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CLUSTERING AND INVARIANT MEASURES FOR SPATIAL
BRANCHING MODELS WITH INFINITE VARIANCE1

By Achim Klenke

Universität Erlangen-Nürnberg

We consider two spatial branching models on R
d: branching Brownian

motion with a branching law in the domain of normal attraction of a �1+β�
stable law, 0 < β ≤ 1, and the corresponding high density limit measure
valued diffusion. The longtime behavior of both models depends highly on
β and d. We show that for d ≤ 2/β the only invariant measure is δ0, the
unit mass on the empty configuration. Furthermore, we give a precise con-
dition for convergence toward δ0. For d > 2/β it is known that there exists
a family �νθ	 θ ∈ �0	∞�� of nontrivial invariant measures. We show that
every invariant measure is a convex combination of the νθ. Both results
have been known before only under an additional finite mean assumption.
For the critical dimension d = 2/β we show that both models display the
phenomenon of diffusive clustering. This means that clusters grow spa-
tially on a random scale. We give a precise description of the clusters via
multiple scale analysis. Our methods rely mainly on studying sub- and
supersolutions of the reaction diffusion equation ∂u/∂t− 1

2
u+ u1+β = 0.

1. Introduction and main results.

1.1. Survey. Branching Brownian motion (BBM) is an (infinite) particle
system in which particles perform independent Brownian motions and split
at random times into a random number of offspring particles. We consider the
process �ψt�t≥0, which will be either branching Brownian motion on R

d with
offspring probability generating function f�z� = z+ 1

2�1 − z�1+β, 0 < β ≤ 1, or
its high density limit measure valued diffusion, the so-called super-Brownian
motion (SBM). (Note that the probability distribution generated by f is in the
normal domain of attraction of a stable law with index 1+β. In particular, for
β < 1 this law does not have a variance.) In the SBM the transport of mass is
governed by the (deterministic) heat flow while the local “intensity of matter”
fluctuates randomly.

A pathwise construction of these processes in terms of excursions of certain
random walks and Lévy processes, respectively, can be found in a recent paper
by Le Gall and Le Jan (1998). See also Gorostiza, Roelly and Wakolbinger
(1992) for a corresponding multitype model.

It is well known that δ0, the unit mass on the empty configuration, is the
only invariant measure with finite intensity if d ≤ 2/β. One aim of this paper
is to show that the finite intensity assumption can be dropped, hence δ0 is
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1058 A. KLENKE

the only invariant measure for �ψt� if d ≤ 2/β. In the case of finite variance
branching �β = 1� this has been done before by Bramson, Cox and Greven
(1993). Their approach (like ours) is based on the study of sub- and super-
solutions u�t	 x�f�, x ∈ R

d, t ≥ 0, to the reaction diffusion equation(
∂t − 1

2

)
u+ u1+β = 0	(1.1)

where ∂t = ∂/∂t and 
 denotes the Laplacian in R
d. While most of their tech-

niques work also in our setting, part of the argument of Bramson, Cox and
Greven (1993) relies on a second moment estimate and had to be replaced to
cope with β < 1.

In the high-dimensional case d > 2/β it is known that there exists a family
�νθ	 θ∈ �0	∞�� of extremal invariant (and translation invariant) measures
for �ψt�. All invariant measures with finite intensity can be represented as a
convex combination of these νθ. We show in this paper that the finite intensity
assumption can be dropped. For the case β = 1 this has been shown before by
Bramson, Cox and Greven (1997).

The other main aim of this paper is to investigate closer the clustering in
the critical dimension d = 2/β. We show that so-called diffusive clustering oc-
curs. This phenomenon was first investigated for the voter model by Cox and
Griffeath (1986). Roughly speaking, diffusive clustering means that clusters
grow spatially at a random order of magnitude. This phenomenon has been ob-
served for a lot of interacting particle systems and related models such as the
voter model, linearly interacting diffusions, critical binary branching Brown-
ian motion and so on. A detailed treatment can be found in Klenke (1996,
1997). All these models have in common that the local random fluctuations
(given, e.g., by the branching law or the resampling mechanism) have finite
variances and that the critical dimension (in which diffusive clustering occurs)
is d = 2.

This is, however, the first case in which diffusive clustering is observed in
the absence of a second moment. In the finite variance models it turned out
that the growth of the cluster height is dominated by the Green function

G�t� =
∫ t

1
ps�0	0�ds	

where pt�·	 ·� is the (symmetric) interaction kernel of the model. Of course,
here pt is the heat kernel. In the absence of a second moment we show that
the cluster growth is now governed by the quantity

Gβ�t� =
(∫ t

1
ps�0	0�β ds

)1/β

�

This object naturally arises in the investigation of the clusters in terms of
Kallenberg’s backward tree [see Gorostiza and Wakolbinger (1991)]. In this
paper we do not make explicit use of the backward tree, but rely on pde meth-
ods, the connection being that (1.1) is Kolmogorov’s backward equation for the
Laplace functionals of �ψt�.
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1.2. The models. We give a short description of the models considered in
this paper. For more details we refer the reader to Dawson (1993). Unfortu-
nately, we have to introduce a lot of notation first.

Basic definitions for random measures. Let E be a locally compact Polish
space. By ��E� we denote the Borel σ-field on E. By Cb�E� and Cc�E� we
denote the spaces of continuous real-valued functions on E that are bounded,
respectively, have compact support. Further let C+

c = 
f ∈ Cc� f ≥ 0� and
C++

c = 
f ∈ C+
c � f �≡ 0� and define C+

b and C++
b analogously.

A measure µ on ��E� is called locally finite if µ�K� < ∞ for all compact
sets K ⊂ E. Let

� �E� = {
locally finite measures on E

}
(1.2)

and �f�E� = 
µ ∈ � �E�� µ�E� < ∞�.
For µ ∈ � �E� and f� E → R measurable and µ-integrable we define

�µ	f� �= ∫
fdµ. Now � �E� is a Polish space with the vague topology, de-

fined by µn → µ iff �µn	f� → �µ	f� for all f ∈ Cc�E�. The space �1�� �E��
of probability measures on � �E�, equipped with the weak topology, is also
polish [see, e.g., Kallenberg (1983)]. For weak convergence of probability mea-
sures we use the symbol “�⇒”.

The space of (nonnegative) integer-valued measures µ on ��E� will be de-
noted by

� �E� = {
µ ∈ � �E�� µ�A� ∈ 
0	1	2 � � � 	∞� ∀A ∈ ��E�}�(1.3)

For m ∈ � �Rd� we denote by � �m� ∈ �1�� �Rd�� the distribution of the
Poisson point process on R

d with intensity measure m. That is, for f ∈ C+
c �Rd�,∫

� �m��dµ�e−�µ	f� = exp�−�m	1 − e−f���(1.4)

We use the notation � �X� for the distribution of a random variable X.
Let �Xt�t≥0 be a Markov process with values in E and x ∈ E or Q ∈ �1�E�.
By � x��Xt�t≥0� and � Q��Xt�t≥0� we denote the distributions of �Xt�t≥0 with
� x�X0� = δx and � Q�X0� = Q. If �Xt� is càdlàg, convergence of paths will
be understood in the Skorohod topology. Convergence of finite-dimensional
marginals will be indicated by fdd.

�1 + β�-branching Brownian motion. Let 0 < β ≤ 1 and let �pk�k=0	1	��� be
the probability distribution on N0 with p.g.f. f�z� = z+ 1

2�1 − z�1+β, z ∈ �0	1�.
That is,

pk =



1
2 	 if k = 0	

�1 − β�/2	 if k = 1	

1
2�−1�k

(
1 + β

k

)
	 if k = 2	3	 � � � �

(1.5)

Note that �pk� is critical, that is,
∑

kpk = 1, and is in the normal domain of
attraction of a stable law on �0	∞� with index �1+β�. In particular, for β < 1
the law �pk� has infinite variance.
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We will consider a particle performing a Brownian motion on R
d and with

an exponential lifetime with mean 1/2b > 0. At the time of death, the particle
produces an offspring of k particles with probability pk. The offspring behave
as k independent copies of the one-particle system started at the parent parti-
cle’s final position. If we start the process with more than one particle at time
0, we assume that all particles are independent.

The process

ηt�A� = #
{
particles in A

}
	 A ∈ ��Rd�	 t ≥ 0	(1.6)

will be called the branching Brownian motion on R
d with parameters 1 + β

and b, abbreviated BBM(d	1 + β	 b).
�1 + β� super-Brownian motion. Next we consider the short lifetime high

density limit of BBM(d	1 + β	 b). Let µ ∈ �f�Rd� and µN ∈ �f�Rd�	 N ∈ N,
such that N−1µN → µ, as N → ∞. For N ∈ N let �ηN

t �t≥0 be BBM(d	1 +
β	 bNβ) with initial state ηN

0 = µN. It is well known that there exists a càdlàg
Markov process �ζt�t≥0 with values in �f�Rd� such that

� µ��ζt�t≥0� = w- lim
N→∞

� µN

[(
1
N

ηN
t

)
t≥0

]
(1.7)

[see Dawson (1993), Section 4.4ff ].
The process �ζt�t≥0 will be called super-Brownian motion on R

d with param-
eters 1 + β and b, abbreviated SBM(d	1 + β	 b).

For µ ∈ � �Rd� we can define �ζt�t≥0 with initial configuration ζ0 = µ as
the increasing limit of �ζn

t �t≥0 with initial configurations µn ∈ �f�Rd�, n ∈ N,
such that µn ↑ µ. It is known that SBM(d	1 + β	 b) takes values in � �Rd� if
we impose a regularity condition on the initial state µ. For example, assume
�µ	 �1 + � · �2�−p�� < ∞ for some p > d/2. The same condition also assures
that ηt ∈ � �Rd� a.s. for all t ≥ 0.

Log-Laplace equation. Let f ∈ C+
b �Rd�. A prominent role in this paper is

played by the solution u�t	 x�f�, x ∈ R
d, t ≥ 0, of the Cauchy problem

Lβu�t	 x�f� = 0	 x ∈ R
d	 t ≥ 0	

u�0	 x�f� = f�x�	 x ∈ R
d	

(1.8)

where

Lβu�t	 x�f� =
(
∂t − 1

2

)
u�t	 x�f� + bu�t	 x�f�1+β�(1.9)

Since (1.8) is time-homogeneous, u has the (nonlinear) semigroup property

u�t+ s	 x�f� = u�t	 x�u�s	 · �f��	 x ∈ R
d	 s	 t ≥ 0�(1.10)

Note that for ρ > 0 the following scaling relation holds:

u�t	 x�f� = ρ1/βu�ρt	 ρ1/2x�ρ−1/βf�ρ−1/2 ·��	 x ∈ R
d	 t > 0�(1.11)
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The reaction–diffusion equation (1.9) is linked to our branching processes by
the equations [see, e.g., Dawson (1993)]

Eδx�exp�−�ηt	 f��� = 1 − u�t	 x�1 − e−f�	(1.12)

Eδx�exp�−�ζt	 f��� = exp�−u�t	 x�f���(1.13)

1.3. Invariant laws. Recall that pt�x� = �2πt�−d/2 exp�−�x�2/2t� is the
heat kernel on R

d. Define Gβ�t� by

Gβ�t� =
(∫ t

1
ps�0�β ds

)1/β

�(1.14)

For d ∈ N define φ� �1	∞�×R
d → �0	∞� by

φ�t	 x� = pt�x�/Gβ�t��(1.15)

It will turn out that (in the particle language) Gβ�t� measures the concentra-
tion of particles around a certain point (say the origin), given that there is a
particle. It is the typical concentration of particles or average “cluster height.”
On the other hand, pt�x� is the expected intensity of particles at the origin if
we start in δx. Consequently, the function φ�t	 x� measures the probability of
seeing a particle at the origin at time t > 1 if we start with one “particle” at
time 0 at site x ∈ R

d.
Low dimension. Recall that �ψt� is either BBM(d	1+β	 b) or SBM(d	1+

β	 b).

Theorem 1. Assume d ≤ 2/β. Then the following hold.

(i) � �ψt� �⇒ δ0 as t → ∞ if and only if

� ��ψ0	 φ�r	 ·��� �⇒ δ0	 r → ∞�(1.16)

(ii) If condition (1.16) does not hold, then ψt is unstable. That is, for any
f ∈ C++

c �Rd� the sequence �ψt	 f� is stochastically unbounded.
(iii) If � ��ψ0	 φ�r	 ·��� �⇒ δ∞, r → ∞, then ψt explodes. That is, for any

f ∈ C++
c �Rd� almost surely �ψt	 f� → ∞, as t → ∞.

Corollary 1.1. If d ≤ 2/β, then the only invariant measure for ψt is δ0.

In order to check the conditions of Theorem 1 it is useful to note that φ�t	 x�
can be bounded from above and below by the function ,� �1	∞�×R

d →�0	∞�,
defined by

,�t	 x� =


td/2−1/βpt�x�	 if β < 2/d	

�log t�−1/βpt�x�	 if β = 2/d	

pt�x�	 if β > 2/d�

(1.17)

More precisely, there exist c	C > 0 (depending only on d and β) such that for
t ≥ 2 and x ∈ R

d,

c,�t	 x� ≤ φ�t	 x� ≤ C,�t	 x��(1.18)
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[This is immediate from the fact that pt�0� = �2πt�−d/2.] Hence it suffices to
verify the conditions of Theorem 1 for , instead of φ.

High dimension. Let � be the set of invariant measures for �ψt�; by
�e ⊂ � we denote its extremal elements. It is well known [see Gorostiza
and Wakolbinger (1992), Theorem 1] that there exists a one-parameter fam-
ily 
νθ	 θ ∈ �0	∞�� ⊂ �e with the following properties. Each νθ is transla-
tion invariant, ergodic and has intensity θ, that is,

∫
νθ�dm��m	f� = θ�λ	f�

for f ∈ C+
c �Rd�. Further, for � �ψ0� translation invariant and ergodic with

E��ψ0	 f�� = θ�λ	f�,
� �ψt� �⇒ νθ as t → ∞�

For any µ ∈ � with σ-finite intensity measure there exists a unique proba-
bility measure Fµ on �0	∞� such that

µ =
∫
νθFµ�dθ��(1.19)

Our point is to drop the assumption of the σ-finiteness on µ to allow for a
representation as in (1.19).

Theorem 2. Let d > 2/β and let �ψt� either BBM(d	1+β	 b) or SBM(d	1+
β	 b). Then the following holds: �e = 
νθ	 θ ∈ �0	∞�� and for any µ ∈ � there
exists a unique probability distribution Fµ on �0	∞� such that µ = ∫

νθFµ�dθ�.

The crucial step to prove Theorem 2 is the following proposition.

Proposition 1.2. Any invariant measure is translation invariant.

1.4. Critical dimension: diffusive clustering. Our aim is to give a precise
description of the clustering in the critical dimension d = 2/β. Hence we will
assume β = 2/d. For simplicity of notation we will also assume b = 1 in the
following discussion.

Proceeding as in Klenke (1997), we introduce the following concepts for the
description of the heights of the clusters and their expansions in space.

1. High density rescaling. For time t > 1 we define

ψ̃t = ψ̃0
t �= �log t�−1/βψt(1.20)

with (recall that λ is the d-dimensional Lebesgue measure)

� �ψ0� = Mt �=
{
� ��log t�1/βλ�	 if ψt is BBM	

δ�log t�1/β·λ	 if ψt is SBM�
(1.21)

2. Spatial rescaling. For �ψt� BBM(d	1+β	1) or SBM(d	1+β	1), let I = �0	1�,
respectively, I=� −∞	1�. We fix α ∈ I and define �ψ̃α

t � by

ψ̃α
t �= �α	 tψ̃t	 α ∈ I	(1.22)

where

�α	 t� � �Rd� → � �Rd�	 µ�·� �→ t−αd/2µ�tα/2 ·��
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That is, for B ∈ ��Rd� we set ψ̃α
t �B� = t−αd/2ψ̃t�tα/2B�. As above we let

ψ̃t = ψ̃0
t .

Remark. Since we intend to take the limit as t → ∞, it would not make
sense to allow α < 0 for BBM. Due to the particle structure in this case, we
would get PMt�η̃α

t �B� = 0� −→ 1 as t → ∞ for all bounded sets B ∈ ��Rd�.
This leads us to the different choices of I.

We introduce the total mass process �Zt�t≥0 of SBM(d	1 + β	1), which is
the “diffusion limit” of Galton–Watson processes with offspring probabilities
defined in (1.5) above. Here �Zt� is a process with independent increments
which can be characterized by its log-Laplace transform

v�t	K	 θ� = − log EK�exp�−θZt��	(1.23)

which is the unique solution of

v�0	K	 θ� = θK	

∂tv�t	K	 θ� = −v�t	K	 θ�1+β�
(1.24)

The solution can be given explicitly:

v�t	K	 θ� = �βt+ �Kθ�−β�−1/β�(1.25)

Let cβ = �2π�1 + β�1/β�−1 and recall that λ is the Lebesgue measure.

Theorem 3. For �ψt�, BBM(d	1 + 2/d	1) or SBM(d	1 + 2/d	1) and α ∈ I
the following holds:

� Mt�ψ̃α
t � �⇒ � 1�Zcβ�1−α�λ� as t → ∞�(1.26)

Multiple scale analysis. So far we have considered our rescaled process
ψ̃α at one scale α. A natural task is to investigate the limit behavior of
�ψ̃α1

t 	 � � � 	 ψ̃
αn

t � for α1	 � � � 	 αn ∈ I. In order to learn more about the spatial
structure of the clusters, we might also wish to choose different points of ob-
servation x1

t 	 � � � 	 x
n
t ∈ R

d. Theorem 3 indicates that the distances �xe
t − x

f
t �,

e �= f, of these points should grow in t on an algebraic scale αe	f ∈ I. Note that
a consistent choice of the αe	f implies that 2αe	f is an ultrametric on 
1	 � � � 	 n�.
Hence we may assume w.l.o.g. that the points of observation are indexed by a
finite (rooted) tree T and that αe	f = A�e ∧ f�, where

A� T −→ I

is a strictly decreasing map.
To explain this a bit, note that T carries a natural partial ordering ≤, where

e ≤ f iff e is an ancestor of f, that is, if e is closer to the root (denoted by �)
than f. Hence e ∧ f is the greatest common ancestor of e and f.

The pair L = �T	A� will be called a multiple space scale. We will assume
that X = �xe

t	 e ∈ T	 t ≥ 0� is a family of points xe
t ∈ R

d such that

�xe
t − x

f
t � ≈ tA�e∧f�/2 as t → ∞�



1064 A. KLENKE

As usual, at ≈ bt means �log at�/�log bt� −→ 1 as t → ∞. We refer to X as
L-spaced. Our aim is to study the asymptotics of the common distribution of
[recall � from (1.22)]

��A�e�	 t�xe
t
ψ̃t�e∈T as t → ∞	

where �z� � �Rd� → � �Rd� is the translation by z, ��zµ��·� = µ�z+ ·�.
We give a heuristic motivation for the next definition. Consider the simplest

case T = 
�	 e	 f�, e ∧ f = �. Since Brownian motion has range t1/2, the
common history of the space–time points �t	 xe

t�, and �t	 xf
t � ends at time t −

tA�e∧f�. After that time the histories of these points develop independently. In
fact, asymptotically the common history of �t	 xe

t� and �t	 xf
t � is contained in

ψ̃t−tA�e∧f�/2��−tA�e∧f�/2	 tA�e∧f�/2�d�. This, together with Theorem 3, suggests that
the intensity of �A�e�	 t�xe

t
ψ̃t and �A�f�	 t�x

f
t
ψ̃t should consist of Zcβ�1−A�e∧f��

plus two independent increments.
To be precise, let �Ze

t	 e ∈ T�t≥0 be the following Markov process on �0	∞�T.
Each �Ze

t�t≥0 is a �1+β� continuous state branching “diffusion” introduced in
(1.23). For e	 f ∈ T with e �= f we let Ze

t = Z
f
t for t ∈ �0	1 − A�e ∧ f��. For

t > 1 −A�e ∧ f�, the evolutions of Ze
t and Z

f
t shall be independent.

Theorem 4 (Multiple scale). Let �ψt� be BBM(d	1+2/d	1) or SBM(d	1+
2/d	1) and I = �0	1�, respectively, I=�−∞	1�. Then the following holds:

� Mt
[��A�e�	 t�xe

t
ψ̃t�e∈T

] �⇒ �
[(
Ze

cβ�1−A�e��λ
)
e∈T

]
as t → ∞�

By taking a linear tree T we obtain the following corollary.

Corollary 1.3.

� Mt
[�ψ̃α

t �B��α∈I
] �⇒fdd � 1[λ�B��Zcβ�1−α��α∈I

]
as t → ∞	 B ∈ ��Rd��

1.5. Outline. The rest of the paper is organized as follows. In Section 2 we
give upper and lower bounds of u�t	 x�f� in terms of the function φ�t	 x� in
Proposition 2.6. This is the key for the proof of Theorems 1 and 2 in Sections 2
and 3. In Section 4 we give better bounds, for the special situation β = 2/d,
that serve to prove Proposition 4.1. A coupling technique will be employed to
infer Theorem 4.

2. Proof for the low dimensions. In this section we give some lemmas
dealing with sub- and supersolutions to the equation Lβu = 0. With the aid
of these lemmas we prove Theorem 1. Some of the lemmas will be used in
Section 3 to prove the high-dimensional results.

The main tool for the investigation is a maximum principle for the nonlinear
parabolic differential operator Lβ. We state the following lemma without proof
and refer the reader to Protter and Weinberger [(1967), Chapter 3.7]. (In fact,
Protter and Weinberger only deal with the case of a bounded domain. Our
lemma follows by approximation arguments.)
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Lemma 2.1 (Maximum principle). Let L = Lt	H be the semiparabolic oper-

ator on R
d defined by

Lu�t	 x� = ∂tu�t	 x� − 1
2
u�t	 x� +H�t	 u�t	 x��	

where H� �0	∞�× �0	∞�→�0	∞� is continuous and nondecreasing in u. Let
f	g ∈ C+

c �Rd�, f ≤ g and T > 0. Let u�t	 x�f� and u�t	 x�g� be sub- and
supersolutions to Lu = 0 with initial conditions f, respectively, g. That is,

u�0	 x�f� = f�x�	 u�0	 x�g� = g�x�	 x ∈ R
d	

and

Lu�t	 x�f� ≤ 0	 Lu�t	 x�g� ≥ 0	 x ∈ R
d	 t ∈ �0	T��

We also assume that u and u are bounded and vanishing at infinity (as func-
tions of x for any t). Then

u�t	 x�f� ≤ u�t	 x�g�	 x ∈ R
d	 t ∈ �0	T��

To warm up we give two simple applications of the maximum principle.
Recall that u�t	 x�f� denotes the solution of the Cauchy problem (1.8).

Lemma 2.2. Let f	g ∈ C+
c �Rd� and let c > 1. Then

u�t	 x�f+ g� ≤ u�t	 x�f� + u�t	 x�g�	 x ∈ R
d	 t ≥ 0	(2.1)

and

u�t	 x� cf� ≤ cu�t	 x�f�	 x ∈ R
d	 t ≥ 0�(2.2)

Furthermore, if f ≤ g, then

u�t	 x�f� ≤ u�t	 x�g�	 x ∈ R
d	 t ≥ 0�(2.3)

Proof. Check that Lβ�u�t	 x�f� + u�t	 x�g�� ≥ 0 and Lβ�cu�t	 x�f�� ≥ 0.
The last inequality is trivial. ✷

Lemma 2.3. Let f ∈ C+
c �Rd� and let v�t	 x�f� = �pt ∗ f��x� be the solution

of the heat equation �∂t− 1
2
�v = 0, v�0	 · �f� = f. Then the following inequality

holds:

�1+ bβ �f�β∞ t�−1/βv�t	 x�f�≤u�t	 x�f�≤v�t	 x�f�	 x∈R
d	 t≥0�(2.4)

Proof. Let U�t	 x�K� = U�t�K�, K > 0, be the solution of LβU = 0,
U�0	 · �K� ≡ K. The explicit solution of this equation is

U�t�K� = K�1 + bKββt�−1/β�

By the maximum principle, for K ≥ �f�∞,

Lβu�t	 x�f� ≤ ∂tu− 1
2
u+ bUβu

= ∂tu− 1
2
u+ �bKβ��1 + bKββt�−1u�

(2.5)
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Hence L̃βu ≥ 0, where L̃β = L̃β	 t is defined by

L̃β	 tũ = ∂tũ− 1
2
ũ+ �bKβ��1 + bKββt�−1ũ�

Let ũ be the solution of L̃β	 tũ = 0. The maximum principle implies u�t	 x�f� ≥
ũ�t	 x�f�, x ∈ R

d, t ≥ 0. Note that ũ can be represented as

ũ�t	 x�f� = v�t	 x�f� exp
(
−
∫ t

0
bKβ�1 + bKββs�−1 ds

)
= v�t	 x�f��1 + bKββt�−1/β�

(2.6)

Since the maximum principle implies u�t	 x�f� ≤ v�t	 x�f�, x ∈ R
d, t ≥ 0, the

assertion is proved. ✷

Let A > 0, recall Gβ�t� from (1.14) and define u�t	 x� by

u�t	 x� =



At−d/2Gβ�t�−1 exp
(
−1

2
�x�2

2t

)
	 β <

2
d
	

At−d/2Gβ�t�−1 exp
(
−�1 −Gβ�t�−β��x�

2

2t

)
	 β = 2

d
	

At−d/2 exp
(
−1

2
�x�2

2t

)
	 β >

2
d
�

(2.7)

The definition of u for the case β = 2/d might look a little strange at first
glance. Clearly for t large enough, u�t	 x� ≤ At−d/2Gβ�t�−1 exp�− 1

2��x�2/2t��.
However, we will be able to show that u is a supersolution only for the defini-
tion given in (2.7).

Lemma 2.4 (Supersolution). Assume that β ≤ 2/d. There exists t0 =
t0�β	d� ≥ 0 such that for A large enough and t ≥ t0,

Lβu�t	 x� ≥ 0	 x ∈ R
d�(2.8)

Proof. We do the proof separately for critical and low dimensions.

Critical dimension �β = 2/d�. Note that

Gβ�t� = �2π�−d/2�log t�1/β(2.9)

and that G′
β�t� = �d/dt�Gβ�t� = �βt log t�−1Gβ�t� = �1/2π��d/2t�Gβ�t�1−β.

Hence a short calculation shows that for t ≥ exp�2 + 4π�,

Lβu�t	 x� =
u�t	 x�
tGβ�t�β

[
− 1
β

(
1 + 1

2π

)
+

(
1 −

(
1 + 1

2π

)
Gβ�t�−β

)�x�2

2t

+ bAβ exp
(
−β�1 −Gβ�t�−β��x�

2

2t

)]
≥ u�t	 x�

tGβ�t�β
[
− 1
β

(
1 + 1

2π

)
+ 1

2
�x�2

2t
+ bAβ exp

(
−β

�x�2

2t

)]
�

(2.10)
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Check separately that this is nonnegative for �x�2/4t ≥ �1 + 1/2π�/β and for
�x�2/4t < �1 + 1/2π�/β and A ≥ exp�4/β�/b1/β.

Low dimension �β < 2/d�. Note that

Gβ�t� = �2π�−d/2
(

1 − βd

2

)−1/β

�t1−βd/2 − 1�1/β(2.11)

and that

G′
β�t�=

d

dt
Gβ�t� = �2π�−d/2

(
1− βd

2

)−1/β 1
β

(
1− βd

2

)
�t1−βd/2 − 1�−1+1/βt−βd/2

=
(

1
β
− d

2

)
�1 − t1−βd/2�−1 Gβ�t�

t

≤
(

2
β
− d

)
Gβ�t�

t
for t ≥ 21/�1−βd/2��

Hence for t ≥ 21/�1−βd/2�,

Lβu�t	 x� = u�t	 x�
[
− d

4t
− G′

β�t�
Gβ�t�

+ �x�2

8t2

+ bAβt−βd/2Gβ�t�−β exp
(
−β

1
2
�x�2

2t

)]
≥ u�t	 x�1

t

[
− 2
β
+ �x�2

8t

+ bAβ�2π�βd/2
(

1 − βd

2

)
exp

(
−β

1
2
�x�2

2t

)]
�

(2.12)

Check separately that this expression is nonnegative for �x�2/8t ≥ 2/β and
for �x�2/8t < 2/β and

A ≥ 21/β exp�4/β�
�2π�d/2�1 − βd/2�1/βb1/ββ1/β

� ✷

We continue by giving subsolutions u. Recall that pt�x� is the heat kernel.
We define for a∈ �0	 �βb�−1/β�,

u�t	 x� = apt�x�Gβ�t�−1�(2.13)

Lemma 2.5 (Subsolution). In any dimension for t > 1,

Lβu�t	 x� ≤ 0	 x ∈ R
d�(2.14)

Proof. We calculate

Lβu�t	 x� = u�t	 x�Gβ�t�−β

(
baβpt�x�β − 1

β
pt�0�β

)
≤ 0	(2.15)

where the inequality holds since a ≤ �βb�−1/β. ✷
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Recall φ from (1.15).

Proposition 2.6. Let d ∈ N and 0 < β ≤ 1. Let f ∈ C++
c �Rd� and let

u�t	 x�f� be the solution of Lβu = 0 with u�0	 · �f� = f. Then there exist
constants a	A	 t0 > 0 such that

aφ�t/2	 x� ≤ u�t	 x�f� ≤ Aφ�4t	 x�	 x ∈ R
d	 t ≥ t0�(2.16)

Proof. Upper bound, low and critical dimensions. Assume β ≤ 2/d. Let u
and t0 be as in Lemma 2.4 with A′ [=A in the notation of (2.7)] large enough
such that f�x� ≤ u�t0	 x�, x ∈ R

d. By the maximum principle,

u�t	 x�f� ≤ u�t+ t0	 x�	 x ∈ R
d	 t ≥ 0�

Note that there exist constants A	C > 0 such that for t ≥ t0 [note that
Gβ�t�−β ≤ 1

2 if β = 2/d],

Aφ�4t	 x� ≥ Cφ�2�t+ t0�	 x� ≥ u�t+ t0	 x��
Upper bound, high dimension. Assume β > 2/d. Note that by (1.18) there

exist constants c	 c′ > 0 such that

Aφ�4t	 x� ≥ Ac′p4t�x� ≥ Acpt+1�x� for t ≥ 2�

Choose A large enough such that Acp1�x� ≥ f�x�� Note that

Lβ�Acpt�x�� = b�Acpt�x��1+β ≥ 0�

Hence by the maximum principle Acpt+1�x� ≥ u�t	 x�f�, t ≥ 0.
Lower bound. Note that there exists a′ > 0 such that for u of (2.13) with a′

instead of a,

u�4	 x�f� ≥ u�2	 x�	 x ∈ R
d�

Arguing as above, another application of the maximum principle yields that
for some c > 0, a > 0, u of (2.13) now again with a and for t ≥ 4,

u�t	 x�f� ≥ u�t− 2	 x� = cφ�t− 2	 x� ≥ aφ�t/2	 x�� ✷(2.17)

With Proposition 2.6 in hand we are able to prove the extinction and ex-
plosion in Theorem 1. It is, however, more subtle to show instability. Here we
need better lower bounds for u that reflect the clustering in low dimensions.
Roughly speaking, the picture is as follows. Let ε > 0 and B ∈ ��Rd� be
bounded. For t large with high probability there is no particle in B� ηt�B� = 0.
With a small probability, ηt�B� # 1/ε and there is no intermediate regime.
Hence for large t with overwhelming probability, exp�−εηt�B�� is either 0 or
close to 1 implying that exp�−εηt�B�� ≈ exp�−ηt�B��. This suggests that, for
given ε > 0 and indicator function f = �B, for t > 0 large enough we should
have u�t	 x� εf� ≈ u�t	 x�f�. [Recall that u�t	 x�f� is the solution of Lβu = 0
with u�0	 x�f� = f�x�.] This should carry over to f ∈ C+

c �Rd� by approxima-
tion.

For our purpose of showing instability in Theorem 1 it will be sufficient to
give a lower bound for u�t	 x� εf�.
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Lemma 2.7. Let β ≤ 2/d and f ∈ C++
c �Rd�. There exists a constant cf > 0

such that for ε > 0 and t large enough,

u�t	 x� εf� ≥ cfφ�t/2	 x��(2.18)

Proof. Note that there exists a constant c1
f ∈ �0	1� such that

c1
f p1 ≤ �p2 ∗ f��

Hence by Lemmas 2.3 and 2.2 [and the semigroup property of u (1.10)],

u�t	 x� εf� = u
(
t− 2	 x�u�2	 · � εf�)

≥ u
(
t− 2	 x� �1 + 2bβε �f�β∞�−1/βε�p2 ∗ f�)

≥ c2
f u�t− 2	 x� εp1�	

(2.19)

where c2
f �= c1

f�1 + 2bβε�f�β∞�−1/β > 0. Now we use two different arguments
for low and critical dimensions.

Critical dimension. Assume β = 2/d. Here we make use of the self-
similarity of SBM(d	1 + 2/d	1). Let a∈ �0	 �bβ�−1/β� and let u be the
corresponding subsolution according to Lemma 2.5. That is,

u�x	 t� = �2π�−d/2a · t−d/2�log t�−1/β exp�−�x�2/2t��
Abbreviating ρ = exp��a/ε�β/2π�, we get by the scaling property (1.11) that

u�t	 x� εp1�·�� = u�t	 x� �2π�1/βa�log ρ�−1/βρ1/βpρ�ρ1/2·��
= u�t	 x�ρ1/βu�ρ	 ρ1/2·��
= ρ1/βu�ρt	 ρ1/2x�u�ρ	 ·���

(2.20)

By time homogeneity, u�s+·	 ·� is also a subsolution for all s ≥ 0. Hence u has
the property

u�t+ s	 x� ≤ u�t	 x�u�s	 ·��	 s	 t ≥ 0	 x ∈ R
d�(2.21)

We can thus continue (2.20) by

u�t	 x� εp1�·�� ≥ ρ1/βu�ρ�t+ 1�	 ρ1/2x�
= �log�t+ 1� + log ρ�−1/β apt+1�x�
≥ �log�t+ 1� + log ρ�−1/β a2−d/2 pt�x� (for t ≥ 1�
≥ 2−du�t	 x� (for t > ρ+ 1��

(2.22)

[Note that for t > ρ + 1, log�t + 1� + log�ρ� ≤ log��t + 1��t − 1�� ≤ 2 log t.]
Combining (2.19) and (2.22) we get that there exist c3

f, c4
f and cf > 0 such

that for ε > 0 and t large enough,

u�t	 x� εf� ≥ c3
fu�t− 2	 x� ≥ c4

fu�t/2	 x�
= cfφ�t/2	 x��

(2.23)
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Low dimension. Assume β < 2/d. We make implicit use of the fact that
SBM(d	1 + 2/d	1) has a density in the low dimensions. Recall from (1.13)
that u is the Laplace transform of SBM. The existence of a density of SBM
is known to be equivalent to the existence of a smooth solution u to Lβu = 0
with a delta distribution δ0 as initial condition [see Fleischmann (1988)]. More
precisely, u�t	 x� δ0�, t > 0, x ∈ R

d, is the solution of Lβu = 0 such that for
h ∈ C+

c �Rd�,

lim
t→0

∫
u�t	 x� δ0�h�x�dx = h�0��

Brezis, Peletier and Terman (1986) show in their Appendix that there exists
t0 > 0 such that

u�t	 x� δ0� ≥ 1
2pt�x�	 x ∈ R

d	 0 < t ≤ t0�

Note that the maximum principle implies

u�t	 x� δ0� ≤ pt�x�	 x ∈ R
d	 t > 0�

Hence by Lemma 2.3 for t+ s > t0 [note that � 1
2pt0

�∞ = 1
2�2πt0�−d/2],

u�t	 x�ps�·�� ≥ u�t+ s	 x� δ0�
= u�t+ s− t0	 x�u�t0	 · � δ0��
≥ u

(
t+ s− t0	 x� 1

2pt0
�·�)

≥ 1
2

(
1 + 2−βbβ�t+ s��2πt0�−βd/2

)−1/β
pt+s�x��

(2.24)

Let c3
f = 1

2�1 + 2−βbβ�2πt0�−βd/2�−1/β. By the scaling property (1.11) and by
(2.19) there exists cf > 0 such that for t ≥ ε−1/�1/β−d/2�,

u�t	 x� εf� ≥ c2
fu�t− 2	 x� εp1�·��

= c2
ft

−1/βu

(
1 − 2

t
	 t−1/2x� t1/βεt−d/2p1/t�·�

)
≥ c2

ft
−1/βu

(
1 − 2

t
	 t−1/2x� p1/t�·�

)
≥ c2

fc
3
ft

−1/βp1−1/t�t−1/2x�

≥ cfφ

(
t

2
	 x

)
� ✷

(2.25)

Proof of Theorem 1. We do the proof only for �ψt� = �ζt� SBM(d	1+β	 b).
An easy application of Jensen’s inequality in (1.12) and (1.13) then yields the
claim for BBM(d	1 + β	 b).

To prove part (i) note that � �ζt� �⇒ δ0 as t → ∞ is equivalent to

lim inf
t→∞

E�exp�−�ζt	 f��� = 1	 f ∈ C++
c �Rd��(2.26)
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However, for such f, by Proposition 2.6, there exist a	A > 0 such that

lim inf
t→∞

E�exp�−A�ζ0	 φ�t	 ·���� ≤ lim inf
t→∞

E�exp�−�ζ0	 u�t	 · �f����
= lim inf

t→∞
E�exp�−�ζt	 f���

≤ lim inf
t→∞

E�exp�−a�ζ0	 φ�t	 ·�����
(2.27)

These expressions are equal to 1 if (and only if),

�ζ0	 φ�t	 ·�� −→ 0 as t → ∞ stochastically�(2.28)

This proves part (i).
Now assume that (2.28) does not hold. We have to show that �ζt	 f� is

stochastically unbounded. This is the case if and only if

lim sup
ε→0

lim inf
t→∞

E�exp�−�ζt	 εf��� < 1�(2.29)

By Lemma 2.7 there exists a constant cf > 0 such that the left-hand side of
(2.29) is dominated by

lim inf
t→∞

E�exp�−cf�ζ0	 φ�t	 ·����	(2.30)

which is strictly smaller than 1 by assumption. Hence ζt is unstable.
Assume that the assumption of part (iii) holds, that is, � ��ζ0	 φ�r	 ·��� �⇒

δ∞. The assertion that ζt explodes is equivalent to

lim sup
t→∞

E�exp�−�ζt	 f��� = 0(2.31)

for all f ∈ C++
c �Rd�. This, however, can be shown with the aid of Proposition

2.6 as in the proof of part (i). ✷

3. Proof for the high dimensions. Bramson, Cox and Greven (1997)
give a proof for Theorem 2 in the case β = 1. Most of their proof works without
any changes for all β ∈ �0	1�. We do not repeat their entire proof here but
only give an outline of their strategy and proofs of the lemmas that needed
(minor) modifications.

Bramson, Cox and Greven (1997) use Proposition 2.6 to show that if ψt is
stable, then �ψ0	 pt�·�� is stochastically bounded (as t → ∞). They infer with
the aid of Lemma 3.1 below that if � �ψ0� is invariant, then for f ∈ C+

c �Rd�
and z ∈ R

d,

E�exp�−�ψt	 f�z+ ·���� − E�exp�−�ψt	 f��� −→ 0 as t → ∞�(3.1)

Since the left-hand side of (3.1) does not depend on t (by the assumption that
� �ψ0� is an invariant law), we know that � �ψt� is translation invariant, hence
Proposition 1.2 holds.

A standard argument now yields the claim of Theorem 2.
We only give the proof of Lemma 3.1 since it is here where small changes

have to be made to cover the case β < 1.
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For ρ > 0 let B�ρ� = 
x ∈ R
d	 �x� < ρ� denote the ball with radius ρ

centered at the origin.

Lemma 3.1. Let ε > 0 and 0 < M < 1/4ε. Let f ∈ C++
c �Rd�. For t large

enough and all x1	 x2 ∈ B�εt� with �x1 − x2� ≤ M,

u�t	 x1�f� ≤ exp
(
8
√
Mε/β

)
u�t	 x2�f��(3.2)

Proof.
Step 1. We show that for x ∈ R

d and t ≥ 0,

e−2δ/βv
(
δt	 x�u��1 − δ�t	 · �f�) ≤ u�t	 x�f� ≤ v

(
δt	 x�u��1 − δ�t	 · �f�)	(3.3)

where v is defined as in Lemma 2.3. The right-hand inequality follows imme-
diately from the maximum principle. For the other inequality we proceed as
follows.

Fix t > 0. Define the linear operator Kβ for smooth functions w�s	 x� by

Kβw = ∂sw− 1
2

w+ 2

βt
w�

By (2.5) for s > t/2,

Kβu�s	 x�f� ≥ Lβu�s	 x�f��
Let w = w�s	 x�f� be the solution of the Cauchy problem Kβw = 0, w�0	 · �f� =
f. By the maximum principle (applied to Kβ), w�δt	 x�u��1 − δ�t	 · �f�� ≤
u�t	 x�f�. Note that [as in (2.6)] w can be represented as

w�δt	 x�u��1 − δ�t	 · �f�� = v�δt	 x�u��1 − δ�t	 · �f�� exp
(
−
∫ δt

0

2
β

ds

)
= v�δt	 x�u��1 − δ�t	 · �f�� exp

(−2δ
β

)
�

(3.4)

This however yields (3.3).
Step 2. Finally we show the assertion of the lemma. Let x ∈ B�εt�. We write

v�δt	 x�u��1 − δ�t	 · �f�� = I1�x� + I2�x�

�=
∫
B�4εt�

pδt�z	 x�u��1 − δ�t	 z�f�dz

+
∫
B�4εt�c

pδt�z	 x�u��1 − δ�t	 z�f�dz�

(3.5)

An easy estimate using �x − z� ≥ 3εt for x ∈ B�εt� and z ∈ B�4εt�c and
Lemma 2.3 yields for t large enough,

I2�x� ≤
∫
B�4εt�c

dzpδt�x	 z�
∫

R
d
dyp�1−δ�t�z	 y�f�y�

≤ �2πδt�−d/2 exp�−9ε2t/2��f�1 ≤ exp�−4ε2t��f�1�

(3.6)
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We obtain u�t	 x�f� ≥ exp�−3ε2t��f�1 for t large by a similar estimate using
the other inequality in Lemma 2.3. Hence

I2�x� ≤ exp�−ε2t�u�t	 x�f��(3.7)

Let x1	 x2 ∈ B�εt� with �x1 − x2� ≤ M. For z ∈ B�4εt�, clearly

�z− x2�2 − �z− x1�2 = �x2 − x1�2 + 2�z	 x2 − x1�
≤ �x2 − x1� �x2 − x1� + 2�z� �x2 − x1�
≤ M · 2εt+ 2 · 4εt ·M = 10εM�

Hence pδt�z	 x1� ≤ exp�5εM/δ�pδt�z	 x2�. Together with (3.3) we get (recall
δ = √

εM)

I1�x1� ≤ exp�5εM/δ�
∫
B�4εt�

pδt�z	 x2�u��1 − δ�t	 z�f��dz(3.8)

≤ exp�5εM/δ�v�δt	 x2�u��1 − δ�t	 · �f��
≤ exp�2δ/β+ 5εM/δ�u�t	 x2�f�(3.9)

= exp�7δ/β�u�t	 x2�f��
Together with (3.7) this implies for t large

u�t	 x1�f� ≤ exp�8δ/β�u�t	 x2�f�� ✷

4. Proof for the diffusive clustering. In order to show the weak conver-
gence statement (1.26) of Theorem 3 we will show convergence of the Laplace
transforms in the case of SBM. This is the content of Proposition 4.1 below.
The case of BBM will follow by a comparison argument using the embedded
particle system and the law of large numbers (here α ≥ 0 is needed).

The log-Laplace transform of the left-hand side of (1.26) for a test function
f ∈ C+

c �Rd� is [recall (1.13) and (1.20)–(1.22)]

− log E�log t�1/βλ�exp�−�ζ̃α
t 	 f���

= − log E�log t�1/βλ�exp�−�ζ̃t	 t−αd/2f�t−α/2 ·����
= − log E�log t�1/βλ�exp�−�ζt	 �log t�−1/βt−αd/2f�t−α/2 ·����
= ��log t�1/βλ	 u�t	 · � �log t�−1/βt−αd/2f�t−α/2 ·����

(4.1)

Using the scaling relation (1.11) (with ρ = tα), this quantity equals (recall
β = 2/d)

��log t�1/βλ	 t−αd/2u�t1−α	 t−α/2 · � �log t�−1/βf��
= 〈�log t�1/βλ	 u�t1−α	 · � �log t�−1/βf�〉
= �1 − α�−1/β〈�log t′�1/βλ	 u�t′	 · � �log t′�−1/β�1 − α�1/βf�〉	

(4.2)
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where we put t′ = t1−α. We have to show that this expression converges as
t′ → ∞ to [recall (1.23), (1.25) and that cβ = �2π�1 + β�1/β�−1]

− log E1�exp�−Zcβ�1−α��λ	f��� = �βcβ�1−α�+ �λ	f�−β�−1/β

= �1−α�−1/β�cβ +�λ	 �1−α�1/βf�−β�−1/β�
(4.3)

Comparing this with (4.2), it is clearly enough to handle the case α = 0. This
is the content of the following proposition.

Proposition 4.1. Assume β = 2/d and let u be the solution of (1.8). For
f ∈ C++

c �Rd�, x ∈ R
d, −∞ < α ≤ 1 and s ≥ 0 the following hold.

(i) lim
t→∞

�t log t�1/βu�t− s	 t1/2x� �log t�−1/βf�

= �2π�βcβ + �λ	f�−β��−1/β exp�−�x�2/2��

(ii) lim
t→∞

��log t�1/βλ	 u�t	 · � �log t�−1/βf�� = �βcβ + �λ	f�−β�−1/β.

4.1. Proof of Proposition 4.1. The proof of Proposition 4.1 copies the proofs
of Lee [(1991), Theorems 2.1, 2.3 and 2.4]. Lee’s results cover only the case
β = 1, but can easily be adapted to β < 1. For the sake of completeness we
give the proof in detail.

Strategy of the proof. Recall that b = 1 and that the (nonlinear) operator
Lβ is defined by

Lβu = ∂tu− 1
2
u+ u1+β�

As indicated by Proposition 2.6, a solution of Lβu = 0 should be “close” to a
multiple of

φ�t	 x� = t−d/2�log t�−1/β exp�−�x�2/2t��
However, in Proposition 2.6 we had no control of the constants a and A of
the upper and lower bounds of u�t	 x�f� in terms of φ�t	 x�. (The point that φ
in the upper and lower bounds is evaluated not at time t, but at t/2 and 4t,
respectively, could be repaired rather easily.)

More precisely, we would like to find a constant θβ such that for ε > 0 and
t large enough,

θβ�1 − ε��t log t�−1/β exp
(
−�x�2

2t

)
≤ u�t	 x�f�

≤ θβ�1 + ε��t log t�−1/β exp
(
− �x�2

2t�1 + ε�
)
	 x ∈ R

d�

We make the following ansatz to determine θβ. For θ > 0 define ũ by

ũ = θφ+ t−1/β�log t�−�1+1/β�g�t−1/2x�	(4.4)

with a “smooth” function g.
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Let

H = −
(

1
β
I+ 1

2

+ x

2
∇
)

and

fθ�t	 x� = θ1+β exp
(
−�1 + β��x�

2

2t

)
− θ

β
exp

(
−�x�2

2t

)
�

Then

Lβũ = �t log t�−�1+1/β�[fθ�t	 x� − �Hg��t−1/2x�]+ o��t log t�−�1+1/β���
Hence we search for θ such that Hg�x� = fθ�1	 x� has a solution g. In
Lemma 4.2 we construct a right inverse G of H on a certain subspace V ⊂
Cb�Rd�. It turns out that fθ�1	 ·� ∈ V if and only if

θ = θβ =
(

1
β
�1 + β�1/β

)1/β

�(4.5)

The problem with this ansatz is that we cannot control the tail behavior of
g�x� at infinity. So now that we have determined θβ we come back to the main
idea of constructing sub- and supersolutions to Lβu = 0. We try the following
ansatz:

u�t	 x� = �θβ − ε� φ�t	 x� + t−1/β�log t�−1−1/βg−�t−1/2x�	
u�t	 x� = �θβ + ε� φ�t	 x� + t−1/β�log t�−1−1/βg+�t−1/2x�	

(4.6)

where the functions g− and g+ will be determined in terms of G. In Lemma
4.3 we control the tails of g− and g+ and in Lemma 4.4 we show that these u
and u are indeed sub- and supersolutions to our problem.

The second step in the proof of Proposition 4.1 is to deal with the fact that
we rescale the initial value of our Cauchy problem, that is, that we start
u in �log t�−1/βf. We use our new estimates on the (nonrescaled) behavior
of u to give a refinement of Lemma 2.7 that also contains an upper bound
(Lemma 4.7). First we reduce the problem to initial conditions of the form ap1,
a > 0 (Lemma 4.6). Next we use a similar scaling and comparison argument
as in the proof of Lemma 2.7 to deal with general initial data.

The conclusion of part (i) of Proposition 4.1 is then easy. Statement (ii)
follows by a simple dominated convergence argument.

The details. We start by giving a right inverse G of

H = −
(

1
β
I+ 1

2

+ x

2
∇
)

on the linear space V generated by functions R
d → R of the type

qa	 b�x� = a−d/2 exp
(
−�x�2

2a

)
− b−d/2 exp

(
−�x�2

2b

)
	 a	 b > 0�

Define for s > 0 and y	 z ∈ R
d,

G�s	 y	 z� = s−1�2π�1 − s��−d/2 exp
(
−�y− s1/2z�2

2�1 − s�
)
�
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Lemma 4.2. We can define a linear operator G� V → Cb�Rd� by

�Gqa	b��y� =
∫ 1

0

∫
R

d
G�s	 y	 z�qa	 b�z�dzds�

The operator G is the right inverse of H on V. That is, HG = idV.

Proof. It is easily verified that the integral converges. Hence G is well
defined. Now let

v�t	 x� =
∫ t

0

∫
R

d
�2π�−d/2�t− s�−d/2 exp

(
−�x− z�2

2�t− s�
)
s−1−d/2qa	 b�s−1/2z�dzds�

Note that the integral converges, that v�1	 ·� = Gqa	b and that(
∂t − 1

2

)
v�t	 x� = t−1−d/2q�t−1/2x��

By the substitution s′ = ts we obtain v�t	 x� = t−d/2v�1	 t−1/2x�. Thus
�∂t − 1

2
�v�t	 x� = t−1−d/2�Hv�1	 ·���t−1/2x�� Hence qa	 b�y� = Hv�1	 y� =
H�Gqa	b��y� as desired. ✷

Note that we can find a function g such that Hg = fθ�1	 ·� if fθ�1	 ·� ∈ V.
This, however, is equivalent to θ = θβ with θβ defined in (4.5)

The next aim is to construct the functions g− and g+ of (4.6) and to give
upper and lower bounds for g− and g+.

For 0 < ε < min�β/�1 − β�	 θβ/2� [where β/�1 − β� = ∞ if β = 1] define

q−�x� = ρ−q1	1/�1+β�

and

q+�x� = ρ+q1+kε	1/�1+β�	

where

ρ− = ρ−�ε� = �θβ − ε�1+β

�1 + β�1/β
	

ρ+ = ρ+�ε� = �θβ + ε�1+β

�1 + β�1/β

and k = β2/�2θβ�. Now let g− = Gq− and g+ = Gq+.

Lemma 4.3. There exist constants 0 < m, M < ∞ such that for all x ∈ R
d,

−m exp
(
−�x�2

2

)
≤ g−�x� ≤ M exp

(
− �x�2

2�1 + ε�
)
	(4.7)

−m exp
(
−�x�2

2

)
≤ g+�x� ≤ M exp

(
− �x�2

2�1 + kε�
)
�(4.8)

Proof. We only give the proof of (4.8). The proof of (4.7) is similar but
easier.



INFINITE VARIANCE BRANCHING MODELS 1077

By the substitution y = s1/2z and the Chapman–Kolmogorov equation, we
get

g+�x� = ρ+
∫ 1

0
ds

∫
R

d
dz s−1�2π�1 − s��−d/2 exp

(
−�x− s1/2z�2

2�1 − s�
)

×
[
�1 + kε�−d/2 exp

(
− �z�2

2�1 + kε�
)

− �1 + β�d/2 exp
(
−�1 + β��z�

2

2

)]

= ρ+
∫ 1

0
ds s−1

[
�1 + skε�−d/2 exp

(
− �x�2

2�1 + skε�
)

−
(

1 − βs

1 + β

)−d/2

exp
(
− �x�2

2�1 − βs/�1 + β��
)]

�

(4.9)

Choose a∈ �0	1�. Then clearly,∫ 1

a
· · · ds ≤

(∫ 1

a
s−1�1 + skε�−d/2 ds

)
exp

(
− �x�2

2�1 + kε�
)
�

By partial integration we see that the
∫ a

0 term equals∫ a

0
ds log s

[
kε

d�1 + skε� + �x�2

2�1 + skε�2+d/2
exp

(
− �x�2

2�1 + skε�
)

+ β

1 + β

d�1 − βs/�1 + β�� + �x�2

2�1 − βs/�1 + β��2+d/2

× exp
(
− �x�2

2�1 − βs/�1 + β��
)]

+ �log a�
[
�1 + akε�−d/2 exp

(
− �x�2

2�1 + akε�
)

−
(

1 − βa

1 + β

)−d/2

exp
(
− �x�2

2�1 − βa/�1 + β��
)]

= O

(
�1 + �x�2� exp

(
− �x�2

2�1 + akε�
))

= O

(
exp

(
− �x�2

2�1 + kε�
))

� ✷

(4.10)

Now we are able to construct our sub- and supersolutions u and u.

Lemma 4.4. Let 0 < ε < min�β/�1 − β�	 θβ/2� and g− and g+ as in
Lemma 4.3. Define u and u by

u�t	 x� = �θβ − ε� φ�t	 x� + t−1/β�log t�−1−1/βg−�t−1/2x�	

u�t	 x� = �θβ + ε� φ�t	 x� + t−1/β�log t�−1−1/βg+�t−1/2x��
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Then Lβu ≤ 0 and Lβu ≥ 0. Furthermore, for t large enough and all x ∈ R
d,

0 ≤ �θβ −2ε�φ�t	 x�≤u�t	 x�≤ θβ �t log t�−1/β exp
(
− �x�2

2t�1 + ε�
)
	(4.11)

0 ≤ θβφ�t	 x�≤u�t	 x�≤ �θβ +2ε� �t log t�−1/β exp
(
− �x�2

2t�1 + ε�
)
�(4.12)

Proof. From (4.7) and (4.8) it is clear that (4.11) and (4.12) hold. In order
to show that u and u are sub- and supersolutions, we have to give upper and
lower bounds for Lβu and Lβu. Note that for a	 b ∈ R, a > 0 and &b&/a small
enough, &�a+ b�1+β − a1+β& < 4aβb. We use this estimate to show that

Lβu�t	 x� ≤ Lβ��θβ − ε�φ�t	 x�� + �t log t�−1−1/β�Hg−��t−1/2x�

+ 4M��θβ − ε�φ�t	 x��βt−1/β�log t�−1−1/β exp
(
− �x�2

2t�1 + ε�
)

+m

(
1 + 1

β

)
t−1−1/β�log t�−2−1/β exp

(
−�x�2

2t

)
= �t log t�−1−1/β

[
�θβ − ε�1+β exp

(
−�1 + β��x�

2

2t

)
− θβ − ε

β
exp

(
−�x�2

2t

)
+ ρ− exp

(
−�x�2

2t

)
− ρ−�1 + β�1/β exp

(
−�1 + β��x�

2

2t

)]
+O

(
t−1−1/β�log t�−2−1/β exp

(
−�x�2

2t

))
= �t log t�−1−1/β

(
ρ− − θβ − ε

β

)
exp

(
−�x�2

2t

)
+O

(
t−1−1/β�log t�−2−1/β exp

(
−�x�2

2t

))
≤ 0

(4.13)

for t large enough, since ρ− − �θβ − ε�/β < 0 for 0 < ε < θβ.
Similarly, for t large,

Lβu ≥ Lβ��θβ + ε�φ�t	 x�� + �t log t�−1−1/β�Hg+��t−1/2x�

− 4m��θβ + ε�φ�t	 x��βt−1/β�log t�−1−1/β exp
(
−�x�2

2t

)
−M�1 + 1/β�

(
t−1−1/β�log t�−2−1/β exp

(
− �x�2

2t�1 + kε�
))

(4.14)
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= �t log t�−1−1/β
[
ρ+�1 + kε�−d/2 exp

(
− �x�2

2t�1 + kε�
)

− θβ + ε

β
exp

(
−�x�2

2t

)]
+O

((
t−1−1/β�log t�−2−1/β exp

(
− �x�2

2t�1 + kε�
))

≥ 0	

since ρ+�1 + kε�−d/2 − �θβ + ε�/β > 0. To see the latter inequality, note that

1 + kε = 1 + β2ε

2θβ

= ββ

1 + β

[
θ
β2

β + 1
2
β2θ

β2−1
β ε

]
<

ββ

1 + β
�θβ + ε�β2

�

This inequality holds since ε < θβ. Thus

�θβ + ε�
[ �θβ + ε�β
�1 + β�1/β

�1 + kε�−1/β − 1
β

]
> 0	

as claimed. ✷

A simple consequence of Lemma 4.4 is the following result on the asymptotic
behavior of u.

Lemma 4.5. For f ∈ C++
c �Rd� the following holds:

lim
t→∞

�t log t�1/βu�t	 t1/2x	f� = θβ exp�−�x�2/2�	 x ∈ R
d�

The proof of this statement is simple with Lemma 4.4 at hand. Since we
will not make use of this lemma, we omit the details and refer the reader to
Lee [(1993), pages 304 and 305].

So far we have considered only a fixed initial condition u�0	 · �f� = f of the
Cauchy problem Lβu = 0. The next aim is to change the initial condition to
�log t�−1/βf.

Define

b�x�f� = inf
s≥0

lim inf
t→∞

�t log t�1/βu�t− s	 t1/2x� �log t�−1/βf�

and

B�x�f� = sup
s≥0

lim sup
t→∞

�t log t�1/βu�t− s	 t1/2x� �log t�−1/βf��

In order to prove Proposition 4.1 we will give upper and lower bounds for B
and b, respectively.

The first step is to reduce the situation to f�x� replaced by �λ	f��2π�−d/2 ·
exp�−�x�2/2�� Recall that pt is the heat kernel.
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Lemma 4.6. Let f ∈ C++
c �Rd�. For x ∈ R

d the following inequalities hold:

b�x�f� ≥ b�x� �λ	f�p1�	
B�x�f� ≤ B�x� �λ	f�p1��

Proof. Note that for x	y ∈ R
d and t	 δ > 0,

�x�2

2t�1 + δ� −
�x− y�2

2t
≤ 1

t

1 + δ

2δ
�y�2�

Hence for K ⊂ R
d compact and ε > 0 we can find δ > 0 and t0 > 0 such that

for f ∈ C++
c �Rd� with supp�f� ⊂ K,

pt ∗ f ≤ �1 + ε��λ	f�p�1+δ�t	 t ≥ t0�

Similarly we get δ > 0 and t0 > 0 such that

pt ∗ f ≥ �1 − ε��λ	f�p�1−δ�t	 t ≥ t0�

Hence if we let dt = ε�f�−β
∞ log t, we get with Lemmas 2.3 and 2.2 that for

dt > t0,

u�t− s	 t1/2x� �log t�−1/β f�
= u

(
t− s− dt	 t

1/2x�u�dt	 · � �log t�−1/β f�)
≥ u

(
t− s− dt	 t

1/2x� �1 − ε� �log t�−1/β �pdt
∗ f�)

≥ u
(
t− s− dt	 t

1/2x� �1 − ε�2 �log t�−1/β �λ	f�p�1−δ�dt

)
≥ �1 − ε�2 u

(
t− s− dt	 t

1/2x� �log t�−1/β �λ	f�p�1−δ�dt

)
≥ �1 − ε�2 u

(
t− s− δdt − 1	 t1/2x� �log t�−1/β �λ	f�p1

)
�

Since dt ' t, we obtain

b�x�f� ≥ �1 − ε�2 b�x� �λ	f� p1��
Now let ε → 0 to obtain the claim. The claim for B follows analogously using
the opposite inequality in Lemma 2.3. ✷

Now we give the bounds for b�x�ap1� and B�x�ap1�. The result is a refine-
ment of Lemma 2.7 and will be obtained by a similar scaling argument.

Lemma 4.7. For a > 0 and x ∈ R
d the following inequalities hold:

b

(
x�a exp

(
−� · �2

2

))
≥

( �θβa�β
aβ + �θβ�β

)1/β

exp
(
−�x�2

2

)
	

B

(
x�a exp

(
−� · �2

2

))
≤

( �θβa�β
aβ + �θβ�β

)1/β

exp
(
−�x�2

2

)
�
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Proof. We do the proof only for the second inequality. The proof of the
other inequality is quite similar.

Recall from (1.11) that

u�t	 x�ρ1/βf�ρ1/2·�� = ρ1/βu�ρt	 ρ1/2x�f�	 ρ > 0�(4.15)

Thus for s > 0, t − s > 0 large enough and ρ = ρ�t� = t�θβ�β/aβ

we have by
(4.12),

u�t− s	 x� �log t�−1/βa exp�−� · �2/2��
= u�t− s	 x� θβ�log ρ�−1/β exp�−� · �2/2��
≤ u�t− s	 x�ρ1/βu�ρ	 ρ1/2·��
= ρ1/βu�ρ�t− s�	 ρ1/2x� u�ρ	 ·��
≤ ρ1/βu�ρ�t− s+ 1�	 ρ1/2x��

(4.16)

We infer that for ε > 0 uniformly in x ∈ R
d,

sup
s≥0

lim sup
t→∞

�t log t�1/βu

(
t− s	 t1/2x� �log t�−1/βa exp

(
−� · �2

2

))
≤ sup

s≥0
lim sup

t→∞
�t log t�1/βρ1/βu�ρ�t− s+ 1�	 �ρt�1/2x�

≤ sup
s≥0

lim sup
t→∞

�t log t�1/β�t− s+ 1�−1/β�log�ρ�t− s+ 1���−1/βθβ

× �1 + ε� exp
(
− �x�2t

2�1 + ε��t− s+ 1�
)

= sup
s≥0

lim sup
t→∞

(
log t

log ρ+ log t

)1/β

θβ�1 + ε� exp
(
− �x�2

2�1 + ε�
)

= θβ�1 + ε� exp
(
− �x�2

2�1 + ε�
)( �θβa�β

aβ + �θβ�β
)1/β

�

(4.17)

Now let ε → 0. ✷

Proof of Proposition 4.1. The proof of Proposition 4.1 is now easy. Com-
bine Lemmas 4.6 and 4.7 to obtain part (i).

In order to prove part (ii), note that by Lemma 2.3,

�t log t�1/βu�t	 t1/2x� �log t�−1/βf� ≤ t1/β�pt ∗ f��t1/2x�
= �p1 ∗ �t1/βf�t1/2·����x�
≤ cfp2�x� for t ≥ 1

for some cf > 0. Hence dominated convergence yields the claim. ✷
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4.2. Proof of Theorem 3. First consider the case where �ψt� is SBM(d	1+
2/d	1). Note that here the assertion is immediate from Proposition 4.1(ii), by
(1.13) and the scaling relation [see (4.2)]

� ρ·λ�t−α/βζt�tα/2·�� = � ρ·λ�ζt1−α�·���(4.18)

A more detailed discussion precedes Proposition 4.1.
Now assume that �ψt� = �ηt� is BBM(d	1 + 2/d	1). The link to the SBM

is the embedded particle system [an idea that goes back to Gorostiza, Roelly-
Coppoletta and Wakolbinger (1990), Lemme 1]:

“For fixed time horizon t, poissonizing the initial state m
first and then running a BBM �ηs� is the same as running
SBM �ζs� with initial state m and then Poissonizing the
random population ζt.”

(4.19)

To make this precise we define a new random measure Xt such that
� �Xt&ζt� = � �ζt� [recall that � �m� is the law of a Poisson point process
with intensity measure m]. Then (4.19) says that, for m ∈ � �Rd�,

� � �m��ηt� = � m�Xt��(4.20)

To check this let f ∈ C+
c �Rd�. Then [recall (1.12) and (1.13)]

E� �m��exp�−�ηt	 f��� = exp
(
−
∫
m�dx� (1 − Eδx�exp �−�ηt	 f���

))
= exp�−�m	u�t	 ·	1 − e−f���
= Em�exp�−�ζt	1 − e−f���
= Em�exp�−�Xt	f����

(4.21)

Now for A ∈ ��Rd� bounded and α ≥ 0 by the law of large numbers,

E�log t�1/βλ�t−αd/2�log t�−1/β&Xt�tα/2A�− ζt�tα/2A�&�−→0 as t→∞� ✷(4.22)

4.3. Proof of Theorem 4. Note that as above, the case of �ψt� BBM can be
derived from the case �ψt� SBM. Hence we will now assume that �ψt� = �ζt�
is SBM(d	1 + 2/d	1).

The idea of the proof is an induction over the length of the tree T. Re-
call the heuristics given in the discussion preceding Theorem 4. The key
point in the induction is to show that the “important” information about
ζ̃t−tα &�−tα/2	 tα/2�d is already contained in ζ̃t−tα��−tα/2	 tα/2�d�. We do so by con-
structing a coupling of �ζt−tα+s�s≥0 with a SBM�d	1+2/d	1� �ζ2

s �s≥0 started in
t−αd/2ζt−tα��−tα/2	 tα/2�d�λ. We show that the coupling is successful in a certain
sense within time s = tα.

We prepare for the proof of Theorem 4 by stating a coupling lemma and a
comparison lemma both taken from Klenke (1997) (stated there for the case
β = 1 only). Note that we give a new proof of the comparison lemma since the
second moment used in Klenke (1997) is not available here.
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Lemma 4.8 (Coupling). Let S > R > 0. Consider �ζ1
s �s≥0 SBM�d	1 +

2/d	1�. Assume that � �ζ1
0 � is translation invariant and that ε > 0 and

0 < ρ < ∞ are chosen such that

E
[
ζ1

0��0	1�d�] = ρ	

E
[&R−dζ1

0��0	R�d� −S−dζ1
0��0	 S�d�&

]
< ε	

E
[&ζ1

0��0	 S�d� − ζ1
0�S�z+ �0	1�d��&] < εSd ∀z ∈ �−1	1�d�

Then there exists a coupling �ζ1
s 	 ζ

2
s �s≥0 [i.e., �ζ2

s � is also SBM(d	1+2/d	1) and
both processes are defined on the same probability space] such that

�
[
ζ2

0

∣∣ζ1
0

] = S−dζ1
0��0	 S�d�λ(4.23)

and

E
[∥∥�ζ1

s − ζ2
s �
∣∣
B

∥∥] ≤ λ�B�
[
4ε+ d exp

(−D2

2s

)
+ 2

√
d

π
ρRs−1/2

]
	(4.24)

where B ∈ ��Rd�, B ⊂ �0	 S�d and D = dist�B	R
d \ �0	 S�d�.

The proof is Corollary 3.7 in Klenke (1997). In fact the proof given there
does not rely on the finite variance available there.

With the tool of the coupling lemma we are able to give a proof of the
following lemma that does not rely on second moments.

Lemma 4.9 (Comparison). Let α∈ �−∞	1� and let a�t�	 b�t� ≈ tα, that is,

lim
t→∞

log a�t�
log t

= lim
t→∞

log b�t�
log t

= α�

Then

E�log t�1/βλ[�log t�−1/β
∣∣a�t�−dζt��0	 a�t��d�− b�t�−dζt��0	 b�t��d�

∣∣]−→0

as t → ∞�
(4.25)

Proof. The main tool for the proof is the coupling lemma, Lemma 4.8. We
prepare for the use of it.

By the basic scaling relation (4.18) we may w.l.o.g. assume α = 0. Also we
can restrict ourselves to the case b�t� ≡ 1 and a�t� ↓ 0	 log a�t� ' log t. Since

E�log t�1/βλ��log t�−1/β&S−dζt��0	 S�d�−R−dζt��0	R�d�&�→0 as t→∞(4.26)

for any R	S > 0, we may find R = R�t� ↓ 0, S = S�t� ↑ ∞ such that

E�log t�1/βλ[�log t�−1/β&S�t�−dζt−1��0	 S�t��d� −R�t�−dζt−1��0	R�t��d�&]
=� εt → 0 as t → ∞�

(4.27)
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By a similar argument we obtain [maybe by enlarging εt and changing R�t�
and S�t� a little]

sup
z∈�0	1�d

E�log t�1/βλ��log t�−1/βS−d&ζt−1��0	 S�d� − ζt−1�S�z+ �0	1�d��&�

≤ εt → 0 as t → ∞�

(4.28)

[For example, for fixed S choose N ∈ N large and take the maximum over
z ∈ 
0	1/N	 � � � 	1�d. This term clearly vanishes as t → ∞. The error term of
the two maxima results from the (less than) Nd−13d blocks of size �0	1/N�d at
the surface of �z+ �0	1�d� and is thus bounded by 3d�1/N�. Now let S = S�t�
and N = N�t� increase slowly to ∞.]

We apply the coupling lemma, Lemma 4.8, to obtain a SBM(d	1 + β	1)
�ζ2

s �s≥t−1 with initial state � �ζ2
t−1&ζt−1� = S�t�−dζt−1��0	 S�t��d�λ and

E�log t�1/βλ[�log t�−1/β��ζ1
t − ζ2

t �&B�
]

≤ λ�B�[4εt + d exp�−D2� + 2
√
d/π R�t�]	(4.29)

where B ∈ ��Rd� is bounded and D = dist�B	R
d \ �0	 S�t��d�. In particular,

for M < ∞ there exists δM
t → 0 as t → ∞ such that for any Borel set

B ⊂ �−M	M�d,

E�log t�1/βλ[�log t�−1/β��ζ1
t − ζ2

t �&B�
] ≤ δM

t λ�B��(4.30)

Now fix a value ρ = �log t�−1/βS�t�−dζt−1��0	 S�t��d�. According to Theorem 3
(and the basic scaling),

�log t�−1/βa�t�−dζ2
t ��0	 a�t��d� → ρ as t → ∞(4.31)

and

�log t�−1/βζ2
t ��0	1�d� → ρ as t → ∞�

A simple uniform integrability argument yields

E�log t�1/βλ[�log t�−1/β&a�t�−dζ ′t��0	 a�t��d�− ζ ′t��0	1�d�&→0 as t→∞�(4.32)

Combined with (4.30) the proof is complete. ✷

Proof of Theorem 4. Recall that we do the proof for the case in which
�ψt� = �ζt� is SBM(d	1 + 2/d	1). The proof is almost identical to that given
in Klenke (1997). The only “real” difference to the case β = 1 is the modified
proof of Lemma 4.9 given above and some changes in the constants. However,
for the sake of completeness we give the proof here in detail.

We do the proof by induction over the length of the tree T. For T = 
��, this
is the assertion of Theorem 3. Now assume that the claim has been shown for
all trees shorter than T.

The idea of the proof is the following. We introduce a time scale L�t� ≈ tA���

and couple �ζs� for s ≥ t − L�t� with another process �ζ2
s �. This process shall

have initial configuration M�ρ�, where ρ is the empirical population density
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of ζ1
t−L�t� in a box of length ≈ tA���/2. Then L�t� will be chosen small enough

that the evolutions of the subtrees (resulting from eliminating � from T) are
approximately independent. On the other hand, L�t� has to be chosen large
enough so that the coupling of Lemma 4.8 with R�t� ≈ tA�/2 is successful.
Here are the details.

Let b = max
diam�Be�	 e ∈ T�. Let dt ↓ 0, t → ∞ such that

t�A�e∧f�−dt�/2 ≤ �xe
t − x

f
t � − b�tA�e�/2 + tA�f�/2�

≤ �xe
t − x

f
t � + b�tA�e�/2 + tA�f�/2� ≤ 1

2t
�A�e∧f�+dt�/2

(4.33)

for all e	 f ∈ T. We may assume that tdt → ∞ as t → ∞. Let α �= A��� and
define

S = S�t� = t�α+dt�/2	

R = R�t� = t�α−3dt�/2	

L = L�t� = tα−2dt �

Let

Be
t = xe

t + tA�e�/2Be(4.34)

and

Bt =
⋃
e∈T

Be
t�(4.35)

By shifting X = �xe
t	 e ∈ T�, if necessary, we can assume that Bt ⊂ �0	 S�d for

all t > 0 and that

L−1/2dist�Bt	R
d \ �0	 S�d�� → ∞ as t → ∞�(4.36)

Apply Corollary 4.8 with ζ1
0 = ζt−L�t�, s = L�t�, ρ = �log t�1/β and with ε =

�log t�1/βεt, where εt −→ 0 as t → ∞. This last choice is possible due to Lemma
4.9. Thus we obtain a coupling �ζ1

s 	 ζ
2
s �s≥0 with � �ζ1

0

∣∣ζ1
s � = M�S−dζ1

0��0	 S�d��
such that there exists a sequence δt ↓ 0 with

E�log t�1/βλ[∣∣�ζ̃ 1
L�t� − ζ̃ 2

L�t���C�∣∣] ≤ δtλ�C� ∀C ∈ ��Rd� bounded�(4.37)

So all we have to show is

� �log t�1/βλ
[�log t�−1/β(t−A�e�d/2ζ2

L�t��Be
t�
)
e∈T

]
�⇒ � 1[�λ�Be�Ze

�1−A�e��cβ�e∈T

]
as t → ∞�

(4.38)

By Theorem 3 we know that

� �log t�1/βλ
[�log t�−1/βS−dζ1

0��0	 S�d�
] �⇒ � 1�Z�1−α�cβ� as t → ∞�(4.39)
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Hence it suffices to show that for ρ ≥ 0,

� ρ�log t�1/βλ
[�log t�−1/β(t−A�e�d/2ζL�t��Be

t�
)
e∈T

]
�⇒ � ρ

[�Ze
�α−A�e��cβ�e∈T

] �as t → ∞�

= � ρα−1/β[�α1/βZe
�1−A�e�/α�cβ�e∈T

]
�

(4.40)

In the third line we have used the scaling property of �1 + β� branching “dif-
fusion.”

Let Tj = 
�j	 l2	 � � � 	 ln� ∈ T	 n ∈ N�	 j = 1	 � � � 	 J	 be the partition of T into
subtrees Tj according to the offspring of the root (T = 
�� ∪ T1 ∪ · · · ∪ TJ). In
order to prove (4.40) by the induction hypothesis it suffices to show that(�log t�−1/βt−A�e�d/2ζL�t��Be

t�
)
e∈Tj

	 j = 1	 � � � 	 J	

are asymptotically independent random variables.
(4.41)

For each j = 1	 � � � 	 J, fix one ej ∈ Tj and let Cj = Cj�t� = x
ej
t +�−R�t�	R�t��d

and C0 = R
d \ �C1 ∪ · · · ∪ CJ�. Then for t large enough we have Ci ∩ Cj = �

for i �= j. Let


j = 
j�t� = inf
e∈Tj

dist�Be
t	R

d \Cj��

Since A� T → I is strictly decreasing, we have 
j�t�/
√
L�t� −→ ∞ as t → ∞.

Let �χj
s �s≥0, j = 0	1	 � � � 	 J	 be independent SBM�d	1+2/d	1� with initial

states

χ
j
0 = �Cj

ρ�log t�1/βλ	 j = 0	1	 � � � 	 J�

We can assume ζs = χ0
s + · · · + χJ

s � Now for j = 1	 � � � 	 J and e ∈ Tj,

E
[
�log t�−1/βt−A�e�d/2

J∑
i=0
i�=j

χi
L�t��Be

t�
]

≤ ρλ�Be�t−A�e�d/2
∫

R
d\Cj

dx
∫
Be

t

dypL�t��x	y�

≤ ρλ�Be� exp
(−
2

j/L�t�) −→ 0 as t → ∞�

(4.42)

Thus (4.41) holds and the proof is complete. ✷
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