|.

It follows that if we chose η ∈ (0,1) so that(
1+ θ1

2

)
η > 1+ θ1

4

and

ω ∈
(

0,
θ1

8

)
,

then we would have

|A0|>
(

1+ θ1

8

)
|A|,

which proves (3.11).

3.5. Proof of Lemma 3.7. If Q=Q(s, t, x)= [[t − 1
2s

2, t + 1
2s

2]] × xUs , then
we denote by Q∗ the ball

Q∗(s, t, x)= [[
t − 25

2 s
2, t + 25

2 s
2]]× xU5s .

Using a standard Vitalli type of argument (cf., e.g., [7, 27, 39]) we can prove that
there is a finite sequence of balls Q0

1,Q
0
2,Q

0
3, . . . ,Q

0
n ∈Q0 such that the following

hold:

1. Q0
i ∈Q0, 1≤ i ≤ n;

2. Q0
i ∩Q0

j =∅, i �= j , 1≤ i, j ≤ n;

3. W 0 ⊆⋃n
i=1 Q

0∗
i .

By (1.3) there is a constant c≥ 1 such that

1

c
≤ |Q

∗(s, t, x)|
|Q(s, t, x)| ≤ c
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for all s ≥ 1.
So

|W 0|
|Ak| =

|Ak| + |W 0 \Ak|
|Ak| = 1+ |W

0 \Ak|
|Ak|

≥ 1+ |W
0 \Aδ1|
|W 0| ≥ 1+ |W 0 \Aδ1|

|⋃n
i=1 Q

0∗
i |

≥ 1+ |W 0 \Aδ1 |∑n
i=1 |Q0∗

i |
≥ 1+ |W 0 \Aδ1|

c
∑n

i=1 |Q0
i |

≥ 1+ |
⋃n
i=1 Q

0
i \Aδ1|

c
∑n

i=1 |Q0
i |

= 1+
∑n

i=1 |Q0
i \Aδ1|

c
∑n

i=1 |Q0
i |

.

(3.25)

Since |Qi ∩Aδ1 |< ξ |Q0
i |, we have

|Q0
i \Aδ1| = |Q0

i | − |Q0
i ∩Aδ1 |

≥ |Q0
i | − ξ |Q0

i | = (1− ξ)|Q0
i |.

(3.26)

Combining (3.25) and (3.26) we have that

|W 0|
|Ak| ≥ 1+

∑n
i=1(1− ξ)|Q0

i |
c
∑n

i=1 |Q0
i |

= 1+ 1− ξ

c
,

which proves the lemma.

3.6. Proof of Lemma 3.8. If x ∈ Ur , then we set

W 1
Rx =W 1

R
∩R× {x} and W 2

Rx =W 2
R
∩R× {x}

for x ∈ Ur .
It is enough to prove that

|W 1
Rx | ≤

(σ − 1)2η2

(σ − 1)2η2 − 1
|W 2

Rx|.(3.27)

This follows from Lemma 2.2 in [29], page 157, by taking

κ = 16(σ − 1)2η2

16(σ − 1)2η2− 1

and by setting

g
(
(t1, t2)

)= (
t2 − κ(t2 − t1), t2

)
.
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4. A first difference estimate. Repeated use of Proposition 1.6 yields the
following:

THEOREM 4.1. There are γ ∈ (0,1] and c > 0 such that, for all r ≥ 1,
z, x ∈U and every function u satisfying (∂1+ (I −µ))u= 0 in [[−r2,0]] ×Ur ,

|∂zu(0, x)| ≤ cr−γ ‖u‖∞.(4.1)

Combining this result with Varopoulos’s theorem (Theorem 1.5) we have the
following:

COROLLARY 4.2. There are γ ∈ (0,1] and c > 0 such that, for all n ∈ N,
z ∈U ,

‖∂zµ∗n‖∞ ≤ cn−(D+γ )/2.(4.2)

5. Results on the algebraic structure of N . In this section we recall certain
well-known results on the algebraic structure of N (cf. [19, 21, 33, 45, 46, 50]).

5.1. The filtration of the Lie algebra. Let n be the Lie algebra of N , which we
identify with the left invariant vector fields on N .

We set n1 = n and ni+1 = [n1,ni], i ≥ 1. Since n is nilpotent, we have the
filtration

n= n1 ⊇ n2 ⊇ · · · ⊇ nm ⊇ nm+1 = {0}, nm �= {0}.
We consider linear subspaces a1, . . . ,am of n such that

ni = ai ⊕ · · · ⊕ am, 1≤ i ≤m.

We set

n0 = 0, ni = dim(a1 ⊕ · · · ⊕ ai), 1≤ i ≤m,

σ(j)= i, for ni−1 < j ≤ ni,

q = nm = dim(n).

Notice that the homogeneous dimension D of N is given by

D = σ(1)+ · · · + σ(q).

We consider a basis {X1, . . . ,Xq} of n such that {Xni−1+1, . . . ,Xni } is a basis
of ai, 1≤ i ≤m.

On the linear space n, we define the Lie bracket [·, ·]0 by setting

[Xi,Xj ]0 = praσ(i)+σ(j) [Xi,Xj ].
We denote by n0 the Lie algebra n0 = (n, [·, ·]0). Note that n0 is nilpotent.
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5.2. Dilations and the exponential coordinates. Using the exponential coordi-
nates of the second kind (or Malcev coordinates)

φ : Rq →N, φ :x = (xq, . . . , x1)→ expxqXq · · · expx1X1

we identify N , as a differential manifold, with R
q .

Let τε, ε > 0, be the family of dilations of N defined by

τε : (xq, . . . , x1)→ (
εσ(q)xq, . . . , ε

σ(1)x1
)
.

Also, let ∗ε, ε > 0, be the family of group products defined by

x ∗ε y = τε[(τε−1x)(τε−1y)]
and let

x ∗0 y = lim
ε→0

x ∗ε y.
Then N0 = (N,∗0) is a stratified nilpotent Lie group whose Lie algebra is

isomorphic to n0. We identify n0 with the ∗0-left invariant vector fields.
If X ∈ n is a left invariant vector field on N , then we denote by X0 the ∗0-left

invariant vector field satisfying X0(e)=X(e).

In particular we denote by X0i the ∗0-left invariant vector fields satisfying
X0i (0)=Xi(0),1≤ i ≤ q .

Note that

X0i = lim
ε→0

1

εσ(i)
dτε(Xi), 1≤ i ≤ q,(5.1)

and that

X0i = 1

εσ(i)
dτε(X0i ), 1≤ i ≤ q.(5.2)

We now give an expression of the left invariant vectors fields of N as vector
fields on R

q .
If X = a1X1 + · · · + aqXq , then we set pri (X)= ai , i = 1, . . . , q .
We also denote by adXi the linear transformations of n defined by

ad(Xi)Xj =
{

0, for i ≥ j,

ad(Xi)Xj , for i < j.

LEMMA 5.1 (cf. [4]). Let X be a left invariant vector field on N . Then
X(x)= aq(x)

∂
∂xq
+ · · · + a1(x)

∂
∂x1

with

ai(x)= pri
[
exi−1adXi−1 · · · ex1adX1(X)

]

= pri

[ ∑
λ1σ(1)+···+λi−1σ(i−1)≤σ(i)−1

1

λ1! · · ·
1

λi−1!x
λ1
1 · · ·xλi−1

i−1

×(adXi−1)
λi−1 · · · (adX1)

λ1(X)

]
.

(5.3)
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Note that if X0 is the associated ∗0-left invariant vector field satisfying X0(e)=
X(e), then X0(x)= a0q(x)

∂
∂xq
+ · · · + a01(x)

∂
∂x1

with

a0i(x)= pri

[ ∑
λ1σ(1)+···+λi−1σ(i−1)=σ(i)−1

1

λ1! · · ·
1

λi−1!x
λ1
1 · · ·xλi−1

i−1

×(adXi−1)
λi−1 · · · (adX1)

λ1(X)

]
.

(5.4)

Let us set, for f ∈ C∞ and N ∈N,

∇Nf (x)= ∑
a≤N

σ(i1)+···+σ(ia )≥N

∣∣∣∣ ∂

∂xi1
· · · ∂

∂xia
f (x)

∣∣∣∣,

∇N
Xf (x)=

∑
a≤N

σ(i1)+···+σ(ia )≥N

|Xi1 · · ·Xiaf (x)|.

Then it follows from (5.3) that there are c > 0 and k ∈N such that, for all x ∈N
and f ∈ C∞,

1

c(1+ |x|)k ∇
Nf (x)≤∇N

Xf (x)≤ c(1+ |x|)k ∇Nf (x).(5.5)

5.3. Taylor expansions.

LEMMA 5.2. Let f ∈C∞. Then

∂

∂xi
f (0)=Xif (0), 1≤ i ≤ q,(5.6)

∂

∂xi

∂

∂xj
f (0)=XiXjf (0), 1≤ j ≤ i ≤ n1(5.7)

and

∂

∂xi

∂

∂xj
f (0)=XiXjf (0)

− ∑
n1<λ≤q

(prλ[Xi,Xj ])Xλf (0), 1≤ i < j ≤ n1.
(5.8)

PROOF. Equation (5.6) follows immediately from (5.3). Equation (5.7)
follows also from (5.3), since

XiXjf (0)= ∂

∂yi
Xjf (0)= ∂

∂xi

∂

∂xj
f (0), 1≤ j ≤ i ≤ n1.
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Finally, to prove (5.8) we observe that

∂

∂xi

∂

∂xj
f (0)= ∂

∂xj

∂

∂xi
f (0)

and hence, by (5.6) and (5.7),

∂

∂xi

∂

∂xj
f (0)=XjXif (0)

= (
XiXj − [Xi,Xj ])f (0)

=XiXjf (0)−
∑

n1<λ≤q
(prλ[Xi,Xj ])Xλf (0). �

Let us now assume that V is a compact neighborhood of the identity element e
of N which, viewed as subset of R

q , is also convex. Also, let us denote by Pi the
monomial pi(x)= xi , x = (x1, . . . , xq) ∈R

q , 1≤ i ≤ q .

LEMMA 5.3. Let V be as above. Then there is a constant c > 0 such that, for
all f ∈C∞(N) and all x ∈N , y ∈ V ,

f (xy)= f (x)+ Fx(y) with |Fx(y)| ≤ c‖∇Xf ‖L∞(xV ),(5.9)

f (xy)= f (x)+ ∑
1≤i≤n1

Pi(y)Xif (x)+ Fx(y)(5.10)

with |Fx(y)| ≤ c‖∇2
Xf ‖L∞(xV ) and

f (xy)= f (x)+ ∑
1≤i≤n1

Pi(y)Xif (x)+ 1
2

∑
1≤i,j≤n1

Pi(y)Pj (y)XiXjf (x)

+ ∑
n1<i≤n2

(
Pi(y)− 1

2

∑
1≤λ<µ≤n1

Pλ(y)Pµ(y)pri[Xλ,Xµ]
)
Xif (x)

+Fx(y)

(5.11)

with |Fx(y)| ≤ c‖∇3
Xf ‖L∞(xV ).

PROOF. We only give the proof of (5.11). The proofs of (5.9) and (5.10) are
similar. Let f ′(y)= f (xy). If y ∈ V , then by the Taylor formula (in R

q )

f ′(y)= f ′(0)+ ∑
1≤i≤q

Pi(y)
∂

∂yi
f ′(0)

+ 1

2

∑
1≤i,j≤q

Pi(y)Pj (y)
∂

∂yi

∂

∂yj
f ′(0)+ F ′(y)



750 G. K. ALEXOPOULOS

= f ′(0)+ ∑
1≤i≤n1

Pi(y)
∂

∂yi
f ′(0)+ 1

2

∑
1≤i,j≤n1

Pi(y)Pj (y)
∂

∂yi

∂

∂yj
f ′(0)

+ ∑
n1<i≤n2

Pi(y)
∂

∂yi
f ′(0)+ F ′′(y),

where

|F ′(y)| ≤ c‖∇3f ′‖L∞(V )

and hence also

|F ′′(y)| ≤ c‖∇3f ′‖L∞(V ).

So, by Lemma 5.2,

f ′(y)= f ′(0)+ ∑
1≤i≤n1

Pi(y)Xif
′(0)+ 1

2

∑
1≤i,j≤n1

Pi(y)Pj (y)XiXjf
′(0)

+ ∑
n1<i≤q

(
Pi(y)− 1

2

∑
1≤λ<µ≤n1

Pλ(y)Pµ(y)pri[Xλ,Xµ]
)
Xif

′(0)

+F ′′(y).
If we set

F(y)= F ′′(y)+ ∑
n2<i≤q

(
Pi(y)− 1

2

∑
1≤λ<µ≤n1

Pλ(y)Pµ(y)pri[Xλ,Xµ]
)
Xif

′(0)

then, by (5.5),

|F(y)| ≤ c‖∇3
Xf

′‖L∞(V ).

Also,

f ′(y)= f ′(0)+ ∑
1≤i≤n1

Pi(y)Xif
′(0)+ 1

2

∑
1≤i,j≤n1

Pi(y)Pj (y)XiXjf (0)

+ ∑
n1<i≤n2

(
Pi(y)− 1

2

∑
1≤λ<µ≤n1

Pλ(y)Pµ(y)pri[Xλ,Xµ]
)
Xif

′(0)

+F(y).
Given the left invariance of the vector fields Xi , this implies (5.11). �

COROLLARY 5.4. There is a constant c > 0 such that, for all f ∈ C∞(N)

and all x ∈N , y ∈ V , the following hold:
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(i) if 1≤ ν ≤ n1, then

Xνf (xy)=Xνf (x)+
∑

1≤i≤n1

Pi(y)XiXνf (x)+ Fx(y)(5.12)

with |Fx(y)| ≤ c‖∇3
Xf ‖L∞(xV );

(ii) if n1 < ν ≤ n2,

Xνf (xy)=Xνf (x)+ Fx(y) with |Fx(y)| ≤ c‖∇3
Xf ‖L∞(xV ).(5.13)

6. Centered sub-Laplacians onN . Let L=−(E2
1+· · ·+E2

p)+E0 be a left
invariant sub-Laplacian on N and let us assume that it is centered, that is, that
E0 ∈ [n,n].

Let {X1, . . . ,Xq} be the basis of n introduced in Section 5. Since the vector
fields Ei are linear combinations of the vector fields Xi , the sub-Laplacian L can
also be written as

L=− ∑
1≤i,j≤q

aijXiXj −
∑

n1<i≤q
aiXi.(6.1)

Note that aij = aji , 1 ≤ i, j ≤ q . Also the assumption that the vector fields
E1, . . . ,Ep satisfy Hörmander’s condition implies that the (n1 × n1) matrix
B = (bij ) with entries bij = aij , 1≤ i, j ≤ n1, is positive definite.

We associate with L the limit (at ∞) sub-Laplacian

L0 = lim
ε→0

1

ε2 dτε(L)=−
∑

1≤i,j≤n1

aijX0iX0j −
∑

n1<i≤n2

aiX0i .

Note that L0 is dilation invariant; that is, it satisfies

L0 = 1

ε2
dτε(L0), ε > 0.(6.2)

6.1. Polynomials. Since we have identified N , as a differential manifold,
with R

q using the exponential coordinates of the second kind, the monomials on
R×N will just be monomials on R×R

q .

Let P (t, x)= t i0x
i1
1 · · ·xiqq be such a monomial. Then the homogeneous degree

degH P of P is also given by

degH P = 2i0+ i1σ(1)+ · · · + iqσ (q).

By (5.3),

degH

(
∂

∂t
+L

)
P (x)≤ degH P (t, x)− 2.(6.3)

Also, by (5.4), (
∂

∂t
+L

)
P (t, x)=

(
∂

∂t
+L0

)
P (t, x)+Q(t, x),(6.4)
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where Q(t, x) is a polynomial satisfying

degH Q≤ degH P − 3.

Using induction on the dimension q of the Lie algebra n of N and the homo-
geneous degree degH P of P we can prove that there is a polynomial Q(t, x)

satisfying (
∂

∂t
+L0

)
Q(t, x)= P (t, x),

degH Q(t, x)= degH P (t, x)+ 2.

(6.5)

Combining (6.3), (6.4) and (6.5) we have the following:

LEMMA 6.1. With every monomial P (t, x) as above we can associate
a polynomial

QP (t, x)= P (t, x)+W(t, x)

satisfying

degH W ≤ degH P − 1,(
∂

∂t
+L0

)
P (t, x)=

(
∂

∂t
+L

)
QP (t, x).

(6.6)

Note that the polynomial QP (t, x) in the above lemma, is not necessarily
unique.

From now on, for all d ∈N, we denote by

P0(t, x),P2(t, x), . . . ,Pνd (t, x)

the monomials with homogeneous degree less than or equal to d . Given a centered
left invariant sub-Laplacian L on N (in this article, this is either Lµ or LHµ), we
associate with those monomials, polynomials

QP0(t, x),QP2(t, x), . . . ,QPνd
(t, x)

satisfying (6.6).
Note that, for 0 ≤ i ≤ ν2, we can take QPi = Pi . Note also that ν0 = 0,

ν1 = n1 and ν1 < n2 < ν2. So, we assume that P0(t, x) = QP0(t, x) = 1, that
Pi(t, x)=QPi (t, x)= xi , for 1≤ i ≤ n2, and that Pi =QPi , for ν1 < i ≤ ν2.

6.2. A Taylor formula for the heat functions. The following Taylor formula
for the heat functions is proved in [7].
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THEOREM 6.2. For all n ∈ N there is a cn > 0 such that for all r,R ∈ N,
R ≥ r ≥ 1, and all functions u satisfying(

∂

∂t
+L

)
u= 0 in (−R2,R2)× V R

we have

sup

{∣∣∣∣∣u−
∑

0≤i≤νn
AiR

−degH PiQPi

∣∣∣∣∣; (r2, r2)× V r

}

< cn

(
R

r

)−(n+1)

‖u‖∞,
(6.7)

where the constants Ai satisfy

|Ai | ≤ cn‖u‖∞
for all 0≤ i ≤ νn and

(
∂

∂t
+L

)( ∑
νd−1<i≤νd

AiQPi

)
= 0

for all 1< k ≤ n .

6.3. A Harnack inequality.

THEOREM 6.3 [7]. Let V be a compact connected neighborhood of the
identity element e of N , let α,a,β, b ∈ N, 1 ≤ α < α + a < β , and let k, N ∈ N.
Then there is a c ∈N such that for all r ∈N, r ≥ 1, and all u≥ 0 satisfying(

∂

∂t
+L

)
u= 0 in

(
0, (β2+ b2)r2)× V cr ,

we have

sup
{∣∣∣∣ ∂k∂tk Xi1 · · ·XiNu

∣∣∣∣; (αr2, (α+ a2)r2)× V ar

}

≤ cr−2k−σ(i1)−···−σ(iN) inf
{
u; (βr2, (β + b2)r2)× V br

}
.

(6.8)

6.4. Estimates for the heat kernel. The heat kernel pt(x, y) of L satisfies the
following Gaussian estimate (cf. [7]).

THEOREM 6.4. There is a constant c > 0 such that, for all x, y ∈N and t ≥ 1,

1

c
t−D/2 exp

(
−c |x

−1y|2N
t

)
≤ pt(x, y)≤ ct−D/2 exp

(
−|x

−1y|2N
ct

)
.(6.9)
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Combining (6.9) with (6.8) we have the following:

COROLLARY 6.5. For all k, N ∈N there is a constant c > 0 such that∣∣∣∣ δk∂tk Xi1 · · ·Xinpt (x, y)

∣∣∣∣≤ ct−(D+2k+σ(i1)+···+σ(iN))/2 exp
(
−|x

−1y|2N
ct

)
,(6.10)

for all t ≥ 1, x, y ∈N and for all 1≤ ij ≤ q , 1≤ j ≤ n.

Let p0
t (x, y) be the heat kernel of L0. Then we have the following analogue of

the classical Berry–Esseen estimate (cf. [7, 20]):

THEOREM 6.6. There is a constant c > 0 such that, for all t ≥ 1 and x ∈N ,

|pt(x, e)− p0
t (x, e)| ≤ ct−(D+1)/2.(6.11)

It follows from (6.2) that

p0
t (x, y)= εDp0

ε2t
(τεx, τεy), ε > 0,

and hence there is a CL0 > 0 such that

p0
t (e, e)=CL0 t

−D/2.(6.12)

Combining (6.11) with (6.12) we have the following:

COROLLARY 6.7. There are constants CL > 0 and c > 0 such that

|pt (x, e)−CLt
−D/2| ≤ ct−(D+1)/2, t ≥ 1.(6.13)

7. A smooth substitute for |x|N . The following proposition furnishes a pos-
itive smooth function ρ(x) on a simply connected nilpotent Lie group N , which
will replace |x|N in the proof of the Gaussian estimate (1.14). This function will be
a convenient power of the Green function of a symmetric sub-Laplacian L on N .

We use the notation of the previous section.

PROPOSITION 7.1. There is a function ρ(x) ∈ C∞(N) with the following
properties: For all n ∈ N there is a constant c ≥ 1 such that, for all x ∈ N and
all 1≤ ij ≤ q , 1≤ j ≤ n,

ρ(x)≥ 0, x ∈N,

1

c
|x|N ≤ ρ(x)≤ c |x|N for |x| ≥ 2,

|Xi1 · · ·Xinρ(x)| ≤
c

|x|σ(i1)+···+σ(in)−1
N

for |x| ≥ 2.

(7.1)
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PROOF. If the homogeneous dimension D of N is D ≤ 2, then N is
isomorphic either to R or to R

2 and then we can take as ρ the Euclidean norm.
So let us assume that D > 2. Let L be a symmetric left invariant sub-Laplacian
on N and let pt(x, y) be its heat kernel. The Green function of L is given by

GL(x, y)=
∫ ∞

0
pt(x, y) dt.

Let GL(x)=GL(x, e). Then it follows from (6.9) that there is a c > 0 such that

1

c

1

|x|D−2
N

≤GL(x)≤ c
1

|x|D−2
N

, |x|N ≥ 2.(7.2)

Since LGL(x)= 0, in N \ {e} it follows from (6.10) that for all n ∈N there is a
c > 0 such that

|Xi1Xi2 · · ·XinGL(x)| ≤ c

|x|D−2+σ(i1)+···+σ(in)
N

, |x|N ≥ 2, 0≤ ε ≤ 1.(7.3)

The function

ρ(x)= (
GL(x)

)−1/(D−2)

satisfies (7.1). �

8. Construction of the sub-Laplacian Lµ when � is nilpotent. In this
section we give the definition of the operator LHµ when � is nilpotent. If �

is not nilpotent, then the action of �/�N on �N gives rise to phenomena of
homogenization and this makes the definition of LHµ more complicated. To make
this distinction, in the nilpotent case, we use the notation Lµ instead of LHµ.

We assume that � = �N . If � is nilpotent and the torsion subgroup τ (�) is not
trivial, then we define Lµ to be the same as the operator Lπ(µ) associated with the
image π(µ) of µ under the quotient map π :�→ �N = �/τ(�).

We use the notation of Sections 5 and 6.
The operator Lµ will be a centered sub-Laplcian which can be written as

Lµ =−
∑

1≤i,j≤n1

aijXiXj −
∑

n1<i≤n2

aiXi.

The coefficients aij and ai are defined as follows.
The coefficients aij are given by

aij = 1
2

∑
x∈�

Pi(x)Pj (x)µ(x), 1≤ i, j ≤ n1.

Let

bi =
∑
x∈�

Pi(x)µ(x), 1≤ i ≤ n2.
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Note that since µ is centered bi = 0, 1≤ i ≤ n1.
The coefficients ai of Lµ are given by

ai = bi − 1
2

∑
1≤λ<µ≤n1

aλµ pri[Xλ,Xµ], n1 < i ≤ n2.

Let V be as in in Section 5.3 and let us assume that V is large enough that
suppµ⊆ V .

The following lemma explains the relation between µ and Lµ. It is an
immediate consequence of Lemma 5.3.

LEMMA 8.1. There is a constant c > 0 such that, for all functions f ∈
C∞(N) and all x ∈N ,

|(I −µ)f (x)| ≤ c‖∇2
Xf ‖L∞(xV )(8.1)

and

(I −µ)f (x)= Lµf (x)+ F(x),(8.2)

with

|F(x)| ≤ c‖∇3
Xf ‖L∞(gV ).

COROLLARY 8.2. There is a constant c > 0 such that, for all functions
u(t, x) ∈C∞(R×N) and all x ∈N ,

u(t + 1, x)−µu(t, x)= (
∂1 + (I −µ)

)
u(t, x)

=
(
∂

∂t
+Lµ

)
u(t, x)+ F(t, x),

(8.3)

where F(t, x) satisfies

|F(t, x)| ≤ c

∥∥∥∥
∣∣∣∣ ∂

2

∂s2
u

∣∣∣∣+ |∇3
Xu|

∥∥∥∥
L∞([t,t+1]×xV )

.

The following lemma asserts that Lµ is indeed a sub-Laplacian.

LEMMA 8.3. The n1× n1 matrix (aij ) is positive definite.

PROOF. It is enough to prove that∑
1≤i,j≤n1

aij ξiξj > 0(8.4)

for all ξ = (ξ1, . . . , ξn1) ∈R
n1 , ξ �= 0.
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To this end, let us fix ξ = (ξ1, . . . , ξn1) �= 0 and consider the function

u(x)= (
ξ1P1(x)+ · · · + ξn1Pn1(x)

)2
= ∑

1≤i,j≤n1

ξiξjPi(x)Pj (x).

By (8.2),

(I −µ)
(
Pi(x)Pj (x)

)=Lµ

(
Pi(x)Pj (x)

)=−(aij + aji)

and hence

(I −µ)u(x)= 2
∑

1≤i,j≤n1

aij ξiξj .

If we had ∑
1≤i,j≤n1

aij ξiξj = 0,

then we would have (I −µ)u= 0, that is,
∑

y∈� u(xy)µ(y)= u(x), x ∈N . Since
u(x) = 0, this would imply that u(x) = 0 for all x ∈ �N , which is false. Hence,
(8.4) holds and the lemma follows. �

9. Proof of Propositions 1.3 and 1.4 when � is nilpotent. The goal of this
section is to prove Propositions 1.3 and 1.4 when � is nilpotent. Note that there
is no loss of generality if we assume that the torsion subgroup τ (�) is trivial and
hence that � = �N .

We use the same notation p
µ
t (x, y) to denote both the heat kernel of the sub-

Laplacian Lµ and its restriction to �N .
The proofs are based on the following lemma.

LEMMA 9.1. There is a constant c > 0 such that, for all n ∈N, T ≥ 1,

‖pµn+T −µnp
µ
T ‖∞ ≤ c T −(D+1)/2.(9.1)

PROOF. We have

p
µ
n+T −µnp

µ
T = p

µ
n+T −µn−1p

µ
1+T +µn−1p

µ
1+T −µnp

µ
T

= ∑
0≤i≤n−1

µi
(
p
µ
n−i+T −µp

µ
n−i−1+T

)
.

(9.2)

On the other hand, it follows from (8.3) that

p
µ
t+1 −µp

µ
t =

(
∂

∂t
+Lµ

)
p
µ
t + Vt = Vt
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with Vt satisfying

|Vt(x, y)| ≤ c1

∥∥∥∥
∣∣∣∣ ∂2

∂s2p
µ
s (·, y)

∣∣∣∣+ |∇3
Xp

µ
s (·, y)|

∥∥∥∥
L∞([t,t+1]×xV )

.

So, by (6.10) there is a c > 0 such that

‖pµt+1 −µp
µ
t ‖∞ ≤ ct−(D+3)/2, t ≥ 1.(9.3)

Combining (9.2) and (9.3) we have

‖pµn+T −µnp
µ
T ‖∞ ≤

∑
0≤i≤n−1

‖µi‖1‖pµn−i+T (x, y)−µp
µ
n−i−1+T ‖∞

≤ c
∑

0≤i≤n−1

(n− i − 1+ T )−(D+3)/2

≤ c T −(D+1)/2,

which proves the lemma. �

9.1. Proof of Proposition 1.3. We have

∑
y∈Ur

µn(x, y) ≥ 1

‖pµT ‖∞
∑
y∈Ur

µn(x, y)p
µ
T (y, e)

= 1

‖pµT ‖∞

(
µnp

µ
T (x, e)−

∑
{y /∈Ur }

µn(x, y)p
µ
T (y, e)

)

≥ 1

‖pµT ‖∞

(
p
µ
n+T (x, e)− ‖µnp

µ
T − p

µ
n+T ‖∞

− ∑
{y /∈Ur }

µn(x, y)p
µ
T (y, e)

)
.

Let us fix a > 1. Then, by (6.9), there is a c > 1 such that, for all r, T ≥ 1,

inf
{
p
µ
t+T (x, e) :x ∈Uar, a−2r2 ≤ t ≤ a2r2}≥ 1

c
(a2r2+ T )−D/2

and

sup
{
p
µ
T (x, e) :x /∈Ur

}≤ cT −D/2 exp
(
− r2

cT

)
.

Also, by (9.1) there is a constant c′ > 0 such that, for all t, T ≥ 1,

‖µnp
µ
T − p

µ
n+T ‖∞ ≤ c′ T −(D+1)/2.
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It follows that, for all (n, x) ∈ [[a−2r2, a2r2]] ×Uar ,∑
y∈Ur

µn(x, y)

≥ 1

c
T D/2

(
1

c
(a2r2+ T )−D/2− c′T −(D+1)/2− cT −D/2 exp

(
− r2

cT

))
.

If T = εr2, for some ε ∈ (0,1), then we have

∑
y∈Ur

µn(x, y)≥ 1

c
εD/2

(
1

c
(a2 + ε)−D/2− cε−(D+1)/2r−1 − cε−D/2 exp

(
− 1

cε

))

≥ 1

c
εD/2

(
1

c
(a2 + 1)−D/2

− cε−(D+1)/2r−1− cε−D/2 exp
(
− 1

cε

))
. �

The proposition follows by choosing first ε small enough and next r large enough.

9.2. Proof of Proposition 1.4. Define V as in Section 5.3, let a1 > a2 ≥ 1 and
set

M = sup
{∫

V a2r
p
µ

r2(y, z) dz :y /∈Ua1r

}
.

We have, for r ∈N,
∑

y∈Ua1r

µr2
(e, y)≥ ∑

y∈Ua1r

∫
V a2r

µr2
(e, y)p

µ

r2(y, z) dz

=
∫
V a2r

µr2
p
µ

r2(e, z) dz−
∑

{y /∈Ua1r }

∫
V a2r

µr2
(e, y)p

µ

r2(y, z) dz

≥
∫
V a2r

µr2
p
µ

r2(e, z) dz−M

=
∫
V a2r

p
µ

2r2(e, z) dz+
∫
V a2r

(
µr2

p
µ

r2 − p
µ

2r2

)
(e, z) dz−M

≥
∫
V a2r

p
µ

2r2(e, z) dz− ‖µr2
p
µ

r2 − p
µ

2r2‖∞|V a2r | −M.

(9.4)

Now, by (9.1) there is a c1 > 0 such that, for all r ∈N,

‖µr2
p
µ

r2 − p
µ

2r2‖∞ ≤ c1 r
−D−1.(9.5)

Also, there is a c2 > 0 such that

|V r | ≤ c2r
D, r ∈N.(9.6)
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Combining (9.4), (9.5) and (9.6) we have
∑

y∈Ua1r

µr2
(e, y)≥

∫
V a2r

p
µ

2r2(e, z) dz− c1c2a
D
2 r

−1 −M.(9.7)

Now let us fix δ > 0 and let us chose a2 > 1 such that, for all r ≥ 1,∫
V a2r

p
µ

2r2(e, z) dz≥ 1− δ

3
.

Let us choose a1 > a2 so that M ≤ ∂/3 and r0 ≥ 1 so that

c1c
2aD2 r

−1
0 ≤ δ

3
.

Then it follows from (9.7) that∑
y∈Ua1r

µr2
(e, y)≥ 1− δ

and the proposition follows. �

10. The proof of the Gaussian estimate when � is nilpotent. In this section
we give the proof of the Gaussian estimate (1.14) when the group � is nilpotent.
Note that there is no loss of generality if we assume that the torsion subgroup τ (�)
is trivial and hence that � = �N .

10.1. The functions ρk, k ≥ 1. Let ρ(x) be as in Section 7 and let the family
of dilations τε, ε > 0, be as in Section 5.2.

Let V be a compact neighborhood of the identity element e of N , as in
Section 5.3, and let | · |N be defined as in (1.7). Then there is a C > 1 such that

τ1/CkV
k ⊆ V, k ∈N.(10.1)

Let 0≤ φ ∈ C∞(N), such that

φ(x)=
{

0, for |x|N ≤ 1,
1, for |x|N ≥ 4,

and set

φk(x)= φ(τ1/C
√
k
x), k ≥ 1.

Then

φk(x)= 0, |x|N ≤
√
k,(10.2)

and there is a constant ζ > 0 such that

φk(x)= 1, |x|N ≥ ζ
√
k.(10.3)
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Also, if {X1, . . . ,Xq} is the basis of n introduced in Section 5.1, then for every
n ∈N there is a constant c > 0 such that

|Xi1Xi2 · · ·Xinφk(x)| ≤ ck−(σ (i1)+···+σ(in))/2(10.4)

for all x ∈N and 1≤ ij ≤ q , 1≤ j ≤ n.
We set

ρk(x)= φk(x)ρ(x).

In the next lemma we gather the properties of the functions ρk(x) that we
need in the proof of Gaussian estimate (1.14). These properties are immediate
consequences of (7.1).

LEMMA 10.1. For all n ∈N there is a constant c ≥ 1 such that, for all k ≥ 1
and all 1≤ ij ≤ q , 1≤ j ≤ n,

ρk(x)≥ 0, x ∈N,

ρk(x)= 0 for |x|N ≤
√
k,

1

c
|x|N ≤ ρk(x)≤ c |x|N for |x| ≥ ζ

√
k,

|Xi1 · · ·Xinρk(x)| ≤
c

|x|σ(i1)+···+σ(in)−1
N

, x ∈N.

(10.5)

10.2. The functions Hk , k ≥ 1. For fixed constants A > 0 and B > 0 we
consider the family of functions Hk , k ≥ 1, defined by

Hk(t, x)= exp
(
−(ρk(x)+B

√
k)2

A(k+ t)

)
, t ≥ 0, x ∈N.

LEMMA 10.2. There are constants A> 0 and B > 0 such that

Hk(t + 1, x) > µHk(t, x)(10.6)

for all (t, x) ∈ [0, k] ×N and k ≥ 1.

PROOF. We observe that

Hk(t + 1, x)−µHk(t, x)=Hk(t + 1, x)−Hk(t, x)+ (I −µ)Hk(t, x)

and that

Hk(t + 1, x)−Hk(t, x)≥ inf
t≤s≤t+1

∂

∂s
Hk(s, x).(10.7)

Let V be a compact neighborhood of e, as in Section 5.3, and let us assume that
suppµ⊆ V . Then, by Lemma 8.1,

|(I −µ)Hk(t, x)| ≤ c sup
y∈xV

|∇2
XHk(t, y)|.(10.8)
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We have

∂

∂t
Hk(t, x)= 1

A

1

k + t

(ρk(x)+B
√
k)2

k + t
Hk(t, x).(10.9)

Also, for all X,Y ∈ n,

YHk(t, x)=− 1

A

1

k+ t
2
(
ρk(x)+B

√
k
)
Yρk(x) Hk(t, x),

XYHk(t, x)=− 1

A

1

k+ t
2Xρk(x)Yρk(x) Hk(t, x)

− 1

A

1

k + t
2
(
ρk(x)+B

√
k
)
XYρk(x) Hk(t, x)

+ 1

A2

1

(k + t)2
4
(
ρk(x)+B

√
k
)2
Xρk(x)Yρ(x) Hk(t, x).

(10.10)

Case I (|x|N ≤
√
k − 1 and t ∈ [0, k]). By construction, for all |x|N ≤

√
k,

Hk(t, x)= exp
(
− B2k

A(k + t)

)
.

Hence, for all |x|N ≤
√
k − 1,

Hk(t + 1, x) > Hk(t, x)= (
µHk+1(t, ·))(x).

Case II (
√
k− 1≤ |x|N ≤ ζ

√
k+ 1 and 0≤ t ≤ k). By (10.7) and (10.9) there

is a c1 > 0 such that

Hk(t + 1, x)−Hk(t, x) ≥ 1

A

1

k + t + 1

B2k

k + t + 1
Hk(t, x)

≥ 1

A

1

k + t
c1
B2

2
Hk(t, x).

Also, by (10.8) and (10.10) there is a constant c2 > 0 such that

|(I −µ)Hk(t, x)| ≤ 1

A

1

k+ t

[
(c2
√
k +B

√
k)c2

1√
k
+ c2

+ (c2
√
k +B

√
k)

1√
k

+ 1

A

1

k
(c2
√
k +B

√
k)2

]
Hk(t, x)

≤ 1

A

1

k+ t

[
c2(c2+B)+ c2+ (c2+B)

+ 1

A
(c2+B)2

]
Hk(t, x).
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Hence

Hk(t + 1, x)−µHk(t, x)

≥ 1

A

1

k + t

[
c1
B2

2
− c2(c2 +B)− c2− (c2+B)− 1

A
(c2+B)2

]
Hk(t, x).

So, by choosing B large enough that

c1
B2

4
> c2+ c2(c2 +B)+ c2(c2+B)

and A large enough that

c1
B2

4
>

1

A
(c2+B)2

we have

Hk(t + 1, x) > µHk(t, x).

Case III (|x|N > ζ
√
k + 1 and 0 ≤ t ≤ k). By (10.7) and (10.9), there is

a c1 > 0 such that

Hk(t + 1, x)−Hk(t, x)≥ 1

A

1

k + t

(c1|x|N +B
√
k)2

2k
Hk(t, x).

Also, by (10.8) and (10.10) there is a c2 > 0 such that

|(I −µ)Hk(t, x)|
≤ 1

A

1

k + t

[
c2(c2|x|N +B

√
k)

1

|x|N + c2+ c2(c2|x|N +B
√
k)

1

|x|N
+ c2

1

A

1

k
(c2|x|N +B

√
k)2

]
Hk(t, x)

= 1

A

1

k + t

[
c2

2 + c2B

√
k

|x|N c2+ c2
2 + c2B

√
k

|x|N

+ c2
1

A

(c2|x|N +B
√
k)2

k

]
Hk(t, x)

≤ 1

A

1

k + t

[
c2

2 + c2
2B + c2

2 + c2B + c2
1

A

(c2|x|N +B
√
k)2

k

]
Hk(t, x).

Hence

Hk(t + 1, x)−µHk(t, x)

≥ 1

A

1

k+ t

[
(c1|x|N +B

√
k)2

2k
− c2

2 − c2
2B − c2

2 − c2B

− c2
1

A

(c2|x|N +B
√
k)2

k

]
Hk(t, x).
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So, by choosing B large enough that

(c1|x|N +B
√
k)2

4k
> c2+ c2

2 + c2+Bc2
2 + c2B

and A large enough that

1

4
(c1|x|N +B

√
k)2 > c2

1

A
(c2|x|N +B

√
k)2

we have

Hk(t + 1, x) > µHk(t, x). �

10.3. Proof of Theorem 1.8. It is enough to prove that there is a c > 0 such
that

µn(x, e)≤ cn−D/2 exp
(
−|x|

2
N

cn

)
, n≥ 1, x ∈N.(10.11)

Let us fix constants A> 0 and B > 0 such that the family of functions

Hk(t, x)= exp

(
−(ρk(x)+B

√
k)2

A(k+ t)

)
, k ≥ 1,

satisfy (10.6).
Let us consider the function

u(n, x)= ∑
y∈U

√
k

µn(x, y), x ∈ �N, n ∈N.

Let us also fix a constant C > 0 such that

CHk(0, x) > 1, |x|N ≤ 3
√
k,

and consider the function

F(n, x)=CHk(n, x)− u(n, x).

Then F(n, x) satisfies

F(n+ 1, x) > µF(n, x), x ∈ �N, n ∈ [0, k]
F(0, x) > 0, x ∈ �N,

and hence

F(t, x) > 0, t ∈ [0, k], x ∈ �N.(10.12)
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It follows that, for all x ∈ �N and k ≥ 1,

∑
y∈U

√
k

µk(x, y)≤ C exp

(
−(ρk(x)+B

√
k)2

2Ak

)
.

On the other hand, it follows from (1.9) that there are β ∈N and λ > 0 such that,
for all x ∈ �N and n ∈N,

µn(x, e)≤ λ inf{µβn(x, y), y ∈U
√
n}.

Since |Un| ≤ cnD, n ∈N, we have that

µn(x, e)≤ λ
1

|U√n|
∑

y∈U√n
µβn(x, y)

≤ λcn−D/2C exp

(
−(ρβn(x)+B

√
βn)2

2Aβn

)

for all x ∈ �N and n≥ 1. This proves (10.11) and the theorem follows. �

11. The proof of the Berry–Esseen estimate when � is nilpotent. In this
section we assume that � = �N . If � is nilpotent and the torsion subgroup τ (�) is
not trivial, then we can just extend the different kernels from �N = �/τ(�) to �,
as explained in Section 1.4, and then the proofs remain exactly the same.

Let Lµ be the centered left invariant sub-Laplacian associated with µ and let
p
µ
t (x, y) be its heat kernel Lµ.
By (4.2) there are γ ∈ (0,1] and c > 0 such that

‖∇Uµn‖∞ ≤ cn−(D+γ )/2, n ∈N.(11.1)

In this section we prove the following Berry–Esseen estimate (cf. [20, 34]):

THEOREM 11.1. There is a c > 1 such that, for all x, y ∈ �N and n ∈N,

|µn(x, y)− pµn (x, y)| ≤ cn−(D+γ )/2.(11.2)

Once we have proved Theorem 1.14, then (11.1) and hence (11.2) will hold with
γ = 1.

For the case when µ is symmetric, the above result was proved for γ = 1 in [2].
We give below an adaptation of that proof.

Let ( be a fundametal domain for �N (see Section 1.3) and let

St(x, y)=
∫
(
p
µ
t (xh, y) dh, x, y ∈ �N.

The proof of (11.2) is based on the following two lemmas, which are inspired
by [14] (see also [7, 41]).
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LEMMA 11.2. There are constants a, b≥ 1 such that, for all T ≥ 1 and n ∈N,

‖µn − pµn ‖∞ ≤ a‖(µn − pµn )ST ‖∞ + b
√
T n−(D+γ )/2.(11.3)

LEMMA 11.3. There is a constant c ≥ 1 such that if, for some n ∈N,

‖µk − p
µ
k ‖∞ ≤Ak−(D+γ )/2 for all 1≤ k ≤ n− 1,(11.4)

then

‖(µn − pµn )ST ‖∞ ≤ c

(
1+ A√

T

)
n−(D+γ )/2.(11.5)

PROOF OF THEOREM 11.1. If

‖µk − p
µ
k ‖∞ ≤Ak−(D+γ )/2, 1≤ k ≤ n− 1,

then by (11.3) and (11.5),

‖µn − pµn ‖∞ ≤ αc

(
1+ A√

T

)
n−(D+γ )/2+ b

√
T n−(D+γ )/2

≤
(
ac+ ac

A√
T
+ b
√
T

)
n−(D+γ )/2.

So (11.2) can be proved by induction provided that for all A large enough there
is a T ≥ 1 such that

ac+ ac
A√
T
+ b
√
T ≤A.(11.6)

To this end, let us consider the function

ϕ(x)= ac+ acA
1

x
+ bx

(note that a, b, c≥ 1) and take

A≥ 9a2b2c2 and T = acA

b
.

Then we have

ϕ(
√
T )≤A.

This proves (11.6) and the theorem follows. �
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11.1. Proof of Lemma 11.2. Let us set

Hn(x, y)=µn(x, y)− pµn (x, y)

and assume that

−‖Hn‖∞ =min{Hn(x, y), x, y ∈ �N}
(the case ‖Hn‖∞ = max{Hn(x, y), x, y ∈ �N } can be treated in the same way).
There are x0, y0 ∈ �N such that

Hn(x0, y0)=−‖Hn‖∞.
Then

−‖HnST ‖∞ ≤
∑
z∈�N

Hn(x0, z)ST (z, y0)

=Hn(x0, y0)
∑

|y−1
0 z|�N≤c

√
T

ST (z, y0)

+ ∑
|y−1

0 z|�N≤c
√
T

[Hn(x0, z)−Hn(x0, y0)]ST (z, y0)

+ ∑
|y−1

0 z|�N≥c
√
T

Hn(x0, z)ST (z, y0)

≤ −‖Hn‖∞
∑

|y−1
0 z|�N≤c

√
T

ST (z, y0)

+ c
√
T ‖∇UHn(x0, ·)‖∞

∑
|y−1

0 z|�N≤c
√
T

ST (z, y0)

+‖Hn‖∞
∑

|y−1
0 z|�N≥c

√
T

ST (z, y0).

Hence, if

λ= ∑
|y−1

0 z|�N≤c
√
T

ST (z, y0),

then

−‖HnST ‖∞ ≤−‖Hn‖∞λ+ c
√
T λn−(D+γ )/2+ ‖Hn‖∞(1− λ),

or

(2λ− 1)‖Hn‖∞ ≤ ‖HnST ‖∞ + cλ
√
T λn−(D+γ )/2.

By choosing c large enough, so that λ > 1/2, we get

‖Hn‖∞ ≤ 1

2λ− 1
‖HnST ‖∞ + cλ

2λ− 1

√
T n−(D+γ )/2,

which proves the lemma. �
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11.2. Proof of Lemma 11.3. It follows from (6.10) that there is a c > 0 such
that, for all x, y ∈ �N and t ≥ 1,

|pµt+T (x, y)− p
µ
t ST (x, y)| ≤ ct−(D+1)/2.

So, it is enough to prove that

‖µnST − p
µ
n+T ‖∞ ≤ c

(
1+ A√

T

)
n−(D+γ )/2.(11.7)

We have

p
µ
n+T −µnST = p

µ
n+T −µn−1p

µ
1+T +µn−1p

µ
1+T −µnST

= ∑
0≤i≤n−2

µi
(
p
µ
n−i+T −µp

µ
n−i−1+T

)+µn−1(pµ1+T −µST
)

= ∑
0≤i≤n/2

µi
(
p
µ
n−i+T −µp

µ
n−i−1+T

)

+ ∑
n/2<i≤n−2

(
µi − p

µ
i

)(
p
µ
n−i+T −µp

µ
n−i−1+T

)

+ (µn−1 − p
µ
n−1

)(
p
µ
1+T −µST

)
+ ∑

n/2<i≤n−2

p
µ
i

(
p
µ
n−i+T −µp

µ
n−i−1+T

)

+p
µ
n−1

(
p
µ
1+T −µST

)
.

(11.8)

Now, by (6.10) and (8.3),∑
0≤i≤n/2

‖µi‖1‖pµn−i+T −µp
µ
n−i−1+T ‖∞

≤ c
∑

0≤i≤n/2

(n− i − 1+ T )−(D+3)/2

≤ c

(
n

2
+ T

)−(D+1)/2

≤ cn−(D+1)/2.

(11.9)

By the induction hypothesis (11.4),∑
n/2<i≤n−2

‖µi − p
µ
i ‖∞‖pµn−i+T −µp

µ
n−i−1+T ‖1

≤ ∑
n/2<i≤n−2

Ai−(D+γ/2(n− i − 1+ T )−3/2

≤ cA
1√
T
n−(D+γ )/2.

(11.10)
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To estimate the term p
µ
1+T −µST , let us consider the function ϕ =∑

g∈�N µ(g)×
1g(. Then

µST (x, y)=
∫
ϕ(h)p

µ
T (xh, y) dh, x, y ∈ �N.

Since ‖ϕ‖1 = 1, it follows from (6.10) that

‖µST − p
µ
T ‖1 ≤ c√

T
, T ≥ 1.

Since we also have

‖pµT+1 −p
µ
T ‖1 ≤ c

T
, T ≥ 1,

we conclude that

‖(µn−1− p
µ
n−1

)(
p
µ
1+T −µST

)‖∞ ≤ ‖µn−1− p
µ
n−1‖∞‖pµ1+T −µST ‖1

≤ cA
1√
T
n−(D+γ )/2.

(11.11)

To estimate the remaining term in (11.8) we observe that∑
n/2<i≤n−2

p
µ
i

(
p
µ
n−i+T −µp

µ
n−i−1+T

)+ p
µ
n−1

(
p
µ
1+T −µST

)

= p
µ
[n/2]+1p

µ
n−[n/2]−1+T − p

µ
n−1µST

+ ∑
n/2<i≤n−2

(
p
µ
i µ− p

µ
i+1

)
p
µ
n−i−1+T .

(11.12)

By (6.10) and (8.3),∑
n/2<i≤n−2

‖pµi µ− p
µ
i+1‖∞‖pµn−i−1+T ‖1 ≤

∑
n/2<i≤n−2

ci−(D+3)/2

≤ cn−(D+1)/2.

(11.13)

Also, by (6.10), for all x, y ∈ �N ,∣∣∣∣∣pµn+T (x, y)−
∑
z∈�N

p
µ
[n/2]+1(x, z)p

µ
n−[n/2]−1+T (z, y)

∣∣∣∣∣≤ cn−(D+1)/2

and ∣∣∣∣∣pµn+T (x, y)−
∑
z∈�N

p
µ
n−1(x, z)(µST )(z, y)

∣∣∣∣∣≤ cn−(D+1)/2.

Hence

‖pµ[n/2]+1p
µ
n−[n/2]−1+T − p

µ
n−1µST ‖∞ ≤ cn−(D+1)/2.(11.14)

The lemma follows by summing (11.9)–(11.14). �
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12. Proof of the Taylor formula. In this section we give the proof of the
Taylor formula (1.18) under the assumption that the Berry–Esseen estimate (11.2)
holds.

We assume that �N = �. The proof in the general case under a similar
assumption (cf. Section 17) is exactly the same.

If � is nilpotent and the torsion subgroup τ (�) is not trivial, then we can just
extend the different kernels and functions from �N = �/τ(�) to �, as explained
in Section 1.4, and then the proofs remain exactly the same.

12.1. Polynomials on �N . We use the notation of Sections 5 and 6.

Let us fix a monomial P (t, x)= t i0x
i1
1 · · ·xiqq . Then, by Corollary 8.3,

(
∂1+ (I −µ)

)
P (t, x)=

(
∂

∂t
+Lµ

)
P (t, x)+Q(t, x),

where Q(t, x) is a polynomial satisfying

degH Q≤ degH P − 3.(12.1)

On the other hand, it follows from (6.5) and (6.6) that, given any monomial P (t, x)
as above, there is a polynomial W(t, x) such that(

∂

∂t
+Lµ

)
W(t, x)= P (t, x)

and

degH W(t, x)= degH P (t, x)+ 2.(12.2)

The following proposition is a consequence of the above observations.

PROPOSITION 12.1. Given any monomial P (t, x) onN , there is a polynomial
Pµ(t, x) satisfying (

∂

∂t
+Lµ

)
P = (

∂1 + (I −µ)
)
Pµ,

Pµ = P +W,

degH W ≤ degH P − 1.

(12.3)

Let the polynomials Pi , i = 0,1,2, . . . , be as in Section 6.1 and let us
associate with those monomials and the sub-Laplacian Lµ, polynomials QPi ,
i = 0,1,2, . . . , satisfying (6.6). We associate with the polynomials QPi , i =
0,1,2, . . . , and fix, polynomials Qµ

Pi
, i = 0,1,2, . . . , satisfying (12.3) above.

Note that for 0 ≤ i ≤ ν2 we can take Qµ
Pi
= Pi . Note also that ν0 = 0, ν1 = n1

and n1 ≤ n2 < ν2. So we assume that P0(t, x) = Q
µ
P0
(t, x) = 1, that Pi(t, x) =

Q
µ
Pi
(t, x)= xi , for 1≤ i ≤ ν2, and that Pi =Q

µ
Pi

, for ν1 < i ≤ ν2.
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12.2. A uniform approximation of a space–time µ-harmonic function by an
Lµ-heat function. In this section we use the Berry–Esseen estimate (11.2) to
prove the following lemma:

LEMMA 12.2. Let V be as in Section 5.3 and let us assume that
suppµ ⊆ V . Then there is a constant c > 0 and β ∈ (0,1) such that for all
T1 ≥ 4T2, T2 ≥ 2, r ≥ 1 and all functions u satisfying(

∂1+ (I −µ)
)
u= 0 in [[−T2

1r
2,T2

1r
2]] ×UT1r

we can associate a function uµ satisfying(
∂

∂t
+Lµ

)
uµ = 0 in (−T2

2r
2,T2

2r
2)× VT1r

as well as ‖uµ‖∞ ≤ ‖u‖∞ and

sup
{|u− uµ|; [[−r2, r2]] ×Ur}≤ cT

−β
2 r−β + ce−T2

1/cT
2
2 .(12.4)

As in Section 3.2, we use Zn to denote the right random walk with transition
kernel µ(x, y) and by τ xr the stopping time

τ xr = inf{n :Zn /∈ xUr}.
Using the Gaussian estimate (1.14), we can obtain the following improvement

of Lemma 3.4.

LEMMA 12.3. There is a constant c > 0 such that, for all r, n ∈N,

Px[τ xr ≤ n] ≤ c exp
(
− r2

cn

)
.(12.5)

PROOF. The proof follows the same lines as the proof of Lemma 3.4.
Let a ≥ 1 such that xUr ∩ yUr =∅ when y /∈ xUar . We have∑

y /∈xUr

µn(x, y)= Px[Zn /∈ xUr]
≥ EPx

[
µn−τxar (Zτxar

,�N \ xUr); τ xar ≤ n
]

≥ EPx
[
µn−τxar (Zτxar

,Zτxar
Ur); τ xar ≤ n

]
≥ EPx

[
µn−τxar (e,Ur); τ xar ≤ n

]
.

Now, we observe that (12.5) is interesting only for r2 ≥ n and that in that case,
by (1.14), there is a δ > 0 such that

µn−τxar (e,Ur)≥ δ.
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So ∑
y /∈xUr

µn(x, y)≥ δPx[τ xar ≤ r2].

Since, by (1.14), there is a constant c > 0 such that, for all r, n ∈N,

∑
y /∈xUr

µn(x, y)≤ c exp
(
− r2

cn

)
,

we conclude that

Px[τ xar ≤ n] ≤ 1

δ
c exp

(
− r2

cn

)
,

which proves the lemma. �

LEMMA 12.4. Let r, n ∈N and let u be a function satisfying(
∂1 + (I −µ)

)
u= 0 in [[−2n,2n]] × xU2r .

Then ∣∣∣∣∣u(n, x)−
∑

y∈xUr

µn(x, y)u(0, y)

∣∣∣∣∣≤ 2‖u‖∞Px[τ xr ≤ n].(12.6)

PROOF. We have

u(n, x)= EPx [u(0,Zn); τ xr > n] +EPx [u(τ xr ,Zτxr
); τ xr ≤ n]

= ∑
y∈xUr

(
µn(x, y)−EPx

[
µn−τxr (Zτxr

, y); τ xr ≤ n
])
u(0, y)

+EPx [u(τ xr ,Zτxr
); τ xr ≤ n].

Hence ∣∣∣∣∣u(n, x)−
∑

y∈xUr

µn(x, y)u(0, y)

∣∣∣∣∣
≤ ‖u‖∞(EPx

[
µn−τxr (Zτxr

, xUr); τ xr ≤ n
]+Px[τ xr ≤ n])

≤ 2‖u‖∞Px[τ xr ≤ n]
and the lemma follows. �

PROOF OF LEMMA 12.2. Let u satisfy(
∂1 + (I −µ)

)
u= 0 in

[[−T2
1r

2,T2
1r

2]]× xUT1r
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and let us define, for n >−T2
2r

2 and x ∈ �N ,

u1(n, x)=
∑

y∈UT1r/2

µn+T2
2r

2
(x, y)u(−T2

2r
2, y)

and for t >−T2
2r

2, x ∈N ,

uµ(t, x)= ∑
y∈UT1r/2

p
ϕ

t+T2
2r

2(x, y)u(−T2
2r

2, y).

Now by (12.5) and (12.6),

sup
{|u− u1|; [[−T2

2r
2,T2

2r
2]]×UT2r

}≤ 2‖u‖∞Px[τ xT1r/2 ≤T2
2r

2]
≤ c‖u‖∞e−T2

1/cT
2
2 .

(12.7)

Also, by interpolating the Berry–Esseen estimate (11.2) and the Gaussian
estimates (1.14) and (6.9), we have that there is a β ∈ (0,1/2) such that

‖µn − pµn ‖1 ≤ cn−β, n ∈N.

It follows that

sup
{|u1− uµ|; [[−r2, r2]] ×Ur}≤ c‖u‖∞T−β2 r−β .(12.8)

The lemma follows by summing (12.7) and (12.8). �

12.3. The iteration argument. The following lemmas are inspired by Avel-
laneda and Lin [9, 10].

LEMMA 12.5. For all n ∈N and η ∈ (0,1) there are r0 > 1, T> 1 and cn > 0
such that, for all r ≥ r0 and all functions u satisfying(

∂1+ (I −µ)
)
u= 0 in [[−T2r2,T2r2]] ×UTr,(12.9)

we have

sup

{∣∣∣∣∣u−
∑

0≤i≤νn
Ai(Tr)

−degH PiQ
µ
Pi

∣∣∣∣∣; [[r2, r2]] ×Ur

}
<T−(n+η)‖u‖∞(12.10)

where the constants Ai satisfy

|Ai | ≤ cn(logT)degH Pi‖u‖∞,
for all 0≤ i ≤ νn, and

(
∂1+ (I −µ)

)( ∑
νd−1≤i≤νd

AiQ
µ
Pi

)
= 0,

for all 1≤ d ≤ n .
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PROOF. Let us fix n ∈ N, µ ∈ (0,1), T > 16 and a function u satisfying
(12.9).

Then, by Lemma 12.2 and by taking T1 = T and T2 = T/ logT, there is
a function uµ satisfying(

∂

∂t
+Lµ

)
uµ = 0 in

[
−
(

T

logT

)2

r2,

(
T

logT

)2

r2
]
× V Tr/ logT,

as well as

‖uµ‖∞ ≤ ‖u‖∞
and

sup
{|u− uµ|; [[−r2, r2]] ×Ur

}
≤ c‖u‖∞(T−β(logT)βr−β + e−(logT)2/c).(12.11)

Also, by Theorem 6.2,

sup

{∣∣∣∣∣uµ −
∑

0≤i≤νn
Bi

(
T

logT
r

)−degH Pi

QPi

∣∣∣∣∣; [−r2, r2] × V r

}

< cn

(
T

logT

)−(n+1)

‖uµ‖∞,
(12.12)

where the constants Bi satisfy

|Bi | ≤ cn‖uµ‖∞,
for all 0≤ i ≤ νn, and(

∂

∂t
+Lµ

)( ∑
νd−1≤i≤νd

BiQPi (t, x)

)
= 0,

for all 1≤ d ≤ n.
Now let us observe that there is a constant c > 0 such that

sup
{|QPi −Q

µ
Pi
|; [−r2, r2] × V r}≤ crdegH Pi−1

and hence (
T

logT
r

)−degH Pi

sup
{|QPi −Q

µ
Pi
|; [−r2, r2] × V r

}

≤ c

(
T

logT

)−degH Pi

r−1.

(12.13)

Let us take

Ai = Bi(logT)degH Pi , 0≤ i ≤ νn.
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Then, combining (12.11), (12.12) and (12.13), we have that

sup

{∣∣∣∣∣u−
∑

0≤i≤νn
Ai(Tr)

−degH PiQ
µ
Pi

∣∣∣∣∣; [[−r2, r2]] ×Ur

}

≤ sup

{∣∣∣∣∣uµ −
∑

0≤i≤νn
Bi(logT)degH Pi (Tr)−degH PiQPi

∣∣∣∣∣; [[−r2, r2]] ×Ur

}

+ sup
{|u− uµ|; [[−r2, r2]] ×Ur

}
+ ∑

0≤i≤νn
|Bi |(logT)degH Pi (Tr)−degH Pi sup

{|QPi −Q
µ
Pi
|; [r2, r2] ×Ur

}

≤ cnT
−(n+1)(logT)n+1‖uµ‖∞ + c‖u‖∞((logT)βT−βr−β + e−(logT)2/c)

+ c(logT)nT−1r−1
∑

0≤i≤νn
|Bi|

≤ cnT
−(n+1)(logT)n+1‖u‖∞ + c‖u‖∞((logT)βT−βr−β + e−(logT)2/c)

+ c(logT)nT−1r−1cnνn‖u‖∞.
The lemma follows by taking T and r0 large enough. �

LEMMA 12.6. Let µ,T and r0 be as in the previous lemma. Then there is
a constant cn > 0 such that, for all m ∈ N, all r ≥ Tm−1r0 and all functions u
satisfying (

∂1+ (I −µ)
)
u= 0 in [[−T2mr2,T2mr2]] ×UTmr,(12.14)

we have

sup

{∣∣∣∣∣u−
∑

0≤i≤νn
Am
i

(
Tmr

)−degH PiQ
µ
Pi

∣∣∣∣∣; [[−r2, r2]] ×Ur

}

<T−m(n+η)‖u‖∞,
(12.15)

where the constants Am
i satisfy

|Am
i | ≤ cn(logT)degH Pi‖u‖∞,

for all 0≤ i ≤ νn, and

(
∂1 + (I −µ)

)( ∑
νd−1<i≤νd

Am
i Q

µ
Pi

)
= 0,

for all 1≤ d ≤ n .
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PROOF. We prove the lemma by induction on m. For m= 1 we are in the case
of the previous lemma. So let us assume that (12.15) is true for some m ∈ N. To
prove that it is also true for m+ 1, let us assume, for simplicity, that ‖u‖∞ ≤ 1.
By the induction hypothesis

sup

{∣∣∣∣∣u−
∑

0≤i≤νn
Am
i (T

m+1r)−degH PiQ
µ
Pi

∣∣∣∣∣; [[−T2r2,T2r2]]×UTr

}
≤T−m(n+η).

We consider the function

w =Tm(n+η) =
(
u− ∑

0≤i≤νn
Am
i (T

m+1r)−degH PiQ
µ
Pi

)
.

Then (
∂1+ (I −µ)

)
w = 0 in [[−T2r2,T2r2]] ×UTr

and

sup
{|w|; [[−T2r2,T2r2]] ×UTr

}≤ 1.

So, by Lemma 12.5, we have that

sup

{∣∣∣∣∣w−
∑

0≤i≤νn
Bi(Tr)

−degH PiQ
µ
Pi

∣∣∣∣∣; [[−r2, r2]] ×Ur

}
<T−(n+η),

where the constants Bi satisfy

|Bi | ≤ cn(logT)−degH Pi ,

for all 0≤ i ≤ νn, and

(
∂1 + (I −µ)

)( ∑
νd−1<i≤νd

BiQ
µ
Pi

)
= 0,

for all 1≤ d ≤ n.
So, if we set

Am+1
i =Am

i +T−m(n+µ−degH Pi)Bi,

then we have

sup

{∣∣∣∣∣u−
∑

0≤i≤νn
Am+1
i (Tm+1r)−degH PiQ

µ
Pi

∣∣∣∣∣; [[−r2, r2]] ×Ur

}
<T−(m+1)(n+η),

which proves the inductive step and the lemma follows. �
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12.4. The Taylor formula. The following result is the analogue of Theo-
rem 1.11 when � = �N .

THEOREM 12.7. For all n ∈ N there is a constant cn > 0 such that, for all
R ≥ r ≥ 1 and all functions u satisfying(

∂1+ (I −µ)
)
u= 0 in [[−R2,R2]] ×UR,

we have

sup

{∣∣∣∣∣u−
∑

0≤i≤νn
AiR

−degH PiQ
µ
Pi

∣∣∣∣∣; [[−r2, r2]] ×Ur

}

≤ cn

(
R

r

)−(n+1)

‖u‖∞,
(12.16)

where the constants Ai satisfy

|Ai | ≤ cn‖u‖∞,
for all 0≤ i ≤ νn, and

(
∂1+ (I −µ)

)( ∑
νd−1<i≤νd

AiQ
µ
Pi

)
= 0,

for all 1≤ d ≤ n.

PROOF. If R ≥ r ≥ r0, then Tm−1r ≤ R < Tmr for some m ∈ N and hence
(12.16) follows from Lemma 12.6.

If R ≥ r0 > r ≥ 1, then R/r ≤ r0R/r0 and hence (12.16) follows in the same
way from Lemma 12.6.

If r0 ≥R ≥ r ≥ 1, then (12.16) is trivial. �

13. Harmonic functions of polynomial growth. In this section we give the
proof of Theorem 1.12. We assume that �N = �. The proof in the general case
is exactly the same. If � is nilpotent and we have set �N = �/τ(�), then we can
just extend the different polynomials from �N to � (see Section 1.4) and then the
proof below also works as is.

PROOF OF THEOREM 1.12. Let u be a µ-harmonic function on G which
grows polynomially; that is, there are c > 0 and n ∈N such that

sup{|u|;Ur} ≤ crn, r ≥ 1.(13.1)

Let the polynomials Qµ
Pi
(t, x) be as in section 12.1 and let us denote by Qµ

Pi
(x)

their restrictions to N , that is, Qµ
Pi
(x)=Q

µ
Pi
(0, x), x ∈N .
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By (12.16), there is a c > 0 such that, for all r ≥ k

sup

{∣∣∣∣∣u−
∑

0≤i≤νn
Ar
i r
−degH PiQ

µ
Pi

∣∣∣∣∣;Uk

}
< c

(
r

k

)−(n+1)

‖u‖L∞(Ur)

≤ ckn+1r−1,

(13.2)

where the constants Ar
i are such that

(I −µ)

( ∑
0≤i≤νn

Ar
i r
−degH PiQ

ϕ
Pi

)
= 0.

For each k ∈N, let us choose rk ∈N such that

ckn+1r−1
k ≤ 1

k
.

We set Ck,i = 0, for Qµ
Pi
= 0 and

Ck,i =A
rk
i r
−degH Pi
k

otherwise. Then (13.1) and (13.2) imply that there is a c > 0 such that, for all
k ∈N,

sup

{∣∣∣∣∣u−
∑

0≤i≤νn
Ck,iQ

µ
Pi

∣∣∣∣∣;Uk

}
<

1

k
,(13.3)

with

(I −µ)

( ∑
0≤i≤νn

Ck,iQ
µ
Pi

)
= 0.(13.4)

Now, there are a subsequence Ckj ,i and constants Ci such that

Ckj ,i →Ci as j→∞(13.5)

for all 0≤ i ≤ νn.
To see this, let us observe that if this were not the case, then we would have that

Mk =max{|Ck,i|, 0≤ i ≤ νn}→∞ as k→∞.

Since |Ck,i |/Mk ≤ 1, there are a subsequence CkN,i and constants Bi such that

CkN,i

MkN

→ Bi as k→∞

for all 0 ≤ i ≤ νn. Note that the subsequence CkN,i can be chosen is such a way
that some of the constants Bi are equal to 1 (and hence not all of them vanish). Let

R(x)= ∑
0≤i≤νn

BiQ
ϕ
Pi
(x).
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By (13.3)

1

MkN

(
u(x)− ∑

0≤i≤νn
CkN,iQ

µ
Pi
(x)

)
→ 0 as k→∞

for all x ∈ �N . So, R(x)= 0 for all x ∈ �N .
Since

sup{|R(x)|;Ur} ∼ sup

{∣∣∣∣∣
∑

νn−1<i≤νn
BiPi(x)

∣∣∣∣∣;Ur

}
as r→∞,

we have that ∑
νn−1<i≤νn

BiPi(x)= 0, x ∈ �N,

and hence Bi = 0, νn−1 < i ≤ νn.
Arguing in the same way, we can prove successively that, for all k = n −

1, . . . ,1, Bi = 0, νk−1 < i ≤ νk , and that B0 = 0. This is absurd because, by
construction, not all of the coefficientsBi vanish. We conclude therefore that (13.5)
holds.

By letting j→∞, it follows from (13.3) and (13.4) that

u(x)= ∑
0≤i≤νn

CiQ
µ
Pi
(x)

for all x ∈ �N and the theorem follows. �

14. The homogenized sub-Laplacian LHµ. The goal of this section is to
define the homogenized operator LHµ associated with the centered probability
measure µ on �, when � �= �N . LHµ is a centered left invariant sub-Laplacian on
N which, with the notation of Section 6, we write as

LHµ =−
∑

1≤i,j≤n1

qijXiXj −
∑

n1<i≤n2

qiXi.

The coefficients qij and qi is are constant [and the n1 × n1 matrix (qij ) is
symmetric and positive definite].

The way LHµ and µ are related is illustrated by (14.9) below.

14.1. The coefficients aij and ai . Let f ∈C∞(N) and let us extend f to � by
setting f (xgi)= f (x), x ∈ �N,0≤ i ≤ k.

Let the monomials Pi be as in Section 6.1. We extend these monomials to � by
setting Pi(t, xgi)= Pi(t, x), x ∈N,0≤ i ≤ k. We set Pi(x)= Pi(0, x).



780 G. K. ALEXOPOULOS

Let

bi(gN)=
∑
h∈�

Pi(gNh)µ(h), 1≤ i ≤ n2,

aij (gN)=
∑
h∈�

Pi(gNh)Pj (gNh)µ(h), 1≤ i, j ≤ n1,

ai(gN)= bi(gN), 1≤ i ≤ n1,

ai(gN)= bi(gN)− 1
2

∑
1≤λ<µ≤n1

aλµ(gN)pri[Xλ,Xµ]N, n1 < i ≤ n2.

(14.1)

Note that, by setting ai(xgN) = ai(gN) and aij (xgN) = aij (gN), x ∈ �N , these
coefficients become functions of type P (cf. Section 1.4).

LEMMA 14.1. We have∑
0≤N≤k

ai(gN)= 0, 1≤ i ≤ n1.(14.2)

PROOF. If g = xgN with x ∈ �N and 0 ≤ N ≤ k, then, using the notation of
Section 1.3, we set gN = x and g = gN. Let

ζi(g)=
∑
w

Pi(wg), 1≤ i ≤ n1.

Clearly, to prove (14.2) it is enough to prove that∑
g∈�

ζi(g)µ(g)= 0, 1≤ i ≤ n1.(14.3)

We have

ζi(gh)=
∑
w

Pi(wgh)=
∑
w

Pi
(
(wg)Nwgh

)

=∑
w

Pi
(
(wg)N

)+∑
w

Pi(wgh)=
∑
w

Pi(wg)+
∑
w

Pi(wh)

= ζi(g)+ ζi(h).

This shows that the functions ζi , 1≤ i ≤ n1, are additive, and hence (14.3) follows
from the definition of a centered probability measure. �

Let V be as in Section 6.5 and let us also assume that (gNh)N ∈ V for all
h ∈ suppµ and 0≤ i ≤ k.

The following lemma is a consequence of Lemma 5.3 and (14.1) and (14.2)
above.

LEMMA 14.2. Let f be as above. Also, let ψ be a function of type P. Then
there is a c > 0 independent of f such that, for all x ∈ �N and 0 ≤ N ≤ k, the
following hold:



RANDOM WALKS ON GROUPS 781

(i)

(I −µ)f (xgN)=−
∑

1≤i≤n1

ai(gN)Xif (x)− 1
2

∑
1≤i,j≤n1

aij (gN)XiXjf (x)

− ∑
n1<i≤n2

ai(gN)Xif (x)+ F(xgN)
(14.4)

with

|F(xgN)| ≤ c‖∇3
Xf ‖L∞(xV );

(ii) for all 1≤ ν ≤ n1,

(I −µ)(ϕXνf )(xgN)

= (
(I −µ)ψ

)
(gN)Xνf (x)−

∑
1≤i≤n1

µ(ψPi)(gN)XiXnf (x)+ F(xgN)
(14.5)

with

|F(xgN)| ≤ c‖∇3
Xf ‖L∞(xV ).

14.2. The correctors and the homogenized operator LHϕ . The definition of
the correctors ψj , j = 1, . . . , n1, is motivated by (14.4).

DEFINITION. We define the ( first order) correctors ψj , 1 ≤ j ≤ n1 (cf. [13,
26]), as functions of type P satisfying

(I −µ)ψj = aj and 〈ψj 〉 = 0.(14.6)

Note that the correctors ψj are well defined and they are given by ψj =∑
n≥0 µ

naj , 1≤ j ≤ n1 (cf. Section 1.4).
Let

bij (gN)=
∑
h∈�

ψj (gNh)Pi(gNh)µ(h), 1≤ i, j ≤ n1.

If f is as in Lemma 14.2, then combining (14.4), (14.5) and (14.6) we have that,
for all x ∈ �N and 0≤ N≤ k,

(I −µ)

(
f + ∑

1≤j≤n1

ψjXjf

)
(xgN)

=− ∑
1≤i,j≤n1

(1
2aij (gN)+ bij (gN)

)
XiXjf (x)

− ∑
n1<i≤n2

ai(gN)Xif (x)+ F(xgN)

(14.7)
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with

|F(xgN)| ≤ c‖∇3
Xf ‖L∞(xV ).

The following definitions are motivated by the expression (14.7) above.

DEFINITION. The homogenized sub-Laplacian LHµ associated with µ is
defined with be the operator

LHµ =−
∑

1≤i,j≤n1

qijXiXj −
∑

n1<i≤n2

qiXi

with coefficients defined by

qij = 〈 1
2aij + bij

〉
, 1≤ i, j ≤ n1,

qi = 〈bi〉, n1 < i ≤ n2.

DEFINITION. We define the (second order) correctors ψij , 1 ≤ i, j ≤ n1 (cf.
[13, 26]), as functions of type P satisfying

(I −µ)ψij = 1
2aij + bij − qij , 〈ψij 〉 = 0.

We also define the (second order) correctors ψj , n1 < j ≤ n2, as continuous
functions on M satisfying

(I −µ)ψj = aj − qj , 〈ψj 〉 = 0.

The following lemma is a direct consequence of (14.7) and the above
definitions.

LEMMA 14.3. There is a c > 0 such that, for all functions f as in Lemma 14.2
and all x ∈ �N and 0≤ N≤ n1,∣∣∣∣∣(I −µ)

(
f (xgN)+

∑
1≤j≤n2

ψj (gN)Xjf (x)

)∣∣∣∣∣≤ c‖∇2
Xf ‖L∞(xV ),(14.8)

(I −µ)

(
f + ∑

1≤j≤n2

ψjXjf +
∑

1≤i,j≤n1

ψijXjf

)
=LHϕf + F(14.9)

with the function F satisfying

|F(xgN)| ≤ c‖∇3
Xf (x)‖L∞(xV ).
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COROLLARY 14.4. Let u ∈ C∞(R × N) and let us extend u to R × � by
setting u(t, xgN)= u(t, x), x ∈ �N , 0≤ N≤ n1. Also, let

U(t, xgN)= u(t, xgN)+
∑

1≤j≤n2

ψj(gN)Xju(t, xgN)

+ ∑
1≤i,j≤n1

ψij (gN)XiXju(t, xgN).

Then there is a constant c > 0 independent of u such that, for all t ∈R, x ∈N and
0≤ N≤ k,

U(t + 1, xgN)−µU(t, xgN)=
(
∂

∂t
+LHµ

)
U(t, x)+ V (t, xgN)(14.10)

with

|V (t, xgN)| ≤ c1

∥∥∥∥
∣∣∣∣ ∂

2

∂s2u(s, x)

∣∣∣∣+
∣∣∣∣∇X ∂

∂s
u(s, x)

∣∣∣∣+ |∇3
Xu(t, x)|

∥∥∥∥
L∞([t,t+1]×xV )

.

14.3. LHµ is a centered sub-Laplacian on N . The following lemma asserts
that LHµ is indeed a sub-Laplacian on N .

LEMMA 14.5. For all ξ = (ξ1, . . . , ξn1) ∈R
n1 , ξ �= 0,∑

1≤i,j≤n1

qij ξiξj > 0.(14.11)

PROOF. Let us fix ξ = (ξ1, . . . , ξn1) �= 0 and consider the function

u= ∑
1≤i≤n1

ξi(Pi +ψi).

Since by construction (I − µ)(Pi + ψi) = 0, 1 ≤ i ≤ n1, we have that (I − µ)

× u= 0; that is, u is µ-harmonic. Since the function f (t)= t2 is convex, we have
that (I −µ)u2 ≤ 0.

We have

u2 = ∑
1≤i,j≤n1

ξiξj (Pi +ψi)(Pj +ψj)

= ∑
1≤i,j≤n1

ξiξj (PiPj + Piψ
j + Pjψ

i +ψiψj ).

By Lemma 14.2, for 1≤ i, j ≤ n1,

(I −µ)(PiPj )=−Piaj − Pjai − aij ,

(I −µ)(Piψ
j )= Piaj − bij ,

(I −µ)(Pjψ
i)= Pjai − bji.
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Hence

(I −µ)[(Pi +ψi)(Pj +ψj)] = −aij − bij − bji + [(I −µ)(ψiψj )].
It follows that (I −µ)u2 is a function of type P. Since 〈(I − µ)(ψiψj )〉 = 0, we
have 〈

(I −µ)
(
(Pi +ψi)(Pj +ψj)

)〉=−2qij .

Hence

〈(I −µ)u2〉 = −2
∑

1≤i,j≤n1

qij ξ
iξ j .

Now, if we had
∑

1≤i,j≤n1
qij ξiξj = 0, then we would have (I − µ)u2 = 0.

Since the function f (t) = t2 is strictly convex, this would imply that u =const,
which is absurd. �

15. Proof of Propositions 1.3 and 1.4 in the general case. The proof of
Propositions 1.3 and 1.4 in the general case is similar to the proof in the case
� = �N (see Section 9). The only difference is that instead of Lemma 9.1 we must
use the following generalization:

LEMMA 15.1. There is a constant c > 0 such that, for all n ∈N, T ≥ 1,∥∥pHµ
n+T −µnp

Hϕ
T

∥∥∞ ≤ c T −(D+1)/2.(15.1)

PROOF. Let

Ut = p
Hµ
t − ∑

1≤j≤n2

ψjXjp
Hµ
t − ∑

1≤i,j≤n1

ψijXiXjp
Hµ
t .

By (6.10), there is a c > 0 such that, for all T ≥ 1 and t ≥ 0,∥∥Xjp
Hµ
t+T

∥∥∞ ≤ c (t + T )−(D+1)/2,
∥∥XiXjp

Hµ
t+T

∥∥∞ ≤ c (t + T )−(D+2)/2.

So to prove (15.1) it is enough to prove that there is a c > 0 such that, for all T ≥ 1
and t ≥ 0,

‖Un+T −µnUT ‖∞ ≤ c T −(D+1)/2.(15.2)

By (14.10) and (6.10) there is a c > 0 such that, for all t ≥ 1,

‖Ut+1 −µUt‖∞ ≤ ct−(D+3)/2.(15.3)

We have

Un+T −µnUT = Un+T −µn−1U1+T +µn−1U1+T −µnUT

= ∑
0≤i≤n−1

µi(Un−i+T −µUn−i−1+T
)
.
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So, by (15.3),

‖Un+T −µnUT ‖∞ ≤
∑

0≤i≤n−1

‖µi‖1‖Un−i+T −µUn−i−1+T ‖∞

≤ c
∑

0≤i≤n−1

(n− i − 1+ T )−(D+3)/2

≤ c T −(D+1)/2

and the lemma follows. �

16. Proof of the Gaussian estimate in the general case. The of proof of
(1.14) follows the same lines as in the case �N = � (see Section 10). The only
change is that we must replace the functions Hk by their modifications Uk , k ≥ 1.

16.1. The functions Uk . Let the family of functions ρk be as in Section 10.1,
let us fix A> 0 and B > 0 and let

Hk(t, x)= exp
(
−(ρk(x)+B

√
k)2

A(k+ t)

)
, t ≥ 0, x ∈N.

We extend the functions ρk and Hk to � by setting ρk(xgN) = ρk(x) and
Hk(t, xgN)=Hk(t, x), x ∈ �N , 0≤ N≤ k.

We do the same for the derivatives XY · · ·ZHk , X,Y, . . . ,Z ∈ n.
We consider the functions

Uk =Hk(t, x)+
∑

1≤j≤n1

ψjXjHk.

LEMMA 16.1. There are constants A> 0 and B > 0 such that, for all k ≥ 1,
t ∈ [0, k] and all |x|� ≤ ak,

0 < 1
2Hk(t, x) < Uk(t, x) < 2Hk(t, x)(16.1)

and

Uk(t + 1, x) > µUk(t, x).(16.2)

PROOF. For all X ∈ n, we have

XHk(t, x)=− 1

A

1

k + t
2
(
ρk(x)+B

√
k
)
Xρk(x) Hk(t, x).(16.3)

It follows that there is a c > 0 such that, for all |x|� ≤ ak,

|XHk(t, x)| ≤ c
1

A

(
a+ B√

k

)
Hk(t, x),

which proves (16.1).
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The proof of (16.2) is similar to the proof of (10.6) in the case � = �N . We
observe again that

Uk(t + 1, x)−µUk(t, x)=Uk(t + 1, x)−Uk(t, x)+ (I −µ)Uk(t, x).

Since the correctors ψj are functions defined on �/�N , which is finite, there is
a c > 0 such that

Uk(t + 1, x)−Uk(t, x) ≥ inf
{
∂

∂s
Hk(s, x); s ∈ [t, t + 1]

}

− c sup
{∣∣∣∣∇X ∂

∂s
Hk(s, y)

∣∣∣∣; s ∈ [t, t + 1], y ∈ xV
}
.

Also, by (14.8),

|(I −µ)Uk(t, x)| ≤ c sup
{∇2

XHk(t, y);y ∈ xV }.
It follows that

Uk(t + 1, x)−µUk(t, x)

≥ inf
{
∂

∂s
Hk(s, x); s ∈ [t, t + 1]

}

− c sup
{∣∣∣∣∇X ∂

∂s
Hk(s, y)

∣∣∣∣; s ∈ [t, t + 1], y ∈ xV
}

− c sup
{∇2

XHk(t, y);y ∈ xV }.

(16.4)

As in the proof of (10.6) we observe that

∂

∂t
Hk(t, x)= 1

A

1

k + t

(ρk(x)+B
√
k)2

k + t
Hk(t, x)(16.5)

and that, for all X,Y ∈ n,

∂

∂t
XHk(t, x)= 1

A

1

k + t

[
2
ρk(x)+B

√
k

k + t
Xρk(x)

− (ρk(x)+B
√
k)2

k + t

1

A

1

k+ t
2
(
ρk(x)

+B√k)Xρk(x)
]
Hk(t, x)

= 1

A

1

k + t

[
2
ρk(x)+B

√
k

k + t
Xρk(x)

−2
1

A

1

(k + t)2

(
ρk(x)+B

√
k
)3
Xρk(x)

]
Hk(t, x)

(16.6)
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and

XYHk(t, x)

=− 1

A

1

k + t

[
2Xρk(x)Yρk(x)− 2

(
ρk(x)+B

√
k
)
XYρk(x)

+ 1

A

1

(k + t)
4
(
ρk(x)+B

√
k
)2
Xρk(x)Yρk(x)

]
Hk(t, x).

(16.7)

Case I (|x|� ≤
√
k − 1 and t ∈ [0, k]). By construction, for all |x|� ≤

√
k,

Uk(t, x)=Hk(t, x)= exp
(
− B2k

A(k + t)

)
.

Hence, for all |x|� ≤
√
k − 1,

Uk(t + 1, x) > Uk(t, x)= (
µUk+1(t, ·))(x).

Case II (
√
k − 1 ≤ |x|� ≤ ζ

√
k + 1 and 0 ≤ t ≤ k). Then by (16.5)–(16.7)

there is a c > 0 such that

Uk(t + 1, x)−µUk(t, x)

≥ 1

A

1

k + t + 1

[
B2k

k + k + 1
− c

c
√
k +B

√
k

k

− c
1

A

1

k2
(c
√
k+B

√
k)3 − c− c(c

√
k +B

√
k)

1√
k

− c
1

A

1

k
(c
√
k +B

√
k)2− c(c

√
k +B

√
k)

1√
k

]
Hk(t, x)

≥ 1

A

1

k + t + 1

[
B2

3
− c

c+B√
k
− c

1

A

1√
k
(c+B)3

− c− c(c+B)− c
1

A
(c+B)2 − c(c+B)

]
Hk(t, x).

So, by choosing B large enough that

B2

6
>+c(c+B)+ c+ c(c+B)+ c(c+B)

and then A large enough that

B2

6
> c

1

A
(c+B)3 + c

1

A
(c+B)2,

we have

Uk(t + 1, x) > µUk(t, x).
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Case III (ζ
√
k+ 1 < |x|� < ak and 0≤ t ≤ k). Then by (16.5)–(16.7) there is

a c > 0 such that

Uk(t + 1, x)−µUk(t, x)

≥ 1

A

1

k + t + 1

[
(|x|� +B

√
k)2

k + t + 1
− c

c|x|� +B
√
k

k + t

− c
1

A

1

k2
(|x|� +B

√
k)3 − c− c(|x|� +B

√
k)

1

|x|�
− c

1

A

1

k
(|x|� +B

√
k)2 − c(|x|� +B

√
k)

1

|x|�
]
Hk(t, x)

≥ 1

A

1

k + t + 1

[
(|x|� +B

√
k)
|x|� +B

√
k

3k
− c
|x|� +B

√
k

k

− c
1

A

( |x|� +B
√
k

k

)2

(|x|� +B
√
k)− c− c

(
1+ B

√
k

|x|�
)

− c
1

A

|x|� +B
√
k

k
(|x|� +B

√
k)− c

(
1+ B

√
k

|x|�
)]
Hk(t, x).

So, by choosing B large enough that

(|x|� +B
√
k)
|x|� +B

√
k

6k
> c

|x|� +B
√
k

k
+ c+ c

(
1+ B

√
k

|x|�
)
+ c

(
1+ B

√
k

|x|�
)

and A large enough that

(|x|� +B
√
k)
|x|� +B

√
k

6k
>

1

A

( |x|� +B
√
k

k

)2

(|x|� +B
√
k)

+ c
1

A

|x|� +B
√
k

k
(|x|� +B

√
k),

we have

Uk(t + 1, x) > µUk(t, x),

which ends the proof of the lemma. �

17. The proof of the Berry–Esseen estimate in the general case. In this
section, we give the proof of Theorem 11.1 in the case when � �= �N . The general
strategy is the same.

Let LHµ be the homogenized sub-Laplacian associated with µ and let

p
Hµ
t (x, y) be its heat kernel. We extend pHµ

t (x, y) to � by setting

p
Hϕ
t (xgi, ygj )= 1

k + 1
p
Hϕ
t (x, y), x, y ∈N, 0≤ i, j ≤ k.
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Let us also recall that by (4.2) there are γ ∈ (0,1] and c > 0 such that

‖∇Uµn‖∞ ≤ cn−(D+γ )/2, n ∈N.(17.1)

The following result is a generalization of Theorem 11.1.

THEOREM 17.1. There is a c > 1 such that, for all x, y ∈ � and n ∈N,

|µn(x, y)− pHµ
n (x, y)| ≤ cn−(D+γ )/2.(17.2)

We point out again that, once we have proved Theorem 1.14, the above
inequality will hold with γ = 1.

Let the kernel St(x, y) be as in Section 11 and let us extend it to � by setting

St (xgi, ygj )= 1

k + 1
St(x, y), x, y ∈N, 0≤ i, j ≤ k.

Theorem 17.1 is proved in exactly the same way as Theorem (11.1), once we
have the following analogues of Lemmas 11.2 and 11.3.

LEMMA 17.2. There are constants a, b≥ 1 such that, for all T ≥ 1 and n ∈N,

‖µn −pHµ
n ‖∞ ≤ a‖(µn− pHµ

n )ST ‖∞ + b
√
T n−(D+γ )/2.(17.3)

The proof of the above lemma is exactly the same as the proof of Lemma 11.2.

LEMMA 17.3. There is a constant c≥ 1 such that if, for some n ∈N,

‖µk − p
Hµ
k ‖∞ ≤Ak−(D+γ )/2, 1≤ k ≤ n− 1,(17.4)

then

‖(µn − pHµ
n )ST ‖∞ ≤ c

(
1+ A√

T

)
n−(D+γ )/2.(17.5)

The proof of the above lemma, although similar in spirit to the proof of
Lemma 11.3, is technically more complicated. For the case when µ is symmetric,
a proof of the above lemma is given in [2]. We give below an adaptation of that
proof.

17.1. Proof of Lemma 17.3. Let µ∨n(x, y) = µn(y, x), x, y ∈ �, and let
LHµ∨ be the homogenized sub-Laplacian associated with µ∨. Note that LHµ∨

is just the formal adjoint of LHµ and that its heat kernel p∨Hµ
t (x, y) satisfies

p
∨Hµ
t (x, y)= p

Hµ
t (y, x), x, y ∈N .

Finally, let ψ∨j , 1≤ j ≤ n2, and ψ∨ij , 1 ≤ i, j ≤ n1, be respectively the first
and second order correctors associated with µ∨.
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We set

Wt(x, y)=
∑

1≤j≤n2

ψj(x)Xx
j p

Hµ
t (x, y)+ ∑

1≤i,j≤n1

ψij (x)Xx
i X

x
j p

Hµ
t (x, y)

and

W∨
t (x, y)=

∑
1≤j≤n2

ψ∨j (y)Xy
j p

Hµ
t (x, y)+ ∑

1≤j≤n1

ψ∨ij (y)Xy
i X

y
j p

Hµ
t (x, y),

where the superscripts x and y denote differentiation with respect to the x and y

variables respectively.
Let

Ut = p
Hµ
t +Wt,

U∨t = p
Hµ
t +W∨

t .

Let us also fix a T ≥ 1. Then, to prove (17.5), it is enough to prove that

‖µnST −Un+T ‖∞ ≤ c

(
1+ A√

T

)
n−(D+γ )/2.(17.6)

We have

Un+T −µnST = Un+T −µn−1U1+T +µn−1U1+T −µnST

= ∑
0≤i≤n−2

(µiUn−i+T −µi+1Un−i−1+T )+µn−1U1+T −µnST

= ∑
0≤i≤n−2

µi(Un−i+T −µUn−i−1+T )+µn−1U1+T −µnST

= ∑
0≤i≤n/2

µi(Un−i+T −µUn−i−1+T )

+ ∑
n/2<i≤n−2

µi(Un−i+T −µUn−i−1+T )

+µn−1(U1+T −µST )(17.7)

= ∑
0≤i≤n/2

µi(Un−i+T −µUn−i−1+T )

+ ∑
n/2<i≤n−2

(µi −U∨i )(Un−i+T −µUn−i−1+T )

+ ∑
n/2<i≤n−2

U∨i (Un−i −µUn−i−1+T )

+ (µn−1−U∨n−1)(U1+T −µST )

+U∨n−1(U1+T −µST ).
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In the rest of the proof, we make repeated use of (14.10) and (6.10). We have∑
0≤i≤n/2

‖µi(Un−i+T −µUn−i−1+T )‖∞

≤ ∑
0≤i≤n/2

‖µi‖1‖(Un−i −µUn−i−1)‖∞

≤ ∑
0≤i≤n/2

c(n− i − 1+ T )−(D+3)/2

≤ cn−(D+1)/2.

(17.8)

By the inductive hypothesis (17.4),∑
n/2<i≤n−2

‖(µi −U∨i )(Un−i+T −µUn−i−1+T )‖∞

≤ ∑
n/2<i≤n−2

‖(µi −U∨i )‖∞‖(Un−i+T −µUn−i−1+T )‖1

≤ ∑
n/2<i≤n−2

Ai−(D+γ )/2c(n− i − 1+ T )−3/2

≤ cA
1√
T
n−(D+γ )/2.

(17.9)

We have (arguing as in the proof of Lemma 11.3) that

‖µST − p
Hµ
T ‖1 ≤ c√

T
, T ≥ 1.

Also, by (6.10),

‖pHµ
T+1 − p

Hµ
T ‖1 ≤ c

T
, T ≥ 1.

Hence

‖(µn−1 −U∨n−1)(U1+T −µST )‖∞
≤ ‖µn−1 −U∨n−1‖∞‖U1+T −µST ‖1 ≤ cA

1√
T
n−(D+γ )/2.

(17.10)

To estimate the remaining term in (17.7), we observe that∑
n/2<i≤n−2

U∨i (Un−i+T −µUn−i−1+T )+U∨n−1(U1+T −µST )

= U∨[n/2]+1Un−[n/2]−1+T −U∨n−1µST

+ ∑
n/2<i≤n−2

(U∨i+1 −U∨i µ)Un−i−1+T .
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Now ∑
n/2<i≤n−2

‖(U∨i+1 −U∨i µ)Un−i−1+T ‖∞

≤ ∑
n/2<i≤n−2

‖U∨i+1 −U∨i µ‖∞‖Un−i−1+T ‖1

≤ ∑
n/2<i≤n−1

ci−(D+3)/2

≤ cn−(D+1)/2.

(17.11)

Also
U∨[n/2]+1Un−[n/2]−1+T −U∨n−1µST

= (
p
Hµ
[n/2]+1+W∨[n/2]+1

)(
p
Hµ
n−[n/2]−1+T +Wn−[n/2]−1+T

)
− (pHµ

n−1+W∨
n−1

)
µST

= U∨[n/2]+1Wn−[n/2]−1+T +W∨[n/2]+1Un−[n/2]−1+T

+W∨
n−1µST + p

Hµ
[n/2]+1p

Hµ
n−[n/2]−1+T − p

Hµ
n−1µST .

By (6.10), for all x, y ∈ �,∣∣∣∣∣pHµ
n+T (x, y)−

∑
z∈�

p
Hµ
[n/2]+1(x, z)p

Hµ
n−[n/2]−1+T (z, y)

∣∣∣∣∣≤ cn−(D+1)/2

and ∣∣∣∣∣pHµ
n+T (x, y)−

∑
z∈�

p
Hµ
n−1(x, z)(mST )(z, y)

∣∣∣∣∣≤ cn−(D+1)/2.

Hence ∥∥pHµ
[n/2]+1p

Hµ
n−[n/2]−1+T − p

Hµ
n−1µST

∥∥∞ ≤ cn−(D+1)/2.

It follows that
‖U∨[n/2]+1Un−[n/2]−1+T −U∨n−1µST ‖∞
≤ ‖U∨[n/2]+1‖1‖Wn−[n/2]−1+T ‖∞
+‖W∨[n/2]+1‖∞‖Un−[n/2]−1+T ‖1 + ‖W∨

n−1‖∞‖µST ‖1

+‖pHµ
[n/2]+1p

Hµ
n−[n/2]−1+T − p

Hµ
n−1µST ‖∞

≤ c(n− [n/2] − 1+ T )−(D+1)/2+ c([n/2] + 1)−(D+1)/2

+ c(n− 1)−(D+1)/2+ cn−(D+1)/2

≤ cn−(D+1)/2.

(17.12)
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Summing (17.8)–(17.12), we obtain (17.6) and the lemma follows.

18. The corrected monomials Qψ
Pi

. The goal of this section is to construct

the corrected monomials Qψ
Pi

appearing in Theorem 1.11.
Let the monomials Pi , i = 0,1,2, . . . , be as in Section 6.1 and let us associate

with these monomials and the sub-Laplacian LHµ polynomials QPi satisfying
(6.6).

Note that, by (6.5) and (6.6), we can associate with every polynomial P (t, x)
on R×N another polynomial Q(t, x) satisfying(

∂

∂t
+LHµ

)
Q(t, x)= P (t, x),

degH Q(t, x)= degH P (t, x)+ 2.

(18.1)

Then the corrected monomials Qψ
Pi

will be furnished by the following:

PROPOSITION 18.1. With every monomial QPi (t, g) with degH QPi = d , as
above, we can associate a polynomial

Q
ψ
Pi
(t, x)= Pi(t, x)+

∑
0≤j≤νd−1

ψi
j (x)Pj (t, x)(18.2)

satisfying (
∂

∂t
+LHµ

)
QPi =

(
∂1 + (I −µ)

)
Q
ψ
Pi

(18.3)

and where the functions ψi
j are of type P.

Before we continue with the proof of Proposition 18.1, let us observe that by
(14.10) we can take (1) for 1< i ≤ ν1 (note that ν1 = n1),

Q
ψ
Pi
= Pi +ψi(18.4)

and (2) for ν1 < i ≤ ν2,

Q
ψ
Pi
= Pi +

∑
1≤j≤n2

ψjXjPi +
∑

1≤N,j≤n1

ψNj (z)XNXjPi.(18.5)

PROOF OF PROPOSITION 18.1. By (18.4) and (18.5) we can assume that
k ≥ 3. Then as a first approximation to Qψ

Pi
we take

Q
ψ,1
Pi
=QPi +

∑
1≤j≤n2

ψjXjQPi +
∑

1≤N,j≤n1

ψNjXNXjQPi .
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By (14.10),

(
∂1+ (I −µ)

)
Q
ψ,1
Pi
=
(
∂

∂t
+LHµ

)
QPi +

∑
0≤j≤νd−3

f
i,1
j Pj ,(18.6)

where the functions f i,1
j are of type P.

Making use of (18.1), for every νd−4 < N≤ νd−3, we consider a polynomial RN

satisfying (
∂

∂t
+LHµ

)
RN =−PN,

degH QN = degH PN + 2= d − 1.

(18.7)

Arguing in the same way as for the definition of the correctors, we consider
functions φi,1µ which are of type P and which satisfy

(I −µ)φ
i,1
N =−f i,1

N + 〈f i,1
N 〉 and 〈φi,1N 〉 = 0.(18.8)

Let

R
f
N = 〈f i,1

N 〉
(
RN +

∑
1≤j≤n2

ψjXjRN +
∑

1≤λ,j≤n1

ψijXλXjRN

)
+ φ

i,1
N PN.

As a second approximation to Q
ψ
Pi

we consider the corrected polynomial

Q
ψ,2
Pi
=Q

ψ,1
Pi
+ ∑

νd−4<N≤νd−3

R
f
N .

This polynomial satisfies

(
∂1 + (I −µ)

)
Q
ψ,2
Pi
=
(
∂

∂t
+LHµ

)
QPi +

∑
0≤j≤nd−4

f
i,2
j Pj ,

where the functions f i,2
j are again of type P.

We repeat the same procedure another d − 2 times. The polynomial Qψ,k
Pi

that
we obtain in the end will satisfy (18.2) and (18.3). �

19. Harnack inequalities for higher order spatial differences. If � is not
nilpotent, then the analogue of (1.21) for higher order spatial differences is in
general false. To see this, let us assume for simplicity that there is a finite subgroup
M ≤ � such that � = �NM and � ∩ M = {e} (i.e., � is isomorphic to the
semidirect product �N �M) and let us consider the function

u= Pj +ψj ,

where k1 < j ≤ n1. This function grows linearly; that is, there is a c > 0 such that

sup{|u|;Ur} ≤ cr, r ≥ 1,
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and it satisfies (I − µ)u = 0. Also, ∂z∂wu = ∂z∂wψ
j for all z,w ∈ M . So, if

∂z∂wψ
j �= 0, then the inequality

sup{|∂z∂wu|;M} ≤ cr−2 sup{|u|;Ur)}, r ≥ 1,

is false.

20. Berry–Esseen estimates for the differences. The goal of this section is
to prove the Berry–Esseen estimates (1.28) and (1.30).

We use the notation of Section 17. We set

Wt(x, y)=
∑

1≤j≤n2

ψj(x)Xx
j p

Hµ
t (x, y)+ ∑

1≤i,j≤n1

ψij (x)Xx
i X

x
j p

Hµ
t (x, y)

and

Ut(x, y)= p
Hµ
t (x, y)+Wt(x, y).

Then, by (1.23),

‖µn −Un‖∞ ≤ cn−(D+1)/2.(20.1)

20.1. Proof of Theorem 1.21. It is enough to prove that there is a constant
c > 0 such that, for all z ∈U ,

‖∂zµn − ∂zUn‖∞ ≤ cn−(D+2)/2.(20.2)

We have

Un −µn = ∑
0≤i<[n/2]

µiUn−i −µi+1Un−i−1 +µ[n/2]Un−[n/2] −µn

= ∑
0≤i<[n/2]

µi(Un−i −µUn−i−1)+µ[n/2](Un−[n/2] −µn−[n/2])

Hence, by (14.10) and (6.10),

‖∂zµn− ∂zUn‖∞ ≤
∑

0≤i<[n/2]
‖∂zµi‖1‖Un−i −µUn−i−1‖∞

+‖∂zµ[n/2]‖1‖Un−[n/2] −µn−[n/2]‖∞
≤ ∑

0<i<[n/2]
ci−1/2(n− i − 1)−(D+3)/2+ cn−1/2n−(D+1)/2

≤ cn−(D+2)2,

which proves (20.2) and the theorem follows. �
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20.2. Proof of Theorem 1.22. It is enough to prove that there is a constant
c > 0 such that

‖∂1µ
n − ∂1Un‖∞ ≤ cn−(D+3)/2, n ∈N.(20.3)

We have

∂1Un− ∂1µ
n = ∑

0≤i<[n/2]
µi∂1Un−i −µi+1∂1Un−i−1

+µ[n/2]∂1Un−[n/2] − ∂1µ
[n/2]µn−[n/2]

= ∑
0≤i<[n/2]

µi(∂1Un−i −µ∂1Un−i−1)

+µ[n/2](∂1+ (I −µ)
)
Un−[n/2] −µ[n/2](I −µ)Un−[n/2]

− (∂1µ
[n/2])µn−[n/2]

= ∑
0≤i<[n/2]

µi
(
∂1+ (I −µ)

)
∂1Un−i−1

+µ[n/2](∂1+ (I −µ)
)
Un−[n/2] + ∂1µ

[n/2](Un−[n/2] −µn−[n/2]).
Hence, by (14.10) and (6.10),

‖∂1µ
n− ∂1Un‖∞ ≤

∑
0≤i<[n/2]

‖µi‖1
∥∥(∂1+ (I −µ)

)
∂1Un−i−1

∥∥∞
+‖µ[n/2]‖1

∥∥(∂1+ (I −µ)
)
Un−[n/2]

∥∥∞
+‖∂1µ

[n/2]‖1
∥∥Un−[n/2] −µn−[n/2]∥∥∞

≤ ∑
0≤i<[n/2]

c(n− i − 1)−(D+5)2

+ cn−(D+3)/2+ cn−1n−(D+1)/2

≤ cn−(D+3)/2,

which proves the theorem. �

21. Riesz transforms.

21.1. Proof of Theorem 1.25. The kernel Kk of the operator Rk is given by

Kk(x, y)=
∑
n≥0

an ∂z1 · · · ∂zkµn(x, y),

where the an’s are as in the series (1− t)−1/2 =∑
n≥0 ant

n.
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By (1.14) and (1.21), Kk(x, y) satisfies the standard estimates

|Kk(x, y)| ≤ c

|y−1x|D�N
(21.1)

and

∇x
UKk(x, y)+∇y

UKk(x, y)≤ c

|y−1x|D+1
�N

,(21.2)

where the superindices x and y denote differences with respect to the variables x
and y respectively.

So by the Calderon–Zygmund theory (cf. [17, 42]), to prove Theorem 1.25, it
is enough to prove that the operator Rk is bounded on L2. This can be done by an
almost orthogonality argument (cf. [43], Chapter 7).

Let us denote by Tj , j ∈N, the operators with kernel Kj given by

Kj(x, y)=
∑

2j−1≤n<2j
an ∂z1 · · · ∂zkµn.

Then Rk = ∂z1 · · · ∂zk +
∑

j≥1 Tj . Also the kernels Kj(x, y) satisfy∑
y∈�N

Kj(x, y)=
∑
x∈�N

Kj(x, y)= 0.(21.3)

Furthermore, there is a c > 0 such that, for all j ∈N,

‖Kj‖1 ≤
∑

2j−1≤n<2j
|an|‖∂z1 · · · ∂zkµn‖1 ≤ c

Hence,

sup
j∈N

‖Tj‖L2→L2 <∞.(21.4)

Finally, by a straightforward calculation we can see that there is a c > 0 such that,
for all j ∈N and x ∈ �N , ∑

x∈�N
|x|�N |Kj(x, y)| ≤ c2j/2,

∑
y∈�N

|y|�N |Kj(x, y)| ≤ c2j/2,

∑
y∈�N

|Kj(x, y)−Kj(e, y)| ≤ c2−j/2|x|�N ,∑
x∈�N

|Kj(x, e)−Kj(x, y)| ≤ c2−j/2|y|�N .

(21.5)

It follows from (21.3), (21.4) and (21.5) that there is a c > 0 such that

‖TiT ∗j ‖L2→L2 + ‖T ∗i Tj‖L2→L2 ≤ c2−|i−j |/2,

and from this we conclude that Rk is bounded on L2 (for details we refer the reader
to [43], pages 623–625).

The same arguments also apply to the operator R∗k . �
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21.2. Proof of Theorem 1.24. If � is not nilpotent, then the kernel Kz of the
Riesz transform Rz does not necessarily satisfy the estimate (21.2). So to prove
theorem 1.24 we use (1.22) and Theorem 1.25.

More precisely, let us consider the kernels

KHµ
z (x, y)=∑

n≥0

an ∂zp
Hµ
n (x, y), x, y ∈ �,

K
Hµ
j (x, y)=∑

n≥0

anXjp
Hµ
n (x, y), 1≤ j ≤ n1, x, y ∈ �,

and let us denote by RHϕ
z and RHµ

j respectively the associated operators.
Arguing as in the proof of Theorem 1.25 in the previous section, we can prove

that the operators RHµ
j are bounded on Lp(�), 1 < p <∞, and from L1(�) to

weak-L1(�).
Also, if x, y,h ∈ �N , 0≤ i, j, N≤ k and z= hgN, then

∂zp
Hµ
t (xgi, ygj )= p

Hµ
t (xgihgN, ygj )− p

Hµ
t (xgi, ygj )

= p
Hµ
t (x(gih)N, y)− p

Hµ
t (x, y)

= ∂(gih)Np
Hµ
t (x, y).

So, if w ∈N , then

∂w∂zp
Hµ
t (xgi, ygj )= ∂w∂(gih)Np

Hµ
t (x, y)

and hence there is a c > 0 such that, for all w ∈ V and t ≥ 1,

|∂wpHµ
t (xgi, ygj )| ≤ ct−(D+2)/2 exp

(
−|x

−1y|2�
ct

)
.

It follows that

|∂wKHµ
z (xgi, ygj )| ≤ c

|x−1y|D+1
�

.

So the operator RHµ
z is also bounded on Lp(�),1 < p <∞, and from L1(�) to

weak-L1(�).
Let us consider the kernel KHµ

z (x, y) that satisfies the estimate

Sz(x, y)=Kz(x, y)−KHµ
z (x, y)− ∑

1≤j≤n1

(∂zψ
j (x))K

Hµ
j (x, y), x, y ∈ �.

Then it follows from (1.31) that for all ε ∈ (0,1) there is a c > 0 such that

|S(x, y)| ≤ c

|x−1y|D+ε�

, x, y ∈G;
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that is, the kernel S(x, y) is integrable and hence the operator

S =Rz −RHϕ
z − ∑

1≤j≤n1

(∂zψ
j ) R

Hµ
j

is bounded on Lp(�), 1≤ p ≤∞.
Hence Rz is bounded on Lp,1 <p <∞, and from L1(�) to weak-L1(�).
The same arguments also apply to the operator R∗z . �
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