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INDISTINGUISHABILITY OF PERCOLATION CLUSTERS

BY RUSSELL LYONS1 AND ODED SCHRAMM2

Indiana University and Weizmann Institute of Science

We show that when percolation produces infinitely many infinite
clusters on a Cayley graph, one cannot distinguish the clusters from each
other by any invariantly defined property. This implies that uniqueness

Žof the infinite cluster is equivalent to nondecay of connectivity a.k.a.
.long-range order . We then derive applications concerning uniqueness in

Kazhdan groups and in wreath products and inequalities for p .u

Ž .1. Introduction. Grimmett and Newman 1990 showed that if T is a
Ž .regular tree of sufficiently high degree, then there are p � 0, 1 such that

Ž .Bernoulli p percolation on T � � has infinitely many infinite components
Ž .a.s. Benjamini and Schramm 1996 conjectured that the same is true for any

ŽCayley graph of any finitely generated nonamenable group. A finitely gener-
� � � �ated group � is nonamenable iff its Cayley graph satisfies inf � K � K � 0,K

where K runs over the finite nonempty vertex sets. See Section 2 for all other
.definitions. This conjecture has been verified for planar Cayley graphs of

Ž .high genus by Lalley 1998 and for all planar lattices in the hyperbolic plane
Ž .by Benjamini and Schramm 1998 .

The present paper is concerned with the percolation phase where there are
multiple infinite clusters. We show that under quite general assumptions, the
infinite clusters are indistinguishable from each other by any invariantly
defined property.

ŽLet G be a Cayley graph of a finitely generated group more generally, G
.can be a transitive unimodular graph .

THEOREM 1.1. Consider Bernoulli bond percolation on G with some sur-
Ž .vival parameter p � 0, 1 , and let AA be a Borel measurable set of subgraphs

of G. Assume that AA is invariant under the automorphism group of G. Then
either a.s. all infinite percolation components are in AA, or a.s. they are all
outside of AA.

For example, AA might be the collection of all transient subgraphs of G, or
the collection of all subgraphs that have a given asymptotic rate of growth or
the collection of all subgraphs that have no vertex of degree 5.
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If AA is the collection of all transient subgraphs of G, then this shows that
Žalmost surely, either all infinite clusters of � are transient meaning that

.simple random walk on them is transient , or all clusters are recurrent. In
fact, as shown in Proposition 3.11, if G is nonamenable, then a.s. all infinite
clusters are transient if Bernoulli percolation produces more than one infinite

Ž .component. In Benjamini, Lyons and Schramm 1999 , it is shown that the
same is true if Bernoulli percolation produces a single infinite component.

Theorem 1.1 is a particular case of Theorem 3.3 below, which applies also
to some non-Bernoulli percolation processes and to more general AA.

A collection of subgraphs AA in G is increasing if whenever H � AA and
Ž .H � H� � G, we have H� � AA. Haggstrom and Peres 1999 have proved that¨ ¨

for increasing AA, Theorem 1.1 holds, except possibly for a single value of
Ž .p � 0, 1 . They have also proved the following theorem.

Ž . Ž .THEOREM 1.2 Uniqueness monotonicity . Let p � p and P i � 1, 2 be1 2 i
Ž .the corresponding Bernoulli p bond percolation processes on G. If there is ai

unique infinite cluster P -a.s., then there is a unique infinite cluster P -a.s.1 2
Furthermore, in the standard coupling of Bernoulli percolation processes, if
there exists an infinite cluster P -a.s., then a.s. every infinite p -cluster1 2
contains an infinite p -cluster.1

Ž .Here, we refer to the standard coupling of Bernoulli p percolation for all
� �p, where each edge e � E is assigned an independent uniform 0, 1 random

Ž . Ž . Ž .variable U e and the edges where U e � p are retained for Bernoulli p
percolation.

The first part of this theorem partially answers a question of Benjamini
Ž .and Schramm 1996 ; the full answer, removing the assumption of unimodu-

Ž .larity, has been provided by Schonmann 1999a . It follows from Theorem 1.2
Ž .that the set of p such that Bernoulli p bond percolation on G has more than

one infinite cluster a.s. is an interval, called the nonuniqueness phase. It is
well known that in the nonuniqueness phase, the number of infinite clusters

� Ž .�is a.s. infinite see Newman and Schulman 1981 . The interval of p such
Ž .that Bernoulli p percolation on G produces a single infinite cluster a.s. is

called the uniqueness phase. The infimum of the p in the uniqueness phase is
Ž .denoted p � p G .u u

To illustrate the usefulness of Theorem 1.1, we now show that it implies
Theorem 1.2.

PROOF OF THEOREM 1.2. Suppose that there exists an infinite cluster
P -a.s. Let � be the open subgraph of the P process and let � be an1 2

Ž .independent Bernoulli p �p percolation process. Thus, � � � has the law1 2
Ž .of P and, in fact, � � �, � has the same law as the standard coupling of P1 1

and P . By assumption, � � � has an infinite cluster a.s. Thus, for some2
cluster C of �, we have C � � is infinite with positive probability, hence, by
Kolmogorov’s 0�1 law, with probability 1. By Theorem 1.1, this holds for
every infinite cluster C of �. �
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Our main application of Theorem 1.1 is to prove in Section 4 a sufficient
Ž .condition for having a unique infinite cluster. Define � x, y to be the

probability that x and y are in the same cluster. The process is said to
exhibit connectivity decay if

inf � x , y : x , y � V � 0.� 4Ž .
When a process does not have connectivity decay, it is said to exhibit

Žlong-range order. We show that for Bernoulli percolation and some other
.percolation processes , nonuniqueness of the infinite cluster is equivalent to

connectivity decay. One direction is easy; namely, if a.s. there is a unique
infinite percolation cluster, then there is long-range order. This is an immedi-

Žate consequence of Harris’s inequality that increasing events are positively
.correlated . Although the other direction seems intuitively obvious as well, its

Žproof is surprisingly difficult and it is still open for nonunimodular transitive
.graphs .

We note that connectivity decay in the nonuniqueness phase easily implies
Ž .Theorem 3.2 of Schonmann 1999a for the case of unimodular transitive

Žgraphs. Our result also deals with percolation at p and extends Schon-u
mann’s theorem to more general percolation processes, but his result extends

.to Bernoulli percolation on nonunimodular transitive graphs.

REMARK 1.3. Fix a base vertex o � V in G, and consider Bernoulli perco-
� Ž . 4lation in the nonuniqueness phase. Although inf � o, v : v � V � 0, it may

happen that
lim sup � o , v : dist o , v � d � 0.� 4Ž . Ž .
d��

For example, take the Cayley graph of the free product �2 �� with the usual2
generating set, that is, the Cayley graph corresponding to the presentation
² 	1:a, b, c 
 ab � ba, c � c . We have p � 1, because the removal of any edgeu
of the Cayley graph corresponding to the generator c disconnects the graph.

Ž 2 .On the other hand, for p � p � , we have that all pairs of vertices in thec
2 Ž 	1same � fiber i.e., pairs g, h such that g h is in the group generated by a

.and b are in the same cluster with probability bounded away from 0.

Ž .Benjamini and Schramm 1996 asked for which Cayley graphs G one has
Ž . Ž .p G � 1. It is easy to show that p G � 1 when G has more than one end.u u

Ž . Ž .Babson and Benjamini 1999 showed that p G � 1 when G is a finitelyu
Ž .presented group with one end. Haggstrom, Peres and Schonmann 1999 have¨ ¨

Ž .shown that p G � 1 if G is a Cartesian product of infinite transitiveu
graphs. Here, we show that this is also true of certain other classes of groups

Ž .with one end, namely infinite Kazhdan groups Corollary 6.6 and wreath
Ž . Ž .products Corollary 6.8 . Presumably, all quasi-transitive infinite graphs

with one end have p � 1.u
As another consequence of indistinguishability, we prove in Theorem 6.12

Ž . Ž . Ž . Žthe inequalities p G � H� � p G � H and, in particular, p G � p G �u u u u
. Ž .H , for Cayley graphs or, more generally, unimodular transitive graphs

G, H�, H such that G is infinite and H� � H.
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Several other uses of cluster indistinguishability appear in Benjamini,
Ž .Lyons, and Schramm 1999 .

Crucial techniques for our proofs are the mass-transport principle and
stationarity of delayed simple random walk, both explained below. These

Ž .techniques were introduced in the study of percolation by Haggstrom 1997 .¨ ¨
In Section 5, we prove an ergodicity property for delayed random walk.

2. Background. We begin with some graph-theoretic terminology. Let
Ž Ž . Ž .. Ž . Ž .G � V G , E G be a graph with vertex set V G and symmetric edge set

Ž . Ž . Ž .E G � V G � V G . When there is an edge in G joining vertices u, v, we say
that u and v are adjacent and write u � v. We always assume that the
number of vertices adjacent to any given vertex is finite. The degree deg v �

Ž .deg v of a vertex v � V G is the number of edges incident with it. A tree isG
a connected graph with no cycles. A forest is a graph whose connected

Ž .components are trees. The distance between two vertices u, v � V G is
Ž . Ž .denoted by dist v, u � dist v, u and is the least number of edges of a pathG

Ž .in G connecting v and u. Given a set of vertices K � V G , we let �K denote
Ž .its edge boundary, that is, the set of edges in E G having one vertex in K

� � � �and one outside of K. A transitive graph G is amenable if inf �K � K � 0,
Ž .where K runs over all finite nonempty vertex sets K � V G .

Ž .An infinite set of vertices V � V G is end convergent if for every finite0
Ž .K � V G , there is a component of G 	 K that contains all but finitely many

vertices of V . Two end-convergent sets V , V are equivalent if V  V is0 0 1 0 1
end convergent. An end of G is an equivalence class of end-convergent sets.
Let 	 be an end of G. A neighborhood of 	 is a set of vertices in G that

Ž .intersects every end-convergent set in 	 . In particular, when K � V G is
finite, there is a component of G 	 K that is a neighborhood of 	 .

Let � be a finitely generated group and S a finite symmetric generating
Ž . Ž .set for �. Then the right Cayley graph G � G �, S is the graph with

Ž . Ž . �� � 4vertices V G � � and edges E G � v, vs : v � �, s � S .
Ž Ž . Ž ..Now suppose that G � V G , E G is any graph, not necessarily a Cayley

Ž .graph. An automorphism of G is a bijection of V G with itself that preserves
Ž .adjacency; Aut G denotes the group of all automorphisms of G with the

Ž . Ž .topology of pointwise convergence. If � � Aut G , we say that � is vertex
Ž .transitive if for every u, v � V G , there is a 
 � � with 
 u � v. The graph G

Ž .is transitive if Aut G is transitive. The graph G is quasi-transitive if
Ž . Ž .V G �Aut G is finite; that is, there is a finite set of vertices V such that0
Ž . � Ž . 4V G � 
 v: 
 � Aut G , v � V . Note that any finitely generated group acts0

transitively on any of its Cayley graphs by the automorphisms 
 : v � 
 v.
It may seem that the most natural class of graphs on which percolation

Ž .should be studied is the class of transitive or quasi-transitive locally finite
graphs. At first sight, one might suspect that any theorem about percolation
on Cayley graphs should hold for transitive graphs. However, somewhat
surprisingly, this impression is not correct. It turns out that theorems about
percolation on Cayley graphs ‘‘always’’ generalize to unimodular transitive
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Ž .graphs to be defined shortly , but nonunimodular transitive graphs are quite
different.

Ž . ŽRecall that on every closed subgroup � � Aut G , there is a unique up to a
.constant scaling factor Borel measure that, for every 
 � �, is invariant

Ž .under left multiplication by 
 ; this measure is called left Haar measure.
The group � is unimodular if Haar measure is also invariant under right

Ž .multiplication. For example, when � is finitely generated and G is the right
Ž .Cayley graph of �, on which � acts by left multiplication, then � � Aut G is

Ž .obviously closed, unimodular and transitive. The Haar measure in this case
Ž . � �is a constant times counting measure. A quasi- transitive graph G is said to

Ž .be unimodular if Aut G is unimodular. By Benjamini, Lyons, Peres and
Ž . � Ž .�Schramm 1999 hereinafter referred to as BLPS 1999 , a transitive graph

is unimodular iff there is some unimodular transitive closed subgroup of
Ž . Ž .Aut G . It is not hard to show that a transitive closed subgroup � � Aut G is

Ž .unimodular iff for all x, y � V G , we have

z � V G : � 
 � � 
 x � x and 
 y � z� 4Ž .
� z � V G : � 
 � � 
 y � y and 
 x � z� 4Ž .

� Ž .�see Trofimov 1985 .
Here, unimodularity will be used only in the following form.

Ž .THEOREM 2.1 Unimodular mass-transport principle . Let G be a graph
Ž .with a transitive unimodular closed automorphism group � � Aut G . Let

Ž . Ž . Ž . � �o � V G be an arbitrary base point. Suppose that �: V G � V G � 0, � is
invariant under the diagonal action of �. Then

2.1 � o , v � � v , o .Ž . Ž . Ž .Ý Ý
Ž . Ž .v�V G v�V G

Ž .See BLPS 1999 for a discussion of this principle and for a proof. In fact, �
Ž . Ž .is unimodular iff 2.1 holds for every such �. Also see BLPS 1999 for

further discussion of the relevance of unimodularity to percolation.
Given a set A, let 2 A be the collection of all subsets � � A, equipped with

� 4the -field generated by the events a � � , where a � A. A bond percolation
Ž . Eprocess is a pair P, � , where � is a random element in 2 and P denotes the

Ž .distribution law of �. Sometimes, for brevity, we shall just say that � is a
Ž . Ž .bond percolation. A site percolation process P, � is given by a probability

VŽG . Ž .measure P on 2 , while a mixed percolation is given by a probability
measure on 2VŽG . EŽG . that is supported on subgraphs of G. If � is a bond

Ž .percolation process, then � � V G  � is the associated mixed percolation.ˆ
In this case, we shall often not distinguish between � and �, and think of �ˆ
as a subgraph of G. Similarly, if � is a site percolation, there is an associated

Ž Ž . Ž ..mixed percolation � � �  E G � � � � , and we shall often not botherˆ
to distinguish between � and �.ˆ
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Ž . Ž . Ž .If v � V G and � is a percolation on G, the cluster or component C v of
Ž .v in � is the set of vertices in V G that can be connected to v by paths

Ž .contained in �. We shall often not distinguish between the cluster C v and
Ž Ž . Ž Ž . Ž .. . Ž .the graph C v , C v � C v � � whose vertices are C v and whose edges

Ž .are the edges in � with endpoints in C v .
� � Ž . Ž .Let p � 0, 1 . Then Bernoulli p bond percolation P , � on G is thep

EŽG . � � Ž .product measure on 2 that satisfies P e � � � p for all e � E G . Simi-p
Ž . VŽG .larly, one defines Bernoulli p site percolation on 2 . The critical probabil-

Ž . � �ity p G is the infimum over all p � 0, 1 such that there is P -positivec p
probability for the existence of an infinite connected component in �.

Ž . Ž .Aizenman, Kesten and Newman 1987 showed that Bernoulli p percola-
d Ž .tion in � has a.s. at most one infinite cluster. Burton and Keane 1989 gave

a much simpler argument that generalizes from �d to any amenable Cayley
graph, though this generalization was not mentioned explicitly until Gan-

Ž . Ž . Ž .dolfi, Keane and Newman 1992 . It follows that p G � p G when G is anu c
amenable Cayley graph. For background on percolation, especially in �d, see

Ž .Grimmett 1989 .
Suppose that � is an automorphism group of a graph G. A percolation

Ž .process P, � on G is �-invariant if P is invariant under each 
 � �. This is,
of course, the case for Bernoulli percolation.

3. Cluster indistinguishability.

Ž .DEFINITION 3.1. Let G be graph and � a closed vertex- transitive sub-
Ž . Ž .group of Aut G . Let P, � be a �-invariant bond percolation process on G.

We say that P has indistinguishable infinite clusters if for every measurable
AA � 2VŽG . � 2EŽG . that is invariant under the diagonal action of �, almost

Ž .surely, for all infinite clusters C of �, we have C, � � AA, or for all infinite
Ž .clusters C, we have C, � � AA.

Ž Ž . Ž ..DEFINITION 3.2. Let G � V G , E G be a graph. Given a set A �
EŽG . Ž . � 4 EŽG .2 and an edge e � E G , denote � A � A  e . For AA � 2 , we writee

� 4 Ž .� AA � � A: A � AA . A bond percolation process P, � on G is insertione e
� � Ž . EŽG .tolerant if P � AA � 0 for every e � E G and every measurable AA � 2e

� �satisfying P AA � 0.
Ž .For example, Bernoulli p bond percolation is insertion tolerant when

Ž �p � 0, 1 .
� � Ž .A percolation � is deletion tolerant if P � AA � 0 whenever e � E G� e

� � � 4and P AA � 0, where � � � � 	 e . It turns out that deletion tolerance� e
and insertion tolerance have very different implications. For indistinguisha-
bility of infinite clusters, we shall need insertion tolerance; deletion tolerance

Ždoes not imply indistinguishability of infinite clusters see Example 3.15
.below . A percolation that is both insertion and deletion tolerant is usually

Ž .said to have ‘‘finite energy.’’ Gandolfi, Keane and Newman 1992 use the
words ‘‘positive finite energy’’ in place of ‘‘insertion tolerance.’’
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Ž .THEOREM 3.3 Cluster indistinguishability . Let G be a graph with a
Ž .transitive unimodular closed automorphism group � � Aut G . Every �-in-

variant, insertion-tolerant, bond percolation process on G has indistinguish-
able infinite clusters.

Similar statements hold for site and mixed percolations and the proofs go
along the same lines. Likewise, the proof extends to quasi-transitive unimod-
ular automorphism groups.

Initially, we could only establish the theorem under the assumption of
� � � �strong insertion-tolerance; that is, P � AA � � P AA for some constant � � 0.e

We are grateful to Olle Haggstrom for pointing out how to deal with the¨ ¨
general case.

Ž .REMARK 3.4 Scenery . For some purposes, the following more general
form of this theorem is useful. Let G be a graph and � a transitive group
acting on G. Suppose that X is either V, E, or V  E. Let Q be a measurable
space and � � 2E � Q X. A probability measure P on � will be called a bond
percolation with scenery on G. The projection onto 2E is the underlying

X Ž .percolation and the projection onto Q is the scenery. If �, q � �, we set
Ž . Ž .� �, q � � �, q . We say that the percolation with scenery P ise e

� �insertion-tolerant if, as before, P � BB � 0 for every measurable BB � � ofe
positive measure. We say that P has indistinguishable infinite clusters if for
every AA � 2V � 2E � Q X that is invariant under the diagonal action of �, for

Ž . Ž .P-a.e. �, q , either all infinite clusters C of � satisfy C, �, q � AA or they
Ž .all satisfy C, �, q � AA. Theorem 3.3 holds also for percolation with scenery

Ž .with the same proof as given below .
A percolation with scenery that comes up naturally is as follows. Fix

Ž . Ž .p � p in 0, 1 . Let z e � E be i.i.d. with each z distributed according to1 2 e e
� �uniform measure on 0, 1 . Let � be the set of e � E with z � p , j � 1, 2.j e j

Ž . EThen � , � is an insertion-tolerant percolation with scenery, where � � 22 1 1
Ž .is considered the scenery. See Haggstrom and Peres 1999 , Haggstrom, Peres¨ ¨ ¨ ¨

Ž . Ž . Ž .and Schonmann 1999 , Schonmann 1999a and Alexander 1995 for exam-
ples where this process is studied.

Ž .Say that an infinite cluster C is of type AA if C, � � AA; otherwise, say that
it is of type � AA. Suppose that there is an infinite cluster C of � and an edge

� 4e � E with e � � such that the connected component C� of �  e that
contains C has a type different from the type of C. Then e is called pivotal

Ž .for C, � .
We begin with an outline of the proof of Theorem 3.3. Assume that the

theorem fails. First, we shall show that with positive probability, given that a
vertex belongs to an infinite cluster, there are pivotal edges at some distance
r of the vertex. By Proposition 3.11, a.s. when there is more than one infinite
cluster of �, each such cluster is transient for the simple random walk, and

Ž .hence for the so-called delayed simple random walk DSRW . The DSRW on a
Ž .cluster of � is stationary in the sense of Lemma 3.13 . Fix a base point

Ž .o � V, and let W be the DSRW on the �-cluster of o with W 0 � o. Let n be
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Ž .large, and let e be a uniform random edge at distance r from W n . When
DSRW is transient, with probability bounded away from zero, e is pivotal for
Ž Ž . . Ž .C o , � and W j is not an endpoint of e for any time j � n. On this event,
set �� � � �. Then �� is, up to a controllable factor, as likely as � bye
insertion tolerance. By transience, e is far from o with high probability. Since

Ž .e is pivotal, the type of C o is different in � and in ��. Since � and �� are
Ž .the same in a large neighborhood of o, this shows that the type of C o

cannot be determined with arbitrary accuracy by looking at � in a large
neighborhood of o. This contradicts the measurability of AA and establishes
the theorem.

One can say that the proof is based on the contradictory prevalence of
pivotal edges. To put the situation in the correct perspective, we point out
that there are events depending on i.i.d. zero�one variables that have in-
finitely many ‘‘pivotals’’ with positive probability. For example, let m , m , . . .1 2
be a sequence of positive integers such that Ý 2	m k � � but Ý m 2	m k � �,k k k

² � 4: � �and let x : j � 1, . . . , m be i.i.d. random variables with P x � 0 �k , j k k , j
� �P x � 1 � 1�2. Let XX be the event that there is a k such that x � 1 fork , j k , j

j � 1, 2, . . . , m . Then with positive probability XX has infinitely many piv-k
Ž .otals; that is, there are infinitely many k, j such that changing x from 0k , j

�to 1 will change from � XX to XX . This is a minor variation on an example
Ž . �described by Haggstrom and Peres private communication .¨ ¨

We now prove the lemmas necessary for Theorem 3.3.

Ž . Ž .LEMMA 3.5 Pivotals . Suppose that P, � is an insertion-tolerant percola-
tion process on a graph G, and let AA � 2VŽG . � 2EŽG . be measurable. Assume
that there is positive probability for coexistence of infinite clusters in AA and
� AA. Then with positive probability, there is an infinite cluster C of the
percolation that has a pivotal edge.

PROOF. Let k be the least integer such that there is positive probability
that there are infinite clusters of different types with distance between them
equal to k. Clearly, k � 0. Suppose that 
 is a path of length k such that
with positive probability, 
 connects infinite clusters of different types; let GG

be the event that 
 connects infinite clusters of different types. Given GG,
there are exactly two infinite clusters that intersect 
 , by the minimality of k.
Let e be the first edge in 
 . When � � GG, let C and C be the two infinite1 2
clusters that 
 connects and let C� and C� be the infinite clusters of � �1 2 e
that contain C and C , respectively. Note that, conditioned on GG, the1 2

� � Ž � �distance between C and C is less than k. The possibility that C � C is1 2 1 2
.allowed. Since � GG has positive probability, the definition of k ensures thate

Ž � . Ž � .the type of C , � � equals the type of C , � � a.s. Hence, e is pivotal for1 e 2 e
Ž . Ž .C , � or for C , � whenever � � GG. This proves the lemma. �1 2

LEMMA 3.6. Let � be a transitive closed subgroup of the automorphism
Ž .group of a graph G. If P, � is a �-invariant insertion-tolerant percolation

process on an infinite graph G, then almost every ergodic component of � is
insertion tolerant.
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REMARK 3.7. A stronger and more general statement is Lemma 1 of
Ž .Gandolfi, Keane and Newman 1992 .

PROOF OF LEMMA 3.6. This is the same as saying that for every �-in-
� �variant event GG of positive probability, the probability measure P �
 GG is

insertion tolerant. If GG is a tail event, then � GG � GG, and insertion tolerancee
� �of P �
 GG follows from the calculation

� � � �P � AA � GG P � AA � � GG P � AA � GGŽ .e e e e� �P � AA 
 GG � � � .e � � � � � �P GG P GG P GG

Ž .But every �-invariant event is a tail event mod 0 : Write E as an increasing
union of finite subsets E . Let GG be events that do not depend on edges in En n n

� �and such that Ý P GG � GG � �; such events exist because P and GG aren n
Ž Ž . Ž . .�-invariant. Here HH � KK � HH � KK  KK � HH is the exclusive or. Then

Ž .lim sup GG is a tail event and equals GG mod 0 . �n n

COROLLARY 3.8. Let � be a transitive closed subgroup of the automor-
phism group of a graph G. Consider a �-invariant insertion-tolerant percola-

Ž .tion process P, � on G. Then almost surely, the number of infinite clusters of
� is 0, 1 or �.

The proof is standard for the ergodic components; compare Newman and
Ž .Schulman 1981 .

Ž .Benjamini and Schramm 1996 conjectured that for Bernoulli percolation
on any quasi-transitive graph, if there are infinitely many infinite clusters,
then a.s. every infinite cluster has continuum many ends. This was proved by

Ž .Haggstrom and Peres 1999 in the unimodular case and then by Haggstrom,¨ ¨ ¨ ¨
Ž .Peres and Schonmann 1999 in general. For the unimodular case, we give a

simpler proof that extends to insertion-tolerant percolation processes. We
begin with the following proposition.

PROPOSITION 3.9. Let G be a graph with a transitive unimodular closed
Ž .automorphism group � � Aut G . Consider some �-invariant percolation pro-

Ž .cess P, � on G. Then a.s. each infinite cluster that has at least three ends
has no isolated ends.

ˆPROOF. For each n � 1, 2, . . . , let A be the union of all vertex sets An
Ž .that are contained in some percolation cluster K A , have diameter at most n

Ž .in the metric of the percolation cluster and such that K A 	 A has at least
three infinite components. Note that if 	 is an isolated end of a percolation
cluster K, then for each finite n, some neighborhood of 	 in K is disjoint

ˆfrom A . Also observe that if K is a cluster with at least three ends, then Kn
ˆintersects A for some n.n

Fix some n � 1. Consider the mass transport that sends one unit of mass
ˆfrom each vertex v in a percolation cluster that intersects A and distributesn

ˆit equally among the vertices in A that are closest to v in the metric of then
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Ž .percolation cluster of v. In other words, let K v be the set of vertices in
ˆŽ . Ž .C v � A , that are closest to v in the metric of �, and set F v, w; � �n

� Ž . �	1 Ž . Ž . Ž .K v if w � K v and otherwise F v, w; � � 0. Then F v, w; � , and
Ž . Ž .hence the expected mass f v, w � EF v, w; � transported from v to w, is

invariant under the diagonal � action. If 	 is an isolated end of an infinite
ˆcluster K that intersects A , then there is a finite set of vertices B that getsn

the mass from all the vertices in a neighborhood of 	 . But the mass-transport
principle tells us that the expected mass transported to a vertex is finite.

ˆHence, a.s. clusters that intersect A do not have isolated ends. Since thisn
holds for all n, we gather that a.s. infinite clusters with isolated ends do not

ˆintersect � A , whence they have at most two ends. �n n

PROPOSITION 3.10. Let G be a graph with a transitive unimodular closed
Ž . Ž .automorphism group � � Aut G . If P, � is a �-invariant insertion-tolerant

percolation process on G with infinitely many infinite clusters a.s., then a.s.
every infinite cluster has continuum many ends and no isolated end.

Ž .PROOF. As Benjamini and Schramm 1996 noted, it suffices to prove that
there are no isolated ends of clusters. To prove this in turn, observe that if
some cluster has an isolated end, then because of insertion tolerance, with
positive probability, some cluster will have at least three ends with one of
them being isolated. Hence Proposition 3.10 follows from Proposition 3.9. �

Ž .PROPOSITION 3.11 Transience . Let G be a graph with a transitive uni-
Ž . Ž .modular closed automorphism group � � Aut G . Suppose that P, � is a

�-invariant insertion-tolerant percolation process on G that has almost surely
infinitely many infinite clusters. Then a.s. each infinite cluster is transient.

PROOF. By Proposition 3.10, every infinite cluster of � has infinitely
many ends. Consequently, there is a random forest � � � whose distribution
is �-invariant such that a.s. each infinite cluster C of � contains a tree of �

� Ž .�with more than two ends Lemma 7.4 of BLPS 1999 . From Remark 7.3 of
Ž . Ž .BLPS 1999 , we know that any such tree has p � 1. By Lyons 1990 , itc

follows that such a tree is transient. The Rayleigh monotonicity principle
� Ž .�e.g., Lyons and Peres 1998 then implies that C is transient. �

REMARK 3.12. Examples show that Proposition 3.11 does not hold when �
is not unimodular. However, we believe that when � is not unimodular and P
is Bernoulli percolation, it does still hold.

Ž . ELet P, � be a bond percolation process on G, and let � � 2 . Let
Ž .x � V G be some base point. It will be useful to consider delayed simple

� Ž .random walk on � starting at x, W � W , defined as follows. Set W 0 � x.x
² Ž . Ž .: Ž .If n � 0, conditioned on W 0 , . . . , W n and �, let W � n � 1 be chosen
Ž . Ž .from the neighbors of W n in G with equal probability. Set W n � 1 �
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Ž . � Ž . Ž .�W � n � 1 if the edge W n , W � n � 1 belongs to �; otherwise, let
Ž . Ž .W n � 1 � W n .
Given �, let W and W * be two independent delayed simple random walks

Ž . Ž . Ž . Ž .starting at x. Set w n � W n for n � 0 and w n � W * 	n for n � 0.
ˆThen w is called two-sided delayed simple random walk. Let P denotex

Ž . � Ethe law of the pair w, � ; it is a probability measure on V � 2 . Define SS :
V� � V� by

SS w n � w n � 1 ,Ž . Ž . Ž .
and let

SS w , � � SS w , � � w , � � V� � 2E .Ž . Ž . Ž .
For 
 � �, we set


 w , � � 
 w , 
� ,Ž . Ž .
Ž .Ž . Ž Ž ..where 
 w n � 
 w n .

Ž .The following lemma generalizes similar lemmas in Haggstrom 1997 , in¨ ¨
Ž . Ž .Haggstrom and Peres 1999 and in Lyons and Peres 1998 .¨ ¨

Ž .LEMMA 3.13 Stationarity of delayed random walk . Let G be a graph with
Ž . Ž .a transitive unimodular closed automorphism group � � Aut G . Let o � V G

Ž .be some base point. Let P, � be a �-invariant bond percolation process on G.
ˆLet P be the joint law of � and two-sided delayed simple random walk on �,o

ˆ ˆ � E� � � �as defined above. Then P AA � P SS AA for every�-invariant AA � V � 2 . Ino o
ˆother words, the restriction of P to the �-invariant -field is SS-stationary.o

The lemma will follow from two identities. The first is based on the fact
that the transition operator for delayed simple random walk on � is symmet-
ric, and the second is based on the mass-transport principle, that is, on
unimodularity.

PROOF OF LEMMA 3.13. For j � � and x � V, set

WW j � w , � � V� � 2E : w j � x� 4Ž . Ž .x

and
ˆ� � P .Ý x

x�V

Let BB � V� � 2E be measurable. Observe that for all � � 2E,

� � � �3.1 � BB 
 � � � SS BB 
 � ,Ž .
ˆ� � � �where � BB 
 � means Ý P BB 
 � . This follows from the fact that forx � V x

any j, k � � with j � 0 � k and any v , v , . . . , v � V, we havej j�1 k

k	1
j j�1 k� WW � WW � ��� � WW 
 � � a ,Łv v v ij j�1 k

i�j

Ž .	1 Ž .	1 � � Ž Ž .where a � deg v � deg o if v , v � �, a � deg o 	i G i G i i�1 i G
Ž .. Ž . Ž .deg v �deg o if v � v and a � 0 otherwise. By integrating 3.1 over� i G i i�1 i
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�, we obtain
� � � �3.2 � BB � � SS BB ,Ž .

which is our first identity. Observe also that � is �-invariant.
Now let AA � V� � 2E be �-invariant and measurable. For x, y � V, define

	1 0� x , y � � AA � WW � WW .Ž . x y

Then � is invariant under the diagonal action of � on V � V, because � and
AA are �-invariant. Consequently, the mass-transport principle gives

Ž . Ž .Ý � x, o � Ý � o, x , which translates to our second identity,x � V x � V

0 	13.3 � AA � WW � � AA � WW .Ž . o o

0 ˆ � E� � � �Observe that � CC � WW � P CC for all measurable CC � V � 2 . Byo o
Ž . 0 Ž .using 3.2 with BB � AA � WW and then using 3.3 with SS AA in place of AA, weo

obtain finally
0 0ˆ � �P AA � � AA � WW � � SS AA � WWŽ .o o o

	1 0 ˆ � �� � SS AA � WW � � SS AA � WW � P SS AA . �o o o

In Theorem 5.1 below, we show that in an appropriate sense, if � is
ergodic and has indistinguishable components, then the delayed simple ran-
dom walk on the infinite components of � is ergodic.

Ž .REMARK 3.14 A generalization of Lemma 3.13 . Let V be a countable set
acted on by a transitive unimodular group �. Let Q be a measurable space,
let � � QV�V, and let P be a �-invariant probability measure on �. Suppose

� � Ž Ž .. Ž Ž ..that z: Q � 0, 1 is measurable, and that z 	 x, y � z 	 y, x and
Ž Ž ..Ý z 	 x, v � 1 for all x, y � V and for P-a.e. 	 . Given o � V and a.e. 	 � �,v

there is an associated random walk starting at o with transition probabilities
ˆŽ . Ž Ž ..p x, y � z 	 x, y . Let P denote the joint distribution of 	 and this	 o

ˆrandom walk. Then the above proof shows that the restriction of P to theo
�-invariant -field is SS-invariant.

Ž .See Lyons and Schramm 1999 for a still greater generalization.

Ž .Let P, � be a bond percolation process on an infinite graph G. For every
Ž . � 4e � E G , let FF be the -field generated by the events e� � � with e� 	 e.� e
Ž . � �Set Z e � P e � � 
 FF , and call this the conditional marginal of e. Note� e

Ž . Ž .that insertion tolerance is equivalent to Z e � 0 a.s. for every e � E G .

Ž .PROOF OF THEOREM 3.3. Let P, � be insertion tolerant and �-invariant.
Let o � V be some fixed base point of G. Assume that the theorem is false.
Then by Corollary 3.8, there is positive probability that � has infinitely many
infinite clusters. If we condition on this event, then � is still insertion
tolerant, as shown in Lemma 3.6. Consequently, we henceforth assume, with
no loss of generality, that a.s. � has infinitely many infinite clusters.

Fix � � 0. From Lemma 3.5, we know that there is a positive probability
for pivotal edges of clusters of type AA, or there is a positive probability for
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pivotal edges of clusters of type � AA. Since we may replace AA by its comple-
ment, assume, with no loss of generality, that there is a positive probability
for pivotal edges of clusters of type AA. Fix some r � 0 and � � 0 such that

Ž .with positive probability, C o is infinite of type AA and there is an edge e at
Ž Ž . . Ž .distance r from o that is pivotal for C o , � and satisfies Z e � � , where

Ž .Z e is the conditional marginal of e, as described above.
Ž . Ž Ž . . �Let AA be the event that C o is infinite and C o , � � AA, and let AA beo o

� � �an event that depends on only finitely many edges such that P AA � AA � � .o o
� Ž .Let R be large enough that AA depends only on edges in the ball B o, R .o

Let W: � � V be two-sided delayed simple random walk on �, with
Ž .W 0 � o. For n � �, let e � E be an edge chosen uniformly among the edgesn

ˆŽ .at distance r from W n . Write P for the probability measure where we
² :choose � according to P, choose W, and choose e : n � � as indicated.n

Given any e � E, let PP be the event that � � AA , that e is pivotal fore o
Ž . Ž . n Ž .C o , and that Z e � � . Let EE be the event that e � e and W j is not ane n

endpoint of e whenever 	� � j � n. Note that for all � � 2E, n � �, and
e � E,

n nˆ ˆP EE 
 � � � � P EE 
 � � � � .e e e

E � � � Ž . �Thus, for all measurable BB � 2 with P BB � 0 and P Z e � � 
 BB � 1, we
have

n n nˆ ˆ ˆ� � � �P EE � � BB � P EE 
 � BB P � BB � P EE 
 BB P � BBe e e e e e e

� �P � BBe n nˆ ˆ� P EE � BB � � P EE � BB .e e� �P BB

In particular,
� � �n n nˆ ˆ ˆ3.4 P EE � � AA � � PP � � P EE � AA � PP � � P EE � AA � PP .Ž . e e o e e e o e e o en

Let

EE n � EE n ,� e
e�E

EE n � EE n ,�R e
Ž .e�E	B o , R

and note that these are disjoint unions. Since � PP � � AA and since � AA
� �e e o e o

� Ž . Ž . Ž .AA when e � B o, R , we may sum 3.4 over all e � B o, R to obtain thato

� � �n nˆ ˆ� �P AA � � AA � P EE � A � � AA � � P EE � AA � PPo o R o o R o en3.5Ž .
nˆ� � P EE � AA � PP 	 �� .R o en

Ž .Fix n to be sufficiently large that the probability that C o is infinite and
Ž .e � B o, R is smaller than � ; this can be done by Proposition 3.11. Thenn

ˆ n n� � Ž .P AA � EE 	 EE � � . Hence, we have from 3.5 thato R

� � nˆ� � � �3.6 � � P AA � AA � P AA � � AA � � P EE � AA � PP 	 2�� .Ž . o o o o o en
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ˆ � �Recall that P AA � PP � 0. Moreover, conditioned on AA � PP , transienceo e o e0 0
Ž .guarantees a.s. a least m � � such that W m is at distance r to e .0

Consequently, for some m � 0,

mˆ3.7 P EE � AA � PP � 0.Ž . o em

Ž . Ž .Let BB be the event that Z e � � , that e is not an endpoint of W j form m m
Ž Ž ..j � m, that C W m is infinite and of type AA, and that e is pivotal form

Ž Ž .. mC W m . Then BB � EE � AA � PP . But BB is �-invariant. Therefore,m o e mm
Ž .Lemma 3.13 shows that the left-hand side of 3.7 does not depend on m, and

it certainly does not depend on � . Hence, when we take � to be a sufficiently
Ž .small positive number, 3.6 gives a contradiction. This completes the proof of

the theorem. �

EXAMPLE 3.15. A deletion-tolerant process that does not have indistin-
guishable clusters is obtained as follows. Let X be a 3-regular tree and

Ž . Ž Ž . . Ž .p � 1�2, 1 . Let p� � 1� 2 p , 1 . Begin with Bernoulli p percolation on X.
Independently for each cluster C, with probability 1�2, intersect it with an

Ž .independent Bernoulli p� percolation. The resulting percolation process is
Ž . Ž .clearly deletion tolerant, yet some infinite clusters � have p � � 1� 2 p ,c

Ž . Ž .while others have p � � 1� 2 pp� .c

REMARK 3.16. Let T be the 3-regular tree, let � be the subgroup of
Ž .automorphisms of T that fixes an end 	 of T and let P be Bernoulli p bond

Ž .percolation on T, where p � 1�2, 1 . Then a.s. each infinite cluster C has a
unique vertex v ‘‘closest’’ to 	 . The degree of v in the percolation configura-C C
tion distinguishes among the infinite clusters. Hence, Theorem 3.3 does not
hold without the assumption that � is unimodular. By a simple modification,
a similar example can be constructed where � is the full automorphism group

� Ž .�of a graph on which the percolation is performed compare BLPS 1999 .
Ž .However, Haggstrom, Peres and Schonmann 1999 have recently shown¨ ¨

that even without the unimodularity assumption, when p � p so-calledc
‘‘robust’’ properties do not distinguish between the infinite clusters of

Ž .Bernoulli p percolation.

QUESTION 3.17. In the case that � is nonunimodular, write � for thex
Haar measure of the stabilizer of x � V. The infinite clusters C divide into
two types: the heavy clusters for which Ý � � � and the others, the lightx � C x
clusters. It can be that the light clusters are distinguishable: for example,
consider a 3-regular tree T with a fixed end 	 . Let � be the group of

Ž .automorphisms of T that fix 	 . Then Bernoulli 2�3 percolation has infinitely
many light clusters, which can be distinguished by the degree of the vertex
they contain that is closest to 	 . But is it the case that heavy clusters are
indistinguishable for every insertion-tolerant percolation process that is in-
variant with respect to a transitive automorphism group?
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4. Uniqueness and connectivity. Our goal is to prove the following
theorem.

Ž .THEOREM 4.1 Uniqueness and connectivity . Let G be an infinite graph
Ž .with a transitive unimodular closed automorphism group � � Aut G . Let P

be a �-invariant and ergodic insertion-tolerant percolation process on G. If P
has more than one infinite component a.s., then connectivity decays,

inf � x , y : x , y � V � 0.� 4Ž .

Ž .The intuitive idea behind our proof is that if inf � x, y � 0, then each
infinite cluster has a positive ‘‘density.’’ Since the densities are the same by
cluster indistinguishability, there are only finitely many infinite clusters. By
Corollary 3.8, there is only one. To make the idea of ‘‘density’’ precise, we use
simple random walk X on the whole of G with the percolation subgraph as
the scenery, counting how many times we visit each cluster.

For a set C � V, write
n1

� C � lim 1 ,Ž . Ý �X Žk .� C4nn�� k�1

where the limit exists, for the frequency of visits to C by the simple random
walk on G.

Ž .LEMMA 4.2 Cluster frequencies . Let G be a graph with a transitive
Ž .unimodular closed automorphism group � � Aut G . There is a �-invariant

V � �measurable function freq: 2 � 0, 1 with the following property. Sup-
ˆŽ .pose that P, � is a �-invariant bond percolation process on G, and let P �

P � P , where P is the law of simple random walk on G starting at the baseo o
ˆ Ž . Ž .point o. Then P-a.s. � C � freq C for every cluster C.

PROOF. Given a set C � V and m, n � �, m � n, let
n	11

n� C � 1 .Ž . Ým �X Žk .� C4n 	 m k�m

� �For every � � 0, 1 , let

ZZ � C � V: lim � n C � � P -a.s. ,Ž .½ 5� 0 o
n��

Ž .and set ZZ � � ZZ . Define freq C � � when C � ZZ . If C � ZZ, put� ��0, 1� � �

Ž .freq C � 0, say. It is easy to verify that freq is measurable. Let 
 � �. To
Ž . Ž .prove that a.s. freq C � freq 
 C , note that there is an m � � such that

Ž . � �with positive probability X m � 
 o. Hence for every measurable A � 0, 1
Ž . Ž .such that � C � A with positive probability, we have � 
 C � A with

positive probability. This implies that freq is �-invariant.
It remains to prove that P-a.s., every component of � is in ZZ. First observe

ˆthat the restriction of P to the �-invariant -field is SS-invariant. This can be
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� 4verified directly, but is also a special case of Remark 3.14: take Q � 	1, 0, 1 ,
Ž . � �take the value in Q associated to a pair x, y � V � V to be 1 if x, y � �, 0

� � � � Ž . Ž . Ž .if x, y � E 	 � and 	1 if x, y � E and take z 0 � z 1 � 1�deg o andG
Ž .z 	1 � 0.

The following argument is modeled on the proof of Theorem 1 of Burton
Ž . nŽ .and Keane 1989 . Let F j be the number of times that the j most

� � � �frequently visited clusters in 0, n 	 1 are visited in 0, n 	 1 . That is,

F n j � n max � n C � ��� �� n C : C , . . . , C are distinct clusters .Ž . Ž .� 4Ž .0 1 0 j 1 j

nŽ .For each fixed j, it is easy to see that F j is a subadditive sequence, that is,
n�kŽ . nŽ . n kŽ . nŽ .F j � F j � SS F j . Note that the random variables F j are in-

variant with respect to the diagonal action of � on V� � 2E. By the subaddi-
nŽ . Ž . nŽ .tive ergodic theorem, lim F j �n exists a.s. Set � j � lim F j �n 	n n

nŽ .lim F j 	 1 �n for j � 1. We claim that a.s.,n

� m k �4.1 lim max � C 	 � C : k , m � �, k , m � n , C is a cluster � 0Ž . Ž . Ž .� 40 0
n��

Ž .the Cauchy property uniform in C. Indeed, let � � 0. Observe that Ý � j � 1j
Ž . Ž . Ž .and that � 1 � � 2 � ��� . Let j � 1 be large enough that � j � ��9 for1

all j � j . Let m be sufficiently large that1 1

� m m �F j �m 	 F j 	 1 �m 	 � j � �� 9 j � 9Ž . Ž . Ž . Ž .1

for all j � j and all m � m . Set1 1

� �� � � �U � x � 0, 1 : � j � j x 	 � j � �� 9 j � 9  0, ��3 ,� 4Ž . Ž .1 1

Ž .and let U � denote the set of points x � � within distance � of U. For all
clusters C that are visited by the random walk and all m � 1, 2, . . . , there is

mŽ . mŽ . mŽ .some j such that � C � F j �m 	 F j 	 1 �m. If j � j and m � m ,0 1 1
mŽ .it follows that � C � U. The same also holds when j � j and m � m ,0 1 1

� �because the j th most frequently visited cluster in 0, m 	 1 , say C�, satis-1
mŽ . mŽ . Ž . mŽ .fies � C � � C� � � j � ��9 � ��3. Hence � C � U for all clusters0 0 1 0

mŽ . m� 1Ž .C and all m � m . Because 	1�m � � C 	 � C � 1�m, it follows1 0 0
� mŽ . 4that for all C and all n � m , the set � C : m � n is contained in some1 0

Ž . � Ž . 4connected component of U 1�n . But when n � max m , 9 j � 1 �� , the1 1
Ž .total length of U 1�n is less than � , which implies that the diameter of each

Ž .connected component is less than � . This verifies 4.1 .
Since

� 2 n n �2 max � C 	 � C : C is a clusterŽ . Ž .� 40 0

� 2 n n �� max � C 	 � C : C is a clusterŽ . Ž .� 4n 0

� � nŽ . 0 Ž . � 4 Žhas the same law as max � C 	 � C : C is a cluster by the SS-invari-0 	n
. Ž . nŽ .ance noted above , it follows from 4.1 that a.s. lim � C �n�� 0

0 Ž . nŽ .lim � C for every cluster C. When the cluster C is fixed, � C andn�� 	n 0
0 Ž . Ž . Ž .� C are independent, but both tend to � C . Hence � C is an a.s.	n

constant, which means that P-a.s. we have C � ZZ for every cluster C. This
completes the proof. �

PROOF OF THEOREM 4.1. Let freq be as in Lemma 4.2. Since P is ergodic,
� � Ž .Theorem 3.3 implies that there is a constant c � 0, 1 such that a.s. freq C



INDISTINGUISHABLE PERCOLATION CLUSTERS 1825

� c for every infinite cluster C. Suppose that there is more than one infinite
cluster with positive probability. Then there are infinitely many infinite

Ž . Ž .clusters a.s. Since clearly Ý � C � Ý freq C � 1, where the sum is over allC C
clusters, it follows that c � 0. Since G is infinite, it is also immediate that

Ž� 4. Ž .freq v � 0 for every v � V. Therefore, freq C � 0 a.s. for all clusters, finite
Ž Ž .. Ž .or infinite. In particular, freq C o � 0 a.s., where C o is the cluster of o.

� Ž . 4Let � � inf � x, y : x, y � V . We have that0

nE � C o � � ,Ž .Ž .0 0

� Ž Ž ..� � Ž Ž ..�whence 0 � E freq C o � E � C o � � by the bounded convergence0
theorem, as required. �

Ž . n	1 � Ž Ž ..�QUESTION 4.3. The proof actually shows that 1�n Ý E � o, X k � 0k�0
as n � � when there are infinitely many infinite clusters in an invariant
percolation process that has indistinguishable clusters. Do we have
Ž Ž ..� o, X n � 0 a.s.?

EXAMPLE 4.4. We give an example of an ergodic invariant deletion-tolerant
percolation process with infinitely many infinite clusters and with � bounded

3 � Ž . 4below. The percolation process � will take place on � . Let a n : n � � be
� 4 � Ž . �independent 0, 1 -valued random variables with P a n � 1 � 1�2, and let

Ž . 3 Ž .A be the set of vertices x , x , x � � with a x � 1. Let � � 0 be small,1 2 3 1
� � 3and let z be i.i.d. uniformly distributed in 0, 1 indexed by the edges of �e

Ž .and independent of the a n ’s. Let � be the set of edges e with both1
endpoints in A such that z � 1 	 � , and let � be the set of edges e withe 2
z � � . Let � be the set of edges that have no vertex in common with �  Ae 3 2
and satisfy z � 1 	 � . Set � � �  �  � .e 1 2 3

It is immediate to verify that when � is sufficiently small, a.s. � has a
single infinite component whose intersection with each component of A is
infinite, and has a single infinite component in each component of the
complement of A. The claimed properties of this example follow easily.

5. Ergodicity of delayed random walk. The following theorem is not
needed for the rest of the paper. It is presented here because its proof uses
some of the ideas from the proof of Lemma 4.2.

Ž .THEOREM 5.1 Ergodicity of delayed random walk . Let G be a graph with
Ž . Ž .a transitive unimodular closed automorphism group � � Aut G . Let o � V G

Ž .be some base point. Let P, � be a �-invariant ergodic bond percolation
process on G with infinite clusters a.s. Also suppose that � has indistinguish-

ˆable infinite clusters a.s. Let P be the joint law of � and two-sided delayedo
simple random walk on �, starting at o. Let AA be an event that is �-invariant

ˆ � Ž . �and SS-invariant. Then P AA 
 C o is infinite is either 0 or 1.o

PROOF. For each m, n � �, let FF n be the -field of �-invariant setsm
² Ž . � �: Ž .generated by � and the random variables W j : j � m, n , where W j is

the location of the delayed random walk at time j.
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Ž .Let CC be the event that C o is infinite. Let � � 0. Then there is an n � �
n ˆ � � � �and an event AA� � FF such that P AA�� AA � � P CC , and therefore	n o

ˆ � �5.1 P AA�� AA 
 CC � � .Ž . o

Note that SS CC � CC. Hence we have for all m � �,

ˆ m� �P SS AA�� AA 
 CC � � .o

Observe also that the two events SS n�1AA� and SS	n	1AA� are independent
given � by the Markov property for the delayed random walk. Consequently,

2 n�1 	n	1ˆ ˆ ˆ� � � � � � � � � �P AA 
 � dP � � P SS AA� 
 � P SS AA� 
 � dP � 	 2�H Ho o o
��CC ��CC

ˆ n�1 	n	1� � � �� P SS AA�, SS AA� 
 � dP � 	 2�H o
��CC

ˆ � � � �� P AA 
 � dP � 	 4� .H o
��CC

Since � is arbitrary, it follows that

2ˆ ˆ� � � � � � � �P AA 
 � dP � � P AA 
 � dP � ,H Ho o
CC CC

ˆ � �which means that P AA 
 � is 0 or 1 for almost every � � CC.o
ˆ � �Let BB be the set of � � CC such that P AA 
 � � 1 and leto

B̂B � C o , � : � � BB .� 4Ž .Ž .
ˆ ˆ ˆ �Ž Ž . .Finally, let � BB denote the orbit of BB under �; that is, � BB � C 
 o , 
� :

4� � BB . Because SS AA � AA and AA is �-invariant, it follows as in the beginning
of the proof of Lemma 4.2 that for every 
 � � and every � such that

Ž . 	1 Ž
 o � C o , we have � � BB iff 
 � � BB after possibly making a measure
.zero modification of BB . Therefore,

ˆ ˆ5.2 � BB � C , � : o � C � BB.� 4Ž . Ž .
Since � is ergodic and has indistinguishable infinite clusters, a.s. all

ˆ ˆinfinite clusters of � are in � BB or a.s. all infinite clusters of � are not in � BB.
ˆ� � � �If the latter is the case, then P BB � 0 and hence P AA 
 CC � 0. Therefore,o

assume that

ˆP C o , � � � BB 
 CC � 1.Ž .Ž .
ˆŽ . � � � �Hence, by 5.2 , P BB 
 CC � 1, giving P AA 
 CC � 1, as required. �o

6. Uniqueness for Bernoulli percolation. We now present some ap-
plications of Theorem 4.1 to Bernoulli percolation on Cayley graphs. Later in
this section, we prove inequalities relating p based on Theorem 3.3.u

We first note that the choice of generators does not influence whether
p � 1.u
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THEOREM 6.1. Let S and S be two finite generating sets for a countable1 2
Ž .group �, yielding corresponding Cayley graphs G and G . Then p G � 11 2 u 1

Ž .iff p G � 1.u 2

PROOF. Left and right Cayley graphs with respect to a given set of
generators are isomorphic via x � x	1, so we consider only right Cayley
graphs.

iŽ . Ž .Write � x for the probability under Bernoulli p percolation that o and xp
lie in the same cluster of G . Express each element s � S in terms of a wordi 1
Ž . Ž .� s � S . Let � be Bernoulli p percolation on G and define � on G by2 2 2 1 1

� � Ž .letting x, xs � � iff the path from x to xs in G given by � s lies in � .1 2 2
Then � is a percolation such that if two edges are sufficiently far apart, then1
their presence in � is independent. Thus, Liggett, Schonmann and Stacey1
Ž . Ž . Ž . Ž .1997 provide a function f p � 0, 1 such that f p �1 when p�1 and such

Ž Ž ..that � stochastically dominates Bernoulli f p percolation on G . This1 1
1 Ž . 2Ž . Ž . Ž .implies that � x � � x for each x. If f p � p G , then it follows fromf Ž p. p u 1

Ž . Ž .this and Theorem 4.1 that p � p G , showing that p G � 1 impliesu 2 u 1
Ž .p G � 1. �u 2

REMARK 6.2. For the situation used in the above proof, and for many
similar applications, one does not need the full generality of the theorem of
Liggett, Schonmann and Stacey. The following observation suffices. Suppose

Ž . � 4that X : i � I are i.i.d. random variables taking values in 0, 1 and withi
� � Ž .P X � 1 � p. Let I : j � J be an indexed collection of subsets of I. Seti j

� 4 � 4 � � �Y � min X : i � I and J � j � J: i � I . Suppose that n � sup I : j �j i j i j j
4 � � � 4 Ž .J and m � sup J : i � I are both finite. Then Y : j � J stochasticallyi j

Ž . � � Ždominates independent random variables Z : j � J with P Z � 1 � 1 	j j
Ž .1� m.n � � 4 � 41 	 p . Indeed, set X � max Z : j � J and Z � min Z : i � I ,i i, j i j i, j j

Ž . � 4 � �where Z : i � I, j � J are independent 0, 1 -variables with P Z � 1 �i, j i, j

Ž .1� m Ž . Ž � .1 	 1 	 p . Then X : i � I stochastically dominates X : i � I , andi i
Ž . Ž .hence Y : j � J stochastically dominates Z : j � J .j j

Ž .REMARK 6.3. Schonmann 1999a shows that for every quasi-transitive
graph G, p � p , where p is the infimum of all p such thatu BB BB

lim inf P B v , r � B u , r � 1Ž . Ž .
r�� v , u�V

Ž . Ž .in Bernoulli p percolation, where B v, r denotes the ball in G of radius r
and center v and A � A� is the event that there is a cluster C with
C � A 	 � and C � A� 	 �. Based on this and the proof of Theorem 6.1, one
obtains the following generalization. Suppose that G and G� are quasi-transi-

Ž . Ž .tive graphs and G� is quasi-isometric to G. Then p G � 1 iff p G� � 1.u u
ŽThis observation was also made independently by Y. Peres private communi-

.cation .

For our next result regarding p , we need the following construction. Letu
� be a real-valued random variable and suppose that P is a bond percolation0
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process on some graph G. We would like to color the clusters of P in such a
way that conditioned on the configuration �, the colors of the components are
i.i.d. random variables with the same law as � .0

² :To construct this process, let v , v , . . . be an ordering of the vertices in1 2
² :G. Let � , � , . . . be i.i.d. random variables with the same law as � . Given1 2 0

Ž . Ž .� and v � V, set � v � � if j is the least integer with v � C v . It is not� j j
Ž . Ehard to see that � v is measurable, as a function on the product of 2 and�

� Ž .the sample spaces of the � ’s. Let P denote the law of �, � . Observe thatj �

P � satisfies the description of the previous paragraph, and therefore does not
depend on the choice of the ordering of V. Consequently, if 
 is an automor-
phism of G and P is 
-invariant, then P � is 
-invariant.

Ž � .LEMMA 6.4 Ergodicity of P . Let � be a transitive closed subgroup of the
Ž .automorphism group of a graph G. Suppose that P, � is a �-invariant

ergodic insertion-tolerant percolation process on G. Let � be a real-valued0
� � Ž . Ž .4random variable, and let P be as above. Suppose that inf � o, x : x � V G

� 0. Then P � is �-invariant and ergodic.

PROOF. To prove the ergodicity of P �, let AA be a �-invariant event in
EŽG . VŽG . Ž .2 � � and � � 0, 1�2 . The probability of AA conditioned on � must be

� 4a constant, say a, by ergodicity of P. We need to show that a � 0, 1 .
There is a cylindrical event AA� that depends only on the restriction of �

Ž . �� �and � to some ball B o, r about o and such that P AA� AA� � � . Then�

� � �� � ��E P AA� 
 � 	 a � � .
Ž .Let BB be the event that some vertex in B o, r belongs to the samex

Ž . Ž .cluster as some vertex in B x, r . Since inf � o, x � 0 and P is insertionx
� � � �tolerant, there is some x such that P BB � � . Indeed, suppose that P BB �x x

Ž .� for all x. Let DD be the event that all the edges in B x, r belong to �, andx
� 4for A � G, let FF denote the -field generated by the events e � � with� A

e � A. Then BB is FF -measurable. By insertion tolerance, forx � ŽBŽo, r . BŽ x, r ..
� � � �every FF -measurable event CC with P CC � 0, we have P CC � DD � 0.� BŽo, r . o

Consequently, there is some � � 0 such that

P P DD 
 FF � � � 1 	 ��2.o � BŽo , r .

� �It follows that for all FF -measurable events CC with P CC � � , we have� BŽo, r .
� � � �P DD 
 CC � ��2. In particular, for all x � V, we have P DD 
 BB � ��2,o o x

� �which gives P DD � BB � ���2. Transitivity and insertion tolerance implyo x
that there is a � � � 0 such that

P P DD 
 FF � � � � 1 	 ���4x � BŽ x , r .

� �for all x � V. Hence, for all FF -measurable events CC with P CC � ���2,� BŽ x, r .
� �we have P DD 
 CC � � ��2. Taking CC � DD � BB gives for all x � V 	x o x

Ž .B o, 2r ,

� � � � � �� o , x � P DD � BB � DD � P DD 
 DD � BB P DD � BB � � ��2 ���2 ,Ž . Ž . Ž .o x x x o x o x
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� �which contradicts our assumption, and thereby verifies that P BB � � forx
some x � V. Fix such an x.

Let 
 � � be such that 
 o � x. Thenx x
�� �� �E P 
 AA� 
 � 	 a � � .x

Ž .Since 
 AA� depends only on the colored configuration in B x, r , we have thatx
on the complement of BB ,x

� � � � � � � � �P AA�, 
 AA� 
 � � P AA� 
 � P 
 AA� 
 � ,x x

� � �� � 2 �� Ž .whence E P AA�, 
 AA� 
 � 	 a � O � . Therefore,x

2 � 2� �� �a 	 a � E P AA, 
 AA 
 � 	 a � O � .Ž .x

� 4Since � was arbitrary, we get that a � 0, 1 , as desired. �

We now prove that p � 1 for all Cayley graphs of Kazhdan groups. Let �u
Ž .be a countable group and S a finite subset of �. Let UU HH denote the set of

unitary representations of � on a Hilbert space HH that have no invariant
vectors except 0. Set


 
 
 
� � , S �max � : � HH � � � UU HH � v � HH , �s � S � s v	v �� v .� 4Ž . Ž . Ž .
� Ž .� Ž .Then � is called Kazhdan or has Kazhdan’s property T if � T, S � 0 for

all finite S. The only amenable Kazhdan groups are the finite ones. Examples
Ž .of Kazhdan groups include SL n, � for n � 3. See de la Harpe and Valette

Ž .1989 for background; in particular, every Kazhdan group is finitely gener-
Ž . Žated page 11 , but not necessarily finitely presentable as shown by examples

.of Gromov; see page 43 . It can be shown directly, but also follows from our
Corollary 6.6 below, that every infinite Kazhdan group has only one end. See

Ž .Zuk 1996 for examples of Kazhdan groups arising as fundamental groups of
finite simplicial complexes.

Rather than the definition, we shall use the following characterization of
Kazhdan groups: Let P� be the probability measure on subsets of � that is
the empty set half the time and all of � half the time. Recall that � acts by
translation on the probability measures on 2�.

� Ž .�THEOREM 6.5 Glasner and Weiss 1997 . A countable infinite group � is
Kazhdan iff P� is not in the weak* closure of the �-invariant ergodic
probability measures on 2�.

COROLLARY 6.6. If G is a Cayley graph of an infinite Kazhdan group �,
Ž . � � Ž .then p G � 1. Moreover, P � a unique infinite cluster � 0 in Bernoulli pu u

percolation.

In an older version of this manuscript, only the first statement appeared.
We thank Yuval Peres for pointing out that a modification of the original
proof produces the stronger second statement.

Ž . Ž .Schonmann 1999b proved that Bernoulli p on T � �, where T is au
regular tree of degree at least three, does not have a unique infinite cluster,
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Ž .and Peres 1999 generalized this result to nonamenable products. On the
Ž .other hand, Bernoulli p percolation on a planar nonamenable transitiveu

� Ž .graph has a unique infinite cluster. See Lalley 1998 for the high genus
Ž . �case, and Benjamini and Schramm 1998 for the general case. Little else is

known, however, about the uniqueness of infinite clusters at p . For example,u
the case of lattices in hyperbolic 3-space is still open.

Ž .PROOF OF THEOREM 6.5. Suppose that p G � 1. Let o be the identity inu
Ž . Ž .�, regarded as a vertex in G. Write � x for the probability under Bernoulli pp

percolation that o and x lie in the same cluster. Then by Theorem 4.1, for all
Ž .p � 1 we have inf � x � 0. Fix p and let � be the open subgraph of ax p

Ž .Bernoulli p percolation. Let � be the union of the sites of some of the
clusters of �, where each cluster is independently put in � with probability
1�2. By Lemma 6.4, the law Q of � is �-invariant and ergodic. Furthermore,p
any fixed finite subset of � either is contained in � or is disjoint from � with
high probability when p is sufficiently close to 1. That is, P� � weak*-
lim Q , whence � is not Kazhdan.p�1 p

To prove the stronger statement, suppose that there is a unique infinite
Ž . Ž .component P-a.s. Let �, � be the standard coupling of Bernoulli p and˜

Ž .Bernoulli p percolation on G. Let � be as above. For a vertex x � G, writeu
Ž .A x for the set of clusters of � that lie in the unique infinite cluster of � and˜

Žthat are closest to x among those with this property where distance is
. Ž .measured in G . Define �� to be the union of � with all sites x for which A x

Ž .contains only one cluster and that cluster lies in �. Since the law of �, �, �˜
is ergodic by an obvious extension of Lemma 6.4, so is the law Q� of its factorp
��. Again, we obtain P� � weak*-lim Q� , whence � is not Kazhdan. �p� p pu

REMARK 6.7. For probabilists, we believe that the proof we have presented
of Corollary 6.6 is the most natural. For others, we note that one can avoid

Ž .Lemma 6.4 and Theorem 6.5 by using a theorem of Delorme 1977 and
Ž .Guichardet 1977 that characterizes Kazhdan groups in terms of positive

Ž .semidefinite functions. This relies on the fact that � x, y is positive semidef-
Ž .inite, as observed by Aizenman and Newman 1984 .

Other groups that are not finitely presentable and that have provided
interesting examples for probability theory are the so-called lamplighter

� Ž .groups see Kaimanovich and Vershik 1983 and Lyons, Pemantle and Peres
Ž .1996 ; in these references, these groups are denoted G and are amenable,d

�but we shall be interested here in nonamenable examples .
We first give a concrete description of a lamplighter graph and later

generalize and use more algebraic language. Suppose that G is a graph. The
Ž .lamplighter graph L over G is the graph whose vertices are pairs A, v ,G

Ž . Ž .where A � V G is finite and v � V G . We think of A as the locations of the
lamps that are on, and consider v as the location of the lamplighter. One

Ž . Ž � 4 . Žneighbor of A, v in L is the vertex A� v , v the lamplighter switchesG
. Ž .the lamp off or on and the other neighbors have the form A, u , where

� � Ž . Ž .v, u � E G the lamplighter walks one step .
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In the algebraic context and language, lamplighter groups are particular
wreath products: Let � be a group acting from the left on a set V. Let K be a

V Ž .group; K� denotes the group of maps f : V � K such that f x is the identity
element id of K for all but finitely many x � V and with multiplicationK
Ž .Ž . Ž . Ž . V Ž .Ž . Ž 	1 .f f x � f x f x . Then � acts on K� by translation: 
 f x � f 
 x .1 2 1 2

Ž . VThe restricted wreath product K � � is the set K� � � with the multiplica-
tion

f , 
 f , 
 � f 
 f , 
 
 .Ž . Ž . Ž .Ž .1 1 2 2 1 1 2 1 2

If � and K are finitely generated and � acts transitively on V, then K � �
is finitely generated. To see this, let 
 , . . . , 
 generate � and k , . . . , k1 s 1 t
generate K. Write id for the identity element of � and id for the identity� V
element of K�V . Let o � V be fixed. Write F for the element of K�V defined byj
Ž . Ž .F o � k and F x � id for all x 	 o. Setj j j K

S � id , 
 : 1 � i � s ,� 4Ž .� V i

S � F , id : 1 � j � t .� 4Ž .K j �

Ž .Then S � S  S is a finite generating set for K � �. Indeed, let f , 
 �� K
K � �. For x � V, choose 
 � � such that 
 o � x and write h � K�V for thex x x

Ž . Ž . Ž .function h o � f x and h y � id for y 	 o. Thenx x K

6.1 f , 
 � id , 
 h , id id , 
	1 id , 
 ,Ž . Ž . Ž . Ž . Ž .Ž .Ł V x x � V x Vž /x�V
Ž .f x 	id K

where the product over x is taken in any order. If we then write each
Ž . Ž . Ž . Ž .h , id as a product of F , id , each id , 
 as a product of id , 
 , eachx � j � V x V i
Ž 	1 . Ž . Ž . Ž .id , 
 as a product of id , 
 , and id , 
 as a product of id , 
 , weV x V i V V i
obtain a representation as a product of elements of S.

d �The lamplighter groups G are those where � � V � � and K � � . By ad 2
Ž . �theorem of Baumslag 1961 , the groups G are not finitely presentable.d

COROLLARY 6.8. Let K be a finite group with more than one element. Let �
be a finitely generated group acting transitively on an infinite set V. If G is

Ž .any Cayley graph of K � �, then p G � 1.u

To prove this, we borrow a technique from Benjamini, Pemantle and Peres
Ž . � �1998 : If � and � are two paths, denote by � � � the number of edges they

Ž .have in common as sets of edges .

LEMMA 6.9. Let G be a graph and x, y be any two vertices in G. Let
Ž .� � 0, 1 and c � 0 be constants. Suppose that � is a probability measure on

Ž .possibly self-intersecting paths � joining x to y such that

� � n� � � � , � : � � � � n � c�� 4Ž . Ž .
Ž .for all n � �. Let � � p � 1. Then for Bernoulli p percolation on G, we have

� x , y � c	1 1 	 ��p .Ž . Ž .
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PROOF. Define the random variable

1�� is open4
Z � � � .Ž .Ý � �P � is open�

� �Then E Z � 1 and

� �P � , � are both open
2� �E Z � � � � �Ž . Ž .Ý � � � �P � is open P � is open� , �

� � � � � p	� � � � �Ž . Ž .Ý
� , �

� p	n � � � �Ž . Ž .Ý Ý
n � ���� �n

	1	n n� p c� � c 1 	 ��p .Ž .Ý
n

Therefore, the Cauchy�Schwarz inequality yields
2 2 	1� � � � � �� x , y � P Z � 0 � E Z �E Z � c 1 	 ��p . �Ž . Ž .

PROOF OF COROLLARY 6.8. Since K is assumed to be finite, we take the
� 4generating set k , . . . , k to be all of K. We use the Cayley graph given by1 t

the generating set S. It suffices to exhibit a measure on paths connecting
Ž . Ž .id , id to f , 
 that satisfies the condition of Lemma 6.9 with � and c notV �

Ž .depending on f , 
 , since then Theorem 4.1 implies that p � � .u
Define edges joining pairs in V by

�E � x , 
 x : x � V, 1 � i � s, � � �1 .� 4i

Ž .The graph G� � V, E will be called the base graph. Note that the base
Ž Ž . Ž .. Ž .graph is not the same as the Cayley graph, G � V G , E G . Let � : V G � V

Ž .be the projection � g, � � �o. Let v , v , . . . and u , u , . . . be infinite1 2 1 2
simple paths in G� starting at v � o and u � 
 o, respectively, that are1 1
disjoint, except that v may equal u . Because G� is an infinite, connected,1 1
transitive graph, it is easy to show that such paths exist. For each j � 1, 2, . . . ,
fix an � � S such that � v � v and fix a � � S such that � u � u .j � j j j�1 j � j j j�1

Given a word W � w w ��� w with letters from S, let W	1 denote the1 2 n
	1 	1 	1 ˜Ž . � 4word w w ��� w , and let W j , j � 0, 1, . . . , n , denote the group ele-n n	1 1

ment w w ��� w .1 2 j
Ž .Let W be a word in S representing id , 
 with the property that for
 � V

˜Ž . Ž .every v � V such that f v 	 id , there is a j such that � W j � v. Let n beK
the length of W . Let W be the word � � ��� � , and let W be the word
 � 1 2 n �

� � ��� � . Let W be the concatenation1 2 n

W � W W	1W W W	1W	1W W	1W W W	1 ,� � 
 � � 
 � � 
 � �

and let N be the length of W. Let the letters in W be W � w w ��� w .1 2 N
Ž .Consider words of the form � X � w X w X ��� w X , where X �1 1 2 2 N N
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Ž . N Ž .NX , . . . , X � S � S . For any v � V, let J be the set of j �1 N K K v
˜ V� 4 Ž .1, 2, . . . , N such that � W j � v. Let � : K � � � K� be the projectionK

onto the first coordinate. The uniform measure � on the set of X � S N such0 K
Ž . Ž .that � X is a word representing f , 
 can be described as follows:

Ž . Ž . ŽŁ � X o � f v where the order of multiplication is the order of J asj� J K j vv
. Ž .a subset of � and for every j � J , the random variables X : j � J , j 	 j1 v j v 1

Ž .are independent, uniform in S and independent of X : j � J . Note thatK j v
Ž . Ž . Ž .� X can also be thought of as a random path in G from id , id to f , 
 .V �

Let X and Y be i.i.d. with law � . We want to bound the probability that0
Ž . Ž .there are k edges shared by the paths � X and � Y . In fact, we shall

bound the probability that these paths share at least k vertices. Given any
� 4 Ž .j � 1, . . . , N , let H j be the set of v � V such that min J � j � max J ,v v

Ž . � Ž . �and let h j � H j . The choice of W ensures that
� 4h j � min j, N 	 j, n 	 1.Ž .

Ž .Because N � O n , this gives
� 4h j � c min j, N 	 j 	 1Ž . 1

ˆŽ .for some universal constant c � 0. If g, � is the element of V represented1
Ž Ž . Ž ..by the word w X w ��� w X , then g v : v � H j , are i.i.d. uniform in K.1 1 2 j j

Consequently, the probability that w X w ��� w X � w Y w ��� w Y , as1 1 2 j j 1 1 2 j� j�

� �	max�hŽ j., hŽ j�.4elements of K � �, is at most K . If there are more than 8k
Ž . Ž .vertices common to � X and � Y , then there must be a pair of indices

� 4j, j� � k, k � 1, . . . , N 	 k such that w X w ��� w X � w Y w ��� w Y ,1 1 2 j j 1 1 2 j� j�
as elements of K � �, or with a similar equality when the rightmost letter is
dropped from either or both sides. The probability for that is at most

N	k N	k N	k N	k
	max�hŽ j. , hŽ j�.4 	ŽhŽ j.�hŽ j�..�2 	c k1� � � � � �4 K � 4 K � c K ,Ý Ý Ý Ý 2

j�k j��k j�k j��k

� �where c is a constant depending only on K . Consequently, as appeal to2
Lemma 6.9 completes the proof. �

Ž .Benjamini and Schramm 1996 conjectured that for any nonamenable
Ž . Ž .Cayley graph G, we have p G � p G . This is still open, but using ourc u

main result on cluster indistinguishability, we may show that a comparable
statement fails for invariant percolation processes.

COROLLARY 6.10. There is an invariant deletion-tolerant percolation pro-
Ž .cess P, � on a nonamenable Cayley graph that has only finite components

a.s., but such that for every � � 0, the union of � with an independent
Ž .Bernoulli � percolation process produces a unique infinite cluster a.s.

Ž . 2PROOF. Recall that Bernoulli p bond percolation on � produces a.s. no
� Ž .�infinite cluster iff p � 1�2 see Grimmett 1989 . Let � be the Cayley graph2

of the free group on two letters with the usual generating set. Let G � � �2
2 Ž . Ž .� . Each edge of G joins vertices x , y to x , y , whether either x � x1 1 2 2 1 2

and y � y , or x � x and y � y . The former type of edge will be called a1 2 1 2 1 2
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�2 edge, while the latter will be called an � edge. For each x � � , the set of2 2
�Ž . Ž .� 2 Ž .all edges x, y , x, y is called the � fiber on x. Let � be Bernoulli 1�21 2

bond percolation on all the �2 edges; it contains no � edge. Then � is2
invariant and deletion tolerant. When we take the union with an independent

Ž . 2Bernoulli � process �, the intersection of �  � with each � fiber contains
a.s. a unique infinite cluster. These clusters a.s. connect to each other in G.
Thus, �  � contains a unique infinite cluster whose intersection with each
�2 fiber has an infinite component. Since �  � is insertion tolerant, cluster
indistinguishability of �  � implies that it has no other infinite cluster. �

QUESTION 6.11. Is there an insertion-tolerant process with the property
exhibited in Corollary 6.10?

The same line of thought is also used to prove the following theorem, which
Ž .is an answer to a question posed by Yuval Peres private communication and

Ž .motivated by the work of Salzano and Schonmann 1997, 1999 on contact
processes.

THEOREM 6.12. Let G, H and H� be unimodular transitive graphs. As-
sume that H� � H and G is infinite. Then

p G � H� � p G � H .Ž . Ž .u u

In particular, when H� consists of a single vertex of H we get

p G � p G � H .Ž . Ž .u u

Ž .PROOF. Let � be Bernoulli p bond percolation on G � H, where p �
Ž .p G � H� , and let � be the product of a unimodular transitive automor-u

phism group on G with a unimodular transitive automorphism group on H.
Then � is a unimodular transitive automorphism group on G � H.

ˆ � Ž . 4Let Z � 
 G � H� : 
 � � . By Theorem 1.2 applied to G � H�, for every
ˆZ � Z a.s. there is a unique infinite cluster, say Q , of � � Z. Now letZ

ˆZ, Z� � Z. We claim that a.s. Q and Q are in the same cluster of �. Indeed,Z Z�

since G is infinite, there are infinite sequences of vertices v � Z, v� � Z�j j
Ž � . � Ž . 4such that dist v , v � inf dist v, v� : v � Z, v� � Z� for all j. Becausej j

� � � �inf P v � Q , v � Q � 0, with positive probability v � Q and v � Qj j Z j Z� j Z j Z�

for infinitely many j, and by Kolmogorov’s 0�1 law this holds a.s. It is then
clear that for some such j there is a connection in � between v and v�. Itj j
follows that a.s. there is a unique cluster Q of � that contains every

ˆQ , Z � Z.Z
Ž . VŽG�H . EŽG�H .Let AA be the set of all pairs C, W � 2 � 2 such that C

ˆmeets an infinite component of Z � W for every Z � Z. We know that Q is
Ž .the only cluster of � with Q, � � AA. By Theorem 3.3, it follows then that Q

is the only infinite cluster of �. �
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REMARK 6.13. The same theorem holds without the assumption of uni-
modularity and with ‘‘transitive’’ replaced by ‘‘quasi-transitive.’’ This follows
similarly from the indistinguishability of robust properties proved by

Ž .Haggstrom, Peres and Schonmann 1999 .¨ ¨

Ž .REMARK 6.14. There are infinite Cayley graphs H� � H with p H� �u
Ž . 2p H . For example, one may take H� � � and let H be the free productu

�2 �� , as in Remark 1.3.2

Ž .The work of Schonmann 1999a was motivated by an analogy between
percolation and contact processes. More specifically, the property of having
complete convergence with survival for a contact process is closely analogous
to having uniqueness of the infinite cluster for percolation. However, Remark
6.14 describes an instance where this analogy fails, because complete conver-

�gence with survival is a property which is monotone in the graph Salzano
Ž .�and Schonmann 1997 .
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