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GAUSSIAN MEASURES OF DILATATIONS OF CONVEX
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We prove that the inequality �−1�µ�tA�� ≥ t�−1�µ�A�� holds for any
centered Gaussian measure µ on a separable Banach space F, any con-
vex, closed, symmetric set A ⊂ F and t ≥ 1, where ��x� = γ1�−x� x� =
�2π�−1/2 ∫ x

−x exp�−y2/2�dy. As an application, the best constants in com-
parison of moments of Gaussian vectors are calculated.

1. Main theorem. The main theorem we will prove in this paper is the
following one previously known also as an S-conjecture.

Theorem 1. Let µ be a centered Gaussian measure on a separable Banach
space F. If A is a symmetric, convex, closed subset of F and P ⊂ F is a
symmetric strip, that is, P = �x ∈ F	 
x∗�x�
 ≤ 1
 for some x∗ ∈ F∗, such that
µ�A� = µ�P� then

µ�tA� ≥ µ�tP� for t ≥ 1

and

µ�tA� ≤ µ�tP� for 0 ≤ t ≤ 1�

The question comes from an unpublished manuscript of L. A. Shepp (1969);
later it was published by Szarek [6]. A simple approximation argument using
representation of Gausssian measures, presented in detail in [4], shows that
it is enough to prove Theorem 1 for F = Rn and µ = γn – canonical Gaussian
measure in Rn (that is, the measure with density �2π�−n/2 exp�−
x
2/2�). The
positive answer for n ≤ 3 was given by Sudakov and Zalgaller [5]. In the
special case of A in Rn symmetric with respect to each coordinate, Theorem 1
was proved by Kwapień and Sawa [4].

Before formulating the next results, which will lead to the proof of Theo-
rem 1, let us state a few definitions. We will always assume below that A is a
subset of Rn unless we state otherwise.

��x� = γ1�−∞� x� = 1√
2π

∫ x

−∞
exp�−y2/2�dy�

��x� = γ1�−x� x� = 1√
2π

∫ x

−x
exp�−y2/2�dy�
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Ah = �x ∈ Rn	 dist�x�A� ≤ h
–h-neighborhood of A�

γ+
n �A� = lim inf

h→0+
(
γn�Ah� − γn�A�)/h–Gaussian perimeter of A�

w�A� = sup�r	 B�0� r� ⊂ A
�
Let us note that for a symmetric strip P, w�P� is equal to half of the width of
P and for a symmetric convex set A,

w�A� = inf�w�P�	 A ⊂ P�P is a symmetric strip in Rn
�
Thus 2w�A� can be considered as the width of the set A.

Theorem 2. Suppose that γ2�A� = γ2�P� where P is a symmetric strip
with width 2p and A is a set in R2 symmetric about the y-axis, lying un-
der the graph of some symmetric, smooth, concave function f	 �−w�w� → R,
nonincreasing on �0�w� with limx→w− f�x� = −∞. Then

wγ+
2 �A� ≥ w�P�γ+

2 �P� =
√

2
π

p exp
(−p2

2

)
�

We postpone the proof of Theorem 2 till the end of the paper and now show
how it implies the main result and the following theorem.

Theorem 3. If γn�A� = γn�P� where P is a symmetric strip and A is a
convex symmetric set in Rn, then

w�A�γ+
n �A� ≥ w�P�γ+

n �P��

Proof. For n = 1 there is nothing to prove, so we will assume that n ≥ 2.
Let w = w�A�; without loss of generality we may then assume that

A ⊂ �x ∈ Rn	 
x1
 ≤ w
�
For x ∈ �−w�w� let

Ax = �y ∈ Rn−1	 �x�y� ∈ A

and

f�x� = �−1(γn−1�Ax�
)
�

Then by the convexity of A and Ehrhard’s inequality [1] f is concave; moreover,
it is symmetric and hence nonincreasing on �0�w�. Let us define

B = ��x�y� ∈ R2	 
x
 < w�y ≤ f�x�
�
thus we have γ2�B� = γn�A� = γn�P�. Let h > 0� x ∈ �−w−h�w+h� and y ∈
�Bh�x; then there exists a point �x′� y′� ∈ B such that 
x−x′
 = h1� 
y−y′
 = h2
and h2

1+h2
2 ≤ h2. Since �Ax′ �h2 ⊂ �Ah�x we get by the isoperimetric inequality

�−1(γn−1
(�Ah�x

)) ≥ �−1(γn−1
(�Ax′ �h2

))
≥ �−1(γn−1�Ax′ �)+ h2 ≥ y′ + h2 ≥ y�



1924 R. LATAŁA AND K. OLESZKIEWICZ

Taking the supremum over all y ∈ �Bh�x, we get that γ1��Bh�x� ≤ γn−1��Ah�x�
for any h > 0 and x ∈ �−w − h�w + h�. Thus γ2�Bh� ≤ γn�Ah� and γ+

2 �B� ≤
γ+
n �A�. Therefore it is enough to prove that

wγ+
2 �B� ≥ w�P�γ+

n �P��(1)

An easy approximation argument shows that we may assume that f is smooth
and limx→w− f�x� = −∞, so (1) follows by Theorem 2. ✷

Proof of Theorem 1. Let us define for any measurable set B in Rn,

γB�t� = γn�tB� for t > 0�

Taking derivatives of both sides of inequalities in Theorem 1 (for details
see [4]), one can see that it is enough to show that for any convex closed
symmetric set A in Rn we have

γ′
A�1� ≥ γ′

P�1��(2)

where P is a strip P = �
x1
 ≤ p
 such that γn�A� = γn�P�. Let w = w�A�, so
B�0�w� ⊂ A. Let us notice that for t > 1 if x ∈ A then B�t−1x� �t − 1�w/t� =
t−1x+ �1− t−1�B�0�w� ⊂ A so B�x� �t− 1�w� ⊂ tA, hence

A�t−1�w ⊂ tA�

Therefore

γ′
A�1� ≥ wγ+

n �A� = w�A�γ+
n �A��

Moreover, for the strip P,

γ′
P�1� =

√
2
π

p exp
(−p2

2

)
= w�P�γ+

n �P�

and (2) follows by Theorem 3. ✷

The following corollary is just a reformulation of Theorem 1. The second
part of it was proved in [2].

Corollary 1. If µ is a centered Gaussian measure on a separable Banach
space F and B is a convex, symmetric, closed subset of F, then

µ�rB� ≥ �

(
r

s
�−1�µ�sB��

)
for r ≥ s > 0�

In particular for each b < 1 there exists a constant Cb < ∞ depending only on
b such that if µ�B� ≤ b, then

µ�tB� ≤ Cbtµ�B� for t ∈ �0�1��

The next corollary can be considered as some kind of isoperimetric inequal-
ity for convex, symmetric sets.
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Corollary 2. For any convex, symmetric subset A of a symmetric strip P
in Rn and any h > 0, the following inequality holds:

�−1
(
γn�Ah�)

�−1
(
γn�A�) ≥ �−1

(
γn�Ph�)

�−1
(
γn�P�) �

Proof. Notice that w�Ah� = w�A� + h. Consider the function r�h� =
�−1�γn�Ah��/w�Ah�. From the definition of γ+

n we deduce that

lim inf
ε→0+

r�h+ ε� − r�h�
ε

= 1
w�Ah�2

(√
π

2
γ+
n �Ah�w�Ah� exp��−1�γn�Ah��2/2� −�−1�γn�Ah��

)
≥ 0�

by Theorem 3 applied to the set Ah.
The function r�h� is continuous, hence r�h� ≥ r�0� for any h > 0. Therefore,

�−1�γn�Ah�� = �w�Ah��r�h� ≥ �w�A� + h�r�0� = �−1�γn�A��
(
1+ h

w�A�
)

≥ �−1�γn�A��
(
1+ h

w�P�
)
= �−1�γn�A���

−1�γn�Ph��
�−1�γn�P�� �

which completes the proof. ✷

Finally, as a consequence of Theorem 1 let us state the following result
which gives the best constants in comparison of moments of Gaussian vectors.
The proof presented below is due to S. Szarek (private communication).

Corollary 3. If gi are independent standard normal r.v. and xi are vec-
tors in some separable Banach space �E� � · �� such that the series S = ∑

xigi

is a.s. convergent, then

�E�S�p�1/p ≤ γp

γq

�E�S�q�1/q for any p ≥ q > 0�(3)

where

γp = �E
g1
p�1/p =
√
2
(

1√
π

#

(
p+ 1

2

))1/p

�

Proof. Let a ∈ R be such that E�S�p = E
ag1
p. Then∫ ∞

0
tp−1P��S� > t�dt =

∫ ∞

0
tp−1P�
ag1
 > t�dt�

So for some t0 > 0 we have P��S� > t0� = P�
ag1
 > t0�. Applying Theorem 1
we easily obtain that P��S� > t� ≥ P�
ag1
 > t� for 0 ≤ t ≤ t0 and P��S� >
t� ≤ P�
ag1
 > t� for t ≥ t0. Therefore for t > 0 and p ≥ q > 0, we get(

t

t0

)p−1

�P��S� > t� −P�
ag1
 > t�� ≤
(

t

t0

)q−1

�P��S� > t� −P�
ag1
 > t���
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This gives ∫ ∞

0
tq−1P��S� > t�dt ≥

∫ ∞

0
tq−1P�
ag1
 > t�dt�

that is, E�S�q ≥ E
ag1
q and proves (3). ✷

Proof of Theorem 2. During this section we will frequently use the fol-
lowing functions

T�y� = 1−��y��
h�y� = 2πT�y�2 exp�y2��

Lemma 1. The function h�y� is decreasing for y ≥ 0.

Proof. We have to prove that T�y� exp�y2/2� is a decreasing function of
y on �0�∞�� To see this note that

d

dy

(
T�y� exp

(
y2

2

))
= 1√

2π

(
y exp

(
y2

2

) ∫ ∞

y
exp

(−s2

2

)
ds− 1

)

<
1√
2π

(
exp

(
y2

2

) ∫ ∞

y
s exp

(−s2

2

)
ds− 1

)
= 0� ✷

Lemma 2. The function g�y� = h�y�−1 − y2 is nondecreasing for y ≥ 0, in
particular,

h�y�−1 ≥ y2 + 1�5 for y > 1�5

and
√
2πT�y� ≥ 1√

y2 + 2
exp

(−y2

2

)
for y > 0�(4)

Proof. First let us notice that the function ϕ�y� = √
2πT�y�−exp�−y2/2�/√

y2 + 2 is decreasing on �0�∞�. Indeed,

�y2 + 2�3/2 exp
(
y2

2

)
ϕ′�y� = y3 + 3y− �y2 + 2�3/2

= 1
y3 + 3y+ �y2 + 2�3/2

(�y3 + 3y�2 − �y2 + 2�3)

= − 3y2 + 8
y3 + 3y+ �y2 + 2�3/2 < 0�

As limy−→∞ ϕ�y� = 0� we obtain the inequality (4). We have also

T�y� = 1√
2π

∫ ∞

y
exp

(−s2

2

)
ds ≤ 1√

2πy

∫ ∞

y
s exp

(−s2

2

)
ds

= 1√
2π

exp�−y2/2�
y

�

(5)
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By (4) and (5) we deduce that 0 ≤ g�y� ≤ 2 for y ≥ 0. Fix a ∈ �0�2�. We only
need to prove that if g�ya� ≥ a for some ya > 0 then also g�y� ≥ a for all y ≥
ya. Now, g�y� ≥ a is equivalent to T�y� ≤ 1/

√
2π �exp�−y2/2�/

√
y2 + a�. Let

us investigate behavior of the function ψa�y� = 1/
√
2π exp�−y2/2�/

√
y2 + a−

T�y�. We have

√
2π exp�y2/2��y2 + a�3/2ψ′

a�y� = �y2 + a�3/2 − y− y�y2 + a��

Hence ψ′
a�y� ≥ 0 if and only if �y2+a�3 ≥ �y3+�a+1�y�2, which is equivalent

to �2−a�y4+�1+2a−2a2�y2−a3 ≤ 0. The left-hand side of the last inequality
is a second-degree polynomial in y2 with nonnegative leading coefficient 2−a.
Moreover, for y = 0 the last inequality is obviously satisfied. Therefore there
exists a nonnegative number ma such that ψa is nondecreasing on the interval
�0�ma� and it is nonincreasing on the interval �ma�∞�. As limy−→∞ ψa�y� = 0,
this proves that ψa�ya� ≥ 0 implies ψa�y� ≥ 0 for all y ≥ ya, which completes
the proof, since h�1�5�−1 ≥ 1�52 + 1�5. ✷

Lemma 3. The function xT�x� exp�x2/2� is increasing on �0�∞�.

Proof. We have

(√
2πxT�x� exp�x2/2�)′ = �1+ x2�

√
2πT�x� exp�x2/2� − x�

so it is enough to show that
√

h�x� > x/�x2 + 1�. But by Lemma 2,

√
h�x� ≥ 1√

x2 + 2
>

x

x2 + 1
� ✷

Lemma 4. The function F�x� = h�x�−1 + 2 lnT�x� is nonincreasing on
�0�∞�.

Proof. First let us note that, due to a well-known Komatsu’s estimate
(see [3], page 17),

T�x� ≥ 1√
2π

2

x+√
x2 + 4

exp
(−x2

2

)
�

Hence
√

h�x� ≥ 2/�x+√
x2 + 4� and therefore

x
√

h�x� ≥ 2x

x+√
x2 + 4

= 1−
(

2

x+√
x2 + 4

)2

≥ 1− h�x��
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So,

F′�x� = − h′�x�
h�x�2 + 2

T′�x�
T�x�

= − 1
h�x�

(
2πT�x�2exp�x2�)′
2πT�x�2exp�x2� − 2 exp�−x2/2�√

2πT�x�

= − 2
h�x�

(
T′�x�
T�x� + x

)
− 2√

h�x� = 2
h�x�3/2

(
1− h�x� − x

√
h�x�

)
≤ 0

and the proof is complete. ✷

Lemma 5. For any real y we have �2�y�h�y� ≤ π/8.

Proof. Note that

8
π

��y�2h�y� exp�−y2�

= (
4��y�T�y�)2

= (
1− γ2

(�−
y
� 
y
� × �−
y
� 
y
�))2 ≤ (
1− γ2

(
B2�0� 
y
�

))2

=
(
1− 1

2π

∫ 
y


0
exp

(−r2

2

)
2πrdr

)2

=
(
exp

(−y2

2

))2

= exp�−y2�

and the proof is complete. ✷

Lemma 6. Let f be a nonincreasing integrable function on �0�∞� and
µ any finite positive measure on �0�∞�. Then for any 0 ≤ a1 < b1 ≤ ∞,
0 ≤ a2 < b2 ≤ ∞ such that a1 ≤ a2 and b1 ≤ b2 we have∫ b1

a1
f�x�dµ�x�
µ�a1� b1�

≥
∫ b2
a2

f�x�dµ�x�
µ�a2� b2�

�

The proof is obvious.

Lemma 7. For any 0 ≤ c1 < d1 ≤ ∞, 0 ≤ c2 < d2 ≤ ∞ such that c1 ≤ c2
and d1 ≤ d2 we have

��d1� −��c1�
exp�−c21/2� − exp�−d2

1/2�
≥ ��d2� −��c2�

exp�−c22/2� − exp�−d2
2/2�

�

Proof. Let us notice that

√
2π

(
��d� −��c�) = ∫ d2

c2

1
2
√

y
exp

(−y

2

)
dy

and we may apply Lemma 6 with f�y� = 1/
√

y. ✷
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Lemma 8. Suppose that s ≥ u > 0 and p > 0 satisfy the inequality

1−��u� ≤ 1−��p� + 1
2

(
1−��s�)�(6)

then

1
2 exp

(�u2 − s2�/2)+ exp
(�u2 − p2�/2) ≥ 1�(7)

Proof. If u ≥ p then (7) is obvious so we may assume that p > u. In-
equality (6) immediately implies that

��p� −��u�
1−��s� ≤ 1

2

and by Lemma 7,

��p� −��u�
1−��s� ≥ exp�−u2/2� − exp�−p2/2�

exp�−s2/2� �

From the above two inequalities, (7) immediately follows. ✷

Lemma 9. If c > 0 and p0 > 0 are such that exp�−cp0� ≤ 1 − p0 then
exp�−cp� ≤ 1− p for all p ∈ �0� p0�. In particular,

�1− p� exp�4p/π� ≥ 1 for all p ∈ �0�1/3�
and

�1− p� exp (
4p/�π − 4/9�) ≥ 1 for all p ∈ �0�1/2��

Proof. The function exp�−cp� − 1+ p is a convex function of p and that
implies first part. The last statements follow by the first one and inequalities
exp�4/3π� ≥ 3/2 and exp�2/�π − 4/9�� ≥ 2. ✷

Lemma 10. For any p ∈ �0�1/2� and z ≥ 0,

p exp�−πz2/16p2� + �1− p� ≥ exp�−z/2��

Proof. Using Taylor’s expansion, we have

p exp
(
z

2
− πz2

16p2

)
+ �1− p� exp

(
z

2

)

≥ p

(
1+ z

2
− π

16p2
z2
)
+ �1− p�

(
1+ z

2
+ z2

8

)

= 1+ z

2
− π + 2�p− 1�p

16p
z2�

so inequality is satisfied for z ≤ 8p/�π+2�p−1�p�. It is enough to show that

f�p� = �1− p� exp (
4p/�π + 2�p− 1�p�) ≥ 1�
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If p ≤ 1/3 then f�p� ≥ �1 − p� exp�4p/π� ≥ 1 by the previous lemma. If
p ∈ �1/3�1/2�, then �1− p�p ≥ 2/9, so again,

f�p� ≥ �1− p� exp (
4p/�π − 4/9�) ≥ 1� ✷

Lemma 11. If y ≤ 1�5 and z ≥ 0 or if 0 ≤ z ≤ y2 + 1�5, then

��y� exp (− h�y�z2/2
)+ 1−��y� ≥ exp�−z/2��(8)

Proof. If y ≤ 0 then the lemma follows by Lemmas 10 and 5. For y > 0,
put Ry�z� = exp�−z/2�−��y� exp�−h�y�z2/2� and M�y� = supz>1/h�y� Ry�z�.
First note that in view of Lemma 1, Ry�z� is a decreasing function of positive
argument y for any fixed z. As 1/h�y� is an increasing function for y > 0, we
see that supz>1/h�y� is taken over a decreasing set. Together these facts show
that M�y� is nonincreasing for y > 0. We have

∂

∂z
Ry�z� = R′

y�z� = −1
2

exp
(−z

2

)
+��y�h�y�z exp

(−h�y�z2

2

)
�

Therefore R′
y�0�<0 and R′

y�z�<0 for z large enough. Note that R′
y�1/h�y�� =

���y�−1/2� exp�−1/�2h�y��>0. As R′
y�z�=�0 if and only if ln�2��y�h�y�z� =

h�y�z2/2−z/2 we deduce that the function Ry has for each fixed y > 0 at most
two local extrema on �0�∞� because the left-hand side of the last equation
is concave and the right-hand side is convex. Summarizing these facts we
arrive at the conclusion that for each y > 0 there exist positive numbers
α�y� < β�y� such that the function Ry is decreasing on the interval �0� α�y��,
increasing on the interval �α�y�� β�y�� to which 1/h�y� belongs and again
decreasing on the interval �β�y��∞�� Therefore, to prove our main claim, that
is, that T�y� ≥ Ry�z� for any y ∈ �0�1�5�� z ≥ 0, it is enough to prove that
T�y� ≥ M�y�, as in the points z = 0 and z = 1/h�y� the claim is trivial.

Let us consider Table 1. In the kth row, T1 should be understood as T1�yk�;
one should understand the five next columns similarly.

Table 1

k yk T1 T2 �1 �2 h1 h2 zk Zk ak bk Mk

1 0.00 0.500 0.500 0.500 0.500 1.570 1.571 1.34 1.35 0.256 0.254 0.393
2 0.25 0.401 0.402 0.598 0.599 1.075 1.081 1.78 1.81 0.206 0.202 0.309
3 0.49 0.311 0.313 0.687 0.689 0.772 0.783 2.26 2.33 0.162 0.155 0.242
4 0.69 0.244 0.246 0.754 0.756 0.602 0.613 2.70 2.80 0.130 0.123 0.192
5 0.87 0.192 0.193 0.807 0.808 0.493 0.499 3.16 3.25 0.104 0.098 0.149
6 1.04 0.149 0.150 0.850 0.851 0.411 0.417 3.62 3.72 0.082 0.077 0.117
7 1.18 0.118 0.120 0.880 0.882 0.351 0.365 3.97 4.22 0.069 0.060 0.104
8 1.25 0.105 0.106 0.894 0.895 0.330 0.337 4.23 4.40 0.061 0.055 0.087
9 1.35 0.088 0.089 0.911 0.912 0.300 0.308 4.53 4.72 0.052 0.047 0.075
10 1.43 0.076 0.077 0.923 0.924 0.280 0.288 4.76 4.99 0.047 0.041 0.067
11 1.49 0.068 0.069 0.931 0.932 0.267 0.276 4.92 5.20 0.043 0.037 0.064
12 1.52 0.064
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We leave to the reader to check that for k = 1� � � � �11 the numbers in the
table satisfy the following inequalities:

T1�yk� ≤ T�yk� ≤ T2�yk�� �1�yk� ≤ ��yk� ≤ �2�yk��
h1�yk� ≤ 2πT1�yk�2 exp�y2

k� ≤ h�yk��
h2�yk� ≥ 2πT2�yk�2 exp�y2

k� ≥ h�yk��
zk ≤ Zk�

1
2 exp�−zk/2� ≤ ak�

1
2 exp�−Zk/2� ≥ bk�

�1�yk�h1�yk�zk exp
(− h2�yk�z2

k/2
) ≥ ak�

�2�yk�h2�yk�Zk exp
(− h1�yk�Z2

k/2
) ≤ bk

and

T1�yk+1� ≥ Mk ≥ exp�−zk/2� −�1�yk� exp
(− h2�yk�Z2

k/2
)
�

Note also that T1�y12� ≤ T�y12�.
Now we are in a position to prove our claim. For each y ∈ �0�1�5� we can

find k ∈ �1� � � � �11
 such that yk ≤ y ≤ yk+1� Note that

R′
yk
�zk� = − 1

2 exp�−zk/2� +��yk�h�yk�zk exp
(− h�yk�z2

k/2
)

≥ − 1
2 exp�−zk/2� +�1�yk�h1�yk�zk exp

(− h2�yk�z2
k/2

)
≥ −ak + ak = 0�

while

R′
yk
�Zk� = − 1

2 exp�−Zk/2� +��yk�h�yk�Zk exp
(− h�yk�Z2

k/2
)

≤ − 1
2 exp�−Zk/2� +�2�yk�h2�yk�Zk exp

(− h1�yk�Z2
k/2

)
≤ −bk + bk = 0�

which means that zk ≤ βk = β�yk� ≤ Zk� Therefore,

M�y� ≤ M�yk� = Ryk
�βk� = exp�−βk/2� −��yk� exp

(− h�yk�β2
k/2

)
≤ exp�−zk/2� −�1�yk� exp

(− h2�yk�Z2
k/2

) ≤ Mk

≤ T1�yk+1� ≤ T�yk+1� ≤ T�y��
which completes the proof in the case of y < 1�5. If y ≥ 1�5, notice that we
have already proved (8) for 0 ≤ z ≤ 1/h�y�. Thus Lemma 2 implies (8) for
0 ≤ z ≤ y2 + 1�5. ✷

Lemma 12. Let w ≥ a ≥ x ≥ 0 and y ∈ R satisfy the inequality

��y���w� + (
1−��y�)��x� ≥ ��a��(9)

Then if y ≤ 1�5 or a2 − x2 ≤ y2 + 1�5 we have

w
√
1+ k2 exp�−y2/2� ≥ √

2π�a2 − x2�(1−��y�)
+ kx exp�−y2/2� for any k ≥ 0�

(10)
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Proof. Dividing both sides of (10) by
√
1+ k2 and taking the supremum

over k, we have to prove that

w2 ≥ h�y�z2 + x2�

where z = a2 − x2. Suppose that this is not true, then by (9) we get that

��y��
(√

h�y�z2 + x2

)
+ (

1−��y�)��x� > ��a�

so

��y�
(
�

(√
h�y�z2 + x2

)
−��a�

)
>

(
1−��y�)(��a� −��x�)�(11)

Hence obviously h�y�z2 + x2 > a2. Let us notice that

√
2π

(
��a� −��x�) = ∫ a2

x2

1
2
√

y
exp�−y/2�dy

≥ 1
a

(
exp

(−x2

2

)
− exp

(−a2

2

))

= 1
a

exp�−x2/2�(1− exp�−z/2�)�

(12)

In a similar way we show that

√
2π

(
�

(√
h�y�z2 + x2

)
−��a�

)

≤ 1
a

exp
(−x2

2

)(
exp

(−z

2

)
− exp

(− h�y�z2/2
))

�

(13)

By (11), (12) and (13) we obtain

exp
(−z

2

)
> ��y� exp

(− h�y�z2/2
)+ 1−��y��

which contradicts Lemma 11. ✷

Lemma 13. If p > 0 and q satisfy the condition

1
2

(
1−��q�) = 1−��p�

then

4exp�q2 − p2�p2 − p2 ≤ ln 4�

Proof. Note that q < p� We will consider several cases
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Case 1. q2 > p2. Then −q > p and therefore 1−��q� = ��−q� ≥ ��p� =
1
2 + 1

2��q�� that is, q ≤ �−1�1/3� ≤ −0�4 and

1√
2π

p exp
(−p2

2

)
≤ ��p� − 1

2
= 1

2
��q��

So, by Lemma 1,

4p2 exp�q2 − p2� ≤ 2π��q�2 exp�q2� = h�−q� ≤ h�0�4�
= 2π��−0�4�2 exp�0�16� ≤ 0�876 < ln 4�

Case 2. q2 ≤ p2 and q ≤ 0. Then ��q� ≤ 1
2 � so that p ≤ �−1�0�75� ≤ 0�679

and

4p2 exp
(
q2 − p2)− p2 ≤ 3p2 < ln 4�

Case 3. q > 0. We will consider p as a function of q. Then we have

d

dq
�p2 − q2� = 2p

dp

dq
− 2q = p exp

(�p2 − q2�/2)− 2q�

However, by Lemma 3, q
√

h�q� < p
√

h�p� so

2q
p

<
2
√

h�p�√
h�q� = 2 exp

( �p2 − q2�
2

)
T�p�
T�q� = exp��p2 − q2�/2��

Thus p2 − q2 is an increasing function of q. Moreover, by Lemma 1, h�q� ≥
h�p�, hence expp2−q2 ≤ 4 and p2 − q2 ≤ ln 4. Let us consider Table 2.

One can easily check that for k = 1�2�3,

Tk ≥ T�qk� ≥ 2T�pk�
and

p2
k − q2

k ≤ dk ≤ (
2πT2

k+1 exp�q2
k+1�

)−1 − q2
k+1 ≤ h�qk+1�−1 − q2

k+1�

Suppose that q ∈ �qk� qk−1� for some k = 1� � � � �4, where additionally we put
q0 = ∞. Then by Lemma 2 and monotonicity of p2 − q2 we get for k = 2�3�4,

h�q�−1 − q2 ≥ h�qk�−1 − q2
k ≥ dk−1 ≥ p2

k−1 − q2
k−1 ≥ p2 − q2

Table 2

k qk Tk pk dk

1 1.20 0.1152 1.58 1.057
2 0.52 0.3016 1.04 0.812
3 0.20 0.4208 0.81 0.617
4 0.00 0.5000
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and for k = 1,

h�q�−1 − q2 ≥ h�q1�−1 − q2
1 ≥ �2πT2

1exp�q2
1��−1 − q2

1 ≥ ln 4 ≥ p2 − q2�

Hence

p2h�q� ≤ 1�

Moreover, by Lemma 4, F�q� ≥ F�p�, so
h�p�−1 − h�q�−1 ≤ 2 ln

(
T�q�/T�p�) = ln 4�

Finally, we get

4 exp�q2 − p2�p2 − p2 = p2
(

h�q�
h�p� − 1

)
= p2h�q�

(
1

h�p� −
1

h�q�
)
≤ 1 ln 4� ✷

Corollary 4. If w2 − p2 ≥ ln 4 then

wγ+
2 �A� ≥ pγ+

2 �P� =
√

2
π

p exp
(−p2

2

)
�

Proof. Suppose that γ2�A� = 2��p� − 1 = ��q�; then
1
2

(
1−��q�) = 1−��p�

and by isoperimetric inequality,

γ+
2 �A� ≥ 1√

2π
exp

(−q2

2

)
�

Hence if wγ+
2 �A� < pγ+

2 �P� then w < 2p exp��q2 − p2�/2� so by Lemma 13,

w2 − p2 < 4p2 exp�q2 − p2� − p2 ≤ ln 4

and we get a contradiction. ✷

Proof of Theorem 2. By Corollary 4 we may and will assume that

w2 − p2 < ln 4�(14)

Let us define for x ∈ �0�w�,
A�x� = {�x1� x2� ∈ �−w�w� ×R	 
x1
 < x or x2 ≤ f�x1�

}
�

γ�x� = γ2
(
A�x�)

and

d�x� = 1
2π

∫ w

x
exp

(−(
t2 + f2�t�)

2

)√
1+ (

f′�t�)2 dt�

Let a�x� and g�x� be given by

��a�x�� = γ�x�
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and

g�x� = 2πwd�x� +
√
2πx

(
1−��y�) exp�−x2/2� −

√
2πa exp�−a2/2��

where y = f�x�. Then A�0� = A, γ�0� = γ2�A�, 2d�0� = γ+
2 �A� and a�0� = p,

so in order to prove the theorem we have to show that g�0� ≥ 0. Since a�w� = w
and d�w� = 0 we have g�w� = 0, so it is enough to show that g is nonincreasing
on �0�w�.

Let us also notice that for y = f�x� and a = a�x� we have

��y���w� + (
1−��y�)��x� ≥ 1

2 + 1
2γ�x� = ��a��(15)

Moreover if k = −f′�x� then

d′�x� = −
√
1+ k2

2π
exp

(−�x2 + y2�
2

)
�

γ′�x� = 2
1−��y�√

2π
exp

(−x2

2

)
�

So since a′�x��′�a� = γ′�x�, we have

a′�x� = (
1−��y�) exp (�a2 − x2�/2)�

So we get that

exp�x2/2�g′�x� = √
2π�a2 − x2�(1−��y�)+ kx exp�−y2/2�

− √
1+ k2w exp�−y2/2��

Therefore by Lemma 12 the proof will be complete if we establish the following
claim. ✷

Claim. Under the above notation it is not possible that y = f�x� > 1�5,
a�x�2 > x2 + y2 + 1�5 and w2 − p2 < ln 4.

Proof of the claim. Suppose that it is possible, so for some 0 ≤ x < w,
we have y = f�x� > 1�5, a = a�x� >

√
x2 + y2 + 1�5 and w2 < p2 + ln 4. Let

the line l tangent to the set A in the point �x�y� intersect the y-axis at the
point �0� s�. Then since the set A is convex it is contained in the half-plane
below the line l. Therefore

γ2�D� +��u� ≥ 1
2 + 1

2γ2�A��
where D is a set of points which have negative first coordinate and lie above
the line l and u is a distance from the origin to l� As γ2�D� ≤ 1

2�1−��s�� and
γ2�A� = 2��p� − 1 we obtain

1−��u� ≤ 1−��p� + 1
2

(
1−��s�)�

So by Lemma 8,
1
2 exp

(�u2 − s2�/2)+ exp
(�u2 − p2�/2) ≥ 1�(16)
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In particular, since u2 ≤ s2 and u2 ≤ x2 + y2 we get that w2 ≤ p2 + ln 4 ≤
u2 + 2 ln 4 ≤ x2 + y2 + 2 ln 4. Let us notice that by (15),

(
1−��y�)(��a� −��x�) ≤ ��y�(��w� −��a�)�

Since a2 > x2 + y2 + 1�5 > x2 + 3�75, by Lemma 7, we obtain

��a�−��x� ≥ (
1−��x�)(1− exp

(�x2 −a2�/2)) ≥ (
1−��x�)�1− exp�−1�875���

Moreover (see the proof of Lemma 7),

��w� −��a� ≤ 1√
2πa

(
exp

(−a2

2

)
− exp

(−w2

2

))

and by Lemma 2,

1−��y� ≥ 1√
2π�y2 + 2� exp

(−y2

2

)
�

Hence

(
1−��x�) exp

(
x2

2

)

≤ (
1− exp�−1�875�)−1

√
y2 + 2
a

×
(
exp

(
x2 + y2 − a2

2

)
− exp

(
x2 + y2 −w2

2

))
�

(17)

Suppose first that x ≤ 0�8; then by Lemma 1,
(
1−��x�) exp�x2/2� ≥ (

1−��0�8�) exp�0�32� ≥ 0�29�

On the other hand, since
√

y2 + 2/a ≤ √�y2 + 2�/�y2 + 1�5� ≤ √
4�25/3�75 we

get by (17) that

(
1−��x�) exp

(
x2

2

)
≤ (

1− exp�−1�875�)−1
√

4�25
3�75

(
exp�−0�75� − 1

4

)
≤ 0�28�

This contradiction shows that x > 0�8 and then a ≥
√

x2 + y2 + 1�5 ≥
√

y2 + 2.
Thus by (17),

(
1−��x�) exp

(
x2

2

)

≤ (
1− exp�−1�875�)−1

×
(
exp

(�x2 + y2 − a2�/2)− exp
(�x2 + y2 −w2�/2)

)
�

(18)
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Table 3

k dk xk Tk ck

1 1.50 3.23 0.0005 0.092
2 1.85 2.29 0.0109 0.149
3 2.12 1.80 0.0358 0.180
4 2.27 1.53 0.0629 0.202
5 2.39 1.31 0.0950 0.224
6 2.52 1.05 0.1468 0.254
7 2.71 0.51

Let us consider Table 3. The reader may check that the numbers in the
table satisfy the following inequalities for k = 1� � � � �6:

Tk ≤ 1−��xk�� ck < Tk exp�x2
k/2�

ck >
(
1− exp�−1�875�)−1( exp�−0�75� − exp�−dk+1/2�

)
and

xk ≥
√
2 ln 4− dk +

√
−2 ln

(
2− 4 exp�−dk/2�

)
�

The last inequality holds also for k = 7. Suppose that

w2 − x2 − y2 ∈ �dk�dk+1� for some k = 1�2� � � � �7�

where we additionally define d8 = ∞. Then

x2 + y2 − u2 = x2 + y2 −w2 +w2 − u2 ≤ −dk + 2 ln 4

and

u2 − p2 ≤ x2 + y2 − p2 ≤ x2 + y2 −w2 + ln 4 ≤ ln 4− dk�

Thus by (16) we get

s2 − u2 ≤ −2 ln
(
2− 2 exp

(�u2 − p2�/2)
)
≤ −2 ln

(
2− 4 exp�−dk/2�

)
�

Consider the triangle ABC with A = �0�0�, B = �x�y� and C = �0� s�; then
by the Pythagoras theorem,

x ≤ 
BC
 ≤
√

AC
2 − u2 +

√

AB
2 − u2

≤
√
−2 ln

(
2− 4 exp�−dk/2�

)+√
2 ln 4− dk ≤ xk�

Hence if k = 7, x < 0�8 which contradicts our previous assumption. For k < 7
we have by Lemma 1,

(
1−��x�) exp�x2/2� ≥ (

1−��xk�
)
exp�x2

k/2� > ck
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and
(
1− exp�−1�875�)−1

(
exp

(�x2 + y2 − a2�/2)− exp
(�x2 + y2 −w2�/2)

)

≤ (
1− exp�−1�875�)−1( exp�−0�75� − exp�−dk+1/2�

)
< ck�

The above inequalities contradict (18) and the proof is now complete. ✷
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