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EXACT LIMITING SHAPE FOR A SIMPLIFIED MODEL OF
FIRST-PASSAGE PERCOLATION ON THE PLANE

By Timo Seppäläinen

Iowa State University

We derive the limiting shape for the following model of first-passage
bond percolation on the two-dimensional integer lattice: the percolation
is directed in the sense that admissible paths are nondecreasing in both
coordinate directions. The passage times of horizontal bonds are Bernoulli
distributed, while the passage times of vertical bonds are all equal to a
deterministic constant. To analyze the percolation model, we couple it with
a one-dimensional interacting particle system. This particle process has
nonlocal dynamics in the sense that the movement of any given particle
can be influenced by far-away particles. We prove a law of large numbers
for a tagged particle in this process, and the shape result for the percolation
is obtained as a corollary.

1. Introduction. Among the central challenges of percolation theory is
the rigorous derivation of properties of the asymptotic shape of first-passage
percolation. This is a model for the passage of fluid through a porous medium,
introduced by Hammersley and Welsh [10]. Let us restrict the discussion to
two-dimensional models. Imagine that the origin of the plane is a source of
fluid that is allowed to flow along nearest-neighbor edges of the integer lattice
Z2. Each edge e has a random nonnegative passage time τ�e� assigned to it,
and the process �τ�e�� is i.i.d. The fluid takes time τ�e� to flow along edge e.
In the beginning at time 0, only the origin is wet. At time t > 0, a site of Z2

is wet if it can be reached from the origin along a path whose passage times
add up to at most t. Let B̃t denote the set of wet sites at time t, and Bt a
solid version of this set on R2, namely, the union of unit squares located on
the sites of B̃t.

The basic result of first-passage percolation is the existence of a determin-
istic limiting set. Suppose

E
[(

min�τ�e1�� τ�e2�� τ�e3�� τ�e4��
)2]

<∞
for a set �e1� e2� e3� e4� of distinct edges. Then there is a nonrandom convex
set B0 with nonempty interior such that this holds: either B0 is compact and
for any ε > 0,

�1 − ε�B0 ⊆ t−1Bt ⊆ �1 + ε�B0

holds for large enough t, almost surely, or B0 = R2 and for any ε > 0,{�x�y�
 �x� + �y� < ε−1} ⊆ t−1Bt

holds for large enough t, a.s. This was first proved by in [5].
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Apart from obvious symmetry properties, not much exact is known about
the limiting set B0. A notable exception is the flat edge result of [6]. Let F
denote the common distribution function of the passage times. Suppose the
left endpoint λ = inf�x
 F�x� > 0� of the distribution is positive. Then it is
clear that B0 is contained in the diamond ��x�y�
 �x� + �y� ≤ 1/λ�. Let pc be
the critical probability of two-dimensional oriented percolation. The flat edge
result states that if F�λ� > pc, the intersection B0 ∩ ��x�y�
 �x� + �y� = 1/λ�
consists of line segments with positive length. This is brought about by the
fast edges percolating to the boundary �x� + �y� = 1/λ of the diamond, which
explains the appearance of pc in the statement.

For a general overview of first-passage percolation, the reader is referred
to Kesten’s lectures [13]. Recent important results focus on the speed of con-
vergence in t−1Bt → B0 and appear in [1], [2], [14], [18]. A limiting shape
continues to exist under appropriate hypotheses when the i.i.d. condition of
the passage times is weakened to ergodic stationarity. References [4], [9] and
[11] contain results about stationary first passage percolation. For certain first-
passage percolation models in continuous space it has been determined that
the limiting shape is the sphere. Vahidi-Asl and Wierman [24] and Howard
and Newman [12] have derived results of this kind.

In this paper we simplify the lattice percolation model to be able to com-
pletely describe the limiting set B0. Three changes to the basic model are
needed for our result: first, we only admit paths that are nondecreasing in
both coordinates. This model is called directed first-passage percolation. Sec-
ond, we let only horizontal passage times be random, while all vertical edges
have a fixed, common deterministic passage time, and third, the random hor-
izontal passage times are Bernoulli distributed.

This percolation model is amenable to our approach of coupling a growth
model with an interacting particle system through a variational formula. The
variational formula is preserved by a passage to a scaling limit, and it turns
into an example of the Lax–Oleinik formula from the theory of viscosity so-
lutions of Hamilton–Jacobi equations [3], [7], [17]. This variational formula,
convex analysis and knowledge of the steady states of the particle system en-
able us to determine the limiting set B0. Additionally, we get a law of large
numbers for a tagged particle of the particle system under hydrodynamic Eu-
ler scaling.

2. The percolation result. Consider the following first-passage perco-
lation model on the lattice Z2

+ = �0�1�2� � � ��2: each edge e between nearest-
neighbor sites of Z2

+ has a passage time τ�e� attached to it. If e is vertical, then
τ�e� = τ0, a positive constant. If e is horizontal, τ�e� is a Bernoulli random
variable with

P�τ�e� = λ� = p and P�τ�e� = κ� = q = 1 − p�

where λ and κ are constants satisfying κ > λ ≥ 0. All passage times are
independent of each other.
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The set B̃�t� is defined as the set of sites of Z2
+ that can be reached from the

origin by a nondecreasing nearest-neighbor path with passage time at most t.
A nondecreasing path is a sequence of sites �x0� y0�, �x1� y1�, � � �, �xm�ym� that
satisfies x0 ≤ x1 ≤ · · · ≤ xm and y0 ≤ y1 ≤ · · · ≤ ym. It is a nearest-neighbor
path if �xi� yi� and �xi+1� yi+1� are nearest-neighbors for each i in the sense
that �xi+1 − xi� + �yi+1 − yi� = 1. The passage time of the path is the sum

m−1∑
i=0

τ�ei��

where ei is the edge from �xi� yi� to �xi+1� yi+1�.
Let T�k� l� be the time t when site �k� l� first joins the set B̃�t�. It is equal

to the minimal passage time of nondecreasing paths from �0�0� to �k� l�. For
points �x�y� ∈ R2

+, the time constant is defined by

µ�x�y� = lim
n→∞

1
n
T��nx�� �ny���

The existence of the finite, deterministic limit µ�x�y� is under our assump-
tions a standard exercise in subadditive ergodic theory. The asymptotic shape
is defined by

B0 = ��x�y� ∈ R2
+
 µ�x�y� ≤ 1��

It is the limit of the random sets B̃�t� in the following sense: let

B�t� = ∪{�k� k+ 1� × �l� l+ 1�
 �k� l� ∈ B̃�t�}
be a solidified version of B̃�t�. Then, for any ε > 0,

�1 − ε�B0 ⊆ t−1B�t� ⊆ �1 + ε�B0 for large enough t, a.s.

Our result is an explicit formula for the limit.

Theorem 1. The time constant is given by

µ�x�y� =
{
λx+ τ0y� if py > qx�

λx+ τ0y+ �κ− λ�(√qx−√
py

)2
� if py ≤ qx�

The function µ�x�y� is C1-smooth but not C2 across the line py = qx. Thus
the boundary of B0 is C1. See Figure 1 for an example.

Note that, trivially, T�k� l� ≥ λk + τ0l. The two-case formula for µ�x�y� is
explained by this observation: if y > qx/p and n is large enough, then with
high probability a path from �0�0� to ��nx�� �ny�� of minimal passage time
λ�nx� + τ0�ny� can be constructed simply by moving rightward along runs of
λ-edges and taking a step up whenever the next horizontal edge has passage
time κ. Since each run of λ-edges has expected length p/q, this strategy gives
us a path with �nx�+o�n� horizontal λ-edges before forcing us up to level �ny�.

In the case y ≤ qx/p, the lattice paths from �0�0� to ��nx�� �ny�� of minimal
passage time T��nx�� �ny�� concentrate asymptotically around the straight line
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Fig. 1. The boundary of B0 for the case p = q = 1/2� τ0 = λ = 1� and κ = 2. Also shown is the
line py = qx.

segment from �0�0� to ��nx�� �ny��. This is an easy consequence of the subad-
ditivity of µ�x�y�: given δ > 0, there is an ε > 0 such that

µ�x1� y1� + µ�x− x1� y− y1� ≥ µ�x�y� + ε

for all �x1� y1� contained in �0� x� × �0� y� but outside the δ-neighborhood Uδ

of the line segment from �0�0� to �x�y�. Thus the minimal passage time of
lattice paths from �0�0� to ��nx�� �ny�� that are not contained in nUδ is, for
large n, with high probability at least n�µ�x�y� + ε/2�.

3. The coupling. The paths of minimal passage time for the percolation
model are those with a maximal number of fast horizontal edges. Thus in the
proof we need only count horizontal edges with passage time λ. This will be
achieved with the help of an interacting particle process on Z, constructed
from nondecreasing paths on the planar lattice. For this purpose we set, for
each nearest-neighbor edge e of the lattice Z × Z+, independently of all other
edges,

σ�e� =


0� if e is vertical,

1� with probability p if e is horizontal,

0� with probability q = 1 − p if e is horizontal.

An edge e with σ�e� = 1 will be called a marked edge. The right endpoint of
a marked edge will be called a marked site. The counting of marked edges is
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done through these random variables: For a < b ∈ Z and s ≤ t ∈ Z+, set

�3�1�
L��a� s�� �b� t�� = max

{
k
 there is a nondecreasing path that

uses k marked edges and connects
site �a� s� to site �b� t�}�

An inverse of L��a� s�� �b� t�� is defined for a ∈ Z, s < t ∈ Z+ and k ∈ Z+ by

�3�2� Γ ��a� s�� k� t� = min
{
l ∈ Z+
 L��a� s+ 1�� �a+ l� t�� ≥ k

}
�

The particle process is a totally asymmetric exclusion process on Z, running
in discrete time, where particles jump only to the left, never passing each
other. The state of the process is a configuration �zi�i∈Z of labeled particles,
satisfying zi ∈ Z and

�3�3� zi−1 ≤ zi − 1 for all i.

Given an initial configuration z = �zi�i∈Z of this type, the configuration z�t� =
�zk�t��k∈Z at time t = 1�2�3� � � � is defined by

�3�4� zk�t� = inf
i≤k

{
zi + Γ ��zi�0�� k− i� t�}�

The first task is to identify a subset of initial configurations for which z�t�
is well defined. The right choice of state space turns out to be

�3�5� Z =
{
z ∈ ZZ
 z satisfies (3.3) and lim inf

i→−∞
�i�−1zi > −1/p

}
�

in the sense that if z ∈ Z, then z�t� ∈ Z a.s. Once it has been established that
zk�t� > −∞ for all k, it is easy to see that rule (3.4) preserves the ordering
and exclusion property (3.3).

Suppose the configurations z�t�, t ∈ N, have been computed by equation
(3.4) from an initial configuration z ∈ Z, and all z�t� are well-defined elements
of Z. Since the location zk�t� is a finite integer, the infimum in (3.4) is achieved
at some i, and consequently, for some i, there is an increasing path with k− i
marked edges that connects �zi�1� to �zk�t�� t�. By splitting and combining
such paths between times 1 and s and between times s + 1 and t, one can
show that a semigroup property holds: for any 0 < s < t ∈ N and k ∈ Z,

�3�6� zk�t� = inf
i≤k

{
zi�s� + Γ ��zi�s�� s�� k− i� t�} a.s.

This implies that z�·� is a time-homogeneous Markov chain on the state space
Z. These existence questions will be settled in Section 5.

The description of the dynamics of the z-process is not very illuminating.
There is no local rule that gives the new location zk�1� depending only on the
initial configuration around zk before the jump. However, if the new location
zk−1�1� of the left neighbor is known, then zk�1� can be computed easily: let
�bk−1�1��1� be the next marked site to the right of �zk−1�1��1�. Then

�3�7� zk�1� = min
{
zk� bk−1�1�

}
�
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In other words, zk either remains in its original position or jumps to a marked
site without violating (3.3), and it chooses the leftmost location admissible
under this prescription. This is fairly easy to deduce from (3.4). In Section 6
this observation is the basis for describing the steady-state behavior of the
z-process.

The interparticle distance process η�t� = �ηi�t��i∈Z is defined by

�3�8� ηi�t� = zi+1�t� − zi�t� ∈ �1�2�3� � � ��� i ∈ Z� t ∈ Z+�

The state space for the η-process, corresponding to the space Z above, is

�3�9� Y =
{
η ∈ NZ
 lim inf

n→∞
1
n

0∑
i=−n

ηi <
1
p

}
�

A shifted geometric distribution α = �αn�n∈N with expectation u ≥ 1 is defined
on N by

�3�10� αn = u−1�1 − u−1�n−1� n = 1�2�3� � � � �

The following fact is instrumental for our explicit calculations.

Proposition 1. Suppose the process z�·� is defined by (3.4) from an initial
configuration z ∈ Z. Then the interparticle distance process η�·� defined by
(3.8) is a Markov chain on the state space Y. It has a one-parameter family
of invariant distributions parametrized by u ∈ �1�1/p�, specified by letting
�ηi�i∈Z be i.i.d. with common distribution α so that E�ηi� = u.

The strategy of the proof of Theorem 1 can now be outlined. To obtain the
time constant µ�x�y� we seek to identify the limit

�3�11� ,�x�y� = lim
n→∞

1
n
L
(�0�0�� ��nx�� �ny��) a.s., for all �x�y� ∈ R+�

The definition (3.2) of the random variables Γ ��a� s�� k� t� and elementary
properties of , enable us to transform ,�x�y� (bijectively) into a single vari-
able function g�x� that satisfies

�3�12� tg

(
x

t

)
= lim

n→∞
1
n
Γ
(�in�0�� �nx�� �nt�) in probability,

for any sequence �in� of sites. The task is now to identify g. To this end we
study the evolution of particle z0 in the z-process. With z0 = 0 initially, and the
η-process permanently in u-equilibrium, we can calculate explicitly a function
f�u� such that

lim
n→∞

1
n
z0�nt� = −tf�u� in probability,

and obtain

�3�13� f�u� = �1 − up�−1pu�u− 1�� 1 ≤ u < 1/p�
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In the scaling limit (3.4) turns into a convex duality relation between g and
f, which leads us from (3.13) to an expression for g:

�3�14� g�z� =
{
z� for 0 ≤ z ≤ p/q�

p−1
(√

1 + z−√
q
)2
� for z > p/q�

From g we can deduce ,, as will be done in (7.17) at the very end of the paper.
A comparison of the definitions of σ�e� and τ�e� shows that

�3�15� µ�x�y� = λ,�x�y� + κ�x−,�x�y�� + τ0y�

and consequently the explicit time constant µ�x�y� of Theorem 1 will follow
from knowing ,.

4. The tagged particle result. In addition we prove a more general law
of large numbers for a tagged particle in the z-process. Let v0�x� be an in-
creasing function on R. Suppose we have a sequence zn = �zni �i∈Z of possibly
random initial configurations in Z that satisfy

�4�1� lim
n→∞

1
n
zn�ny� = v0�y� in probability, for all y ∈ R.

Furthermore, make the following uniformity assumption:

�4�2� For any ε > 0, there exist B > 0 and δ > 0 such that
infn P�zni ≥ i�1 − δ�/p for i ≤ −Bn� ≥ 1 − ε�

From the exclusion property (3.3) and assumption (4.2) it follows that a func-
tion v0 for which (4.1) can be valid must satisfy

�4�3� v′0�x� ≥ 1 whenever the derivative exists, and lim inf
y→−∞

v0�y�
�y� > − 1

p
�

Let zn�t� be the process defined by (3.4) from initial configuration zn. The prob-
ability space of the process is constructed so that the initial configuration zn

and the marks on the edges of the space-time lattice Z×Z+ that determine the
variables Γ ��a� s�� k� t� are independent. We write P for the measure on this
product space that gives probabilities for events concerning both the process
and the nondecreasing paths on the lattice.

Theorem 2. Under assumptions (4.1) and (4.2), the deterministic limit

v�x� t� = lim
n→∞

1
n
zn�nx���nt��

exists in probability, for all x ∈ R and t > 0. The limit v�x� t� is macroscopically
given by

�4�4� v�x� t� = inf
y≤x

{
v0�y� + tg

(
x− y

t

)}
� x ∈ R� t > 0�

where g is the function of (3.14).
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To see why this theorem should follow, rewrite (3.4) with the scaling in-
cluded,

1
n
zn�nx���nt�� = inf

y≤x

{
1
n
zn�ny� +

1
n
Γ
(�zn�ny��0�� �nx� − �ny�� �nt�)}�

and note that by (3.12) and (4.1) the random variable inside the braces con-
verges to the quantity inside the braces in (4.4). All that is needed are esti-
mates that justify passing the limit through the infimum. For Theorem 1 we
take the special case x = 0, t = 1, v0�y� = uy, v�0� t� = −f�u�, and then (4.4)
becomes the convex duality of the known function f and the unknown g.

Laws of large numbers for tagged particles in asymmetric particle systems
have been previously proved in [16], [19] and [21], and a review of tagged
particle results can be found in [8]. Theorem 2 implies that the dynamics of
zn�nx���nt�� obeys a differential equation in the scaling limit: extend f to all of
R by setting f�u� = 0 for u < 1 and f�u� = ∞ for u ≥ 1/p. By Theorem 2.1 of
[3], v�x� t� is the unique viscosity solution of the Hamilton–Jacobi equation

vt + f�vx� = 0�

v�x�0� = v0�x��
From this follows that the derivative u�x� t� = vx�x� t� satisfies a conservation
law with flux function f�u�. With this observation, Theorem 2 can be turned
into a hydrodynamic scaling limit for the empirical profile of the η-process.
Results of this type can be found in [22, 23], and we leave the details to the
reader.

Before beginning the proofs, we indicate the necessity of the uniformity
assumption (4.2) with a simple example.

Example 1. Pick and fix u ∈ �1�1/p�, t > 0, and a sequence cj ↗ ∞. By
(3.12) it is possible to pick a sequence nj ↗ ∞ such that

�4�5� ∑
j

P
{
n−1
j Γ ��0�0�� �cjnj�� �njt�� > tg�cj/t� + 1

}
<∞�

Define a sequence �zn� of deterministic initial configurations as follows: For
n /∈ �nj�, set zni = �ui�. For n = nj, set

z
nj
�−cjnj�+k =

{
min��−cjnj�1 − δj�/p� + �2uk/p�� �ku− cjnju��� k ≥ 0�

�−cjnj�1 − δj�/p� + k� k < 0�

where we take δj = c−1
j ↘ 0 and consider j large enough so that u < �1−δj�/p.

Each zn lies in Z and assumption (4.1) is satisfied with v0�y� = uy. But (4.2)
fails because for any B > 0 and δ > 0, eventually cj > B and δj < δ so

z
nj
�−cjnj� = �−cjnj�1 − δj�/p� < �−cjnj��1 − δ�/p
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for arbitrarily large nj. Furthermore, the conclusion of Theorem 2 fails also:
by (3.4), (3.14) and (4.5), for large enough nj,

n−1
j z

nj
0 ��njt�� ≤ n−1

j z
nj
�−cjnj� + n−1

j Γ ��znj�−cjnj��0�� �cjnj�� �njt��

≤ −2tp−1
√
q�1 + cj/t� + Constant�

which tends to −∞, while Theorem 2 asserts that n−1zn0��nt�� → v�0� t� =
−tf�u� > −∞.

5. The existence of the process. We begin the proofs with a simple
moment bound for L��a� s�� �b� t��.

Lemma 5.1. For δ > 0 there is a constant C�δ� > 0 such that for all n� t ∈ N,

�5�1� P
{
L��0�1�� �n� t�� ≥ n�p+ δ�} ≤ t nt−1 exp�−C�δ�n��

Proof. A nondecreasing path from �0�1� to �n� t� has n + t − 1 edges, of
which n must be horizontal. The σ�e�-variables over the edges of a path sum
to a Bin(n�p)-distributed random variable, and consequently

P
{
L��0�1�� �n� t�� ≥ n�p+ δ�} ≤

(
n+ t− 1

n

)
Prob�Bin�n�p� ≥ n�p+ δ��

≤ �n+ 1� · · · �n+ t− 1�
�t− 1�! exp�−C�δ�n��

from which the conclusion follows. ✷

With this bound we can prove Lemma 5.2 about the well-definedness of the
dynamics z�·�.

Lemma 5.2. Suppose z = �zi�i∈Z satisfies (3.3) and

lim inf
i→−∞

zi
�i� ≥ −c0

for some c0 ∈ �1�1/p�. Pick t ∈ N and define �zk�t��k∈Z by (3.4). Then

�5�2� lim inf
k→−∞

zk�t�
�k� ≥ −c0 a.s.

In particular, z�t� ∈ Z a.s. whenever z ∈ Z, so the process z�·� is well defined
on the state space Z by (3.4).

Proof. Let ε > 0 be small enough so that

�5�3� c0�1 + ε� < 1/p�

Pick k0 < 0 so that

�5�4� zi ≥ c0�1 + ε�i whenever i ≤ k0�
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Fix k ≤ k0 for the moment. To estimate the probability that

zk�t� ≤ c0�1 + 2ε�k�
we need to estimate the probability that, for some i < k, there is a nondecreas-
ing path from site �zi�1� to site ��c0�1 + 2ε�k�� t� with at least k − i marked
edges. This cannot happen unless

zi ≤ c0�1 + 2ε�k− �k− i��
which by (5.4) implies that

�5�5� i ≤ c1k with c1 = �1 + 2ε�c0 − 1
�1 + ε�c0 − 1

�

If i ≤ c1k, then with n = �c0�1+2ε�k�−�c0�1+ε�i� and δ = c−1
0 �1+ε�−1−p > 0,

(5.1) implies that for some constants a1� a2 > 0,

P�L��zi�1�� ��c0�1 + 2ε�k�� t� ≥ k− i� ≤ a1 exp
[−a2

(�1 + ε��i� − �1 + 2ε��k�)]�
Thus, summing over i ≤ c1k, for two further constants a3� a4 > 0,

P�zk�t� ≤ c0�1 + 2ε�k� ≤ a3 exp�−a4�k���
This is valid for all k ≤ k0; thus by Borel–Cantelli there is a.s. a (random)
k1 such that zk�t� ≥ c0�1 + 2ε�k for k ≤ k1. Since ε can be made arbitrarily
small, this proves the lemma. ✷

Further arguments of the kind used in the proof of Lemma 5.2 show that
the dynamics preserves asymptotic slope in the sense that if

�5�6� lim
�k�→∞

∣∣∣∣zk�t�k

∣∣∣∣ = c0 a.s.

holds at time t = 0 for some c0 ∈ �1�1/p�, then it continues to hold at all
successive times t. Next we indicate why the semigroup property holds.

Lemma 5.3. Suppose the initial configuration z ∈ Z and let z�s� and z�t�
be defined by (3.4) for two further times s < t ∈ N. Then

�5�7� zk�t� = inf
j≤k

�zj�s� + Γ ��zj�s�� s�� k− j� t�� a.s.

for all k ∈ Z. In particular, z�·� is a time-homogeneous Markov chain whose
transition probability is defined by (3.4) with t = 1.

Proof. Fix a realization of the marked edges such that zk�t� ∈ Z for all k,
as can be done by the Lemma 5.2. It follows that zk�s� ∈ Z for all k too, because
Γ ��a�0�� t� k� is decreasing in t. Since the infimum in (3.4) is then attained,
we can find integers i�j� such that zj�s� = zi�j� + Γ ��zi�j��0�� j − i�j�� s� for
all j. Then the right-hand side of (5.7) becomes

inf
j≤k

{
zi�j� + Γ ��zi�j��0�� j− i�j�� s� + Γ ��zj�s�� s�� k− j� t�}�
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This is greater than or equal to zk�t� because of (3.4) and because of the
inequality

Γ ��zi�j��0�� j− i�j�� s� + Γ ��zj�s�� s�� k− j� t� ≥ Γ ��zi�j��0�� k− i�j�� t��
which is true because the paths from �zi�j��1� to �zj�s�� s� and from �zj�s�� s+
1� to �zk�t�� t� together form one possible path of k−i�j� marked edges starting
from �zi�j��1�.

For the converse, pick i0 so that zk�t� = zi0
+ Γ ��zi0

�0�� k− i0� t�. Let �l� s�
be the last site on the path from �zi0

�1� to �zk�t�� t� at or below time s. Split
the path into two pieces: a path with j− i0 marked edges up to site �l� s�, and
the remaining path with k− j marked edges from �l� s+ 1� to �zk�t�� t�. This
determines the number j ∈ �i� i + 1� � � � � k�. Then zj�s� ≤ l, and since j is a
potential minimizer in (5.7), it is seen that the right-hand side of (5.7) is less
than or equal to zk�t�. ✷

6. The steady state. In this section we prove Proposition 1 about the
interparticle distance process η�·� defined by (3.8). Adopt the following con-
ventions: given an initial configuration z ∈ Z, let z′ denote the configuration
obtained by an application of formula (3.4) over a single time step, that is,
z′ = z�1�. To calculate z′ we need a realization of marked sites on the horizon-
tal row ��i�1�
 i ∈ Z� of the lattice. Let this be denoted by ω = �ωi�i∈Z with
i.i.d. Bernoulli distribution ν�dω� so that

ν�ωi = 1� = p = 1 − ν�ωi = 0��
For a ∈ Z, k ∈ Z+, and a realization of ω, set

Γ �a� k�ω� = min
{
l ∈ Z+


a+l∑
i=a+1

ωi ≥ k

}
�

This of course corresponds to Γ ��a�0�� k�1� defined in (3.2). The sum above
starts at a + 1 instead of a because marked sites are the right endpoints of
marked edges. Given z ∈ Z and ω, let xk = xk�z�ω� be the amount by which
particle zk jumped, or

xk�z�ω� = zk − z′k = zk − inf
i≤k

�zi + Γ �zi� k− i�ω���

Similarly let η and η′ denote the initial and later interparticle distances. We
have the identity η′

k = ηk + xk − xk+1, or

�6�1� η′ = η+ x− θx�

if we write x = �xk�k∈Z for the configuration of xk’s and θ for the shift operator
�θx�k = xk+1.

Given η, the distribution of η′ can be determined from (6.1) once the lo-
cation of z0 is chosen. One can check that even if z0 is chosen random and
dependent on η, this choice does not influence the distribution of η′ due to the
translation-invariance of the marked sites ω. Thus (6.1) in fact defines a tran-
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sition probability P�η�dη′� for the interparticle distances. From the Markov
property of the larger process z�t� it then follows that the process η�t�, defined
by (3.8) in terms of z�t�, is itself an autonomous Markov chain with transition
probability P�η�dη′�. This proves the first part of Proposition 1.

Next we turn to the invariance claim of Proposition 1. Let A�dη� =⊗
i∈Z α�dηi� denote the i.i.d. distribution on Y with marginal α defined by

(3.10). Assume that η is A-distributed. The first step is to find the distribution
of the joint process �ηi� xi�i∈Z.

In terms of our present notation, we can rewrite rule (3.7) as follows:

�6�2� z′k+1 = min
[
zk+1� min�i > z′k
 ωi = 1�]�

From this it follows that, given �ηi�i∈Z and �xi�i≤k, the probability distribution
of xk+1 depends only on �ηk� xk�. Let us denote this distribution by P

ηk
xk� xk+1 .

It can be derived from the distribution of ω, and one gets, for m ∈ N and
x�y ∈ Z+,

�6�3� Pm
x�y =

{
qm+x−1� if y = 0�

pqm+x−y−1� if 1 ≤ y ≤m+ x− 1�

Since the ηi are i.i.d. α-distributed, it follows now that the process �ηi� xi�i∈Z
is a Markov chain on the state space N×Z+, with transition probability matrix
Q given by

�6�4� Q��m�x�� �n�y�� = αnP
m
x�y�

One checks that Q is irreducible, aperiodic, and has invariant distribution
α⊗ β where the distribution β on Z+ is defined by

�6�5� βx =
{
�1 − up�q−1� x = 0�

p�1 − up�q−1rx� x = 1�2�3� � � �

with r = �u − 1��uq�−1 ∈ �0�1�. (Recall that the range of the parameter u is
u ∈ �1�1/p�, so the formula for β does make sense.) Finally we observe that
the Markov chain �ηi� xi�i∈Z must be in equilibrium, because the distribution
of any fixed pair �ηi� xi� is the limit distribution of a chain that started in
the infinite past. Thus we conclude that the joint process �ηi� xi�i∈Z is the
stationary Markov chain with transition Q and marginal distribution α⊗ β.

The proof of Proposition 1 is completed by Lemma 6.1.

Lemma 6.1. Suppose �ηi� xi�i∈Z is the stationary Markov chain with tran-
sition Q and marginal distribution α ⊗ β. Then η′ = η + x − θx is again
A-distributed.

Proof. The proof follows from one calculation and an induction argument.
Write Q for the probability measure of the stationary Markov chain. First
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check that

Q
{
η′
i =m� ηi+1 = n� xi+1 = y

}
= Q

{
ηi + xi =m+ y� ηi+1 = n� xi+1 = y

}
=

m+y∑
k=1

αkβm+y−kαnP
k
m+y−k�y

= αmαnβy�

Now use the Markov property and the above calculation:

Q
{
η′
i =mi� η

′
i+1 =mi+1� � � � � η

′
j =mj

}
= EQ

[
I�η′

i=mi�Q
{
η′
i+1 =mi+1� � � � � η

′
j =mj �ηi+1� xi+1

}]
= αmi

∑
n�y

αnβyQ
{
η′
i+1 =mi+1� � � � � η

′
j =mj � �ηi+1� xi+1� = �n�y�}

= αmi
Q
{
η′
i+1 =mi+1� � � � � η

′
j =mj

}
�

This induction step completes the proof of the lemma. ✷

7. Proofs of the theorems. We begin by discussing the limit in (3.11).
For a < b < c ∈ Z and r < s < t ∈ Z+, we have superadditivity

L��a� r�� �b� s�� +L��b� s�� �c� t�� ≤ L��a� r�� �c� t��
and the deterministic bound

�7�1� 0 ≤ L��a� s�� �b� t�� ≤ b− a�

Furthermore, since edges are marked in an i.i.d. fashion, Kingman’s theo-
rem [15] applies to the subadditive process Xm�n = −L��mx�my�� �nx�ny��,
0 ≤ m < n, for a fixed pair �x�y� of positive integers, and gives a finite,
deterministic limit

,�x�y� = − lim
n→∞

1
n
X0� n a.s.

Through homogeneity of ,�x�y� this limit is also valid for rational �x�y� ∈
Q2

+, and through simple approximations one arrives at the existence of the
deterministic limit

�7�2� ,�x�y� = lim
n→∞

1
n
L��0�0�� ��nx�� �ny��� a.s.

for all x�y ≥ 0. It is trivial to observe that ,�x�0� = px and ,�0� y� = 0.
Concurrently with the steps that establish the limit, one also checks that

,�x�y� is superadditive and homogeneous. From this follows that ,�x�y�
is concave and consequently continuous on �0�∞�2. Inequality (7.1) and the
strong law of large numbers applied to a single row of edges gives the bounds
px ≤ ,�x�y� ≤ x, and hence , extends continuously to �0�∞�× �0�∞�. Let

h�x� = ,�x�1�� x ≥ 0�



LIMITING SHAPE FOR FIRST-PASSAGE PERCOLATION 1245

By homogeneity, ,�x�y� = yh�x/y� for x ≥ 0, y > 0. Since h is concave and
satisfies px ≤ h�x� ≤ x, it follows that h must be continuous and strictly in-
creasing. Consequently h has a continuous, convex, strictly increasing inverse
function g�x� = h−1�x� that satisfies

�7�3� x ≤ g�x� ≤ x/p for x ≥ 0�

From the convergence (7.2) and the continuity and monotonicity of g follows
that

�7�4� lim
n→∞

1
n
Γ
(�in�0�� �nx�� �nt�) = tg

(
x

t

)
in probability

for any x ≥ 0, t > 0, and any sequence in ∈ Z. Here is the argument for one
half of (7.4): the base point in has no influence on the distribution, so we might
as well take it equal to 0. Definition (3.2) implies the equivalence

Γ ��0�0�� k� τ� > l ⇐⇒ L��0�1�� �l� τ�� < k

for integral k, l and τ. Pick x� t > 0 [the case x = 0 is trivial in (7.4)]. Let
ε > 0, and set u = tg�x/t� + ε. Pick δ > 0 small enough and s ∈ �0� t� close
enough to t so that sg��x+ δ�/s� < u. Then

P
{
Γ
(�0�0�� �nx�� �nt�) > �nu�} = P

{
L
(�0�1�� ��nu�� �nt��) < �nx�}

≤ P
{
L
(�0�0�� ��nu�� �ns��) < �nx�}�

where the last inequality is valid for n large enough to have �ns� ≤ �nt� − 1.
However, this last probability tends to 0 by (7.2) because sg��x+ δ�/s� < u is
equivalent to x < ,�u� s� − δ. The other half of (7.4) is proved similarly.

As indicated in the second paragraph after the statement of Theorem 1, for
y > qx/p it is elementary to deduce the limiting value ,�x�y� = x. Construct
a nondecreasing path from �0�0� to ��nx�� �ny�� according to this rule: if the
next horizontal edge is marked, move right, otherwise move up. Once either
level �nx� or �ny� is reached, take the direct route to ��nx�� �ny��. A run of
marked edges has on the average p/q edges, while L��0�0�� ��nx�� �ny��� is
deterministically bounded by �nx�, so for large n, the above strategy gives a
path of �nx� + o�n� marked edges with high probability.

This implies that g�x� = x for x ≤ p/q. To calculate g�x� for the remaining
values of x we turn to study the particle system z�·�.

Lemma 7.1. Let zn = �zni �i∈Z be a sequence of random initial configurations
in Z satisfying condition (4.2), and let zn�t� be the process defined by (3.4) from
initial configuration zn. Fix x ∈ R and t > 0. For r < x let

�7�5� ζn� r = min
�nr�<i≤�nx�

{
zni + Γ ��zni �0�� �nx� − i� �nt��}�

Suppose that for each ε > 0 there exists a constant 0 < A <∞ such that

�7�6� sup
n
P
{
zn�nx� ≥ An

} ≤ ε�



1246 T. SEPPÄLÄINEN

Then for each ε > 0 there exists an r < x such that

�7�7� sup
n
P
{
zn�nx���nt�� �= ζn� r

} ≤ ε�

Proof. Fix ε > 0. Pick A > 0 so that (7.6) holds and pick B > 0 and δ > 0
so that assumption (4.2) holds. For the duration of the proof we suppose that
the events

�7�8� {
zn�nx� ≤ An

}
and

{
zni ≥ i�1 − δ�/p for i ≤ −Bn}

hold. Pick δ1 > 0 so that �1 − δ/2�/p = �p+ δ1�−1, and then r < min�−B�x�
small enough so that �r�−1�A+ �x�/�p+ δ�� < δ1/2p. With these choices, some
algebra shows that

�nx� − i ≥ �p+ δ1��zn�nx� − zni � for i ≤ �nr��
Fix i≤ �nr� for the moment, and write m=mn

i = zn�nx� − zni . In the next cal-
culation, first reason as in the proof of Lemma 5.1 and then apply Stirling’s
formula:

P
{
L��zni �1�� �zn�nx�� �nt��� ≥ �nx� − i

}
≤ P

{
L��0�0�� �m� �nt��� ≥m�p+ δ1�

}
≤

(
m+ �nt�

m

)
exp�−C�δ1�m�

≤ C1 exp
{
−m

[
C�δ1� − log

(
m+ �nt�

m

)
− �nt�

m
log

(
m+ �nt�

�nt�
)]}

�

By the exclusion rule (3.3), m ≥ �nx� − �nr�, so the last line can be made

≤ C1 exp�−mC�δ1�/2�
uniformly over i ≤ �nr� and over all n by choosing r� x small enough.

Now notice that if zn�nx���nt�� �= ζn� r, then necessarily,

�7�9� L��zni �1�� �zn�nx�� �nt��� ≥ �nx� − i for some i ≤ �nr��
because whenever

zni + Γ ��zni �0�� �nx� − i� �nt�� > zn�nx��

the index i can have no influence on the infimum in (3.4). Put the event (7.9)
together with the complements of the events in (7.8) to get the bound

P
{
zn�nx���nt�� �= ζn� r

} ≤ ε+ ε+ ∑
i≤�nr�

C1 exp�−mn
i C�δ1�/2�

≤ 2ε+C2 exp�−C�δ1���nx� − �nr��/2��
This bound is valid uniformly over n, so the lemma is proved. ✷
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Proof of Theorem 2. Let the number v�x� t� be defined by (4.4). Let c >
v�x� t� and pick y ≤ x so that

v0�y� + tg

(
x− y

t

)
< c�

Since

zn�nx���nt�� ≤ zn�ny� + Γ
(�zn�ny��0�� �nx� − �ny�� �nt�)

with probability 1, it follows from assumption (4.1) and the limit in (7.4) that

lim
n→∞P�n−1zn�nx���nt�� ≤ c� = 1�

To complete the proof, we may assume that v�x� t� > −∞. Inequality (7.6)
follows from assumption (4.1) so the conclusion of Lemma 7.1 holds. By (7.7)
it suffices to show that, for any r < x and ε > 0,

�7�10� lim
n→∞P

{
n−1ζn�r ≤ v�x� t� − ε

} = 0�

By the continuity of g, pick a partition

r = r0 < r1 < r2 < · · · < rs = x

such that

�7�11�
∣∣∣∣tg(x− rl

t

)
− tg

(
x− rl+1

t

)∣∣∣∣ ≤ ε

4
for l = 0�1� � � � � s− 1�

Then

ζn� r ≥ min
0≤l≤s−1

{
zn�nrl� + Γ

(�zn�nrl��0�� �nx� − �nrl+1�� �nt�
)}
�

From this and (4.4) it follows that the probability in (7.10) is at most

s−1∑
l=0

(
P

{
1
n
zn�nrl� ≤ v0�rl� −

ε

2

}

+P

{
1
n
Γ
(�zn�nrl��0�� �nx� − �nrl+1�� �nt�

) ≤ tg

(
x− rl
t

)
− ε

2

})
�

which vanishes as n → ∞ by assumption (4.1), by the limit in (7.4), and by
property (7.11) of the partition. ✷

Next we calculate g�x� for x > p/q. Let

�7�12� g+�u� = sup
x≥0

�xu− g�x��� u ≥ 0�

be the monotone conjugate of g (see [20], page 111). Fix u ∈ �1�1/p� for the
moment. Define a random initial configuration �zi� for the process as follows:
z0 = 0 with probability 1, and �ηi = zi − zi−1
 i ∈ Z� are i.i.d. with common
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distribution α from (3.10) and expectation E�ηi� = u. By Proposition 1 the
interparticle distance process has i.i.d. α distribution at all successive times
too. From the development in Section 6 we see that each jump x0 of particle
z0 has distribution β from (6.5). The position z0�n� of particle z0 at time n is
a sum of n such jumps to the left. Thus

�7�13� E�n−1z0�n�� = −∑
x

xβx = −f�u�

with f�u� given by

�7�14�
f�u� = p�1 − up�q−1

∞∑
x=1

x�u− 1�x�uq�−x

= �1 − up�−1pu�u− 1��

On the other hand, (4.1) holds now for zn = z and v0�y� = uy, and (4.2)
follows from the strong law applied to the i.i.d. �ηi�. Thus by Theorem 2 that
was proved above,

�7�15�
lim
n→∞

1
n
z0�n� = v�0�1� in probability

= inf
y≤0

�uy+ g�−y��

= −g+�u��

Since z0�n� is a sum of n identically distributed steps, a uniform bound

sup
n
E��n−1z0�n��2� <∞

is immediate, and then the convergence in (7.15) holds also in expectation.
Comparison of (7.13) and (7.15) yields

f�u� = g+�u� for 1 ≤ u < 1/p�

From double duality (Theorem 12.4 of [20]),

�7�16� g�x� = sup
u≥0

�xu− g+�u�� = sup
1≤u<1/p

�xu− f�u���

The possibility of restricting u to �1�1/p� follows from (7.3) (convexity forces
g′�x� ≥ 1 from which g+�u� = 0 for u ∈ �0�1�� and from f��1/p�−� = ∞.
From (7.16) and (7.14) follows (3.14) for g. Invert g�x� to get h�x�, and then
by homogeneity, for x ≥ 0 and y > 0,

�7�17� ,�x�y� = yh�x/y� =
{
x� if y ≥ qx/p�(√

px+√
qy

)2 − y� if y < qx/p�
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Notice now that limy↘0 ,�x�y� = px, so in fact , is continuous on the closed
quadrant �0�∞�2 and (7.17) is valid for all x�y ≥ 0. Theorem 1 follows from
(7.17) and (3.15). ✷
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