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A few years ago, Grimmett, Kesten and Zhang proved that for super-
critical bond percolation on Z3, simple random walk on the infinite cluster
is a.s. transient. We generalize this result to a class of wedges in Z3 includ-
ing, for any ε ∈ �0�1�, the wedge �ε = ��x�y� z� ∈ Z3� x ≥ 0� �z� ≤ xε
which
can be thought of as representing a �2+ ε�-dimensional lattice. Our proof
builds on recent work of Benjamini, Pemantle and Peres, and involves the
construction of finite-energy flows using nearest-neighbor walks on Z with
low predictability profile. Along the way, we obtain some new results on
attainable decay rates for predictability profiles of nearest-neighbor walks.

1. Introduction. It is a classical theorem of Pólya [14] that simple ran-
dom walk on the cubic lattice Zd is recurrent for d = 1�2 and transient for
d ≥ 3. By inspecting quantities such as the Green’s function, one is immedi-
ately led to think that the critical dimension should be 2 rather than some
other number between 2 and 3. A natural candidate for a �2+ ε�-dimensional
lattice, ε ∈ �0�1�, is the wedge

�ε =
{�x�y� z� ∈ Z3� x ≥ 0� �z� ≤ xε

}
�

since the number of points in �ε within distance n from the origin grows like
n2+ε. Lyons [13] showed that, indeed, simple random walk on �ε is transient
for each ε > 0. (See [16] and [2] for a different interpretation of random walks
in noninteger dimensions.)

Grimmett, Kesten and Zhang (GKZ) showed in [8] that the transience for
d = 3 is highly robust, in the following sense. Suppose that every edge in
the Z3 lattice is removed independently with probability �1 − p�, thus being
retained with probability p. Then, for each p ∈ �pc�1
, where pc is the critical
value for independent bond percolation on Z3 (see [7] for basic notation and
results on percolation), there is a.s. an infinite cluster among the retained
edges on which simple random walk is transient. Obviously, this result cannot
be pushed further as far as the value of p is concerned, since by definition there
is a.s. no infinite cluster of retained edges when p < pc, and (as everyone
believes, although a rigorous proof is still lacking) not at p = pc either.

Corollary 1.2 below provides an extension of the GKZ theorem to the wedges
�ε for all ε > 0. This answers a question of Benjamini, Pemantle and Peres [3].
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In fact, the result also covers somewhat thinner wedges, such as{�x�y� z� ∈ Z3� x ≥ 0� �z� ≤ �log�x+ 1��2+ε}
for any ε > 0.

Percolation on wedges has been studied previously, for example, by Chayes
and Chayes [5]. Most of the wedges we study have the same critical value for
bond percolation as Z3, as will be evident from the final part of the proof of
Theorem 1.1. For this reason, pc will always denote the critical probability for
bond percolation on Z3. Our main result is the following.

Theorem 1.1. Suppose that h1�x� and h2�x� are increasing positive func-
tions such that for i = 1�2 we have

∞∑
j=1

hi�j�
j2

<∞�(1)

and consider independent bond percolation on the wedge

�h1� h2
= {�x�y� z� ∈ Z3� x ≥ 0� �y� ≤ h1�x�� �z� ≤ h2�x�

}
with retention probability p ∈ �pc�1
. If

∞∑
j=1

1
h1�j�h2�j�

<∞�(2)

then the set of retained edges will a.s. contain an infinite cluster on which
simple random walk is transient. Conversely, if the sum in (2) diverges, then
the set of retained edges will a.s. not contain an infinite cluster on which simple
random walk is transient.

For instance, the set of retained edges will contain an infinite cluster
on which simple random walk is transient if we take h1�x� = h2�x� =√
x�log�x+ 1��1+ε with ε > 0, but not if we take h1�x� = h2�x� =√
x log�x+ 1�. (The cutoff for having an infinite cluster at all is much

lower; see [5].)
Once we have proved Theorem 1.1, the next result follows with very little

extra effort.

Corollary 1.2. Suppose that h�x� is an increasing positive function for
which

∞∑
j=1

1

j
√
h�j� <∞�(3)

Independent bond percolation with retention probability p ∈ �pc�1
 on the
wedge

�h =
{�x�y� z� ∈ Z3� x ≥ 0� �z� ≤ h�x�}�

will then a.s. yield an infinite cluster on which simple random walk is transient.
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An interesting aspect of Theorem 1.1 is that condition (2) coincides with
Lyons’ [13] criterion for transience of simple random walk on �h1� h2

. In other
words, we get transience of simple random walk on the infinite cluster if and
only if simple random walk on �h1� h2

is transient. Corollary 1.2, however, does
not share this feature and may leave room for improvement; see the discussion
in Section 6.

The way we prove Theorem 1.1 is to sharpen the techniques of Benjamini,
Pemantle and Peres [3], who gave a new proof (and some generalizations) of
the GKZ theorem. Geoffrey Grimmett has kindly informed us that the original
approach in [8] can be used to prove Theorem 1.1 and Corollary 1.2 under
slightly stronger assumptions on h, h1 and h2.

The main part of the game is to prove transience for some p < 1; once this
is done the modern renormalization technology developed by Grimmett and
Marstrand [9], Antal and Pisztora [1] and others can be invoked to bring the
result all the way down to the critical point pc. The approach of Benjamini,
Pemantle and Peres is to construct finite-energy flows on the set of retained
edges using nearest-neighbor walks on Z whose so-called predictability profile
is sufficiently small. By a nearest-neighbor walk, we mean a random process
�Sn
∞n=0 taking values in Z such that �Sn+1 −Sn� = 1 for each n.

Definition 1.3. For a random process S = �Sn
∞n=0 taking values in the
finite or countably infinite set V, the predictability profile �PRES�k�
∞k=1 of S
is defined as

PRES�k� = sup P
[
Sn+k = x �S0� � � � � Sn

]
�

where the supremum is taken over all n ≥ 0, all x ∈ V and all histories
S0� � � � � Sn.

PRES�k� should be thought of as the maximal chance of guessing S correctly
k steps into the future, given the process up to the present. In some sense,
simple random walk is of course the least predictable of all nearest-neighbor
walks on Z, but in the sense of asymptotics of the predictability profile as
k→∞, it is not! Whereas by the local central limit theorem, simple random
walk has predictability profile of the order k−1/2, [3] constructed, for any α <
1, nearest-neighbor walks with predictability profile O�k−α�. The following
theorem is an improvement of the result in [3].

Theorem 1.4. For any decreasing positive sequence �f�k�
∞k=1 such that

∞∑
j=1

f�j�
j

<∞�(4)

there exists a constant C <∞ and a nearest-neighbor walk S = �Sn
∞n=0 on Z
such that

PRES�k� ≤
C

kf�k�(5)

for all k ≥ 1.
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For instance, taking f�k� = 1/�log�k + 1��1+ε for ε > 0 gives a nearest-
neighbor walk whose predictability profile is O��log�k+ 1��1+ε/k�. Theo-
rem 1.4 is sharp, as Hoffman [10] very recently has shown; if f is decreasing
and the sum in (4) diverges, then the predictability profile in (5) is impossible
to achieve.

Theorem 1.4 is a key ingredient in the proof of Theorem 1.1. Levin and Peres
[11] have recently found another application of Theorem 1.4 in percolation
theory.

We shall present two alternative constructions leading to a proof of Theo-
rem 1.4. These are somewhat different, and were obtained independently by
the two authors of this paper. The first construction is based on the Ising model
on a tree, and the second is a kind of random walk in random environment.
For both constructions, it will be convenient to note that the condition (4) is
equivalent to having

∞∑
j=1

f�bj� <∞(6)

for some (hence any) b > 1.
While proving Theorem 1.4 via the Ising construction, we derive in Corol-

lary 2.3 a result of independent interest, concerning the spin-sum on the
boundary of the Ising model with fixed interaction strength.

One more result about attainable decay rates of predictability profiles will
be needed in our proof of Theorem 1.1.

Proposition 1.5. Suppose that �f�j�
∞j=0 is an increasing positive sequence
for which

∞∑
j=1

f�j�
j2

<∞�(7)

Then there exists a nearest-neighbor walk S∗ = �S∗n
∞n=0 on Z such that �S∗n� ≤
f�n� + 1 for all n and whose predictability profile satisfies

PRES∗�k� ≤
C

f�k/8�
for some C <∞.

If f�k�/f�k/2� is bounded, then the predictability profile is O�1/f�k��,
which is of course optimal up to determination of the constant C. The use of
f�n� + 1 rather than f�n� is only to make sure that the walk can get started,
and is irrelevant for the asymptotics.

The rest of this paper is organized as follows. In Sections 2 and 3 we give
the two alternative constructions which prove Theorem 1.4, and in Section 4
we prove Proposition 1.5. Section 5 contains proofs of Theorem 1.1 and Corol-
lary 1.2, and the final section contains a short concluding discussion.
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2. Unpredictable walks: first construction. In this section we give
the first proof of Theorem 1.4. The main part of the proof is Lemma 2.1
concerning the distribution of the spin sum over the boundary for the Ising
model on a regular tree. The tree-indexed Ising model has been studied before
by many authors; see, for example, [12] and [4]. One difference between
our set-up and previous ones is that here we allow the interaction strength
to vary in the tree. Our analysis uses Fourier transforms and resembles a
process constructed in [3].

Let b ≥ 2 be an integer. We build a tree Tb, also known as the “hierarchical
lattice” which has Z as the boundary set. The levels of the tree Li will be
defined inductively, starting at the boundary. The boundary L0 is simply Z. To
define Li+1, denote the vertices of Li from left to right by �vi
∞i=−∞. Set Li+1
to be �wi
∞i=−∞ (left to right) where wi is the parent of vbi · · ·vbi+b−1. A vertex
in Li will be called a vertex of level i. Thus a vertex of level i has distance i
from the boundary of Tb.

Let 1
2 > ε1 ≥ ε2 ≥ · · · ≥ 0 be a sequence and consider the following labeling

�σ�v�
 of the vertices of Tb by ±1 valued random variables called spins. For
each vertex v in level i ≥ 1 and for each of its children w, assign σ�w� to be
σ�v� with probability 1−εi, and −σ�w� with probability εi, independently for
all children w. Using Kolmogorov’s consistency theorem, we obtain a labeling
of Tb, in which P�σ�v� = 1
 = P�σ�v� = −1
 = 1

2 for all v ∈ Tb. For each level
N we denote by YN the spin sum on the boundary of the subtree which has a
root w at level N, given σ�w� = 1. It is clear that the distribution of YN does
not depend on the choice of w.

Lemma 2.1. The process YN satisfies the inequality

P�YN = x
 ≤ C

bNεN
∏N−1

k=1 �1− 2εk�
for all N ≥ 1, all x, where C depends only on b.

The following result is an immediate consequence.

Corollary 2.2. If
∑∞

k=1 εk <∞, then YN satisfies the inequality

P�YN = x
 ≤ C

bNεN

for all N ≥ 1, all x, where C depends only on b and on
∏∞

k=1 �1− 2εk�.
The case of homogeneous interaction strength is of independent interest, so

we state this as a separate corollary.

Corollary 2.3. When the interaction-strength is constant, that is, εk = ε
for all k, we have

P
[
YN = x

] ≤ C

ε�b�1− 2ε��N
for all N ≥ 1 and all x. Here C depends only on b.
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Proof of Lemma 2.1. By decomposing the sum in the definition of YN+1
into b parts according to level N of the subtree having root at level N+1 (that
is, by decomposing the sum according to the children of the root of that tree)
we get

YN+1 =
b∑

j=1

σ�vj�Y�j�N �

where �σ�vj�
bj=1 are b i.i.d. spins, having distribution �1 − εN+1� εN+1�, and

�Y�j�N 
bj=1 are i.i.d. variables with the distribution of YN, that are independent
of these spins. Consequently, the characteristic functions

ŶN�λ� = E
(
exp�iλYN�

)
satisfy the recursion

ŶN+1�λ� =
(�1− εN+1�ŶN�λ� + εN+1ŶN�−λ�

)b
= (�ŶN�λ� + i�1− 2εN+1��ŶN�λ�

)b
�

(8)

where � denotes real part, and � imaginary part. Define

θN�λ� = arg ŶN�λ��

Jn =
{

0 ≤ λ ≤ π

2
� θk�λ� <

π

2b
� k = 0 · · ·n− 1

}

and

In =
{

0 ≤ λ ≤ π

2
� θk�λ� <

π

2b
� k = 0 · · ·n− 1� θn�λ� ≥

π

2b

}
�

We will evaluate the Ł1 norm of ŶN by looking at the decomposition
�0� π/2
 = ⋃N−1

k=0 Ik ∪ JN, and bounding YN on each of these intervals, and
the length of those intervals. The symbol �I� will denote the length of the
interval I. We can rewrite (8) as

Ŷn+1�λ� =
∣∣Ŷn�λ�

∣∣b[cos�θN�λ�� + i�1− 2εn+1� sin�θN�λ��
]b
�(9)

and get, for 0 ≤ θN�λ� ≤ π/2b, that

θN+1�λ� = barctan
(�1− 2εN+1� tan�θN�λ��

)
�

Since arctan is decreasing and concave in �0�∞�, we obtain for 0 ≤ θN�λ� ≤
π/2b,

π

2
≥ bθN�λ� ≥ θN+1�λ� ≥ b�1− 2εN+1�θN�λ��(10)
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By (10) for λ ∈ In, π/2 ≥ θn�λ� ≥ π/2b, and using (9) we get

∣∣Ŷn+1�λ�
∣∣ ≤ (

cos2
(
π

2b

)
+ �1− 2εn+1�2 sin2

(
π

2b

))b/2

≤
(

1− 2εn+1 sin2
(
π

2b

))b/2

≤ exp�−ρεn+1b��

where ρ denotes sin2�π/2b�. Inductive usage of (9) for λ ∈ In and N > n now
gives ∣∣ŶN�λ�

∣∣ ≤ exp�−ρεn+1b
N−n��(11)

By (10) we have ∣∣In∣∣ ≤ ∣∣Jn

∣∣ ≤ π

2bn
∏n−1

k=1 �1− 2εk�
�(12)

and by (11),

1
2π

∫ π

−π

∣∣ŶN�λ�
∣∣dλ = 2

π

∫ π/2

0

∣∣ŶN�λ�
∣∣dλ

≤ 2
π

(N−1∑
k=0

�Ik� exp�−ρεk+1b
N−k� + �JN�

)
�

Inserting (12) yields

1
2π

∫ π

−π

∣∣∣ŶN�λ�
∣∣∣ dλ

≤ 1∏N−1
k=1 �1− 2εk�

(N−1∑
k=0

b−k exp�−ρεk+1b
N−k� + b−N

)
�

(13)

In order to evaluate the sum in the right-hand side of (13), we take the last n
such that ρεn+1b

N−n > 1, and get

N−1∑
k=n

b−k exp�−ρεk+1b
N−k� + b−N ≤

N∑
k=n

b−k ≤ b−n
∞∑
k=0

b−k�(14)

Since �εk
 is decreasing, we get

n−1∑
k=0

b−k exp�−ρεk+1b
N−k� ≤

n−1∑
k=0

b−k exp�−bn−k� ≤ b−n
∞∑
k=0

bk exp�−bk��(15)

Furthermore, since ρεn+2b
N−n−1 ≤ 1, we have that

b−n ≤ 1
ρbN−1εn+2

≤ 1
ρbN−1εN

�(16)

Now combining (13), (14), (15) and (16) we see that

1
2π

∫ π

−π
�ŶN�λ��dλ ≤

C

bNεN
∏N−1

k=1 �1− 2εk�
�
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where

C = b
(∑∞

k=0 b
−k +∑∞

k=0 b
k exp�−bk�)

sin2�π/2b� �

Using the inversion formula we finally achieve the bound

P�YN = x
 = 1
2π

∫ π

−π
ŶN�λ� exp�−iλx�dλ

≤ 1
2π

∫ π

−π
�ŶN�λ��dλ ≤

C

bNεN
∏N−1

k=1 �1− 2εk�
� ✷

Proof of Theorem 1.4. We can assume that for all k, 0 < f�k� < 1
2 . Take

any b ≥ 2 and set εk = f�bk�. By (6) we have that
∑∞

k=1 εk <∞. We look at the
tree Tb with the spin assignment induced by �εk
. Fix v0 ∈ L0, let v1� v2 · · ·
be the elements of the boundary of Tb to the right of v0 and set

Sn =
n∑

k=1

σ�vk��

We claim that Sn has the desired predictability profile. To see this, fix n ≥ 0,
k > 0 and note that Sn+k = Sn +

∑n+k
j=n+1 σ�vj�. If we now take the unique

h satisfying 2bh ≤ k < 2bh+1, there will exist a vertex w at level h (i.e., at
distance h from the boundary) for which all of the descendants at level 0 are
in the set �vn+1� � � � � vn+k
. From this it follows (by conditioning on the spins
of all vi which are not descendants of w, and on the spin of w) that

sup
x∈Z

P�Sn+k = x�S0� � � � � Sn
 ≤ sup
x∈Z

P�Yh = x
�(17)

Now using Corollary 2.2 and (17) we get

PRES�k� ≤
C

bhεh
≤ 2bC
kf�bh� ≤

2bC
kf�k� �(18)

and the proof is complete. ✷

Remark. The above construction can be modified in such a way that S gets
stationary increments. Indeed, by considering the entire bi-infinite boundary
of Tb we get a bi-infinite process. If in the construction of all levels j of Tb

we take s to be uniform shift in �0 · · · b − 1
 and set each wi in Lj to be the
parent of vbi+s · · ·vbi+b−1+s, then we get a process with stationary increments
and the desired predictability profile.

3. Unpredictable walks: second construction. The processes we con-
struct in this section are a kind of random walk in random environment. For
the usual random walk in random environment [17], [15], the environment is
fixed in time and varies in space. In contrast, the environment in our set-up
varies in time but not in space, so that our processes are closer related to
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the birth and death chains in random environment studied by Torrez [18].
Whereas transform methods were needed to obtain the desired predictability
profile in the previous section, the methods in the present section are purely
probabilistic.

Let Sn be the sum
∑n

i=1 σi of �−1�1
-valued random variables �σi
∞i=1 which
are independent conditioned on the random environment �pi
∞i=1. At each time
i, σi takes value +1 with probability pi and −1 with probability 1−pi. Fix an
integer b > 1, and furthermore let �aj
∞j=1 be a positive sequence such that

∞∑
j=1

aj <
1
2 �

The random environment is obtained as

pi = 1
2 + p

�1�
i + p

�2�
i + · · · �

where �p�1�i 
∞i=1� �p�2�i 
∞i=1� � � � are independent processes defined by the
following.

1. For each i and j, the distribution of p�j�i is uniform on �−aj� aj
.
2. The value p

�j�
i is constant in i for i = 1� � � � � bj. At time bj + 1 it switches

to a new independent value uniform on �−aj� aj
 which is kept until time
2bj and so on.

This defines the distribution of �σi
∞i=1. Concretely, the process can be realized
by letting �Ui
∞i=1 be a sequence of i.i.d. random variables, independent also

of the �p�j�i 
∞i=1 processes, uniformly distributed on �0�1
, and letting

σi =
{+1� if Ui < pi�

−1� otherwise.

Theorem 1.4 is an immediate consequence of the following result and the
observation (6). We write �x� for the integer part of x.

Proposition 3.1. Given b and �aj
∞j=1, there exists a C <∞ such that

PRES�k� ≤
C

ka�logb�k/2��
�

for all k.

Proof. We may safely assume that k ≥ 2b. Let

mk = �logb�k/2���
Suppose that we know S0� � � � � Sn and want to predict Sn+k. The time interval
In+kn+1 = �n+1� � � � � n+k
 will certainly contain some subinterval I = �l� � � � � l+
bmk − 1
 on which the p

�mk�
i process stays constant; fix such an I and write

p
�mk�
I for the common value of p�mk�

i , i ∈ I. Clearly, p�mk�
I is independent of the
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p
�mk�
i process outside of this interval, and thus also of �σi
i�∈I. The cardinality

bmk of I satisfies

bmk = b�logb�k/2�� ≥ blogb�k/2�−1 = k

2b
�

Write p̃�mk�
i for pi−p�mk�

i , and note that �p�mk�
i 
∞i=1 is independent of �p̃�mk�

i 
∞i=1.
For i ∈ I, define the random variables

Xi = Ui − p̃
�mk�
i

and

Yi =




1� if Xi < −amk
�

0� if Xi ∈ �−amk
� amk


�
−1� if Xi > amk

�

The Yi’s are not independent, but each of them independently takes value 0
with probability 2amk

. Therefore, #�i ∈ I� Yi = 0
 has a binomial �bmk�2amk
�

distribution.
Next, suppose that in addition to S0� � � � � Sn, we are also informed of the

values of �σi
i∈In+kn+1\I and �Yi
i∈I. Given this extra information, we know that
Sn+k has to be in the interval

L =
{
Sn +

∑
i∈In+kn+1\I

σi +
∑
i∈I

Yi −
∑
i∈I

1�Yi=0
� � � � � Sn

+ ∑
i∈In+kn+1\I

σi +
∑
i∈I

Yi +
∑
i∈I

1�Yi=0


}
�

Now comes the key step of the proof, which is to note that the conditional
distribution (given the extra information) of Sn+k is in fact uniform on the set

Leven =
{
l ∈ L� l−

(
Sn +

∑
i∈In+kn+1\I

σi +
∑
i∈I

Yi −
∑
i∈I

1�Yi=0


)
is even

}
�(19)

This follows from the fact that

Sn+k −
(
Sn +

∑
i∈In+kn+1\I

σi +
∑
i∈I

Yi −
∑
i∈I

1�Yi=0


)

= 2 #
{
i ∈ I� Yi = 0�Xi < p

�mk�
I

}
and the observation that the random variables p

�mk�
I and �Xi
i∈I�Yi=0 are

conditionally i.i.d. and uniformly distributed on �−amk
� amk


. Since Leven has
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cardinality #�i ∈ I� Yi = 0
 + 1, we get for any x that

P
[
Sn+k = x �S0� � � � � Sn

] ≤ bmk∑
j=0

P�#�i ∈ I� Yi = 0
 = j

j+ 1

≤ P
[
#�i ∈ I� Yi = 0
 < bmkamk

]+ 1
bmkamk

�

The first term in the last expression tends to 0 exponentially fast in bmkamk

and is thus asymptotically negligible (as bmkamk
→∞) compared to the second

term. Hence, we can find a C′ such that

P
[
Sn+k = x �S0� � � � � Sn

] ≤ C′

bmkamk

= 2bC′

kamk

�

Setting C = 2bC′ gives the desired result. ✷

Remark. Just as in Section 2, we can modify the above construction in
order to obtain a process which has further desirable properties without losing
anything essential in the upper bound for the predictability profile. If the
�p�j�i 
∞i=1 processes are extended to negative times in the obvious way, and each
of the processes independently is shifted by a random time lag equidistributed
on �0� � � � � bj−1
, then the �σi
∞i=1 process becomes stationary, so that �Si
∞i=1
gets stationary increments. If, furthermore, for each j the time intervals that
p
�j�
i stays constant are turned into an aperiodic renewal process (for instance

by letting each time interval that p�j�i stays fixed independently have length
bj or bj+1 with probability 1/2 each), then the �σi
∞i=1 process becomes ergodic
and Bernoulli, that is, isomorphic (in the sense of ergodic theory) to an i.i.d.
process.

Remark. There is some similarity between the two processes we have con-
structed, in that the dependence structure is hierarchical in both processes.
An obvious question is whether in fact the two processes coincide. The answer
is no: they are different. One way to see this is as follows. In the Ising model
construction, the absolute value of

Ybi+b−1 −Ybi−1 = σ�vbi� + σ�vbi+1� + · · · + σ�vbi+b−1�
is independent of all other increments (because it is independent of the spin of
the parent of vbi� � � � � vbi+b−1). The random environment construction is easily
seen not to have such an independence property.

Remark. When an unpredictable walk has a predictability profile which
is asymptotically of the order k−α, it is natural to ask whether it converges
to a fractional Brownian motion with index α under appropriate space-time
scaling. We suspect that neither of our processes exhibit such behavior. It
would be interesting to see a construction of a process which combines the
desired predictability and scaling properties.
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4. Proof of Proposition 1.5. The purpose of this section is to give ex-
amples which prove Proposition 1.5. Fix a sequence �f�n�
∞n=0 satisfying the
assumptions of the proposition, and define another sequence �B�n�
∞n=0 (B as
in boundary) by letting

B�n� = 2j where j =
{

0� if f�n� ≤ 1�

max
{
i ∈ �1�2� � � �
� 2i ≤ f�n�}� otherwise.

Since �f�n�
∞n=0 is increasing, the �B�n�
∞n=0 sequence is also increasing. The
process S∗ = �S∗n
∞n=0 which we will use to prove Proposition 1.5 will be ob-
tained by taking another nearest-neighbor walk S = �Sn
∞n=0 and reflecting
the path of S each time it attempts to cross the boundaries ±B�n�. In order
for S∗ to have the required predictability profile we need that the distance
of Sn from the lattices B�k�Z is smooth for k ≤ n. A precise version of this
statement is given in the following key lemma.

Lemma 4.1. With �f�n�
∞n=0 and �B�n�
∞n=0 as above, there exists a nearest-
neighbor walk S = �Sn
∞n=0 such that for all n ≥ k,

max
x� �S0�����Sn�

P
[
Sn+k mod B�k� = x �S0� � � � � Sn

] ≤ C

f�k/4� �(20)

Once we have Lemma 4.1, the proof of Proposition 1.5 is as follows.

Proof of Proposition 1.5. We first describe how S∗ is obtained from S,
where S is chosen as in Lemma 4.1. For this we shall use an auxiliary �−1�1
-
valued random sequence �Zn
∞n=0 which indicates whether S∗ currently is
moving in the same or in the opposite direction as S. Initially we have S0 = 0
and set S∗0 = 0, Z0 = 1. We then obtain S∗ and Z inductively as follows.
Suppose that S∗n−1 and Zn−1 have been determined. We then set

S∗n = S∗n−1 +Zn−1�Sn −Sn−1��
Zn = Zn−1�

unless S∗n−1 +Zn−1�Sn −Sn−1� happens to fall outside of the range

�−B�n�� � � � �B�n�
�
in which case we instead let

S∗n = S∗n−1 −Zn−1�Sn −Sn−1��
Zn = −Zn−1�

This guarantees that �S∗n
∞n=0 is a nearest-neighbor walk which for each n sits
in the interval �−B�n�� � � � �B�n�
.

Now, we show that S∗ has the right predictability profile. Fix n and k, and
assume for the moment that

n ≥ k�(21)
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We then have for each i ≥ n that

B�i� ≥ B�k� ≥ f�k�
2

≥ 2αk�(22)

where αk denotes �log2�f�k�/2��. We claim that there exists a constant d such
that for all i ≥ n,

�Si −S∗i�modB�k� = d if Zi = 1�

�Si +S∗i�modB�k� = d if Zi = −1�
(23)

This follows by induction. Indeed, if we take

d = �Sn −ZnS
∗
n�modB�k��

then the statement surely holds for i = n. If Zi = Zi+1 the induction step
follows directly from the definition of S∗. Otherwise, by (22) S∗i modB�k� = 0,
and again the induction step follows from the definition of S∗. By (23) we have
that for i ≥ n for every given location of S∗i there are only two possible locations
of Si modB�k�. This, in combination with (20) and the fact that �S∗0� � � � � S∗n�
is reconstructible from �S0� � � � � Sn�, implies that

max
x��S∗0�����S∗n�

P
[
S∗n+k = x �S∗0� � � � � S∗n

]
≤ max

x� �S0�����Sn�
P
[
S∗n+k = x �S0� � � � � Sn

]
≤ 2 max

x� �S0�����Sn�
P
[
Sn+k mod B�k� = x �S0� � � � � Sn

]

≤ 2C
f�k/4� �

(24)

Now Proposition 1.5 is almost proved; we only need to remove the assumption
(21). To do this, we just note that

max
x� �S∗0�����S∗n�

P�S∗n+k = x �S∗0� � � � � S∗n


≤ max
x��S∗0�����S∗�n+k/2��

P
[
S∗n+k = x �S∗0� � � � � S∗�n+k/2�

]
and that the right-hand side is less than 2C/f�k/8� by (24). ✷

We now go on to prove Lemma 4.1. Note first that if we restrict to the case
f�k� = o�√k�, then by the local central limit theorem with well-known error
estimates, it suffices to let S be simple random walk. For the more general case
considered in the lemma, a more complicated construction is clearly necessary.

Proof of Lemma 4.1. Take S to be the unpredictable nearest-neighbor
walk of Section 3 with parameters b and �aj
∞j=1 chosen as follows. First let
b = 2. Then write g�x� for f�x�/x, and note that

g�x� ≤ 2g�y� for y ∈ �x� � � � �2x
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so that
∞∑
j=1

f�2j�
2j

=
∞∑
j=1

g�2j� =
∞∑
j=1

2j+1−1∑
k=2j

g�2j�
2j

≤
∞∑
j=1

2j+1−1∑
k=2j

2g�k�
2j

≤
∞∑
j=1

2j+1−1∑
k=2j

4g�k�
k

= 4
∞∑
k=1

g�k�
k

= 4
∞∑
k=1

f�k�
k2

<∞�

We can therefore find a constant C1 > 0 small enough so that

C1

∞∑
j=1

f�2j�
2j

<
1
2
�

and let

aj =
C1f�2j�

2j

for each j. This defines S. We now go on to estimate the left-hand side of
(20) for n ≥ k. Let the notation of Section 3 be in force, and suppose that we
condition S on the same extra information � as in the proof of Proposition 3.1.
Write �Leven� for the cardinality of the set Leven defined in (19). We have from
the proof of Proposition 3.1 that �Leven� is a binomial random variable with
mean

2mk2amk
= 2C1f

(
2�log2�k/2��) ∈ [

2C1f�k/4��2C1f�k/2�
]
�

Letting E be the event that �Leven� ∈ �C1f�k/4��4C1f�k/2�
, we have by stan-
dard large deviations theory that

P�¬E �S0� � � � � Sn
 ≤ C2 exp�−C3f�k/4��
for some constants C2�C3 ∈ �0�∞� not depending on k. Furthermore, on the
event E, we have for all k, that the map modB�k� maps at most

2 · 4C1f�k/2�
B�k� ≤ 2 · 4C1f�k/2�

1
2f�k/2�

= 16C1

different elements of Leven on the same x ∈ Z, so that (still on the event E),

max
x

P
[
Sn+k mod B�k� = x � �S0� � � � � Sn���

]
≤ 16C1 max

x
P
[
Sn+k = x � �S0� � � � � Sn���

]
≤ 16
f�k/4� �

Hence, we have for large k that

max
x� �S0�����Sn�

P
[
Sn+k modB�k� = x �S0� � � � � Sn

]

≤ 16
f�k/4� +C2 exp�−c3f�k/4�� ≤

C

f�k/4�
for some C <∞, and Lemma 4.1 is proved. ✷



1226 O. HÄGGSTRÖM AND E. MOSSEL

We have also tried to find an alternative proof of Lemma 4.1 using the Ising
model construction in Section 2, but we are only able to do this under stronger
conditions on f. Since the tree-indexed Ising model is of independent interest,
we end this section by showing how that is done.

We will assume that g�j� = f�j�/j is a decreasing function of j which is
bounded above by 1/4, and that f satisfies

∞∑
k=1

√
f�2k�/2k <∞�(25)

These conditions hold for every function of the type f�n� = nα, for α < 1, but
are stronger than (7). Actually, condition (25) can be replaced by the weaker
condition

∞∑
k=1

(
f�2k�/2k)α <∞ for some α < 1�

but this requires more delicate estimates than those given below, so for brevity
and simplicity we restrict to the case where (25) holds.

Take S to be the unpredictable process of Section 2, with b = 2. Choose
εn =

√
f�2n�/2n. If we do the same conditioning as in the first proof of Theorem

1.4, It is easy to see that in order to prove (20), it is enough to show that for
2K ≤ f�2N�, and for all x ∈ �0� � � � �2K − 1
,

P�Yn mod 2K = x
 ≤ C2−K�

Therefore, it suffices to show that for all x ∈ �0� � � � �2K − 1
,∣∣P�Yn mod 2K = x
 −P�Yn mod 2K = 0
∣∣ ≤ C2−K�(26)

By the inversion formula, the left-hand side in the last inequality equals∣∣∣∣ 1
2π

∫ π

−π
ŶN�λ��1− exp�−iλx��

2N−K∑
l=−2N−K

exp�−iλl2K�dλ
∣∣∣∣

≤ 2N+2
∫ π/2

0
�ŶN�λ�� �λ�dλ�

(27)

In order to estimate the last integral, we use the same interval decomposi-
tion that we used in Section 2. Note that since

∑∞
j=1 εj < ∞ we get �Il� ≤

C12−l using (12). Furthermore, by (11), we have for λ ∈ In that �ŶN�λ�� ≤
exp�−ρεn+12N−n�. It follows that

∫ π/2

0

∣∣ŶN�λ�
∣∣�λ�dλ ≤ C2

1

(N−1∑
l=0

4−l exp−ρεl+12N−l� + 4−N
)
�(28)

For l ≤ �N+K�/2� we get

2N−lεl+1 ≥ 2N−lεN = 2N−l
√
f�2N�/2N ≥ 2N−l

√
2K/2N = 2�N+K�/2−l�
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so the sum in (28) is bounded by

C2
1

(�N+K�/2∑
l=0

4−l exp�−ρ2�N+K−2l�/2� +
N∑

l=�N+K�/2+1

4−l
)
≤ C22−N−K�(29)

Inserting (29) into (27), we get (26) and thus the desired predictability profile.

5. Transience in wedges. In this section, we will prove Theorem 1.1
and Corollary 1.3. For the proof of Theorem 1.1, we shall make use of Propo-
sition 1.5 and also of the following two results from [3].

Lemma 5.1 (Benjamini, Pemantle and Peres [3]). Let S = �Sn
∞n=0 be a
random process taking values in the countable set V. If the predictability
profile for S satisfies

∑∞
k=1 PRES�k� <∞, then there exist C <∞ and θ ∈ �0�1�

such that for any sequence �vn
∞n=0 and all l ≥ 1 we have

P
[
#�n ≥ 0� Sn = vn
 ≥ l

] ≤ Cθl�

For an infinite graph G with a distinguished vertex v0, we write ϒ =
ϒ�G�v0� for the set of paths in G which start from v0 and visit any vertex
at most finitely many times. A probability measure µ on ϒ�G�v0� is said to
have exponential intersection tails with parameter θ ∈ �0�1� [abbreviated as
EIT(θ)] if there exists a C such that

µ× µ
{�ϕ�ψ�� �ϕ ∩ ψ� ≥ n

} ≤ Cθn(30)

for all n, where �ϕ ∩ ψ� is the number of edges contained both in ϕ and in ψ.
It is shown in [3] how such a measure can be used to construct, with positive
probability, a finite-energy flow from v0 to “infinity” in the graph obtained
from G by independent edge-thinning with retention probability p > θ. This
implies the following lemma.

Lemma 5.2 (Benjamini, Pemantle and Peres [3]). Consider independent
bond percolation with retention probability p on an infinite graph G, and
suppose that there exists a vertex v0 in G and a measure µ on ϒ�G�v0� with
the EIT(θ) property. If p > θ, then the set of retained edges a.s. contains an
infinite cluster on which simple random walk is transient.

Proof of Theorem 1.1. We begin with the second half of the theorem [di-
vergence of the sum in (2) implies nonexistence of transience of infinite clus-
ters], which is easy. Lyons [13] showed that if the sum in (2) is infinite, then
simple random walk on �h1� h2

is recurrent. The second half of the theorem
is thus an immediate consequence of Rayleigh’s monotonicity principle, which
states that by removing edges from a graph one can only make simple random
walk on the graph “more recurrent” (see [6] for a more precise formulation and
a proof).

For the first half of the theorem, suppose that the sum in (2) is finite. In
order to show that the wedge �h1� h2

contains transient clusters for p close to 1,
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we will construct a measure µ on ϒ��h� v0� which has the EIT(θ) property for
some θ < 1. Here we take v0 = �0�0�0�. Let us assume that h1�0� and h2�0�
are both at least 1. This is no loss of generality because if min�h1�0�� h2�0�� < 1
we can instead consider the wedge{�x�y� z� ∈ Z3� x ≥ 0� �y� ≤ h1�x+ k��z� ≤ h2�x+ k�}�
where k is chosen large enough so that min�h1�0�� h2�0�� ≥ 1. This new wedge
satisfies the assumptions of the theorem, including (2). Furthermore, the new
wedge is a subset of a translate of �h1� h2

, so Rayleigh’s monotonicity principle
then completes the result for �h1� h2

.
Let S1 = �S1

n
∞n=0 and S2 = �S2
n
∞n=0 be two independent nearest-neighbor

walks on Z starting at 0 chosen in such a way that for i = 1�2� we have:

(i) Si
n ≤ hi�n� for all n, and

(ii) PRESi�k� ≤ Ci/hi�k/8� for some Ci <∞.

Such processes exist by Proposition 1.5 [this is where the assumption (1) is
needed]. Now construct a �h1� h2

-valued process S = �Sn
∞n=0 as follows. Let

Sn =




(⌊
n

3

⌋
� S1

�n/3�� S
2
�n/3�

)
� for n = 0�3�6� � � � �

(⌊
n

3

⌋
+ 1� S1

�n/3�� S
2
�n/3�

)
� for n = 1�4�7� � � � �

(⌊
n

3

⌋
+ 1� S1

�n/3�+1� S
2
�n/3�

)
� for n = 2�5�8� � � � �

and note that at each time step Sn changes exactly one of its three coordinates,
and does this by ±1. Hence, Sn can be viewed as a random path in �h1� h2

or, more precisely, a random element of ϒ��h1� h2
� v0�. Let µ be the induced

probability measure on ϒ��h1� h2
� v0�.

Since S1 and S2 are independent, we get for k = 3�6�9� � � � that

PRES�k� ≤ PRES1�k/3�PRES2�k/3� ≤ C1C2

h1�k/24�h2�k/24�
and similarly for k = 1�4�7� � � � and k = 2�5�8� � � � � By the assumed conver-
gence (2), we get that

∞∑
k=1

PRES�k� <∞�

By Lemma 5.1, we thus have for some C̃ <∞ and θ̃ ∈ �0�1� that

P
[
#�n ≥ 0� Sn = vn
 ≥ l

] ≤ C̃θ̃l(31)

for any sequence �vn
∞n=0 taking values in �h1� h2
.

Now pick two paths S and S′ in �h1� h2
according to µ × µ. By considering

the x-coordinate, we see that we can have Si = S′j only if �i − j� ≤ 2. By
conditioning on S′ and applying (31) five times, with �vn
∞n=0 being the S′

sequence delayed by 0�±1�±2 time units, we get that the probability of having
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at least n vertices in the intersection of S and S′ is less than Cθn, where we can
take C = 5C̃ and θ = θ̃1/5. Hence, (30) holds, so that µ has the EIT(θ) property.
By Lemma 5.2, we can thus find a p < 1 such if we do bond percolation on
�h1� h2

with retention probability p, then the set of retained edges contains a
transient infinite cluster.

It remains to extend the result to all p ∈ �pc�1�. First note that what we
have done so far easily extends from bond percolation to site percolation (see
the remark after Proposition 1.2 in [3]).

Next, we claim that we can find a p̃ < 1 with the property that site per-
colation with retention probability p̃ yields transient infinite clusters on the
shrunk wedge �h1/N�h2/N

for any N <∞. To see this, pick two functions h̃1�x�
and h̃2�x� such that

∞∑
j=1

1

h̃1�j�h̃2�j�
<∞

and having the additional properties that limx→∞ h̃i�x�/hi�x� = 0 for i =
1�2 (such functions are easily constructed) and pick p̃ < 1 such that �h̃1� h̃2

gets transient clusters. The claim now follows from Rayleigh’s monotonicity
principle and the observation that for any N there exists a translate of �h̃1� h̃2

which is contained in �h1/N�h2/N
.

For N a multiple of 8, let

� N
h1� h2

=
{
v ∈NZ3� v+w ∈ �h1� h2

for all w ∈
{
−5N

8
� � � � �

5N
8

}3}
�

that is, � N
h1� h2

consists of those points of the stretched lattice NZ3 which sit
at the center of a cube of side-length 5N/4 contained entirely in �h1� h2

. For
v ∈ � N

h1� h2
, write QN�v� for the cube of side-length 5N/4 centered at v. For

bond percolation on �h1� h2
with retention probability p, let Ap�N� be the

random set of vertices v ∈ � N
h1� h2

with the property that the set of retained
edges in QN�v� contains a connected component which connects all six faces of
QN�v� but contains no other connected component of diameter greater than
N/10. It follows from Proposition 2.1 in [1] that for any p > pc, the set
Ap�N� stochastically dominates site percolation with parameter p∗�N� on
� N
h1� h2

, with limN→∞p∗�N� = 1. Picking N so large that p∗�N� ≥ p̃, the proof
can now be finished as the proof of Corollary 2.1 in [3]. ✷

Proof of Corollary 1.2. We may without loss of generality assume that
h�x� does not grow too rapidly: let us for concreteness assume that

lim
n→∞

h�x�√
x
= 0�(32)

Indeed, if h�x� fails (32), then we can instead prove the result for the wedge
�g with

g�x� = min
{
h�x�� x1/4}
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and use Rayleigh’s monotonicity principle to carry over to the case of �h; it is
easy to see that g�x� satisfies (32) as well as the assumptions of the corollary.

If

h�x�
x2

is decreasing in x�(33)

then we can set h1�x� = x/
√
h�x� and h2�x� = h�x�, and apply Theorem 1.1 to

get that the wedge �h1� h2
contains a transient infinite cluster for all p > pc.

Since �h1� h2
⊂ �h, we can use Rayleigh’s monotonicity principle to obtain the

same conclusion for �h.
If (33) happens to fail, then the result does not follow directly from Theo-

rem 1.1, but rather from its proof. The only modification of the proof which is
needed is in the choice of nearest-neighbor walks S1 and S2. If S1 is chosen
in such a way that PRES1�k� ≤ C1

√
h�x�/x (this is possible by Theorem 1.4)

and S2 is chosen as before with h2�x� = h�x�, then the rest of the proof of
Theorem 1.1 goes through for proving the corollary. ✷

6. Discussion. Lyons [13] has an exact condition on h for simple random
walk on �h to be transient, namely that

∞∑
j=1

1
jh�j� <∞�

An obvious question given the results of the present paper is whether tran-
sience survives under independent thinning of the edge set for all such wedges.
Corollary 1.2 does not quite cover all such cases. For instance, taking h�x� =
�log�1 + x��1+ε for ε ∈ �0�1
 yields a wedge for which Lyons’ condition yields
transience but for which Corollary 1.2 does not apply to give transience after
thinning. The result of Hoffman mentioned in the introduction indicates that
the approach in Section 5 may be difficult to adapt in order to strengthen
Corollary 1.2 in this direction.

It is worth noting that the GKZ theorem cannot be extended to general
transient graphs. For instance, there exists a graph G such that (i) simple
random walk on G is transient, (ii) the critical value for percolation on G
is strictly less than 1, whereas (iii) for any p < 1, percolation on G with
parameter p yields a.s. no infinite cluster on which simple random walk is
transient. A somewhat artificial example (which we attribute to mathematical
folklore) of such a graph is to take the square lattice Z2 and attach to the origin
a tree T whose growth rate is chosen in such a way that the critical value for
percolation on T is 1 while at the same time simple random walk on T is
transient.

Some open problems have already been mentioned. A more extensive list
of open problems in this area can be found in [3].
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[15] Révész, P. (1990). Random Walk in Random and Non-random Environments. World Scien-
tific, Singapore.

[16] Scott, D. (1990). A non-integral-dimensional random walk. J. Theoret. Probab. 3 1–7.
[17] Solomon, F. (1975). Random walks in a random environment. Ann. Probab. 3 1–31.
[18] Torrez, W. C. (1978). The birth and death chain in a random environment: instability and

extinction theorems. Ann. Probab. 6 1026–1043.

Department of Mathematics
Chalmers University of Technology
412 96 Göteborg
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