
The Annals of Probability
1998, Vol. 26, No. 2, 902–923

STRONG LAW OF LARGE NUMBERS
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Let m ≥ 2 be a nonnegative integer and let �X�l��X�l�
i �i∈N, l =

1� � � � �m, be m independent sequences of independent and identically dis-
tributed symmetric random variables. Define Sn =

∑
1≤i1�����im≤n X

�1�
i1
· · ·

X
�m�
im

, and let �γn�n∈N be a nondecreasing sequence of positive numbers,
tending to infinity and satisfying some regularity conditions. For m = 2
necessary and sufficient conditions are obtained for the strong law of large
numbers γn−1Sn → 0 a.s. to hold, and for m > 2 the strong law of large
numbers is obtained under a condition on the growth of the truncated vari-
ance of the X�l�.

1. Introduction. Let m ≥ 2 be a nonnegative integer and let �X�l��
X

�l�
i �i∈N, l = 1� � � � �m� bem independent sequences of independent and identi-

cally distributed (i.i.d.) random variables. Let � be a Borel measurable func-
tion of m variables. The classical U-statistic of order m with kernel � is
defined as

U�n� =
(
n

m

)−1∑
�
(
X

�1�
j1
� � � � �X

�1�
jm

)
�

where the sum extends over all 1 ≤ j1 < · · · < jm ≤ n. Relaxing the require-
ment that all arguments of � be drawn from the same sequence of random
variables leads to the notion of the generalized U-statistic of order m:

U�n� =
(
n

m

)−1∑
�
(
X

�1�
j1
� � � � �X

�m�
jm

)
�

Further generalizations combining both types are possible [see, e.g., Sen
(1977).]

This paper is concerned with the study of the strong law of large numbers

lim
n→∞

1
γn

∑
1≤i1����� im≤n

X
�1�
i1
· · ·X�m�

im
= 0 a.s.�(1.1)

where �X�l��X�l�
i �i∈N are i.i.d. symmetric and γn satisfies some regularity con-

ditions.
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Sums as in (1.1) are a particular case of generalized U-statistics and their
study is of interest in the attempt to tackle the more general problem. An
instance in which a problem like (1.1) occurs in the context ofU-statistics is the
following: consider the kernel h�x�y� = x2y+ xy2 and the U-statistic defined
by it Un =

(
n
2

)−1∑
1≤i<j≤nh�Xi�Xj�. By means of decoupling tail probabilities

as in de la Peña and Montgomery-Smith (1995), the study of convergence of
Un can be reduced to the one of(

n

2

)−1 ∑
1≤i<j≤n

h�Xi�Yj��

where �Yj� is a copy of �Xj�� independent of �Xj�.
For �Xi� i.i.d. and γn satisfying some regularity conditions, the necessary

and sufficient conditions for limn→∞ γ−1
n

∑
1≤i1<···<im≤nXi1

· · ·Xim
= 0 a.s. were

obtained by Cuzick, Giné and Zinn (1995) for m = 2 and �Xi� symmetric or
having regular tails, and by Zhang (1996) for general m and X satisfying a
condition on the growth of its truncated mean.

Since in both Cuzick, Giné and Zinn’s paper and Zhang’s paper the de-
coupled version of the strong law of large numbers was shown to be equiv-
alent to the nondecoupled one, it is not surprising that the analytical nec-
essary and sufficient conditions for (1.1) to hold are similar. Moreover, the
diagonal terms in the decoupled version are irrelevant, while in the non-
decoupled one they are not. Let, for example, γn = n2/α, α < 2. The a.s.
convergence of n−2/α∑

1≤i<j≤n XiYj is equivalent to the a.s. convergence of
n−2/α∑

1≤i� j≤n XiYj, while, as it was pointed out by Giné and Zinn (1992b),
there exist �X�Xi� i.i.d. symmetric with E�X�α = ∞ and such that n−2/α∑

1≤i<j≤n XiXj → 0 a.s. but lim supn→∞ n−2/α∑
1≤i� j≤n XiXj = lim supn→∞

�n1/α∑
i≤n Xi�2 = ∞ by the Marcinkiewicz law of large numbers.

We need some definitions and notation in order to state the main results.
For x1� x2, x1 ∧ x2 = min�x1� x2�; for A, B nonnegative variable quantities,
A�B will mean that there exists a constant c > 0, independent of A and B,
such that A ≤ cB, and A ∼ B will mean that A�B and B�A� For a non-
increasing left-continuous function with right limits, G�x�� define G−1�x� =
sup�y� G�y� ≥ x�� Then, if u = G−1�v�, we have G�u+� ≤ v ≤ G�u�. Also,
for a nonnegative continuous function increasing to ∞� b�t�, t ≥ 0, denote
b−1�x� = inf�y� b�y� = x�� The following are obvious: b�b−1�x�� = x and
b−1�b�t�� ≤ t� For J ⊆ �1� � � � �m� denote Jc = �1� � � � �m� \J, and �J� the car-
dinality of J. If a�l� are elements indexed by J, let us adopt as a convention∏
l∈∅ a

�l� = 1.
Let γ�t�� t ≥ 0, be a nonnegative, continuous function, increasing to ∞ and

satisfying the following two conditions:

(i) there exists a constant c < ∞ such that γ�2t� ≤ cγ�t� for all t large
enough, and

(ii) there exist β > 1/2 and bl�t�, l = 1� � � � �m nonnegative, continuous,
increasing to ∞, such that for all l = 1� � � � �m, t−βbl�t� are increasing, and
moreover γ�t� = ∏ml=1 bl�t� for all t ≥ 0�
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The above requirements are, in particular, satisfied by normalizing sequences
such as nm or nm/α� α < 2� that occur in the Kolmogorov strong law or
Marcinkiewicz strong law, respectively.

Let Gl�x� = P��X�l�� ≥ x�, γn �= γ�n�, γ∗k �= γ�2k�. Define u�l�k = G−1
l �2−k�,

k ∈ N, l = 1� � � � �m� and for J� �1� � � � �m�, J �= ∅, define ω�J�k = γ∗k
/

√∏
l∈Jc 2kE��X�l�� ∧ u�l�k �2�

Under the above assumptions we have the following results.

Theorem 1.1. Let m = 2, and assume that supt≥0 tGl�bl�t�� ≤ 1, l = 1�2�
Then the strong law of large numbers

lim
n→∞

1
γn

∑
1≤i� j≤n

X
�1�
i X

�2�
j = 0 a.s.(1.2)

holds if and only if for all ε > 0 the following are satisfied:

∑
k≥1

22kP
{∣∣X�1�X�2�∣∣ > εγ∗k� ∣∣X�l�∣∣ > u�l�k � l = 1�2

}
<∞�(1.3)

∑
k≥1

2kP
{∣∣X�l�∣∣ > εω�l�k } <∞ for l = 1�2�(1.4)

Theorem 1.2. Let m > 2. Suppose that supt≥0 tGl�bl�t�� ≤ 1, and, for all
J ⊂ �1� � � � �m�,

∑
k≥n

2�m−�J��k

�w�J�k �2
� 2�m−�J��n

�w�J�n �2
�

Then the strong law of large numbers (1.1) holds if and only if, for any J ⊆
�1� � � � �m�, J �= ∅ and any ε > 0�

∑
k≥1

2�J�kP
{∏
j∈J

�X�j�� > εω�J�k � �X�l�� > u�l�k � l ∈ J
}
<∞�(1.5)

The assumption supt≥0 tGl�bl�t�� ≤ 1 was introduced as a control on the
tail of the individual factors. We make use of it in proving the sufficiency part
of the results. In the case of identical distribution of the factors, bl�t� = γ1/m�t�
for all l, and the boundedness of supt≥0 tGl�bl�t�� follows either from (1.5) for
J = �1� � � � �m� or directly from (1.1) which implies, in particular, convergence
to 0, in probability, of 1/γ1/m

n
∑
i≤n X

�l�
i .

The necessity of the conditions is proved in Section 2. The proof is based
on a modified version of Hoffmann-Jørgensen’s inequality for U-processes as
it appears in Giné and Zinn (1992a). In Section 3 we prove the sufficiency
parts of the results. An important step is contained in Proposition 3.6 which
makes use of a Rosenthal-type inequality for sums of products of independent
and symmetric random variables. The section ends with an example which
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shows that for s > 2 there exist �Xi�� �Yj� two independent sequences of
i.i.d. symmetric random variables for which n−s

∑
1≤i� j≤n XiYj → 0 a.s. and

n−s
∑

1≤i<j≤n XiXj → 0 a.s., while n−s
∑

1≤i<j≤nYiYj does not.

2. Necessity. Following the same type of approach as in Cuzick, Giné and
Zinn (1995), we derive our results by focusing on the maxima of products. The
necessary and sufficient conditions for the strong law of large numbers to hold
for maxima of products are given in the following.

Theorem 2.1. Assume that γ�t� is a nonnegative continuous function in-
creasing to ∞, and X�l�, l = 1� � � � �m� are nonnegative. Then

lim
n→∞

1
γn

max
1≤i1�����im≤n

X
�1�
i1
· · ·X�m�

im
= 0 a.s.(2.1)

if and only if the following hold:

∑
k≥1

2�J�kP
{∏
l∈J
X�l� > ε

γ∗k∏
j∈Jc u

�j�
k

� X�h� > u�h�k � h ∈ J
}
<∞(2.2)

for all J ⊆ �1� � � � �m�� �J� ≥ 2 and all ε > 0, and

∑
k≥1

2kP
{
X�l� > ε

γ∗k∏
j �=l u

�j�
k

}
<∞(2.3)

for all l = 1� � � � �m and all ε > 0.

Theorem 2.1 generalizes Theorem 2�1′ in Cuzick, Giné and Zinn (1995); its
proof is based on similar techniques and we shall omit it. But let us point out
two facts that will be used in the sequel.

Remark 2.2. If γ−1�t� denotes the left-continuous inverse of γ�t�, then, for
J = �1� � � � �m�� (2.2) can be written in integral form

�2�2′� E

[
γ−1

(
X�1� · · ·X�m�

ε

)
∧ 1
G1�X�1�� ∧ · · · ∧

1
Gm�X�m��

]m
<∞

for all ε > 0� For m = 2� γ�t� = t2/α� �2�2′� gives a condition which is weaker
than the classical Marcinkiewicz necessary and sufficient condition (if m = 1)
E�X�α <∞�EX = 0 if α ≥ 1.

Remark 2.3. One idea in the proof of Theorem 2.1 is to break the index
set into blocks of exponential size and to use the Borel–Cantelli lemma. One
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can then obtain that, for any normalizing sequence �γn�n∈N�

1
γ∗k

max
2k−1<i1����� im≤2k

X
�1�
i1
· · ·X�m�

im
→ 0 a.s.(2.4)

is equivalent to the analytic conditions (2.2) and (2.3). Moreover, if (2.4) holds,
then

u
�m�
k

γ∗k
max

2k−1<i1����� im−1≤2k
X

�1�
i1
· · ·X�m−1�

im−1
→ 0 a.s.(2.5)

Lemma 2.4. If �X�l�
i �i∈N, l = 1� � � � �m� satisfy the strong law of large num-

bers (1.1), and if �ε�l�i �i∈N, l = 1� � � � �m� are independent sequences of i.i.d.

Rademacher random variables, independent of �X�l�
i �i∈N, then

lim
n→∞

1
γn

∑
1≤i1����� im≤n

ε
�1�
i1
X

�1�
i1
· · · ε�m�im

X
�m�
im

= 0 a.s.(2.6)

and

lim
n→∞

1
γ2
n

∑
1≤i1����� im≤n

(
X

�1�
i1
· · ·X�m�

im

)2 = 0 a.s.(2.7)

Proof. Since, for every l = 1� � � � �m� �X�l�
i �i∈N is a sequence of i.i.d. sym-

metric random variables, it follows that if �ε�l�i �i∈N are i.i.d. Rademacher ran-

dom variables independent of �X�l�
i �i∈N, then �ε�l�i X�l�

i �i∈N and �X�l�
i �i∈N have

the same joint distribution; moreover, in view of the independence of the se-
quences, (1.1) holds if and only if (2.6) holds.

The proof of (2.7) follows the same ideas as the proof of Proposition (4.7) in
Cuzick, Giné and Zinn (1995), and therefore we omit it. ✷

Proof of the necessity in Theorems 1.1 and 1.2. Let us assume (1.1)
holds. By Lemma 2.4, (2.7) holds, and therefore the strong law of large
numbers for maxima of the products holds. By Theorem 2.1, (2.2) holds, and
therefore we obtain (1.5) for J = �1� � � � �m�� Let now J� �1� � � � �m�. To ease
notation, let Hk�J = �2k−1 < il ≤ 2k� l ∈ J�; in particular, if J = �1� � � � � r�
we shall use Hk�r instead of Hk�J. We shall prove that, for all 1 ≤ j ≤m− 1
and J� �1� � � � �m�� such that �J� =m− j, and all h ∈ J, the following hold:

1

w
�J�
k

max
Hk�J

∏
l∈J

∣∣X�l�
il

∣∣→ 0 a.s.�(2.8)

1

w
�J�
k

2 max
Hk�J\�h�

∏
l∈J\�h�

∣∣X�l�
il

∣∣2I∏
r∈J� r�=h �X�r�

ir
�≤w�J�k /u

�h�
k

×Eh max
2k−1<i≤2k

[(∣∣X�h�
i

∣∣ ∧ u�h�k
]2
→ 0 a.s.�

(2.9)
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where Eh denotes expectation with respect to the variables X�h�
i only. No-

tice that if (2.8) holds, then, in view of Remark 2.3, (1.5) will follow for all
J� �1� � � � �m�� We shall prove (2.8) and (2.9) by induction on j�

Let j = 1� and for notational convenience let I = �1� � � � �m−1�� h =m−1�
Notice that (2.7) yields, in particular,

1

γ∗k
2 max
Hk�m−1

m−1∏
l=1

∣∣X�l�
il

∣∣2I∏m−1
r=1 �X�r�

ir
�≤γ∗k/u

�m�
k

∑
2k−1<i≤2k

[�X�m�
i � ∧ u�m�k

]2 → 0 a.s.(2.10)

Conditionally on X�l�
il

, 2k−1 < il ≤ 2k, l = 1� � � � �m− 1� the above is a normal-
ized sum of independent, nonnegative random variables whose normalized
summands are bounded by 1. Therefore, by the Lebesgue dominated conver-
gence theorem,

�2�10′�
1

γ∗k
2Em

{
max
Hk�m−1

m−1∏
l=1

∣∣X�l�
il

∣∣2I∏m−1
r=1 �X�r�

ir
�≤γ∗k/u

�m�
k

max
2k−1<i≤2k

[∣∣X�m�
i

∣∣ ∧ u�m�k

]2}

→ 0 a.s.

By Fubini’s theorem, conditionally on �X�l�
i �i∈N� l = 1� � � � �m − 1, the ex-

pression in (2.10′) converges to 0 Pm-a.s., thus also in probability. There-
fore, Hoffmann–Jørgensen’s inequality [Hoffmann-Jørgensen (1974)], which
also holds for sums of nonnegative i.i.d. random variables, applied to the ex-
pression in (2.10), conditionally on X�l�

il
, l = 1� � � � �m− 1, gives

1

γ∗k
2Em

{
max
Hk�m−1

m−1∏
l=1

∣∣X�l�
il

∣∣2I∏m−1
r=1 �X�r�

ir
�≤γ∗k/u

�m�
k

∑
2k−1<i≤2k

[∣∣X�m�
i

∣∣ ∧ u�m�k

]2}→ 0 a.s.

or, equivalently,

2kEm��X�m�� ∧ u�m�k �2
γ∗k

2 max
Hk�m−1

m−1∏
l=1

∣∣X�l�
il

∣∣2I∏m−1
r=1 �X�r�

ir
�≤γ∗k/u

�m�
k
→ 0 a.s.(2.11)

By Remark 2.3 the strong law of large numbers for maxima of products also
implies that

u
�m�
k

γ∗k
max
Hk�m−1

m−1∏
l=1

∣∣X�l�
il

∣∣→ 0 a.s.�

which together with (2.11) yields (2.8) for J = �1� � � � �m − 1�. In particular,
we have

2kEm��X�m� � ∧ u�m�k �2
γ∗k

2 max
Hk�m−2

m−2∏
l=1

∣∣X�l�
il

∣∣2I∏m−2
r=1 �X�r�

ir
�≤γ∗k

/(√
2kEm��X�m��∧u�m�k �2u�m−1�

k

)
× max

2k−1<i≤2k

[∣∣X�m−1�
i

∣∣ ∧ u�m−1�
k

]2 → 0 a.s.



908 A. GADIDOV

Since the above is a bounded sequence, expectation with respect to the X�m−1�
i

and application of the dominated convergence theorem yield

2kEm
[∣∣X�m�∣∣ ∧ u�m�k

]2
γ∗k

2 max
Hk�m−2

m−2∏
l=1

∣∣X�l�
il

∣∣2I∏m−2
r=1 �X�r�

ir
�≤γ∗k

/(√
2kEm��X�m��∧u�m�k �2u�m−1�

k

)

×Em−1 max
2k−1<i≤2k

[∣∣X�m−1�
i

∣∣ ∧ u�m−1�
k

]2 → 0 a.s.

and therefore (2.9) is proved.
Suppose now that, for some 1 ≤ j < m−1, (2.8) and (2.9) hold for all subsets

J� �1� � � � �m�� �J� = m− j, and all h ∈ J� Let �J� = m− j− 1. Without loss
of generality, we may suppose J = �1� � � � �m− j− 1�� From (2.7) we have

1

γ∗k
2 max
Hk�m−j−1

m−j−1∏
l=1

∣∣X�l�
il

∣∣2I∏m−j−1
r=1 �X�r�

ir
�≤w��1�����m−j��k /u

�m−j�
k

× ∑
2k−1<im−j����� im≤2k

m∏
l=m−j

(∣∣X�l�
il

∣∣ ∧ u�l�k )2 → 0 a.s.

Notice that, conditionally on �X�l�
i �i∈N� 1 ≤ l ≤m−j−1� the above expression

converges to 0 a.s. Thus it converges to 0 in probability. Therefore, Hoffmann-
Jørgensen’s inequality for U-processes, which also holds when the random
variables are nonnegative, applied conditionally on X�l�

il
, 1 ≤ l ≤ m − j − 1,

together with the induction hypothesis (2.9) yields

1

w
�I�
k

2 max
Hk�m−j−1

m−j−1∏
l=1

∣∣X�l�
il

∣∣2I∏m−j−1
r=1 �X�r�

ir
�≤w��1�����m−j��k /u

�m−j�
k

→ 0 a.s.

But from the induction hypothesis (2.8) and Remark 2.3 we also have

u
�m−j�
k

w
��1�����m−j��
k

max
Hk�m−j−1

m−j−1∏
l=1

∣∣X�l�
il

∣∣→ 0 a.s.

and therefore (2.8) follows. The proof of (2.9) is similar to that for the first
step of the induction. The proof is complete. ✷

Remark 2.5. Notice that no regularity of the normalizing sequence γn was
needed in the proof of the necessity.

3. Sufficiency. We shall now provide the main ingredients to be used in
the proof of the sufficiency in Theorems 1.1 and 1.2. An outline of the proof
is as follows: the analytical conditions (1.3) and (1.4) or (1.5) and the use
of the Borel–Cantelli lemma reduce the proof of (1.1) to proving the conver-
gence of sums of truncated random variables. The domain of truncation is
then split into a disjoint union of events which are handled separately. Since
the variables are symmetric, the partial sums of the truncated variables are



STRONG LAW FOR MULTILINEAR FORMS 909

martingales, and the tool that we use is Kolmogorov’s maximal inequality
for martingales. However, we mention that Kolmogorov’s maximal inequality
does not provide good estimates when the variables are “small.” This case is
treated separately in Proposition 3.6.

Let X�l�, �X�l�
i �i∈N, l = 1� � � � �m� be as before, and denote

Sn =
∑

1<i1<···<im≤n
X

�1�
i1
· · ·X�m�

im
for n ≥m� S∗n = max

m≤k≤n
�Sk��

and let �n = σ�X�l�
i � i ≤ n� l = 1� � � � �m�� The first result is a Rosenthal-

type inequality for sums of products of independent and symmetric random
variables.

Proposition 3.1. For each 2 ≤ p <∞ the following holds:

E
∣∣S∗n∣∣p �

m∏
l=1

[
np/2

(
E
∣∣X�l�∣∣2)p/2 + nE∣∣X�l�∣∣p]�(3.1)

Proof. We shall prove (3.1) by induction on m� Denote +Sk = Sk − Sk−1,
�Sn� =

∑n
k=m E��+Sk�2 ��k−1� and δS∗n = maxm≤k≤n �+Sk�.

Let m = 2� Since �Sn�n≥2 is an ��n�n martingale, we may apply Theo-
rem 21.1 in Burkholder (1973) to conclude that

E
∣∣S∗n∣∣p �E�Sn�p/2 +E�+S∗n�p�(3.2)

Define the following n− 1-dimensional vectors:

Z1 =
(
X

�1�
1 �X

�1�
1 � � � � �X

�1�
1

)
�

Z2 =
(
0�X�1�

2 � � � � �X
�1�
2

)
���

Zn−1 =
(
0�0� � � � �X�1�

n−1

)
and let � · � denote the Euclidean norm. Then

�Sn� =
∥∥∥∥
n−1∑
k=1

Zk

∥∥∥∥
2

E
∣∣X�2�∣∣2

and

E�Sn�p/2 =
(
E
∣∣X�2�∣∣2)p/2E

∥∥∥∥∥
n−1∑
k=1

Zk

∥∥∥∥∥
p

�

Let t0 = inf�t > 0� P��∑n−1
k=1 Zk� > t� ≤ �3 · 4p�−1�. By Hoffmann-Jørgensen’s

inequality,

E

∥∥∥∥∥
n−1∑
k=1

Zk

∥∥∥∥∥
p

≤ 2 · 4p
(
t
p
0 +E max

k≤n−1
�Zk�p

)
�
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and, furthermore, by Chebyshev’s inequality,

E

∥∥∥∥∥
n−1∑
k=1

Zk

∥∥∥∥∥
p

�(n2E
∣∣X�1�∣∣2)p/2 +E max

1≤k≤n−1

∥∥Zk∥∥p�
Hence

E�Sn�p/2 �np
(
E
∣∣X�1�∣∣2)p/2(E∣∣X�2�∣∣2�p/2 + np/2+1E

∣∣X�1�∣∣p(E∣∣X�2�∣∣2)p/2�(3.3)

Now

E�+S∗n�p ≤
n∑
k=2

E�+Sk�p = E�X�2��p
n∑
k=2

E

∣∣∣∣
k−1∑
i=1

X
�1�
i

∣∣∣∣
p

�

By Rosenthal’s inequality [e.g., Rosenthal (1970a, b) or Kwapién and Woyczyn-
ski (1992)],

E

∣∣∣∣
k−1∑
i=1

X
�1�
i

∣∣∣∣
p

�
(k−1∑
i=1

E
∣∣X�1�

i

∣∣2)p/2 + k−1∑
i=1

E
∣∣X�1�

i

∣∣p

∼ (�k− 1�E�X�1��2)p/2 + �k− 1�E�X�1��p�
Therefore,

E�+S∗n�p �E�X�2��p[n�p/2�+1(E�X�1��2)p/2 + n2E�X�1��p]�(3.4)

Putting (3.3) and (3.4) together, we get

E�S∗n�p � (np/2(E�X�1��2)p/2 + nE�X�1��p)(np/2(E�X�2��2)p/2 + nE�X�2��p)�
Assume now (3.1) is true for some m = l� We shall prove it also holds for

m = l+ 1. We have

�Sn� =
n∑

k=l+1

( ∑
1<i1<···<il<k

X
�1�
i1
· · ·X�l�

il

)2

E
∣∣X�l+1�∣∣2�

and by Jensen’s inequality and the induction hypothesis,

E�Sn�p/2 �np/2
(
E
∣∣X�l+1�∣∣2)p/2 l∏

j=1

[
np/2

(
E�X�j��2)p/2 + nE�X�j��p](3.5)

and

E�+S∗n�p ≤ E
∣∣X�l+1�∣∣p n∑

k=l+1

E

∣∣∣∣
∑

1<i1<···<il<k
X

�1�
i1
· · ·X�l�

il

∣∣∣∣
p

� nE
∣∣X�l+1�∣∣p l∏

j=1

[
np/2

(
E�X�j��2)p/2 + nE�X�j��p]�

(3.6)

Then the result follows from (3.5), (3.6) and (3.2). ✷
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Remark 3.2. Notice that a straightforward application of Rosenthal’s in-
equality for sums of i.i.d. and symmetric real random variables yields

�3�1′� E

∣∣∣∣
∑

1≤i1����� im≤n
X

�1�
i1
· · ·X�m�

im

∣∣∣∣
p

�
m∏
l=1

[
np/2

(
E�X�l��2)p/2 + nE�X�l��p]�

Although we will use the result in the form �3�1′�, the proof of the proposition
shows that the inequality also holds for Tn =

∑
1<i1<···<im≤n Xi1

· · ·Xim
, and

X, Xi, i ∈ N i.i.d. symmetric, that is,

E�T∗n�p � (np/2�E�X�2�p/2 + nE�X�p)m�
Lemma 3.3. Let b be a continuous, nonnegative, increasing function, such

that t−βb�t� is increasing for some β > 1/2, and letX be a real-valued random
variable satisfying sup tP��X� > b�t�� ≤ 1. Then there exists a constant c,
depending on β and j only, and such that, for any integer j ≥ 1 and any
t > 0,

E

[
X2j

�b−1��X���j−1
I�X�≤t

]
≤ c t2j(

b−1�t�)j �

Proof. The result follows immediately by Fubini and using the fact that
s�b−1�s��−β is increasing. ✷

Corollary 3.4. Let b�t� andX be as in Lemma 3.3, and letX�X1�X2� � � � �
Xr be i.i.d. random variables. Then

E
[
X2

1X
2
2 · · ·X2

rI�X1�≤�X2�≤···≤�Xr�
]�E

X2r
r(

b−1��Xr��
)r−1 �

Proof. The result follows by successive conditioning and application of
Lemma 3.3. ✷

Lemma 3.5. Let γ�t� and bl�t�, l = 1� � � � �m� be continuous nondecreasing
functions, and such that γ�t� = ∏ml=1 bl�t�. LetX1� � � � �Xm be independent non-
negative random variables such that, for all l = 1� � � � �m� Gl�x� = P�Xl ≥ x�
satisfies sup tGl�bl�t�� ≤ 1, and define /1 = �b−1

m �Xm� = min1≤l≤m b
−1
l �Xl���

Then

b−1
m �Xm�I/1

≤
[
γ−1�X1 · · ·Xm� ∧

1
G1�X1�

∧ · · · ∧ 1
Gm�Xm�

]
I/1
�

Proof. Since sup tGl�bl�t�� ≤ 1� it follows that b−1
l �Xl�Gl�Xl� ≤ 1. Then,

for each l,

b−1
m �Xm�I/1

≤ b−1
l �Xl�I/1

≤ 1
Gl�Xl�

I/1
�

Also γ�b−1
m �Xm��I/1

≤ γ�γ−1�X1 · · ·Xm��I/1
yields b−1

m �Xm�I/1
≤ γ−1�X1 · · ·

Xm�I/1
by the monotonicity of γ�t�� The result follows. ✷
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Proposition 3.6. Let γ�t� satisfy assumptions (i) and (ii). Suppose that, for
all l = 1� � � � �m� sup tGl�bl�t�� ≤ 1 and

E

[
γ−1(�X�1� · · ·X�m��) ∧ 1

G1
(�X�1��) ∧ · · · ∧

1
Gm�X�m��

]m
<∞�(3.7)

Then

∑
k≥1

P

{
max

1≤n≤2k

∣∣∣∣
∑

1≤i1����� im≤n

m∏
l=1

X
�l�
il
I�X�l�

il
�≤bl�2k�

∣∣∣∣ > γ∗k
}
<∞�(3.8)

Proof. Let r ≥ m be an integer such that β ≥ �r + m − 1�/�2r�, and
denote Sn =

∑
1≤i1����� im≤n

∏m
l=1 X

�l�
il
I�X�l�

il
�≤bl�2k�� Since the variables are sym-

metric, �Sn�n≥1 is a martingale with respect to the σ-fields �n = σ�X�l�
i �

i ≤ n�1 ≤ l ≤m�� By Chebyshev’s inequality and �3�1′� we have

∑
k≥1

P
{

max
1≤n≤2k

�Sn� > γ∗k
}

≤ ∑
k≥1

E
(
max1≤n≤2k �Sn�

)2r
�γ∗k�2r

≤ ∑
k≥1

m∑
l=0

∑
J� �J�=l

2k�lr+m−l�

�γ∗k�2r
∏
j∈J

[
E
(�X�j��2I�X�j��≤bj�2k�

)]r

× ∏
j∈Jc

E
[�X�j��2rI�X�j��≤bj�2k�

]

�=
m∑
l=0

∑
J� �J�=l

TJ�

Then (3.8) will follow if, for each l = 0� � � � �m and each J ⊆ �1� � � � �m�, �J� = l,
TJ <∞. Notice first that it will be enough to look at the sets J = ∅ and, for
1 ≤ l ≤ m, J = �1� � � � � l�. Fix 0 ≤ l ≤ m, and denote T0 �= T∅, Tl �= TJ for
J = �1� � � � � l�, 1 ≤ l ≤m� We have

Tl =
∑
k≥1

2k�lr+m−l�

�γ∗k�2r
l∏
j=1

[
E
(�X�j��2I�X�j��≤bj�2k�

)]r m∏
i=l+1

E
[�X�i��2rI�X�i��≤bi�2k�

]

∼ ∑
k≥1

2k�lr+m−l�

�γ∗k�2r

×E
{ l∏
j=1

(
X

�j�
1 · · ·X�j�

r

)2
I�X�j�

1 �≤···≤�X�j�
r �≤bj�2k�

m∏
i=l+1

�X�i��2rI�X�i��≤bi�2k�

}
�
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By applying Corollary 3.4 we obtain

Tl � E
{ l∏
j=1

�X�j��2r
�b−1
j

(�X�j��)�r−1

m∏
i=l+1

�X�i��2r ∑
k� 2k≥maxj≤l b

−1
j

(
�X�j��

)
2k�lr+m−l�

�γ∗k�2r
}

� E
{ l∏
j=1

�X�j��2r
�b−1
j

(�X�j��)�r−1

m∏
i=l+1

�X�i��2r �maxj≤l b
−1
j

(�X�j��)�lr+m−l
γ2r�maxj≤l b

−1
j

(�X�j��)�
}
�

(3.9)

Case l = 0. What we shall do is compare the integrand in (3.9) with the
one in (3.7), by considering all possible orderings of the b−1

j

(�X�j��)’s. Obviously,
it will be enough to do the computations for one only. Therefore, let /1 =
�b−1

1

(�X�1��) ≥ b−1
2

(�X�2��) ≥ · · · ≥ b−1
m

(�X�m��)�� Since r ≥ m, it follows, in
particular, that t−mb2r

m �t� is nondecreasing, and since

γ
(
b−1

1

(�X�1��))I/1
≥
{m−1∏
j=1

bj
(
b−1
j

(�X�j��))
}
bm
(
b−1
m

(�X�m��))I/1
�(3.10)

we get
{ m∏
j=1

�X�j��2r
} (
b−1

1

(�X�1��))m
γ2r
(
b−1

1

(�X�1��))I/1
≤ (b−1

m

(�X�m��))mI/1
�(3.11)

In view of Lemma 3.5, (3.11) and (3.7) yield T0 <∞�

Case l =m. Define /1 as before. The assumption β ≥ �r +m − 1�/�2r�
ensures that tr−1bj�t�, j = 1� � � � �m − 1� and tm+r−1bm�t� are nondecreasing,
which together with (3.10) give

{ m∏
j=1

�X�j��2r(
b−1
j

(�X�j��))r−1

} (
b−1

1

(�X�1��))mr
γ2r
(
b−1

1

(�X�1��))I/1
≤ (b−1

m

(�X�m��))mI/1
�(3.12)

Lemma 3.5, (3.12) and (3.7) yield Tm <∞�

Case 1 ≤ l ≤m− 1. We shall look at

max
1≤j≤l

b−1
j

(�X�j��)

and

max
l+1≤j≤m

b−1
j

(�X�j��)

separately. Define the following sets:

/1 =
{
b−1

1

(�X�1��) ≥ · · · ≥ b−1
l

(�X�l��)� b−1
l+1

(�X�l+1��) ≥ · · · ≥ b−1
m

(�X�m��)}�
/2 =

{
b−1
l

(�X�l��) ≥ b−1
m

(�X�m��)}�
/3 =

{
b−1

1

(�X�1��) ≥ b−1
l+1

(�X�l+1��)}�
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The computations on the sets /1 ∩/2 ∩/3 and /1 ∩/c2 ∩/3 are similar to the
ones on /1 ∩ /2 ∩ /c3 and /1 ∩ /c2 ∩ /c3, respectively, so we will consider the
first two only.

Using that t−�r−1�b2r
j �t� are nondecreasing for all 1 ≤ j ≤ l, t−mb2r

m �t� is
nondecreasing and bj�t� are nondecreasing for l+ 1 ≤ j ≤m− 1, we obtain

{ l∏
j=1

�X�j��2r
�b−1
j

(�X�j��)�r−1

}{ m∏
i=l+1

�X�i��2r
}(
b−1

1

(�X�1��))lr+m−l
γ2r
(
b−1

1

(�X�1��)) I/1 ∩/2 ∩/3

≤ (b−1
m

(�X�m��))mI/1 ∩/2 ∩/3
�

(3.13)

Now, in order to estimate the integrand on /1 ∩ /c2 ∩ /3� we use that
t−�r−1�b2r

j �t� are nondecreasing for all 1 ≤ j ≤ l − 1, t−m+r−1b2r
l �t� is nonde-

creasing and bj�t� are nondecreasing for l+ 1 ≤ j ≤m� We have

{ l∏
j=1

�X�j��2r(
b−1
j

(�X�j��))r−1

}{ m∏
i=l+1

�X�i��2r
}(
b−1

1

(�X�1��))lr+m−l
γ2r
(
b−1

1

(�X�1��)) I/1 ∩/c2 ∩/3

≤ (b−1
l

(�X�l��))mI/1 ∩/c2 ∩/3
�

(3.14)

Equations (3.13) and (3.14) and Lemma 3.5 yield Tl < ∞� completing the
proof. ✷

Proof of sufficiency in Theorem 1.1. Notice that 2kE��X�l�� ∧ u�l�k �2 ≥
�u�l�k �2� hence ω�1�k ≤ γ∗k/u

�2�
k , and similarly ω�2�k ≤ γ∗k/u

�1�
k � Then (1.3) and (1.4)

imply that the law of large numbers for maxima holds. In particular,

P
{

max
1≤i� j≤2k

∣∣X�1�
i X

�2�
j

∣∣ > εγ∗k i.o.
}
= 0�

and since γ2n ≤ cγn it follows that max1≤i� j≤2k �X�1�
i X

�2�
j � < γ∗k−1 eventually

a.s. Also, (1.4) and the Borel–Cantelli lemma imply maxi≤2k �X�1�
i � < w�1�k−1 and

maxj≤2k �X�2�
j � < w�2�k−1 eventually a.s. Therefore, it will be sufficient to prove

that

1
γn

∑
1≤i� j≤n

X
�1�
i X

�2�
j I�X�1�

i X
�2�
j �<γ∗k�n�� �X

�1�
i �<w�1�k�n�� �X

�2�
j �<w�2�k�n� → 0 a.s.�

where k�n� = max�k� 2k < n�. By the Borel–Cantelli lemma, it will suffice to
prove

∑
k≥1

P

{
max

2k−1<n≤2k

1
γ∗k−1

×
∣∣∣∣
∑

1≤i� j≤n
X

�1�
i X

�2�
j I�X�1�

i X
�2�
j �<γ∗k−1� �X

�1�
i �<w�1�k−1� �X

�2�
j �<w�2�k−1

∣∣∣∣ > ε
}
<∞�

(3.15)
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Split the event ��X�1�
i X

�2�
j � < γ∗k� �X

�1�
i � < w�1�k � �X

�2�
j � < w�2�k � into a disjoint

union of five events:

{�X�1�
i � ≤ b1�2k�� �X�2�

j � ≤ b2�2k�
}
�

{�X�1�
i � ≤ u�1�k � b2�2k� < �X�2�

j � < w�2�k
}
�

{�X�2�
j � ≤ u�2�k � b1�2k� < �X�1�

i � < w�1�k
}
�

{
u
�1�
k < �X�1�

i � ≤ b1�2k�� b2�2k� < �X�2�
j � < w�2�k � �X

�1�
i X

�2�
j � < γ∗k

}
�

{
u
�2�
k < �X�2�

j � ≤ b2�2k�� b1�2k� < �X�1�
i � < w�1�k � �X

�1�
i X

�2�
j � < γ∗k

}
�

Then the proof of (3.15) reduces to proving the following:

�3�16�

∑
k≥1

P

{
max

2k−1≤n≤2k

∣∣∣∣
∑

1≤i� j≤n
X

�1�
i I�X�1�

i �≤b1�2k−1�X
�2�
j I�X�2�

j �≤b2�2k−1�

∣∣∣∣

> εγ∗k−1

}
<∞�

�3�17�

∑
k≥1

P

{
max

2k−1≤n≤2k

∣∣∣∣
∑

1≤i� j≤n
X

�1�
i I�X�1�

i �≤u�1�k−1
X

�2�
j Ib2�2k−1�<�X�2�

j �<w�2�k−1

∣∣∣∣

> εγ∗k−1

}
<∞�

�3�17′�

∑
k≥1

P

{
max

2k−1≤n≤2k

∣∣∣∣
∑

1≤i� j≤n
X

�1�
i Ib1�2k−1�<�X�1�

i �<w�1�k−1
X

�2�
j I�X�2�

j �≤u�2�k−1

∣∣∣∣

> εγ∗k−1

}
<∞�

�3�18�

∑
k≥1

P

{
max

2k−1≤n≤2k

∣∣∣∣
∑

1≤i� j≤n
X

�1�
i X

�2�
j Iu�1�k−1<�X

�1�
i �≤b1�2k−1�

b2�2k−1�<�X�2�
j �<w�2�k−1

I�X�1�
i X

�2�
j �<γ∗k−1

∣∣∣∣

> εγ∗k−1

}
<∞�

�3�18′�

∑
k≥1

P

{
max

2k−1≤n≤2k

∣∣∣∣
∑

1≤i� j≤n
X

�1�
i X

�2�
j Ib1�2k−1�<�X�1�

i �<w�1�k−1

u
�2�
k−1<�X

�2�
j �≤b2�2k−1�

I�X�1�
i X

�2�
j �<γ∗k−1

∣∣∣∣

> εγ∗k−1

}
<∞�
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Since the variables are symmetric, the sums inside these expressions are mar-
tingales relative to the σ-fields �n = σ�X�1�

1 � � � � �X
�1�
n �X

�2�
1 � � � � �X

�2�
n ��

By Proposition 3.6, the sum in (3.16) is finite. Notice that (3.17) and
(3.18) are similar to �3�17′� and �3�18′�, respectively, so we will only prove
the first two. To evaluate the sum in (3.17), apply Kolmogorov’s maximal
inequality; therefore, (3.17) will follow if

∞∑
k=1

22k

�γ∗k�2
E

[
�X�1�X�2��2I�X�1��≤u�1�k � b2�2k�<�X�2��≤w�2�k

]
<∞�(3.19)

Denote Sk �= E��X�1��2I�X�1��≤u�1�k �, Tk �= E��X
�2��2I

b2�2k�<�X�2��≤w�2�k � and Qk �=∑
j≥k �22j/�γ∗j�2�. Since t−βγ�t� is nondecreasing, Qk � 22k�γ∗k�−2. In order to

estimate the sum in (3.19), we use summation by parts; we have

n∑
k=1

QkSkTk �
n∑
k=1

�Qk −Qk+1�SkTk

= Q1S1T1 +
n∑
k=2

Qk�Sk −Sk−1�Tk

+
n∑
k=2

QkSk−1�Tk −Tk−1� −Qn+1SnTn�

(3.20)

Let us evaluate
∑
k≥2

Qk�Sk −Sk−1�Tk

� ∑
k≥2

22k

�γ∗k�2
E
[�X�1��2I

u
�1�
k−1<�X�1��≤u�1�k �X

�2��2Ib2�2k�<�X�2��I�X�1�X�2��<γ∗k
]
�

Notice that 2kP��X�l�� ≥ bl�2k�� ≤ 1 implies that u�l�k ≤ bl�2k�� and there-
fore

{
u
�1�
k−1 < �X�1�� ≤ u�1�k � b2�2k� < �X�2��� �X�1�X�2�� < γ∗k

} ⊆ /1� k�

where /1� k �= �2−k+1 ≥ G1��X�1��� ≥ 2−k ≥ G2��X�2���� �X�1�X�2�� < γ∗k�� On
/1� k the following relations hold:

1
G1��X�1��� ∧

1
G2��X�2��� =

1
G1��X�1��� � γ−1��X�1�X�2��� ≤ 2k ≤ 2

G1��X�1��� �

Let us denote

/2 �= �1/G1��X�1��� ≤ 1/G2��X�2���� γ−1��X�1�X�2��� ≤ 2/G1��X�1�����
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Then /1� k ⊆ /2 for all k, and for n large enough we have
∑
k≥n
Qk�Sk −Sk−1�Tk

�E
[
�X�1�X�2��2 ∑

k≥n

22k

�γ∗k�2
I/1� k

]

�E
[
�X�1�X�2��2 ∑

k� 2k≥γ−1��X�1�X�2���∨1/G1��X�1���

22k

�γ∗k�2
I/2

]

�E


�X�1�X�2��2

(
γ−1��X�1�X�2��� ∨ 1

G1��X�1���
)2

γ2
(
γ−1��X�1�X�2��� ∨ 1

G1��X�1���
)I/2


 �

(3.21)

Let

/3 = �γ−1��X�1�X�2��� ≥ 1/G1��X�1�����
In (3.21) we write I/2

= I/2 ∩/3
+ I/2 ∩/c3 and we shall compare each of the

resulting integrands with �γ−1��X�1�X�2��� ∧ �1/G1��X�1���� ∧ �1/G2��X�2�����2�
We have

�X�1�X�2�� γ
−1��X�1�X�2���

γ�γ−1��X�1�X�2����I/2 ∩/3
= γ−1��X�1�X�2���I/2 ∩/3

≤ 2
G1��X�1���I/2 ∩/3

�

and therefore

E

{[
�X�1�X�2�� γ

−1��X�1�X�2���
γ�γ−1��X�1�X�2����

]2

I/2 ∩/3

}
<∞�(3.22)

Using that t−1γ�t� is nondecreasing and γ�2t� ≤ cγ�t�� we obtain the following
estimates:

�X�1�X�2��
1

G1��X�1���
γ

(
1

G1��X�1���
)I/2 ∩/c3 ≤ γ−1��X�1�X�2���I/2 ∩/c3�

�X�1�X�2��
1

G1��X�1���
γ

(
1

G1��X�1���
)I/2 ∩/c3 ≤ cγ��X�1�X�2���

1
G1��X�1���

γ

(
2

G1��X�1���
)I/2 ∩/c3

≤ c 1
G1��X�1���I/2 ∩/c3�
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and therefore

E





�X�1�X�2��

1
G1��X�1���

γ

(
1

G1��X�1���
)



2

I/2 ∩/c3



<∞�(3.23)

By (3.22) and (3.23), the expression in (3.21) is finite.
To evaluate the series

∑
k≥2QkSk−1�Tk − Tk−1�� notice that the series of

positive terms is dominated by

∑
k≥2

22k

�γ∗k�2
E
[�X�1��2I�X�1��≤u�1�k−1

]
E
[�X�2��2I

w
�2�
k−1<�X�2��≤w�2�k

]

≤ ∑
k� w�2�k−1<w

�2�
k

22k

�γ∗k�2
E
(�X�1�� ∧ u�1�k−1

)2
w
�2�
k

2
P
{�X�2�� > w�2�k−1

}

≤ 2
∑
k≥2

2kP
{�X�2�� > w�2�k

}
<∞�

Therefore, (3.17) is proved.
Let us now prove (3.18). By Kolmogorov’s maximal inequality, the series in

(3.18) is bounded from above by

∑
k

22k

�γ∗k�2
E
[�X�1��2I

u
�1�
k <�X�1��≤b1�2k��X

�2��2I
b2�2k�<�X�2��<w�2�k I�X�1�X�2��<γ∗k

]
�

Now, if u�1�k < �X�1��, b2�2k� < �X�2�� and �X�1�X�2�� < γ∗k, thenG1��X�1��� ≤ 2−k,
G2��X�2��� ≤ 2−k and γ−1��X�1�X�2��� ≤ 2k. Hence

γ−1��X�1�X�2��� ≤ 2k ≤ 1
G1��X�1��� ∧

1
G2��X�2��� �

and we have

∑
k

22k

�γ∗k�2
E
[
�X�1��2I

u
�1�
k <�X�1��≤b1�2k��X

�2��2I
b2�2k�<�X�2��<w�2�k I�X�1�X�2��<γ∗k

]

≤ E
[
�X�1�X�2��2Iγ−1��X�1�X�2���≤1/G1��X�1���∧1/G2��X�2���

∑
k� 2k≥γ−1��X�1�X�2���

22k

�γ∗k�2
]

�E
[
�X�1�X�2��2Iγ−1��X�1�X�2���≤1/G1��X�1���∧1/G2��X�2���

�γ−1��X�1�X�2����2
�X�1�X�2��2

]

= E
[
�γ−1��X�1�X�2����2Iγ−1��X�1�X�2���≤1/G1��X�1���∧1/G2��X�2���

]

< E

[
γ−1��X�1�X�2��� ∧ 1

G1��X�1��� ∧
1

G2��X�2���
]2

<∞�

and (3.18) is proved. ✷
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Proof of sufficiency in Theorem 1.2. Since 2kE��X�l�� ∧u�l�k �2 ≥ �u
�l�
k �2�

it follows that, for J� �1� � � � �m�, J �= ∅, ω�J�k ≤ γ∗k/
∏
l∈Jc u

�l�
k . Then the law

of large numbers for maxima holds, and by arguments similar to the ones in
the proof of sufficiency for m = 2, it will be enough to prove that, for all ε > 0
and all J� �1�2� � � � �m��

∑
k≥1

P

{
max

2k−1<n≤2k

1
γ∗k−1

∣∣∣∣
∑

1≤i1�����im≤n

m∏
l=1

X
�l�
il
I∏m

h=1 �X
�h�
ih
�<γ∗k−1

× I∏
j∈J �X�j�

ij
�≤w�J�k−1

∣∣∣∣ > ε
}
<∞�

(3.24)

For k ≥ 1, i = �i1� � � � � im�, il ≤ n and J� �1�2� � � � �m�� define the following
sets:

/k� i =
{�X�l�

il
� ≤ bl�2k�� l = 1� � � � �m

}
�

/
�J�
k� i =

{
�X�h�

ih
� ≤ u�h�k � h ∈ J� �X

�l�
il
� > u�l�k � l ∈ Jc� �X

�j�
ij
� > bj�2k�

for at least one j ∈ Jc� ∏
l∈Jc

�X�l�
il
� ≤ w�J�k

}
�

/
�J�
k�1 =

{�X�l�� ≤ u�l�k � l ∈ J
}
�

/
�J�
k�2 =

{
�X�h��>u�h�k � h ∈ Jc� �X�j�� > bj�2k� for at least one j ∈ Jc�

∏
l∈Jc

�X�l�� ≤ w�J�k
}
�

Then (3.24) will follow if for all J� �1�2� � � � �m� the following hold:

∑
k≥1

P

{
max

2k−1<n≤2k

∣∣∣∣
∑

1≤i1����� im≤n

m∏
l=1

X
�l�
il
I/k� i

∣∣∣∣ > εγ∗k
}
<∞�(3.25)

∑
k≥1

P

{
max

2k−1<n≤2k

∣∣∣∣
∑

1≤i1����� im≤n

m∏
l=1

X
�l�
il
I
/
�J�
k� i
� > εγ∗k� <∞�(3.26)

Now, (3.25) follows by Proposition 3.6. By Kolmogorov’s maximal inequality
for martingales, (3.26) will follow if

∑
k≥1

2mk

�γ∗k�2
E

[ m∏
l=1

�X�l��2I
/
�J�
k�1 ∩/

�J�
k�2

]
<∞�
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We have

∑
k≥1

2mk

�γ∗k�2
E

[ m∏
l=1

�X�l��2I
/
�J�
k�1 ∩/

�J�
k�2

]

≤ ∑
k≥1

2mk
∏
l∈J E��X�l�� ∧ u�l�k �2

�γ∗k�2
E

[ ∏
l∈Jc

�X�l��2I
/
�J�
k�2

]

≤ ∑
k≥1

2�m−�J��k

�w�J�k �2
E

[ ∏
l∈Jc

�X�l��2I
/
�J�
k�2

]
�

(3.27)

Since
∑
k≥n 2�m−�J��k�w�J�k �−2 � 2�m−�J��n�w�J�n �−2, we may apply an argument of

summation by parts. Let Qk �= 2�m−�J��k�w�J�k �−2, Sk �= E�
∏
l∈Jc �X�l��2I

/
�J�
k�2
��

We have

n∑
k=1

QkSk ∼
n∑
k=1

�Qk −Qk+1�Sk

= Q1S1 −Qn+1Sn +
n∑
k=2

Qk�Sk −Sk−1�

≤ Q1S1 +
n∑
k=2

2�m−�J��k

�w�J�k �2
E

[ ∏
l∈Jc

�X�l��2I
/
�J�
k�2\/

�J�
k−1�2

]
�

(3.28)

Note that the series in (3.27) has only nonnegative terms; therefore, it will
be sufficient to prove that the series whose partial n-sum appears in (3.28) is
finite. We have

∑
k≥2

2�m−�J��k

�w�J�k �2
E

[ ∏
l∈Jc

�X�l��2I
/
�J�
k�2\/

�J�
k−1�2

]

≤ ∑
k� w�J�k−1<w

�J�
k

E

[ ∏
l∈Jc

�X�l��2I�X�h��>u�h�k � h∈Jc�w
�J�
k−1<

∏
h∈Jc �X�h��≤w�J�k

]

≤ ∑
k≥1

2�m−�J��kP
{ ∏
l∈Jc

�X�l�� > w�J�k � �X�h�� > u�h�k � h ∈ Jc� <∞�

completing the proof. ✷

As mentioned in the Introduction, for m = 2 the diagonal terms are irrele-
vant in the decoupled case. The same holds in our setting: (1.2) implies, in par-
ticular, a.s. convergence to 0 of γ−1

n maxi≤n �X�1�
i X

�2�
i �, so γ−1

n

∑
i≤n �X�1�

i X
�2�
i � →

0 a.s. For m > 2 we obtain that all normalized sums that have terms with two
or more identical indices converge to 0 a.s. Let us state this as the following.
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Corollary 3.7. If (1.1) holds then, any l = 2� � � � �m�

1
γn

n∑
i� il+1�����im=1

X
�1�
i · · ·X�l�

i X
�l+1�
il+1

· · ·X�m�
im

→ 0 a.s.

Proof. The preceding sum has nm−l+1 terms, and by the argument used
in the proof of sufficiency in Theorem 1.2, the conclusion follows. ✷

Example 3.8. Let s > 1, δ > 0 such that s − δ > 1� and define α = 2�s −
δ�−1� β = 2�s + δ�−1. Let �X�Xi�� �Y�Yj� be independent sequences of i.i.d.
and symmetric random variables with tail probabilities given by

P
{�X� > t} ∼ 1

tα log t
� t ≥ 2

and

P
{�Y� > t} ∼ 1

tβ log t
� t ≥ 2�

We prove that

n−s
n∑

i� j=1

XiYj → 0 a.s.(3.29)

Let

a = s− δ
4�s− δ− 1/2� � b = s+ δ

4�s+ δ− 1/2� �

In order to prove that (3.29) holds, it will be sufficient, by the Borel–Cantelli,
lemma to show that, for all ε > 0�

∑
k

P

{
2−ks max

2k−1<n≤2k

∣∣∣∣
∑
i� j≤n

XiYj

∣∣∣∣ > ε
}
<∞�(3.30)

Let uk = 2k/αka, vk = 2k/βkb and for i� j ≤ 2k, X̄i =Xi1�Xi�≤uk , Ȳj = Yj1�Yj�≤vk .
We have

P

{
2−ks max

2k−1<n≤2k

∣∣∣∣
∑
i� j≤n

XiYj

∣∣∣∣ > ε
}

≤ P
{

2−ks max
2k−1<n≤2k

∣∣∣∣
∑
i� j≤n

X̄iȲj

∣∣∣∣ > ε
}

+P
{
max
i≤2k

�Xi� > uk or max
j≤2k

�Yj� > vk
}

≤ 22kEX̄2EȲ2

ε222ks
+ 2kP��X� > uk� + 2kP��Y� > vk��



922 A. GADIDOV

But notice that for k large

P��X� > uk�� 1
2kkaαk

� P��Y� > vk�� 1
2kkbβk

and therefore

∑
k

2k
(
P��X� > uk� +P��Y� > vk�

)
<∞�

In order to evaluate EX̄2 and EȲ2, notice that X and Y have regularly vary-
ing tails with exponents �−α� and �−β�, respectively; therefore, using the
properties of regularly varying functions, as in Feller (1971), we have

EX̄2 �
∫ uk

2

1
tα−1 log t

dt�
u2−α
k

log uk
� EȲ2 � v

2−β
k

log vk
�

Therefore,

∑
k

P

{
2−ks max

2k−1<n≤2k

∣∣∣∣
∑
i� j≤n

X̄iȲj

∣∣∣∣ > ε
}

� ∑
k

22ku2−α
k v

2−β
k

22ks log uk log vk

∼∑
k

ka�2−α�+b�2−β�−2 <∞�

since a�2− α� + b�2− β� − 2 < −1, and (3.30) follows.
Notice that EX2/s < ∞ and therefore, by the Marcinkiewicz strong law of

large numbers, the U-statistic of order 2 in Xi satisfies

n−s
n∑

i� j=1
i�=j

XiXj = n−s
[∑
i≤n
Xi

]2

− n−s∑
i≤n
X2
i → 0 a.s.�

but the U-statistic of order 2 in Yj does not. If it did, it would have implied,
as in Giné and Zinn (1992b), that

nP
{�Y� > ns/2}→ 0

and hence E�Y�2/s−η < ∞ for all 0 < η < 2/s. But E�Y�2/�s+δ� = ∞, and
E�Y�2/s−η = ∞ for all η ≤ 2δ/�s− δ�.

Remark 3.9. The truncation levels uk and vk in the above are not the uk’s
used in Theorems 1.1 and 1.2. The asymptotic order of magnitude of u�l�k , w�l�k
is u�1�k ∼ 2k/αk−1/α, w�1�k ∼ k1/β2k/α; u�2�k ∼ 2k/βk−1/β, w�2�k ∼ k1/α2k/β for X
and Y, respectively. Condition (1.4) can be easily checked, but (1.3) leads to
tedious computations, so we prefered a more direct proof of (3.29).
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