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A SPATIAL MODEL FOR THE ABUNDANCE OF SPECIES

By Maury Bramson,1 J. Theodore Cox2 and Richard Durrett3

University of Minnesota, Syracuse University and Cornell University

The voter model, with mutations occurring at a positive rate α, has
a unique equilibrium distribution. We investigate the logarithms of the
relative abundance of species for these distributions in d ≥ 2. We show
that, as α → 0, the limiting distribution is right triangular in d = 2 and
uniform in d ≥ 3. We also obtain more detailed results for the histograms
that biologists use to estimate the underlying density functions.

1. Introduction. In the seminal paper of Fisher, Corbet and Williams
(1943), field data collected at light traps on the number of individuals repre-
senting various butterfly and moth species was fitted to a log series distribu-
tion (fn = Cθ�nθn/n). Later, other investigators fit various species abundance
data in a wide variety of settings to other distributions, including the log-
normal [Preston (1948)] and negative binomial [Brian (1953)]. More recently,
various mathematical models have been proposed to derive these distribu-
tions. [See, e.g., May (1975), Engen and Lande (1996) and the accompanying
references.]

Here, as in our paper [Bramson, Cox and Durrett (1996)] on species area
curves, we employ a different approach to the abundance of species based on
the voter model with mutation. Specifically, we analyze the limiting behavior
of the size distributions, for the unique equilibrium, as the mutation rate α
goes to 0. To put our ideas in perspective, we begin with a brief review of three
of the traditional approaches.

The most popular species abundance distribution is the lognormal distribu-
tion, which has been fit to data from a wide variety of circumstances, includ-
ing geographically diverse communities of birds, intertidal organisms, insects
and plants. [See Preston (1948, 1962), Williams (1953, 1964), Whittaker (1965,
1970), (1972), Batzli (1969), Hubbell (1995).] The theoretical explanation for
the lognormal given on pages 88–89 of May (1975) is typical. Define ri�t� to be
the per capita instantaneous growth rate of the ith species at time t, that is,

ri�t� = 1
Ni�t�

dNi�t�
dt

= d

dt
lnNi�t�
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The last equation integrates to

lnNi�t� = lnNi�0� +
∫ t

0
ri�s�ds


If, as May says, “the ever-changing hazards of a randomly fluctuating environ-
ment are all important in determining populations,” then, one might reason,
the integral is a sum of random variables to which the central limit theorem
can be applied, and the distribution of abundances should follow a lognor-
mal law.

While the last argument is simple, and maybe persuasive, there are a num-
ber of data sets that do not fit the lognormal distribution very well. An alter-
native to the lognormal model is given by MacArthur’s broken stick distribu-
tion [see MacAuthur (1957, 1960)]. Here, one imagines that the proportions
�p1� p2� 
 
 
 � pn� of the volume occupied by n given species to be chosen at
random from the set of all possible vectors, that is, those with nonnegative
coordinates that sum to one. For this reason Webb (1974) calls this the pro-
portionality space model. A simple way of generating such pi’s is to put n− 1
independent uniform random variables on (0, 1) and look at the lengths of
the intervals that result, hence, the name, “broken stick distribution.” Quot-
ing May’s (1975) survey again, “This distribution of relative abundance is to
be expected whenever an ecologically homogeneous group of species apportion
randomly among themselves a fixed amount of some governing resource.” Bro-
ken stick abundance patterns have been found in data for birds by MacArthur
(1960), Tramer (1969), and Longuet-Higgins (1971).

One of the weaknesses of the “broken stick” approach is that it simply
chooses a nice distribution based on symmetry, without a direct consideration
of the underlying mechanisms. Engen and Lande (1996) have recently (see
their pages 174–175) introduced a dynamic model in which new species en-
ter the community at times given by a Poisson process, and where the log
abundances of the species Yt = log�Xt� evolve according to the independent
diffusion processes

dYit = �r− g�exp�Yit���dt+ σ�exp�Yit��dBit

Here, r > 0 is a fixed growth rate, g�x� is a “density regulation function,” and
σ�x� = σ2

e + σ2
de

−x, with σe being the environmental and σd the demographic
stochasticity. Engen and Lande then showed that, if g�x� = γ ln�x + ν�, with
ν = σ2

e /σ
2
d, the species abundances in equilibrium are given by the lognormal

distribution. Although the last approach is dynamic, the reader should note
that the sizes of the different species there (as well as in May’s derivation of
the lognormal) are independent. That is, there is no competition between the
species, as there is, at least implicitly, in the broken stick model.

Our approach to modelling species abundances will be a combination of the
last two approaches described above. We introduce a simple dynamic model in
which species “apportion randomly among themselves a fixed amount of some
governing resource,” which we represent by a grid, and think of as space. In
our model, known as the multitype voter model with mutation, the state of
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the system at time t is given by a random function ξt� Zd → �0�1�, with
ξt�x� being the type, or species, of the individual at site x at time t. We index
our species by values w in the interval �0�1�, so we can pick new species at
random from the set of possibilities without duplicating an existing species.
(One can substitute the term allele here for species, and so also interpret this
as a spatial infinite alleles model.)

The model has two mechanisms, invasion and mutation, that are described
by the following rules:

1. Each site x, at rate 1, invades one of its 2d nearest neighbors y, chosen at
random, and changes the value at y to the value at x.

2. Each site x, at rate α, mutates, changing to a new type w′, chosen uniformly
on �0�1�.

It is not difficult to show the following asymptotic behavior for ξt.

Proposition 1.1. The multitype voter model with mutation has a unique
stationary distribution ξ∞. Furthermore, for any initial ξ0, ξt ⇒ ξ∞ as t→ ∞.

[See Bramson, Cox and Durrett (1996), hereafter abbreviated BCD.] Here, ⇒
denotes weak convergence, which in this setting is just convergence of finite-
dimensional distributions.

The rate at which species enter the system through mutation is α, which
should be thought of as migration or genetic mutation. Consequently, we want
α to be small and investigate the limiting behavior of the species abundance
distribution as α → 0. This, of course, requires some notation. We define the
patch size in A for the type at site x at time t to be the number of sites y in
A with ξt�y� = ξt�x�, that is, the number of sites y in A that have the same
type as x. Let N�A�k� be the number of types in ξ∞ with patch size in A
equal to k, and, for I ⊂ 
0�∞�, let N�A�I� = ∑

k∈I N�A�k�.
In this paper, we only consider A = B�L�, the cube of side L centered at

the origin intersected with Zd. It is convenient to divide by �B�L�� to obtain
the species abundance per unit volume,

NL�I� = N�B�L�� I�
�B�L�� 


One immediate advantage of this normalization is that, by invoking the er-
godic theorem [as in Section I.4 of Liggett (1985)], we can conclude that

lim
L→∞

NL�I� =N∞�I�

exists almost surely. Using results in Section 3, it is easy to see that N∞�I�
is constant almost surely; we refer to N∞�I� as the underlying theoretical
abundance distribution.

Our main results are given in Theorem 1 and its refinements, Theorems 2
and 3. In Theorem 1, we give estimates on NL�
1�1/αy��, for y > 0, where
α → 0 and L → ∞ so that αL2 is bounded away from 0. Before presenting
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our results, we review what is known in the “mean field” case. Consider the
voter model with mutation on the complete graph with n sites, which is also
referred to as the infinite alleles model. Each site invades one of the other
n − 1 sites chosen at random, at rate 1, and mutation occurs at each site, at
rate α = θ/�n− 1�. Here, θ > 0 is fixed. The equilibrium distribution is given
by the Ewens sampling formula. That is, if k = �k1� k2� 
 
 
 � kn�, where each ki
is a nonnegative integer, and

∑
i iki = n, the probability that the voter model

in equilibrium has exactly ki species with patch size i, for i = 1, 2� 
 
 
 � n, is

n!
θ�n�

n∏
i=1

θki

ikiki!
�

where θ�n� = θ�θ + 1� · · · �θ + n − 1�. [See Section 7.1 of Kelly (1979) for a
derivation of the formula.]

Hansen (1990), motivated by the study of random permutations, used this
framework to study the species abundance distribution. In analogy with our
function N�B�L�� I�, let Kn�I� be the number of species with patch size in I
for the mean field voter model in equilibrium. Hansen proved that, as n→ ∞,

Kn�
1� nu�� − θu log n√
θ log n

� 0 ≤ u ≤ 1�

converges weakly to a standard Brownian motion (with time parameter u).
Donnelly, Kurtz and Tavaré (1991) gave a proof of this result by using a linear
birth process with immigration. Arratia, Barbour and Tavaré (1992) intro-
duced a different technique for studying related functionals of patch sizes
distributed according to the Ewens sampling formula. Using ≈ to denote ap-
proximate equality, we note that Hansen’s result implies that Kn�
1� nu�� ≈
θ log�nu�. Since θ = α�n−1�, if we define y by setting nu = 1/αy, this becomes

�1
1� Kn�
1�1/αy��
n

≈ yα log�1/α�


In Theorem 1, we will show that if α → 0, with αL2 bounded away from
zero, then for all 0 < y ≤ 1,

�1
2� NL�
1�1/αy�� ≈ yα�log�1/α��/γd in d ≥ 3�

where γd is the probability that simple symmetric random walk in Zd never
returns to the origin. To compare this with the mean field model, it seems
natural to set n = Ld, in which case (1.1) and (1.2) appear quite similar.
However, it is interesting to note that the assumption that αL2 is bounded
away from zero forces θ = α�Ld−1� to tend to infinity, which is not consistent
with the assumption before (1.1) that θ is constant. More important is the fact
that the right side of (1.2) is not correct in d = 2. Indeed, the correct result is

�1
3� NL�
1�1/αy�� ≈ y2α�log�1/α��2/2π in d = 2�

which is rather different than the form suggested by the mean field result.
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We will shortly state precise versions of (1.2) and (1.3). First, we point out
that (1.2) [along with (1.1)] is a type of “log-uniform” limit statement, which
indicates that NL�
1� �1/α�y��, properly normalized, converges weakly to the
uniform distribution in y. Similarly, (1.3) is a “log-triangular” limit statement.
To be more precise, we introduce the following notation. Let ᾱ = 1/α, and
define, for y ≥ 0,

FLα �y� =
{
NL�
1� ᾱy��/�α�log ᾱ�2/2π�� in d = 2,

NL�
1� ᾱy��/�α�log ᾱ�/γd�� in d ≥ 3,

with FLα �y� = 0 for y < 0. We denote by U�y� the distribution function with
uniform density on �0�1�, that is,

U�y� =




0� y ≤ 0�

y� 0 ≤ y ≤ 1�

1� y ≥ 1


We denote by V�y� the distribution function with “right triangular” density
2y for 0 < y < 1, that is,

V�y� =




0� y ≤ 0�

y2� 0 ≤ y ≤ 1�

1� y ≥ 1


Also, define

Gd�y� =
{
V�y�� in d = 2�

U�y�� in d ≥ 3


Theorem 1. Suppose d ≥ 2. Let β > 0 and assume that L = L�α� ≥ βᾱ1/2.
Then, for any ε > 0,

�1
4� sup
y
P��FLα �y� −Gd�y�� > ε� → 0 as α→ 0


Theorem 1 does not apply directly to the histograms of abundance counts re-
ported in the literature. In Preston (1948), for example, abundance counts are
grouped into “octaves,” 1–2, 2–4, 4–8, 8–16, 16–32� 
 
 
 � splitting in half the ob-
servations that are exactly powers of 2. To avoid trouble with the boundaries,
some later investigators [see, e.g., Chapter 3 of Whittaker (1972)] viewed the
1 cell as an interval [0.5,1.5], and then multiplied by 3 to get disjoint classes
[1.5,4.5], [4.5,13.5], etc. The use of such histograms in the literature implic-
itly assumes that the underlying density functions are sufficiently regular
to produce “smooth” data. In our setting, the behavior of the density func-
tions is given by a local limit analog of (1.4). For this, we fix a ratio r > 1
to be the width of the cells, and look at the volume-normalized abundance of
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species, NL�
rk� rk+1��. Theorem 2 below provides the desired refinement of
Theorem 1.

If, in Theorem 1, convergence of the underlying density functions also were
to hold, we would expect that, in d = 2,

NL�
rk� rk+1�� ≈ α�log ᾱ�2

2π

∫ log�rk+1�/ log ᾱ

log�rk�/ log ᾱ
2ydy

= α

2π

((
log�rk+1))2 − (

log
(
rk�)2)

= α�2k+ 1��log r�2/2π

≈ αk�log r�2/π

for large k. A similar calculation shows that, in d ≥ 3, we would expect

NL�
rk� rk+1AQ�� ≈ α�log r�/γd

Theorem 2 shows that the abundance counts NL�
rk� rk+1�� are simultane-
ously well approximated by the formulas just derived over a wide range. Fix
r > 1 and ε > 0, and let EL�k� be the event that our approximation in the
kth cell, 
rk� rk+1�, is off by at least a small factor, that is, EL�k� is the event∣∣NL

(
rk� rk+1�) − αk�log r�2/π
∣∣ > εαk in d = 2�∣∣NL�
rk� rk+1�� − α�log r�/γd
∣∣ > εα in d ≥ 3


Also, set γ2 = π, and

α̂ =
{
γ2ᾱ/�log ᾱ�� in d = 2,
γdᾱ� in d ≥ 3.

Theorem 2. Suppose d ≥ 2. Let r > 1, β > 0, and assume that L = L�α� ≥
βᾱ1/2�log ᾱ�2. Then, for any ε > 0,

�1
5� lim
δ→0

lim sup
α→0

P

(⋃
k

EL�k�� rk ∈ 
δ−1� δα̂�
)

= 0


The further restriction of L in this theorem, from that in Theorem 1, comes
from the fact that we are considering abundance sizes rather than their log-
arithms. The conclusion of Theorem 2 is almost certainly true under some
slightly weaker condition, but since it is an approximation that holds uni-
formly for about log ᾱ size classes, we suspect that L/ᾱ1/2 must go to ∞ at
some rate.

The largest patch size covered by Theorem 2 is 
rk� rk+1�, where rk is small
relative to α̂. The distribution of larger patch sizes, that is, those of the form

aα̂� bα̂�, differs from the distribution of the smaller patch sizes because of
their long formation time relative to ᾱ. The precise result is the following.



664 M. BRAMSON, J. T. COX AND R. DURRETT

Theorem 3. Suppose d ≥ 2. Let β > 0 and assume that L = L�α� ≥
βᾱ1/2�log ᾱ�2
 Then, for any ε > 0, and a, b with 0 < a < b,

�1
6� lim
α→0

P

(∣∣∣∣α̂NL�
aα̂� bα̂�� −
∫ b
a
z−1e−z dz

∣∣∣∣ > ε
)

= 0


The reader might wish to check to what extent Theorem 3 is consistent with
Theorem 1 if one is allowed greater liberty on how to choose a and b. First,
note that the above integral is infinite for a = 0, which is consistent with
Theorem 1, since NL�
1� α̂�� is of order �log ᾱ�/α̂ rather than 1/α̂. Now, fix
0 < y1 < y2 < 1. We define a and b so that ᾱy1 = aα̂ and ᾱy2 = bα̂, and “apply”
Theorem 3 to estimate NL�
ᾱy1� ᾱy2�� =NL�
aα̂� bα̂��. We might expect, since
a and b tend to 0 as α→ 0, that for small α,

NL�
ᾱy1� ᾱy2�� ≈ 1
α̂

∫ b
a

1
z
e−z dz ≈ 1

α̂

∫ b
a

1
z
dz


The last term equals

1
α̂

log�b/a� =
{ �y2 − y1�α�log ᾱ�2/π� in d = 2,

�y2 − y1�α�log ᾱ�/γd� in d ≥ 3.

This is again consistent with Theorem 1 in d ≥ 3. In d = 2, however, these
asymptotics fail, since the limit in Theorem 1 is log-triangular rather than
log-uniform in y.

We conclude this section by providing a sketch of the reasoning used for
Theorems 1–3, and then comment briefly on the behavior of ξt in d = 1. In
Section 2, we will employ a percolation substructure to construct ξt. We will
also construct two coalescing random walk systems. The first is denoted ζAt ,
with A ⊂ Zd. This system starts from ζA0 = A, and consists of particles which
execute rate-one independent random walks, except that particles coalesce
when a particle jumps onto a site occupied by another particle. The second
system is denoted ζ̂At and has the same coalescing random walk dynamics, but,
in addition, particles are killed (i.e., removed from the system) independently
of the motion at rate α, with killed particles being removed from the system.
Each particle in ζAt , or ζ̂At , has a certain mass, that is, the number of coalesced
particles at that site. We will let ζ̂At �k� be the set of particles at time t with
mass k, and let ζ̂At �I� = ⋃

k∈I ζ̂At �k�.
We will make use of a duality relation on the percolation substructure con-

necting ξt and ζ̂At to explain, and later prove, Theorem 1. This relationship
implies that N�B�L�� I� is equal in distribution to the total number of parti-
cles in ζ̂B�L�

t �I� that are killed over times t ≥ 0. To estimate the latter quantity,
we make use of several estimates and two well-known results. Let pt be the
density of particles in the coalescing random walk system ζZd

t ; this can also be
written as pt = P�0 ∈ ζZd

t �. Also, let nt be the mass of the particle in ζZd
t at the

origin (set nt = 0 if there is no such particle). Note that pt = P�nt > 0� and is
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nonincreasing in t. As usual, for t → t0, f�t� = o�g�t�� means f�t�/g�t� → 0,
and f�t� ∼ g�t� means f�t�/g�t� → 1. Our estimates are

if t = o�ᾱ� as α→ 0� then �ζ̂B�L�
t � ≈ �ζB�L�

t ��(1.7)

if t = o�L2� as L→ ∞� then �ζB�L�
t � ≈ �ζZd

t ∩B�L���(1.8)

if t = o�L2� as L→ ∞� then �ζZd
t ∩B�L�� ≈ pt�B�L��
(1.9)

Combining (1.7)–(1.9), we have that if t = o�ᾱ� and L ≥ βᾱ1/2, then

�1
10� �ζ̂B�L�
t � ≈ pt�B�L��


To utilize this approximation, we need information on the asymptotic behavior
of both pt and nt.

From Bramson and Griffeath (1980),

�1
11� pt ∼
{ �log t�/�πt�� in d = 2,

1/�γdt�� in d ≥ 3,

and

�1
12� P
(
ptnt ≤ b ∣∣nt > 0

) →
∫ b

0
e−u du� b > 0�

as t→ ∞.
We now give a heuristic derivation of Theorem 1. Fix y, 0 < y < 1, and let

I = 
1� ᾱy�. Based on the above connection between N�B�L�� I� and ζ̂B�L�
t �I�,

and the fact that individual particles in ζ̂B�L�
t are killed at rate α, we expect

that

�1
13� N�B�L�� I�� ≈ α
∫ ∞

0

∣∣ζ̂B�L�
t �I�∣∣dt


According to (1.12), the typical particle in ζZd
t should have mass size “about”

1/pt. (We will actually be working on a logarithmic scale.) In view of (1.11),
this suggests that for times t ≤ ᾱy, most particles in ζZd

t will have mass
size “smaller” than ᾱy, and at later times, few particles will have mass size
“smaller” than ᾱy. On account of (1.7) and (1.8), this should also be true for
the particles in ζ̂B�L�

t . So,

α
∫ ∞

0

∣∣ζ̂B�L�
t �I�∣∣dt ≈ α

∫ ᾱy
0

∣∣ζ̂B�L�
t �I�∣∣dt


Now, by (1.10),

α
∫ ᾱy

0

∣∣ζ̂B�L�
t

∣∣dt ≈ α�B�L��
∫ ᾱy

0
pt dt
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Using (1.11), it is easy to see that as α→ 0,

�1
14� α
∫ ᾱy

0
pt dt ∼



α

2π
y2�log ᾱ�2� in d = 2,

α

γd
y log ᾱ� in d ≥ 3.

By combining the approximations from (1.13) through (1.14), we find that
NL�
1� ᾱy�� should be, approximately, the right side of (1.14) for small α. This
is the limit in (1.4) of Theorem 1 for 0 < y < 1. For y ≥ 1, one derives an upper
bound on NL�
1�∞�� by using reasoning similar to that for 0 < y < 1. The
approximations (1.8) and (1.9) are employed, although one needs to replace
(1.14) and the term ᾱy in the above integrands by suitable quantities.

To understand the restriction L ≥ βᾱ1/2 in Theorem 1, we trace backwards
in time the position of the type presently at a given site x ∈ B�L�. (This
corresponds to the random walk ζ�x�

t .) It will typically take about time of order
ᾱ for this path to undergo a mutation, at which point its type is determined.
During this time, the random walk will have moved a distance of order ᾱ1/2;
this suggests that the “radius” of the patch size for the type at x will be about
that large. When L = βᾱ1/2, we may lose a proportion of the patch, because it
sticks out of the box B�L�, affecting the approximation (1.8). However, since
we will be working on a logarithmic scale anyway, this loss is not important.
On the other hand, if L is of smaller order than ᾱ1/2, “most” of the patch will lie
outside B�L�, and we will not observe the underlying theoretical abundance
distribution. For Theorem 2, where we do not use a logarithmic scale, this
problem of part of a given patch not being contained in B�L� is more serious.
Thus, we require L to be larger.

Theorem 3 is closely related to a result of Sawyer (1979). To state his result,
let ν�x� be the patch size at site x for a realization of the equilibrium state of
the voter model with mutation, that is, ν�x� = ��z� ξ∞�z� = ξ∞�x���. Sawyer
proved that Eν�O� ∼ α̂ as α→ 0, and also that

�1
15� P
(
ν�O�/Eν�O� ≤ b) →

∫ b
0
e−u du� b > 0


The same result obviously holds for any other fixed site x, or for a site cho-
sen at random from B�L�. Now, when a site is chosen at random, a patch
has probability of being chosen that is proportional to its size. Removing this
“size-bias” from Sawyer’s result introduces the factor y−1 into the density in
(1.6). Theorem 3 is thus a weak law of large numbers for α̂NL�
aα̂� bα̂��, with
the limits in (1.15), after adjusting for the size-bias, giving the corresponding
means.

So far, we have not considered the behavior of the voter model with mu-
tation in d = 1. The asymptotics, in this case, are different than for higher
dimensions. The analog of (1.11) is pt ∼ 1/�πt�1/2, with the limiting distri-
bution corresponding to (1.12) being given by a folded normal; the analogs of
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(1.7)–(1.9) hold as before. In particular, one now has the more rapid growth∫ u
0
pt dt ∼ 2�u/π�1/2 as u→ ∞


Reasoning analogous to that through (1.14) therefore suggests that

�1
16� N�B�L�� 
1� y�ᾱ�1/2�� ≈ α�B�L��
∫ y2ᾱ

0
pt dt ≈ α1/2Ly

for small y > 0 as α→ 0. Here, the upper limit of integration for the integral
is less justified than for d ≥ 2, since we are not operating on a logarithmic
scale. According to (1.16), patch sizes, in d = 1, should typically be of order
of magnitude ᾱ1/2. This, of course, contrasts with the scaling required for our
results in d ≥ 2. A reasonable conjecture is that, in d = 1, if α1/2L�α� → ∞
as α→ 0, then

�1
17� ᾱ1/2NL�
1� yᾱ1/2�� → G1�y��
for some nondegenerate distribution function G1.

The remainder of the paper is organized as follows. We describe duality be-
tween the voter model and coalescing random walks in Section 2 and introduce
some further notation. In Section 3, we prove a random walk estimate that
makes (1.8) precise. In Section 4, we prove a variance estimate that enables
us to replace �ζB�L�

t �I�� and �ζ̂B�L�
t �I�� by their means. In Section 5, respec-

tively, Section 6, we use the preliminaries developed in Sections 2–4 to prove
Theorem 1, respectively, Theorem 2. The proof of Theorem 3 is given in Sec-
tion 7, and employs estimates similar to those in Sections 5 and 6, together
with (1.15).

2. Duality and notation. The main goals of this section are to construct
the voter model with mutation and related quantities from a percolation sub-
structure, and to give the resulting duality with coalescing random walk sys-
tems. [The voter model and its duality with coalescing random walks were
first studied by Clifford and Sudbury (1973) and Holley and Liggett (1975).]
As in BCD, we follow the approach of Griffeath (1979) and Durrett (1988),
and introduce a percolation substructure � , which is the following collection
of independent Poisson processes and random variables:

�Txn� n ≥ 1�� x ∈ Zd� independent rate-one Poisson processes,

�Zxn� n ≥ 1�� x ∈ Zd� i.i.d. random variables, P�Zxn = z� = �2d�−1 if �z� = 1�

�Sxn� n ≥ 1�� x ∈ Zd� independent rate-α Poisson processes,

�Ux
n�n ≥ 1�� x ∈ Zd� i.i.d. random variables, uniform on �0�1�


We use � to construct the voter model with mutation. Informally, the proce-
dure is as follows: at the times Txn, site x chooses the site y = x+Znx, which
adopts the value at x; at times Sxn, site x undergoes a mutation event, and
adopts the value Ux

n.
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More formally, we first define the basic voter model ηt by defining certain
paths on Rd × 
0�∞�. At times Txn, if y = x +Zxn, we write a δ at the point
(y�Txn�, and draw an arrow from �x�Txn� to �y�Txn�. We say that there is a
path up from �x�0� to �y� t� if there is a sequence of times 0 = s0 < s1 <
s2 · · · < sn < sn+1 = t, and spatial locations x = x0� x1� 
 
 
 � xn = y, so that we
have the following:

1. For 1 ≤ i ≤ n, there is an arrow from xi−1 to xi at time si.
2. For 0 ≤ i ≤ n, the vertical segments �xi� × �si� si+1� do not contain any δ’s.

For each set of sites A, we put ηA0 = A, and define, for t > 0,

ηAt = �y� for some x ∈ A there is a path up from �x�0� to �y� t��

Here ηAt is the basic voter model with possible opinions 0 and 1, with occupied
sites corresponding to the opinion 1. If A denotes the set of sites occupied by
1’s at time 0, then ηAt is the set of sites occupied by 1’s at time t.

One can define the multitype voter model analogously. Assume now that
the types belong to the interval �0�1�. Given the types of all sites at time
0, the type at site y at time t is the type of the unique site x such that
there is a path up from �x�0� to �y� t� in the percolation substructure. We
incorporate mutation into our model using the Poisson processes Sxn and the
uniform random variables Ux

n. Fix ξ0, where ξ0�x� ∈ �0�1� is the type of the
site x at time 0. To determine ξt�y�, choose the unique site x such that there
is a path up from �x�0� to �y� t�. If there is no mutation event on this path,
put ξt�y� = ξ0�x�. Otherwise, let �z� t′� be the point on this path with the
property that Szn = t′ for some n, and there are no other mutation events on
the path from �z� t′� up to �y� t�. Then, set ξt�y� = Uz

n.
An important feature of this construction is that we can construct a dual

process on the same probability space. We reverse the directions of the arrows,
and define paths going down in the analogous way. For each set of sites B, for
fixed t and 0 ≤ s ≤ t, put

ζB� ts = �x� for some y ∈ B, there is a path down from �y� t� to �x� t− s��

Then, ηAt and ζB� ts are dual in the sense that

�2
1� �ηAt ∩B �= �� = �A ∩ ζB� tt �= ��

The finite-dimensional distributions of ζB� ts , for s ≤ t, do not depend on t, so we
can let ζBs denote a process defined for all s ≥ 0 with these finite-dimensional
distributions, and call ζBs the dual of ηAt . It follows from (2.1), that

�2
2� P
(
ηAt ∩B �= �

) = P(A ∩ ζBt �= �
)



It is easy to see that the dual process ζBs is a coalescing random walk. The
individual particles in ζBs perform independent rate-one random walks, with
the collision rule that when two particles meet, they coalesce into a single
particle. We note that (2.2), with A = �O� and B = Zd, gives pt = P�η�O�

t �=
��; this shows pt is nonincreasing in t.
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In a similar fashion, we can define coalescing random walk with killing,
ζ̂B� ts , s ≤ t, by killing, or removing from the system, any particle which experi-
ences a mutation. We also let ζ̂Bs denote a process defined for all s ≥ 0 with the
same finite-dimensional distributions as ζ̂B� ts . When the processes ζBs and ζ̂Bs
are constructed on a common percolation substructure, ζ̂Bs ⊂ ζBs always holds.

Connected with these processes, we introduce the following terminology. For
any set of sites A, we define the mass of the particle in ζAt at site x and at
time t by

nAt �x� = ∑
y∈A

1
{
ζ
y
t = x}�

and let n̂At �x� denote the analogous quantity for ζ̂At ; note that nAt �x� = 0 if
x /∈ ζAt . We keep track of the locations of walks with mass size in a given set
I by

ζAt �I� = �x ∈ Zd� nAt �x� ∈ I��

and let ζ̂At �I� denote the analogous quantity for ζ̂At . Define

YAt1� t2�I� = the number of mutation events occurring on �ζAs �I�� t1 ≤ s < t2�,

and let ŶAt1� t2 denote the analogous quantity for ζ̂As . Note that mutations occur
at rate α at each site of ζAs , although they do not affect ζAs . One can check that

∣∣�ζ̂At �I�� − �ζAt �I��∣∣ ≤ ŶA0� t
always holds. We will make use of the weaker inequality

�2
3� ∣∣�ζ̂At �I�� − �ζAt �I��∣∣ ≤ YA0� t


When applying the above terminology to the case A = Zd, we will typically
omit the superscript, for example, writing ζt for ζZd

t . Also, we will usually omit
the set I when I = 
1�∞�.

As in Section 1, we use ξ∞ to denote the unique equilibrium distribution
for ξt and N�A�I� to denote the number of species of ξ∞ with patch size
k in A satisfying k ∈ I. By inspecting the percolation substructure and the
definitions of ξt and ζ̂At , it is not difficult to see that

�2
4� N�A�I� =d Ŷ
A
0�∞�I�


From this, it is immediate that, for any J given times 0 = t0 < t1 < · · · <
tJ = t,

�2
5� N�A�I� =d

J∑
i=1

ŶAti−1� ti
�I� + ŶAtJ�∞�I�
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One also has from elementary properties of the Poisson process that, for 0 ≤
t1 < t2,

�2
6�
EYAt1� t2�I� = αE

(∫ t2
t1

�ζAs �I��ds
)
�

EŶAt1� t2�I� = αE
(∫ t2

t1

�ζ̂As �I��ds
)



In order to employ (2.5), we need to relate information on the size of realiza-
tions of

∫ t2
t1

�ζ̂As �I��ds and ŶAt1� t2�I�. A useful tool for doing this is the following
comparison.

Lemma 2.1 (Poisson domination estimate). Suppose that
∫ t2
t1
ζ̂As �I�ds ≥ λ

(respectively, ≤ λ) holds on some event G, where λ ∈ �0�∞�. Then there is a

Poisson random variable X with mean αλ so that ŶAt1� t2�I� ≥ X (respectively,
≤X) on G.

A similar result was used in BCD. To prove the lemma, one constructs
a rate-α Poisson process �W�t�� t ≥ 0�, such that ŶAt1� t2�I� = W�J�t2�� −
W�J�t1��, where J�t� = ∫ t

0 ζ̂
A
s �I�ds. The random variable X = W�J�t1� +

λ� −W�J�t1�� is Poisson with mean αλ. By assumption, J�t2� ≥ J�t1� + λ on
G, and so Ŷ ≥X there.

The following elementary estimate for Poisson random variables will also
be useful.

Lemma 2.2. Let X be a Poisson random variable, and, for λ > 0, let cλ =
λ log λ− λ+ 1. Then, cλ > 0 for λ �= 1, and

P�X ≥ λEX� ≤ exp�−cλEX�� λ > 1�

P�X ≤ λEX� ≤ exp�−cλEX�� λ < 1


Proof. For any θ > 0,

P�X ≥ λEX� ≤ E�eθX�e−θλEX = exp
(�eθ − 1 − θλ�EX)




For λ > 1 and θ = log λ, eθ − 1 − θλ = λ− 1 − λ log λ = −cλ. Similarly,

P�X ≤ λEX� ≤ E�e−θX�eθλEX = exp
(�e−θ − 1 + θλ�EX)




For 0 < λ < 1 and θ = − log λ, e−θ−1+θλ = λ−1−λ log λ = −cλ. Also, c1 = 0,
c′1 = 0 and c′′λ = 1/λ > 0 for λ > 0. Hence, cλ > 0 for all λ > 0, λ �= 1. ✷

3. The approximations �
B�L�
t ≈≈≈ � t � B�L� and �̂

B�L�
t ≈≈≈ �̂ t � B�L�. The

main goal of this section is to show that ζB�L�
t �I�, respectively, ζ̂B�L�

t �I�,
can be approximated, within a tolerable error, by ζt�I� ∩ B�L�, respectively,
ζ̂t�I� ∩ B�L�. This is needed to make precise the heuristic argument given
in the introduction, especially the estimates (1.7) and (1.8). Moreover, the
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processes ζt and ζ̂t are translation invariant, and hence more tractable than
ζ
B�L�
t and ζ̂B�L�

t .
Our first step is a standard large deviations estimate. For x = �x1� 
 
 
 � xd� ∈

Zd, we let �x� = max�x1� 
 
 
 � xd�.

Lemma 3.1. Let St be a d-dimensional simple random walk starting at the
origin that takes jumps at rate 1, and let ψ�θ� = �eθ + e−θ�/2 and I�a� =
supθ>0
aθ− �ψ�θ� − 1�/d�. For all a > 0,

�3
1� P

(
max
t≤u

�St� > au
)

≤ 4d exp�−uI�a��


Remark. The function I�a� can be computed explicitly from the informa-
tion given in the statement, but for our purposes, it will be enough to recall
that (i) general theory implies I�a� is increasing and convex on �0�∞�, with
I�0� = 0, and (ii) from the formula, it follows easily that I�a� ∼ a2d/2 as
a→ 0. Thus, from (ii), for some a0 > 0,

�3
2� I�a� ≥ a2d/3 for 0 ≤ a ≤ a0


Proof. By considering the coordinates Sit separately, it is enough to prove
that

P

(
max
t≤u

S1
t > au

)
≤ 2 exp

(−uI�a�)

Since S1

t is symmetric, by the reflection principle, it is enough to show

P�S1
u > au� ≤ exp

(−uI�a�)

The moment generating function of S1

u is given by

E exp�θS1
u� = exp

(
u�ψ�θ� − 1�/d)�

so for θ > 0, it follows from Chebyshev’s inequality that

P�S1
u > au� ≤ exp

(−θau+ u�ψ�θ� − 1�/d)

Optimizing over θ now gives the desired result. ✷

The next step is to use the estimate just derived to show that, with high
probability, the coalescing random walk system started from B�L� does not
stray “too far” from B�L� up to time L2 and also that random walks started
outside B�L� do not penetrate “too far” into B�L� by time L2. To state the
precise result, we introduce the following notation. For a given c > 0, define

�3
3� wL�t� = c�logL�1/2
√
t+ �logL�2
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We note that (a) wL�t� is “considerably” larger than the displacement we ex-
pect from a random walk by time t, and (b) wL�0� = c�logL�3/2. Now, define

�3
4�
Hout = ∑

x∈B�L�
1
{
ζxt /∈ B�L+wL�t�� for some 0 ≤ t ≤ L2}�

Hin = ∑
x/∈B�L�

1
{
ζxt ∈ B�L−wL�t�� for some 0 ≤ t ≤ L2}


Here, Hout is the number of particles that start in the box B�L� and escape
from B�L + wL�t�� by time L2. Likewise, Hin gives the number of particles
that start outside the box B�L� and enter B�L−wL�t�� by time L2. We con-
sider ?0 = �Hout = 0�Hin = 0� to be a “good” event, since on this set, we
have adequate control over the movement of random walks in our percolation
substructure. The following result shows that we may choose c in (3.3) large
enough to make ?0 very likely.

Lemma 3.2. There exists c > 0 such that for large L,

�3
5� P�?0� ≥ 1 − 1/Ld+1


Proof. Using the notation of Lemma 3.1, we have

EHout ≤ �B�L��P(�St� > wL�t�/2 for some 0 ≤ t ≤ L2)

Since �B�L�� ≤ �L + 1�d, we can prove P�Hout ≥ 1� ≤ 1/2Ld+1 by showing
that, for large L,

�3
6� P
(�St� > wL�t�/2 for some t ≤ L2) ≤ 1/4L2d+1


To estimate the left side above, we first note that, for m ≥ 0,

wL�t� ≥ c2m�logL�3/2 if t ∈ [�4m − 1��logL�2� �4m+1 − 1��logL�2)

Let m∗ be the largest m such that �4m+1 − 1��logL�2 ≤ L2. The probability in
(3.6) is bounded above by

�3
7�
m∗∑
m=0

P
(�St� > c2m−1�logL�3/2 for some t ≤ 4m+1�logL�2)


Lemma 3.1 implies that

�3
8� P
(�St� > amum for some 0 ≤ t ≤ um

) ≤ 4d exp
(−umI�am�)


Taking um = 4m+1�logL�2 and am = c2m−1�logL�3/2/um, it follows from (3.2)
that

umI�am� ≥ c24m−1�logL�3

4m+1�logL�2

d

3
= dc2 logL

48



For c large enough, it follows that for each m, the right side of (3.8) is at most
1/L2d+2. Since m∗ is at most a constant multiple of logL, (3.7) is at most a
constant multiple of �logL�/L2d+2. For large L, this gives (3.6).
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The estimation of Hin might at first seem more difficult because of the
infinite sum over x /∈ B�L�. However, any random walk which enters B�L�
after starting outside B�L� must pass through the boundary of B�L�. Using
the percolation substructure, it is easy to see that not more than a Poisson
mean-L2 number of random walks may leave a given site during the time
interval 
0�L2�. Since the boundary of B�L� has at most CLd−1 sites for some
finite C, it is not difficult to see that P�Hin ≥ 1� is bounded above by

CLd−1L2P
(�St� > wL�t�/2 for some t ≤ L2)

≤ CLd+1
m∗∑
m=0

P
(�St� > c2m−1�logL�3/2 for some t ≤ 4m+1�logL�2)


Arguing as in the first part of the proof, using (3.1), we find that for large
enough c,P�Hin ≥ 1� ≤ 1/2Ld+1 for largeL. Combined with the corresponding
estimate for Hout, this proves (3.5). ✷

Let ζLt �I� = ζt�I� ∩ B�L�, and let ζ̂Lt �I� denote the analogous quantity for
ζ̂t�I�. On the good event ?0, we expect that ζB�L�

t �I� ≈ ζLt �I� and ζ̂B�L�
t �I� ≈

ζ̂Lt �I�. To state the precise meaning of our approximation, let A�t� be the
annular region

�3
9� A�t� = B(L+wL�t�� −B�L−wL�t�)�
with wL�t� being given by (3.3).

Lemma 3.3. Let χ = ζ or ζ̂. (i) For all I ⊂ 
1�∞� and t ≤ L2,∣∣∣∣∣χB�L�
t �I�∣∣ − ∣∣χLt �I�∣∣∣∣∣ ≤ ∣∣ζt ∩A�t�∣∣ on ?0


(ii) For large L, all I ⊂ 
1�∞� and all t ≤ L2,

E
∣∣∣∣∣χB�L�

t �I�∣∣ − ∣∣χLt �I�∣∣∣∣∣ ≤ 2�A�t��pt


Proof. It is easy to check from the definition of ?0 that for t ≤ L2,

n
B�L�
t �x� =

{
nt�x�� for x ∈ B�L−wL�t��,
0� for x /∈ B�L+wL�t��.

So, on ?0, for all I ⊂ 
1�∞� and t ≤ L2,

�3
10� ∣∣ζB�L�
t �I�∣∣ = ∣∣ζL−wL�t�

t �I�∣∣ + ∑
x∈A�t�

1
{
n
B�L�
t �x� ∈ I}


Since 1�nB�L�
t �x� ∈ I� ≤ 1�nt�x� ≥ 1�, it follows that on ?0,

�3
11�
∣∣∣∣∣ζB�L�

t �I�∣∣ − ∣∣ζLt �I�∣∣∣∣∣ ≤ �ζt ∩A�t�� for all I ⊂ 
1�∞� and t ≤ L2
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This proves (i) for χ = ζ. The reasoning which led to (3.10) applies equally
well to ζ̂t; moreover, 1�n̂B�L�

t �x� ∈ I� ≤ 1�nt�x� ≥ 1� clearly holds. Thus, (3.11),
and hence (i), follows for χ = ζ̂.

To derive (ii) from (i), we note that (i) and the definition of pt imply

E
(∣∣�χB�L�

t �I�� − �χLt �I��∣∣�?0

)
≤ �A�t��pt


To bound the expectation over ?c0, we note that both �ζB�L�
t � and �ζLt � are

bounded above by �B�L��. Thus, by Lemma 3.2,

E
(∣∣�ζB�L�

t �I�� − �ζLt �I��∣∣�?c0) ≤ �B�L��/Ld+1 ≤ 2/L


To complete the proof of (ii) for χ = ζ, it suffices to show that the right side
above is of smaller order than �A�t��pt. This is trivial, since for t ≤ L2, using
the asymptotics (1.11) for pt,

�A�t��pt ≥ CLd−1wL�0�/L2 ≥ CwL�0�/L
for an appropriate positive constant C, and since wL�0� → ∞ as L → ∞.
Finally, this argument also holds for χ = ζ̂. ✷

In the proof of Theorem 2 we will use the decomposition (2.5), with tJ =
ᾱ log ᾱ, since it will turn out that mutations after that time can be ignored
(i.e., we will see that ŶB�L�

ᾱ log ᾱ�∞ is negligible). To prepare for handling one of
the more technical steps in the other terms in (2.5), we give an estimate here
that will allow us to adequately control the number of mutations that occur
in a suitable space-time region. (This estimate is not needed for the proof of
Theorem 1.) Here and later on in the paper, C will stand for a positive constant
whose exact value does not concern us and will be allowed to vary from line
to line.

Lemma 3.4. Fix c > 0 as in (3.3), and letA�t� be as in (3.9). Let T = ᾱ log ᾱ
and β > 0, and suppose L ≥ βᾱ1/2�log ᾱ�2. For small α > 0 and appropriate
C > 0,

�3
12� E

(∫ T
0

�ζt ∩A�t��dt
)

≤
{
C�B�L��� in d = 2,

C�B�L��/ logL� in d ≥ 3.

Proof. By translation invariance, the left side of (3.12) equals
∫ T

0 �A�t��
pt dt. The proof of (3.12) is simply a straightforward estimation of this inte-
gral. Recall the definitions of wL�t� and A�t�. For some constant C, �A�t�� ≤
CLd−1wL�t�, and therefore

�3
13�

∫ T
0

�A�t��pt dt ≤
∫ T

0
CLd−1wL�t�pt dt

≤ CLd−1
(

�logL�7/2 + �logL�1/2
∫ T
�logL�2

t1/2pt dt

)
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The asymptotics for pt in (1.11) imply that, for large L,

�3
14�
∫ T
�logL�2

t1/2pt dt ≤
{
CT1/2 logT� in d = 2,

CT1/2� in d ≥ 3


Together, (3.13) and (3.14) give

�3
15�

∫ T
0

�A�t��pt dt

≤
{
CLd−1

(�logL�7/2 + �logL�1/2T1/2 logT
)
� in d = 2,

CLd−1
(�logL�7/2 + �logL�1/2T1/2

)
� in d ≥ 3,

for a new choice of C.
It follows from the assumption L ≥ βᾱ1/2�log ᾱ�2, β > 0, and a little algebra,

that ᾱ ≤ L2/β2�logL�4 for small α. So, for small α,

�3
16� T = ᾱ log ᾱ ≤ 2L2

β2�logL�3



Substitution of (3.16) into (3.15) then gives (3.12) for an appropriate con-
stant C. ✷

4. Variance estimates and weak laws. The goal of this section is to
show that when t is not too close to L2, �ζB�L�

t �I�� and �ζ̂B�L�
t �I�� can be ap-

proximated by their expected values within tolerable errors. Proposition 4.1,
which extends Proposition 2 of BCD, makes this precise. For a > 0, r > 0 and
I ⊂ 
1�∞�, define

BLa� r�t� =
{∣∣∣∣∣ζB�L�

t �I�∣∣ −E∣∣ζB�L�
t �I�∣∣∣∣∣ > apt�B�2L��/�logL�r

}
and let B̂La� r�t� denote the analogous quantity for ζ̂B�L�

t .

Proposition 4.1. Fix r > 0 and c0 > 0. There exists a constant C such that
for large enough L and I = 
m1�m2�, any m1 ≤m2 with m1 ≥ 1 and m2 ≤ ∞,

�4
1�
P

(⋃
t

BL8� r�t�� t ∈ [
0� c0L

2/�logL�3])

≤
{
C�log logL��logL�3r−2� in d = 2,

C�logL�1+3r−d� in d ≥ 3�

and

�4
2�
P

(⋃
t

B̂L8� r�t�� t ∈ [
0� c0L

2/�logL�3])

≤
{
C�log logL��logL�3r−2� in d = 2,

C�logL�1+3r−d� in d ≥ 3
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Remark. We have set a = 8 above solely as a matter of convenience. In
Sections 5–7, we will set r = 1/6. For this choice, the above exponent is 3r−2 =
−3/2 in d = 2 and 1 + 3r − d ≤ −3/2 in d ≥ 3; the important point is that
in both cases, this exponent is strictly less than −1. For the proof of Theorem
2, we need to consider times up to c0L

2/�logL�3, as in the left sides of (4.1)
and (4.2). For the proofs of Theorems 1 and 3, we need consider only times up
to L2/�logL�4 (in which case the proof of the d = 2 estimate would simplify
somewhat).

The proof of Proposition 4.1 requires a variance estimate that is closely
related to Lemma 4.3 of BCD. Recall from Section 2 the basic voter model ηAt ,
the coalescing random walk ζA� ts , s ≤ t and the coalescing random walk with
killing ζ̂A� ts , all of which are defined on the percolation substructure � . Our
variance estimate applies to the number of walks, starting from some set A,
that, at time t, are of a given mass size and are in B�L�.

Lemma 4.1. There exists a finite constant C such that for large L, all A ⊂
Zd, I ⊂ 
1�∞� and t ∈ 
0�L3�,

�4
3�
var

( ∑
x∈B�L�

1
{
nAt �x� ∈ I}) ≤ CLdp2

t �logL�d/2�t ∨ logL�d/2�

var
( ∑
x∈B�L�

1
{
n̂At �x� ∈ I}) ≤ CLdp2

t �logL�d/2�t ∨ logL�d/2


Proof. The arguments for the above two inequalities are identical. Writ-
ing jx for either 1�nAt �x� ∈ I� or 1�n̂At �x� ∈ I�, one can expand the left side
of (4.3), in either case, as∑

x�y∈B�L�

(
E�jxjy� −E�jx�E�jy�

)



Our approach will be to specify l > 0 (depending on L and t), splitting the
above quantity into

�4
4� ∑
x�y∈B�L�
�x−y�≤l

(
E�jxjy� −E�jx�E�jy�

) + ∑
x�y∈B�L�
�x−y�>l

(
E�jxjy� −E�jx�E�jy�

)



The upper bounds for these sums will depend on whether t is “small” or “large,”
meaning t ≤ A0 logL or A0 logL < t ≤ L3, where

�4
5� A0 = 12

da2
0

(
5d
2

+ 5
)

[a0 is the constant from (3.2)]. This gives us four quantities to compute. The
reason for the particular choice of A0 will become clear later.

Let us begin with a general inequality, which we will need for “small” dis-
tances �x − y�. It follows from the definition of the jx that for any l > 0,
E�jxjy� ≤ P�x ∈ ζt� y ∈ ζt�. By Lemma 1 of Arratia (1981),

P
(
x ∈ ζt� y ∈ ζt

) ≤ P�x ∈ ζt�P�y ∈ ζt� = p2
t 
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Thus, for some constant C,

�4
6� ∑
x�y∈B�L�
�x−y�≤l

E�jxjy� ≤ CLdldp2
t 


We consider first the “large” t case, A0 logL < t ≤ L3, where

�4
7� l =
[

12
d

(
5d
2

+ 5
)]1/2

�t logL�1/2


Plugging (4.7) into (4.6) implies that, for an appropriate C,

�4
8� ∑
x�y∈B�L�
�x−y�≤l

E�jxjy� ≤ CLdp2
t �t logL�d/2


This gives us a bound for the first sum in (4.4) for large t as needed in (4.3).
To estimate the second sum in (4.4) for A0 logL < t ≤ L3, we let Gx�y

denote the event that ηxs and ηys intersect at some time s ≤ t. Then,

�4
9� E�jxjy� −E�jx�E�jy� ≤ P�Gx�y�

A proof of this fact can be given by using two independent graphical substruc-
tures to construct versions of ηxs and ηys until the first time they intersect, at
which point one switches to a common graphical substructure. See the proof
of (2.6) in Griffeath (1979) for more details.

To estimate P�Gx�y�, we note that for x, y ∈ Z2, with �x− y� > l,
�4
10� Gx�y ⊂ �ηxs �⊂ x+B�l� or ηys �⊂ y+B�l� for some s ≤ t�

Using duality again, as in the estimate of Hin in the proof of Lemma 3.2, we
see that

�4
11� P�ηOs �⊂ B�l� for some s ≤ t� ≤ Cld−1tP
(
max
s≤t

�Ss� > l/2
)

for an appropriate constant C. It is straightforward to check from (4.5) and
(4.7) that l/2 ≤ a0t for t ≥ A0 logL. Therefore, we may apply the inequality
(3.2) and obtain

P
(
max
s≤t

�Ss� > l/2
)

≤ C exp�−dl2/12t��

where C depends on d. Plugging in (4.7) gives

�4
12� P
(
max
s≤t

�Ss� > l/2
)

≤ C exp
(−��5d/2� + 5� logL

) = CL−��5d/2�+5�


Combining (4.9)–(4.12), we obtain, for an appropriate constant C and all t >
A0 logL,

�4
13� ∑
x�y∈B�L�
�x−y�>l

P�Gx�y� ≤ CL2d ld−1tL−��5d/2�+5�
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By substituting in the value of l and rearranging the right side of (4.13),
we find that this equals, for a new constant C,

�4
14� CLd�t logL�d/2[�t/ logL�1/2L−�3d/2�−5]

Taking into account the restriction t ≤ L3 and that d ≥ 2, (4.13) and (4.14)
yield

�4
15� ∑
x�y∈B�L�
�x−y�>l

P�Gx�y� ≤ CLd�t logL�d/2L−13/2


In order to show that the right side of (4.15) is bounded above by the right
side of (4.3), it suffices to show that p2

t ≥ L−13/2 for A0 logL ≤ t ≤ L3. But
this follows immediately from the asymptotics for pt given in (1.11),

p2
t ≥ C/t2 ≥ C/L6 for large t ≤ L3


Therefore, by (4.9) and (4.15), we have, for A0 logL ≤ t ≤ L3,

�4
16� ∑
x�y∈B�L�
�x−y�>l

(
E�jxjy� −EjxEjy

) ≤ CLdp2
t �t logL�d/2�

as needed for (4.3).
We turn to the case of “small” t estimates, t ≤ A0 logL. Here, we take

l = 2bA0 logL, where b > 1 will be chosen later. Substituting this value of l
into (4.6) gives, for an appropriate constant C,

�4
17� ∑
x�y∈B�L�
�x−y�≤l

E�jxjy� ≤ CLdp2
t �logL�d


This again gives the bound in (4.3) for the first sum in (4.4).
We now estimate the second sum in (4.4) for t ≤ A0 logL. As remarked

after Lemma 3.1, I�t� is convex, with I�0� = 0. Also, one has l/2t ≥ b for
t ≤ A0 logL. Thus, I�l/2t� ≥ �l/2bt�I�b�. Using first Lemma 3.1 and then this
inequality, we have, for appropriate C,

P
(
max
s≤t

�Ss� > l/2
)

≤ C exp�−tI�l/2t�� ≤ C exp�−lI�b�/2b�

= C exp�−A0I�b� logL�

Since I�b� → ∞ as b→ ∞, we may choose b sufficiently large so thatA0I�b� ≥
d+ 1. It follows that for such b,

P
(
max
s≤t

�Ss� > l/2
)

≤ CL−d−1


Therefore, using (4.10) and (4.11), there is a constant C such that for t ≤
A0 logL, ∑

x�y∈B�L�
�x−y�>l

P�Gx�y� ≤ CL2dld−1tL−d−1
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Plugging in l = 2bA0 logL and t ≤ A0 logL gives, for new C,∑
x�y∈B�L�
�x−y�>l

P�Gx�y� ≤ CLd−1�logL�d


In order to see that the right side of the above inequality is bounded above by
the right side of (4.3) for t ≤ A0 logL, it suffices to check that p2

t ≥ L−1. But
this is easily verified using monotonicity and the asymptotics (1.11), which
imply that, for some positive constant C,

p2
t ≥ p2

A0 logL ≥ C/�logL�2� t ≤ A0 logL


Therefore, in view of (4.9), we have proved, for t ≤ A0 logL,

�4
18� ∑
x�y∈B�L�
�x−y�>l

(
E�jxjy� −EjxEjy

) ≤ CLdp2
t �logL�d


Together with (4.8), (4.16) and (4.17), this proves (4.3). ✷

We are now ready to prove Proposition 4.1. Let us consider ζB�L�
t and outline

our approach to the proof of (4.1); the argument for (4.2) is the same. Using
differences, it is clearly enough to consider just intervals of the form I = 
1�m�,
m ≤ ∞, with BL4� r replacing BL8� r in (4.1). For this, we will define a sequence of
times t�k�, k = 0, 1� 
 
 
 �K, with t�0� = 0 and t�K� = c0L

2/�logL�3 and show
that the sum of the probabilities of the events BL2� r�t�k�� is no larger than the
right side of (4.1). We will then argue that “nothing goes wrong” at times in
between the times t�k�. To estimate P�BL2� r�t�k���, we would like to obtain a
variance estimate from Lemma 4.1, and then apply Chebyshev’s inequality;
unfortunately, the lemma cannot be used directly on �ζB�L�

t �I��. To remedy the
situation, we restrict ζB�L�

t to x ∈ B�2L�, and introduce the approximating
process

�4
19� ζ̌
B�L�
t �I� = {

x ∈ B�2L�� nB�L�
t �x� ∈ I}�

to which Lemma 4.1 applies. We will then use Lemma 3.2 to show that ζB�L�
t �I�

and ζ̌B�L�
t �I� are equal with high probability. By combining these arguments,

we then prove (4.1). This approach works well in d ≥ 3, but to obtain the
bounds needed in d = 2, it must be slightly modified by separately considering
the time intervals 
0� c0L

2/�logL�4� and 
c0L
2/�logL�4� c0L

2/�logL�3�.

Proof of Proposition 4.1. We will prove (4.1) for I = 
1�m�, m ≤ ∞, and
BL4� r replacing BL8� r. The proof of (4.2) is identical, and so we will only briefly
comment on it. The argument for (4.1) consists of three parts: (i) the upper
bounds on P�BL2� r�t��, t ≤ c0L

2/�logL�q, q ≥ 1, given in (4.24), (ii) the upper
bounds on P�⋃t B

L
4� r�t�� t ≤ c0L

2/�logL�q�, given in (4.30), which imply the
desired bounds for d ≥ 3, and (iii) the refinement of these last bounds needed
for d = 2.
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Upper bounds for P�BL2� r�t��. We begin by defining the following analog of
BLa� r�t�. For a > 0, r > 0 and I = 
1�m�, set

B̌La� r�t� = {∣∣�ζ̌B�L�
t �I�� −E�ζ̌B�L�

t �I��∣∣ > apt�B�2L��/�logL�r}

Lemma 4.1 [replacing B�L� there with B�2L� and A with B�L�] implies that
there exists a constant C such that, for large L and t ≤ L3,

�4
20� var
(∣∣ζ̌B�L�

t �I�∣∣) ≤ CLdp2
t �logL�d/2�t ∨ logL�d/2


Given q ≥ 1, Chebyshev’s inequality and (4.20) imply that there exists a
constant C such that for large L,

�4
21� P�B̌L1� r�t�� ≤ C�logL�2r−d�q−1�/2 for t ≤ c0L
2/�logL�q


From the definition of wL�t� in (3.3), it is easy to see that B�L+wL�t�� ⊂
B�2L� for large L and t = o�L2/ logL�. Thus, �ζB�L�

t �I� �= ζ̌B�L�
t �I�� ⊂ �Hout ≥

1�, and Lemma 3.2 therefore implies

�4
22� P
(∣∣ζB�L�

t �I�∣∣ �= ∣∣ζ̌B�L�
t �I�∣∣) ≤ 1/Ld+1


On account of this,

�4
23� E
∣∣ζ̌B�L�
t �I�∣∣ ≤ E∣∣ζB�L�

t �I�∣∣ ≤ E∣∣ζ̌B�L�
t �I�∣∣ + 1/L


For t ≤ L2, monotonicity and the asymptotics (1.11) imply that for some posi-
tive constant C,

�B�2L��pt/�logL�r ≥ CLd−2/�logL�r�
which is, of course, of larger order than 1/L for large L. Moreover, 1/Ld+1 is
of smaller order than �logL�2r−d�q−1�/2. Therefore, on account of (4.21), (4.22)
and the triangle inequality, there is a constant C such that for large L,

�4
24� P�BL2� r�t�� ≤ C�logL�2r−d�q−1�/2 for t ≤ c0L
2/�logL�q


Later, we will set q = 3 and then q = 4.
Upper bounds for P�⋃t B

L
4� r�t�� t ≤ c0L

2/�logL�q�. For the sequence of
times t�k�, k = 0�1� 
 
 
 �K, mentioned before the proof, we set λ = 1 −
�logL�−r, t�0� = 0, and let

t�k� = inf
{
t� E�ζB�L�

t �I�� ≤ λk�B�2L��}
for k ≥ 1, until the first value of k where E�ζB�L�

t�k� �I�� ≤ 1 or t�k� ≥
c0L

2/�logL�q would hold; we denote this value by K and set t�K� =
c0L

2/�logL�q. Automatically, K ≤ C�logL�1+r for large enough C. This bound
and (4.24) easily give, for a new constant C,

�4
25� P
(
BL2� r�t�k�� for some k ≤K) ≤ C�logL�1+3r−d�q−1�/2
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We now estimate the probability that �ζB�L�
t �I�� deviates excessively from

its mean when t lies between the times t�k�. Clearly, E�ζB�L�
t �I�� is continuous

in t. Setting µk = E�ζB�L�
t�k� �I��, it follows from the definition of K that

�4
26�
µk = λk�B�2L��� k < K�

µk ≥ λk�B�2L�� − 1� k =K

(The −1 above is for the possibility that 1 ≥ λK�B�2L�� > E�ζB�L�

c0L
2/�logL�q�I��.)

Since I is of the form 
1�m�, both �ζB�L�
t �I�� and E�ζB�L�

t �I�� are nonincreasing
in t. Therefore, for k < K and t ∈ 
tk� tk+1�,∣∣ζB�L�

t �I�∣∣ −E∣∣ζB�L�
t �I�∣∣ ≤ ∣∣ζB�L�

t�k� �I�∣∣ −E∣∣ζB�L�
t�k+1��I�

∣∣

Adding and subtracting µk gives

�4
27� ∣∣ζB�L�
t �I�∣∣ −E∣∣ζB�L�

t �I�∣∣ ≤
(∣∣ζB�L�

t�k� �I�∣∣ − µk
)

+ �µk − µk+1�

A similar argument gives the inequality

�4
28� ∣∣ζB�L�
t �I�∣∣ −E∣∣ζB�L�

t �I�∣∣ ≥
(∣∣ζB�L�

t�k+1��I�
∣∣ − µk+1

)
− �µk − µk+1�


The difference of the means µk − µk+1 is easily estimated. First, by (4.26),
for k < K,

µk − µk+1 ≤
(

1
λ

− 1
)

�µk+1 + 1� + 1 = �logL�−r

1 − �logL�−r �µk+1 + 1� + 1


Next, using inequality (4.23), one can check that

µk+1 ≤ �B�2L��pt�k+1� + 1/L


Monotonicity and the asymptotics (1.11) easily imply that, for an appropriate
constant C and all t ≤ c0L

2, �B�2L��pt ≥ C logL for large L. Thus, for large
L, all k < K and t ∈ 
t�k�� t�k+ 1��,
�4
29� µk − µk+1 ≤ 2�logL�−r�B�2L��pt�k+1� ≤ 2�logL�−r�B�2L��pt

By combining (4.25), (4.27), (4.28) and (4.29), we obtain

�4
30� P

(⋃
t

BL4� r�t�� t ∈ [
0� c0L

2/�logL�q]) ≤ C�logL�1+3r−d�q−1�/2


Setting q = 3 in (4.30), we obtain (4.1) for d ≥ 3.
Refinement for d = 2. Setting q = 4 in (4.30) for d = 2 yields a bound which

is of smaller order than the right side of (4.1), but covers only the time period

0� c0L

2/�logL�4�. That is, we have

�4
31� P

(⋃
t

BL4� r�t�� t ∈ [
0� c0L

2/�logL�4]) ≤ C�logL�3r−2


We must now treat the time period 
c0L
2/�logL�4� c0L

2/�logL�3�.
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We proceed essentially as before. We set t�0� = c0L
2/�logL�4, and

t�k� = inf
{
t� E∣∣ζB�L�

t �I�∣∣ ≤ λkE∣∣ζB�L�
t�0� �I�∣∣} �

for k ≥ 1, until the first value of k where E�ζB�L�
t�k� � ≤ 1 or t�k� ≥ c0L

2/�logL�3

would hold; we denote this value by K, and set t�K� = c0L
2/�logL�3. As

before, λ = 1−�logL�−r. To bound K, we note that (4.23) and the asymptotics
(1.11) imply that

E
∣∣ζB�L�
t�0� �I�∣∣ ≤ �B�2L��pt�0� + 1/L ≤ C�logL�5

for an appropriate constant C. It follows from this and the definition of λ, that
there exists a constant C such that for large L, K ≤ C�log logL��logL�r.

Plugging d = 2 and q = 3 into (4.24) gives

P�BL2� r�t�k��� ≤ C�logL�2r−2� k ≤K

Given our bound on K, this implies

�4
32� P
(
BL2� r�t�k�� for some k ≤K) ≤ C�log logL��logL�3r−2


Here, the analog of (4.26),

µk = λkE�ζB�L�
t�0� �I��� k < K�

µk ≥ λkE�ζB�L�
t�0� �I�� − 1� k =K�

holds, where µk is defined as before. The same reasoning as in (4.26)–(4.30)
then shows that

�4
33�
P

(⋃
t

BL4� r�t�� t ∈ [
c0L

2/�logL�4� c0L
2/�logL�3])

≤ C�log logL��logL�3r−2


This inequality and (4.31) demonstrate (4.1) for d = 2.
The proof of (4.2) is identical to the proof we have given of (4.1). One replaces

ζ
B�L�
t with ζ̂B�L�

t throughout, and uses n̂B�L�
t in (4.19). The one significant point

to note is that, as with ζB�L�
t , both �ζ̂B�L�

t �I�� and E�ζ̂B�L�
t �I�� are nonincreasing

in t. ✷

5. Proof of Theorem 1. The proof of Theorem 1 is based on (2.5) and
the estimates (5.1)–(5.4) below. These estimates allow us to make rigorous the
heuristic argument given in (1.7)–(1.14). We first state the estimates, next use
them to establish Theorem 1 and then prove them at the end of the section.

The following statements hold for fixed ε, β > 0 uniformly over L ≥ βᾱ1/2.
First,

�5
1� P

( ∣∣ζ̂B�L�
t

∣∣
�B�L��pt

∈ 
1 − ε�1 + ε� for all t ≤ ᾱ/�log ᾱ�4
)

→ 1 as α→ 0
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Second, for y ∈ �0�1�, there exists δ = δ�y� ε� > 0 such that

�5
2� P

( �ζ̂B�L�
t �
1� ᾱy���
�B�L��pt

∈ 
1 − ε�1 + ε� for all t ≤ δᾱy
)

→ 1 as α→ 0


Third, if δ > 0 and 0 < y < u < 1, then for small α,

�5
3� E
∣∣ζ̂B�L�
t �
1� ᾱy��∣∣ ≤ δ�B�L��pt for all t ∈ [

ᾱu� ᾱ/�log ᾱ�4]

Fourth, for given δ > 0, C and large L,

�5
4� E
∣∣ζB�L�
t

∣∣ ≤ �1 + δ��B�L��pt for all t ≤ CL2/�log logL�2


Since E�ζ̂B�L�
t � ≤ E�ζB�L�

t �, the right side of (5.4) provides an upper bound for
E�ζ̂B�L�

t � as well.
To unify as much as possible our presentation of the d = 2 and d ≥ 3 cases,

we introduce the notation

�5
5� q�t� =
∫ t

0
ps ds


From the asymptotics for ps given in (1.11), it is easy to see that

�5
6� q�t� ∼
{ �log t�2/2π� in d = 2,

�log t�/γd� in d ≥ 3,

as t→ ∞. For fixed positive y, it follows from (5.6) that

�5
7� q�ᾱy� ∼
{
y2�log ᾱ�2/2π� in d = 2,

y�log ᾱ�/γd� in d ≥ 3,

as α→ 0.
Using (5.1)–(5.4), and the above asymptotics, we will prove

Proposition 5.1. Let β > 0 and ε0 > 0 be fixed, and L = L�α� ≥ βᾱ1/2.
For any given y ∈ �0�1�,

�5
8� P

(∣∣∣∣NL�
1� ᾱy��
αq�ᾱy� − 1

∣∣∣∣ > ε0

)
→ 0 as α→ 0


Furthermore,

�5
9� P
(
NL�
1�∞�� ≥ �1 + ε0�αq�ᾱ�) → 0 as α→ 0


It is easy to see that Theorem 1 follows directly from Proposition 5.1, mono-
tonicity, and (5.7). We therefore proceed to the proof of the proposition, deriving
lower and upper bounds for (5.8) and upper bounds for (5.9).
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Proof of the lower bound of NL�
1� ᾱy�� in �5
8�. Fix y ∈ �0�1� and
ε > 0. By (5.2), there exists δ > 0 such that, with probability tending to 1 as
α→ 0,∫ δᾱy

0

∣∣ζ̂B�L�
t �
1� ᾱy��∣∣dt ≥ �1 − ε�

∫ δᾱy
0

�B�L��pt dt = �1 − ε��B�L��q�δᾱy�


On account of (5.6), this is at least �1 − ε�2�B�L��q�ᾱy� for small α. So,
by Lemma 2.1, there is a Poisson random variable X, with mean EX =
�1 − ε�2α�B�L��q�ᾱy�, such that P�ŶB�L�

0� δᾱy�
1� ᾱy�� ≥ X� → 1 as α → 0. Since
L = L�α� ≥ βᾱ1/2, (5.7) shows that EX → ∞. Consequently, by Lemma 2.2,
P�X ≥ �1 − ε�EX� → 1. Therefore,

�5
10� P
(
Ŷ
B�L�
0� δᾱy

(
1� ᾱy�) ≤ �1 − ε�3α�B�L��q�ᾱy�) → 0 as α→ 0


By (2.4),

N
(
B�L�� 
1� ᾱy�) =d Ŷ

B�L�
0� δᾱy

(
1� ᾱy�) + ŶB�L�
δᾱy�∞

(
1� ᾱy�)

Together with (5.10), this implies that

�5
11� P
(
NL

(
1� ᾱy�) ≤ �1 − ε�3αq
(
ᾱy

)) → 0 as α→ 0


Choosing ε0 = 3ε gives us the desired lower bound for NL�
1� ᾱy�� in (5.8). ✷

Proof of the upper bound of NL�
1� ᾱy�� in �5
8�. The argument here
is more involved, since we must estimate the number of killed particles for
ζ̂
B�L�
t over all time. Fix y ∈ �0�1� and let u ∈ �y�1�, where u will be chosen

close to y. Define the times

T0 = 0� T1 = ᾱu� T2 = ᾱ/�log ᾱ�4� T3 = ᾱ/�log log ᾱ�2� T4 = ∞

Let Y̌i = ŶB�L�

Ti−1�Ti
�
1�∞�� for i = 1�3�4 and let Y̌2 = ŶB�L�

T1�T2
�
1� ᾱy��. By (2.5),

�5
12�
N�B�L�� 
1� ᾱy�� =d

4∑
i=1

Ŷ
B�L�
Ti−1�Ti

�
1� ᾱy��

≤ Y̌1 + Y̌2 + Y̌3 + Y̌4


We will see that the main term in (5.12) is Y̌1, and that the other terms are
negligible. [Here, we could instead estimate the terms on the first line of (5.12);
our choice will facilitate showing (5.9).] In what follows, ε1 > 0 will be a fixed
multiple of the value ε0 appearing in (5.8).

The term Y̌1. By (5.1), if ε > 0, then with probability tending to 1 as α→ 0,∫ T1

0

∣∣ζ̂B�L�
t

∣∣dt ≤ �1 + ε��B�L��
∫ T1

0
pt dt = �1 + ε��B�L��q�T1�


Using Lemma 2.1 again, we see that there is a Poisson random variable X
with EX = �1 + ε�α�B�L��q�T1� such that P�Y̌1 ≤ X� → 1 as α → 0. Since
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L = L�ᾱ� ≥ βᾱ1/2, (5.7) implies EX → ∞. Consequently, Lemma 2.2 implies
that P�X ≥ �1 + ε�EX� → 0, so we have

�5
13� P
(
Y̌1 ≥ �1 + ε�2α�B�L��q�T1�

) → 0 as α→ 0


In view of (5.7), we may choose u close enough to y, and an appropriate ε, to
obtain

�5
14� P
(
Y̌1 ≥ �1 + ε1�α�B�L��q�ᾱy�) → 0 as α→ 0


The term Y̌2. By (2.6) and (5.3), we have, for small α and ε > 0, with δ = ε2,

EY̌2 = α
∫ T2

T1

E
∣∣ζ̂B�L�
t �
1� ᾱy��∣∣dt ≤ ε2α�B�L��

∫ T2

T1

pt dt ≤ ε2α�B�L��q�T2�


It follows from Markov’s inequality that

�5
15� P
(
Y̌2 ≥ εα�B�L��q�T1�

) ≤ εq�T2�
q�T1�




Since (5.6) implies q�T2�/q�T1� stays bounded as α→ 0, it follows from (5.15)
that

�5
16� P
(
Y̌2 ≥ ε1α�B�L��q�ᾱy�) → 0 as α→ 0


The term Y̌3. We use (2.6) and the expectation estimate (5.4), with δ = 1,
to obtain

EY̌3 ≤ 2α�B�L��
∫ T3

T2

pt dt = 2α�B�L��(q�T3� − q�T2�
)



By Markov’s inequality, this implies

�5
17� P
(
Y̌3 ≥ εα�B�L��q�ᾱy�) ≤ 2

(
q�T3� − q�T2�

)
εq�ᾱy� 


Using the asymptotics in (5.6), one can check that for some finite constant C,

q�T3� − q�T2� ≤
{
C�log ᾱ��log log ᾱ�� in d = 2,

C�log log ᾱ�� in d ≥ 3.

In either case, the right side above is o�q�ᾱy�� as α → 0, so we have, setting
ε = ε1,

�5
18� P
(
Y̌3 ≥ ε1α�B�L��q�ᾱy�) → 0 as α→ 0


The term Y̌4. We again use (5.4), with δ = 1, and obtain E�ζ̂B�L�
T3

� ≤
2�B�L��p�T3�. Together with the trivial bound EY̌4 ≤ E�ζ̂B�L�

T3
� and Markov’s
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inequality, this implies that

�5
19� P
(
Y̌4 > εα�B�L��q�ᾱy�) ≤ 2p�T3�

εαq�ᾱy� 


It follows from the asymptotics for pt in (1.11) that, for small α,

pT3
≤

{
Cα�log ᾱ��log log ᾱ�2� in d = 2,

Cα�log log ᾱ�2� in d ≥ 3.

In both cases, by (5.7), the right side above is o�αq�ᾱy�� as α → 0, and thus,
setting ε = ε1,

�5
20� P
(
Y̌4 ≥ ε1α�B�L��q�ᾱy�) → 0 as α→ 0


Combining (5.12), (5.14), (5.16), (5.18) and (5.20), we obtain

�5
21� P
(
NL�
1� ᾱy�� ≥ �1 + 4ε1�αq�ᾱy�

) → 0 as α→ 0


Setting ε0 = 4ε1, this gives the desired upper bound onNL�
1� ᾱy�� in (5.8). ✷

Proof of �5
9�. The argument is analogous to that for the upper bound
in (5.8). Define

T0 = 0� T1 = ᾱ/�log ᾱ�4� T2 = ᾱ/�log log ᾱ�2� T3 = ∞�
and set Yi = ŶB�L�

Ti−1�Ti
�
1�∞�� for i = 1�2�3. The analog of (5.12),

�5
22� N
(
B�L�� 
1�∞�) =d Y1 +Y2 +Y3�

now holds. Of course, Y2 = Y̌3 and Y3 = Y̌4 for Y̌3 and Y̌4 as in the proof
of (5.8).

We first observe that the argument leading to (5.13) works equally well for
our new choice of T1, and yields

P
(
Y1 ≥ �1 + ε1�α�B�L��q�ᾱ�) → 0 as α→ 0


Furthermore, on account of the monotonicity of q�ᾱy� in y, it follows from
(5.18) and (5.20), with y = 1, that

P
(
Yi ≥ ε1α�B�L��q�ᾱ�) → 0 as α→ 0

for i = 2�3. Substituting the above bounds for Y1, Y2 and Y3 into (5.22)
implies (5.9) for ε0 = 3ε1. ✷

In order to complete the proof of Theorem 1, we still need to verify the
bounds in (5.1)–(5.4). Since (5.4) is needed for the other parts, we consider it
first.

Proof of �5
4�. For t ≤ L2/�logL�2, it is easy to derive the inequality in
(5.4). By Lemma 3.3(ii), for t ≤ L2,

E
∣∣ζB�L�
t

∣∣ ≤ E∣∣ζLt ∣∣ + 2�A�t��pt = (�B�L�� + 2�A�t��)pt
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Recalling (3.3) and (3.9), it is easy to see that there is a constant C such that
for t ≤ L2/�logL�2,

�5
23�
∣∣A�t�∣∣ ≤ ∣∣A(

L2/�logL�2)∣∣ ≤ CLd−1wL
(
L2/�logL�2)

≤ C∣∣B�L�∣∣/�logL�1/2


Thus, given δ > 0 and large enough L,

�5
24� E
∣∣ζB�L�
t

∣∣ ≤ �1 + δ��B�L��pt for all t ≤ L2/�logL�2


The treatment of (5.4) over t ∈ �L2/�logL�2�CL2/�log logL�2� requires more
careful estimation. For d = 2, the result follows immediately from Proposi-
tion 3 of BCD and (1.11). The extension of the proposition to d ≥ 3 is routine,
so we omit the details here. ✷

Proof of (5.1). Since L ≥ βᾱ1/2, ᾱ/�log ᾱ�4 = o�L2/�logL�3� for small α.
So by Proposition 4.1, with r = 1/6 and m = ∞, with probability tending to 1
as α→ 0,

�5
25�
∣∣∣∣∣ζB�L�

t

∣∣ −E∣∣ζB�L�
t

∣∣∣∣∣ ≤ C�B�L��pt/�logL�1/6 for all t ≤ ᾱ/�log ᾱ�4

for d ≥ 2. Also, by (3.3) and (3.9), for t ≤ L2/�logL�3,

�5
26� �A�t�� ≤ ∣∣A�L2/�logL�3�∣∣ ≤ CLd−1wL
(
L2/�logL�3) ≤ C�B�L��/ logL

for some constant C. Now, using Lemma 3.3(ii) and E�ζLt � = �B�L��pt,∣∣∣E∣∣ζB�L�
t

∣∣ − �B�L��pt
∣∣∣ ≤ 2�A�t��pt ≤ C�B�L��pt/ logL

for all t ≤ ᾱ/�log ᾱ�4. Combining this estimate with (5.25) yields

�5
27� P

( ∣∣ζB�L�
t

∣∣
�B�L��pt

∈ 
1 − ε�1 + ε� for all t ≤ ᾱ/�log ᾱ�4
)

→ 1 as α→ 0


To obtain (5.1), we need to replace ζB�L�
t in (5.27) with ζ̂B�L�

t . To do this, we
will show that the number of killed particles up to time ᾱ/�log ᾱ�4 for ζB�L�

t is
of smaller order than �B�L��pᾱ/�log ᾱ�4 . To do this, we employ (2.3), from which
it follows that

�5
28� ∣∣ζ̂B�L�
t

∣∣ ≤ ∣∣ζB�L�
t

∣∣ ≤ ∣∣ζ̂B�L�
t

∣∣ +YB�L�
0� ᾱ/�log ᾱ�4� t ≤ ᾱ/�log ᾱ�4


We will show that

�5
29� P
(
Y
B�L�
0� ᾱ/�log ᾱ�4 ≥ ε�B�L��pᾱ/�log ᾱ�4

) → 1 as α→ 0


The limit (5.1) will then follow from (5.27)–(5.29) and the monotonicity of pt.
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The proof of (5.29) is straightforward. Using (2.6), and (5.4) with δ = 1,

�5
30�

EY
B�L�
0� ᾱ/�log ᾱ�4 = α

∫ ᾱ/�log ᾱ�4

0
E
∣∣ζB�L�
t

∣∣dt
≤ 2α�B�L��

∫ ᾱ/�log ᾱ�4

0
pt dt

= 2α�B�L��q(ᾱ/�log ᾱ�4)

By the asympotics in (5.6), as α→ 0,

�5
31� 2α�B�L��q�ᾱ/�log ᾱ�4� ∼
{

2�B�L��α�log ᾱ�2/�2π�� in d = 2,

2�B�L��α�log ᾱ�/γd� in d ≥ 3.

On the other hand, the asymptotics (1.11) imply that

�5
32� �B�L��pᾱ/�log ᾱ�4 ∼
{
C�B�L��α�log ᾱ�5� in d = 2,

C�B�L��α�log ᾱ�4� in d ≥ 3,

which dominates the quantity in (5.31). Together, (5.30)–(5.32) imply that

�5
33�
EY

B�L�
0� ᾱ/�log ᾱ�4

�B�L��pᾱ/�log ᾱ�4
→ 0 as α→ 0


Markov’s inequality and (5.33) imply (5.29). ✷

Proof of (5.2). In order to obtain (5.2) from (5.1), we must show that
relatively few random walks have mass larger than ᾱy at times t ≤ δᾱy. The
key to doing so is a “conservation of mass” argument. Since the total mass of
the walks in ζ̂B�L�

t is at most �B�L��, it is certainly the case that

�5
34� ᾱy
∣∣ζ̂B�L�
t

(�ᾱy�∞�)∣∣ ≤ �B�L��

But ∣∣ζ̂B�L�

t

(
1� ᾱy�)∣∣ = ∣∣ζ̂B�L�
t

∣∣ − ∣∣ζ̂B�L�
t ��ᾱy� ∞��∣∣�

so, using (5.34) and (5.1), it follows that, with probability tending to 1 as
α→ 0,

�5
35� ∣∣ζ̂B�L�
t

(
1� ᾱy�)∣∣ ≥ ∣∣ζ̂B�L�
t

∣∣ − �B�L��/ᾱy ≥ �1 − ε/2��B�L��pt − �B�L��/ᾱy

for all t ≤ ᾱ/�log ᾱ�4 and a given choice of ε > 0. By monotonicity and the
asymptotics (1.11), there is a constant C such that

ptᾱ
y ≥ pδᾱy ᾱy ≥

{
C�log�δᾱy��/δ� in d = 2,

C/δ� in d ≥ 3,

for t ≤ δᾱy. Consequently, we may choose δ > 0 small enough so that

�5
36� 1/ᾱy ≤ �ε/2�pt for t ≤ δᾱy
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Combining (5.35) and (5.36) shows that with probability tending to 1 as α→ 0,

∣∣ζ̂B�L�
t

(
1� ᾱy�)∣∣ ≥ �1 − ε��B�L��pt for all t ≤ δᾱy


Since the upper bound is immediate from (5.1), this implies (5.2). ✷

Proof of (5.3). On account of (2.3),

�5
37� E
∣∣ζ̂B�L�
t

(
1� ᾱy�)∣∣ ≤ E∣∣ζB�L�
t

(
1� ᾱy�)∣∣ +EYB�L�
0� ᾱ/�log ᾱ�4

for all t ≤ ᾱ/�log ᾱ�4. The second term on the right side was estimated in
(5.30)–(5.33). For the first term, we apply Lemma 3.3(ii), which implies that

�5
38� E
∣∣ζB�L�
t

(
1� ᾱy�)∣∣ ≤ E∣∣ζLt (
1� ᾱy�)∣∣ + 2�A�t��pt


The second term on the right side of (5.38) is easy to handle. The assumption
L ≥ βᾱ1/2 implies that ᾱ/�log ᾱ�4 ≤ L2/�logL�3 for small α. By (5.26), there
is a constant C such that for large L, �A�t�� ≤ C�B�L��/ logL for all t ≤
L2/�logL�3. It follows that for given δ > 0 and small α,

�5
39� 2�A�t��pt ≤ �δ/3��B�L��pt for t ≤ ᾱ/�log ᾱ�4


The key to bounding the first term on the right side of (5.38) is the expo-
nential limit law (1.12). First, we note that

�5
40�
E
∣∣ζLt �
1� ᾱy��∣∣ = E

( ∑
x∈B�L�

1
{
1 ≤ nt�x� ≤ ᾱy})

= �B�L��P�1 ≤ nt ≤ ᾱy�


Next, for small α and t ≥ ᾱu, monotonicity and the asymptotics (1.11) imply
that for an appropriate constant C,

ptᾱ
y ≤ pᾱuᾱy ≤ C�log ᾱ�ᾱ�y−u�


This last quantity tends to 0 as α→ 0, since y < u. Therefore, by (5.40),

�5
41� E
∣∣ζLt (
1� ᾱy�)∣∣ ≤ �B�L��P�1 ≤ nt ≤ δ/6pt�

for small enough α. The limit (1.12) implies that, for large t,

P�1 ≤ nt ≤ δ/6pt� ∼ pt
∫ δ/6

0
e−u du ≤ �δ/6�pt


Using this fact in (5.41) gives, for small α and t in the indicated range,

�5
42� E
∣∣ζLt (
1� ᾱy�)∣∣ ≤ �δ/3��B�L��pt
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By (5.38), (5.39) and (5.42), we have

E
∣∣ζB�L�
t

(
1� ᾱy�)∣∣ ≤ �2δ/3��B�L��pt for t ≤ ᾱ/�log ᾱ�4


Together with (5.37) and (5.33), this implies (5.3). ✷

6. Proof of Theorem 2. To prove Proposition 5.1, and hence Theorem 1,
for values y ∈ �0�1�, it was sufficient to show that NL�
1� ᾱy�� ∼ αq�ᾱy� with
high probability for given y and small α. To prove Theorem 2, we must show
that NL�
rk� rk+1�� ∼ αk�log r�2/π in d = 2, and NL�
rk� rk+1�� ∼ α�log r�/γd
in d ≥ 3, and that this holds with high probability for on the order of log ᾱ
values of k simultaneously.

To state this concisely, we employ the notation

�6
1� l�M� =
{

logM� in d = 2,

1� in d ≥ 3.

Also, the reader should recall the definition of α̂ stated immediately before
Theorem 2. Our main result in this section is the following analog of Proposi-
tion 5.1.

Proposition 6.1. Let r > 1, β > 0 and ε0 > 0 be fixed. There exist δ > 0
and C, such that for small α > 0 and all L ≥ βᾱ1/2�log ᾱ�2, one has

�6
2� P

(∣∣∣∣N
L
(
M�Mr�)
αl�M� − log r

γd

∣∣∣∣ > ε0�?1

)
≤ C log logM

�logM�3/2

for all M ∈ 
δ−1� δα̂� and a suitable event ?1 (not depending on M), with
P�?1� > 1 − ε0.

Once one has Proposition 6.1, the proof of Theorem 2 is immediate. Sum-
mation of the right side of (6.2) over the values M = rk in 
δ−1� δα̂� gives an
upper bound of the form

C
∑

k≥ log�δ−1�
log r

log k
k3/2

≤ C log log�δ−1�(
log�δ−1�)1/2

for new choices of the constant C. Rephrasing (6.2) using the events EL�k�
given before Theorem 2, with ε ≥ ε0, one therefore gets

�6
3� P

(⋃
k

EL�k�� rk ∈ 
δ−1� δα̂�
)

≤ ε0 + C log log�1/δ�
�log�1/δ��1/2




Letting α→ 0, δ→ 0, and then ε0 → 0 implies (1.5). Thus, our goal is to prove
Proposition 6.1. The quantities r > 1, β > 0 and ε0 > 0 appearing in Proposi-
tion 6.1 are assumed to be fixed throughout this section; for convenience, we
set ε′

0 = ε0/12. Also, note that for small δ > 0, M ≥ δ−1 will be large.
The strategy we adopt to show Proposition 6.1 is similar, in general terms, to

that used for Proposition 5.1 in the proof of Theorem 1. We let I = 
M�Mr�,
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and for 0 < ε1 < K1 < ∞, which we shall shortly choose, we set TM0 = 0,
TM5 = ∞ and

TM1 = ε1Ml�M��
TM2 = K1Ml�M��
TM3 = (�logM�2Ml�M�) ∧TM4 �
TM4 = ᾱ log ᾱ


With these times, we employ (2.5) in the form

�6
4� N�B�L�� I� =d

5∑
i=1

Ŷi�

where we have written Ŷi for ŶB�L�
Ti−1
M �TiM

�I�. We will find it convenient to think

of the times in 
TM0 �TM1 � as small times, the times in 
TM1 �TM2 � as moderate
times, and the times in 
TM2 �TM5 � as large times. It will turn out that, for small
ε1 and large K1, only the term Ŷ2, representing the period of moderate times,
will make a substantial contribution to (6.4).

Before specifying ε1 and K1, we first define, for 0 < a < b,

�6
5� ga�b�s� = 1
γds

(
exp

( −a
γds

)
− exp

( −b
γds

))
� s > 0


One can check that ∫ ∞

0
g1� r�s�ds = log r

γd
�

since by a change of variables,∫ t
0

1
s

[
exp

( −1
γds

)
− exp

( −r
γds

)]
ds =

∫ t
t/r

1
s

exp
( −1
γds

)
ds

=
∫ 1

1/r

1
s

exp
( −1
tγds

)
ds�

which converges to log r as t→ ∞. We may therefore choose ε1 and K1, with
0 < ε1 < K1 ∧ �ε′

0/2� <∞, so that

�6
6� 0 <
log r
γd

−
∫ K1

ε1

g1� r�s�ds < ε′
0


We assume that K1 is chosen large enough so that K1 > C1/ε
′
0, where C1 is

the constant in Lemma 6.1.
We now specify the event ?1 appearing in Proposition 6.1. With ?0 being

the good event of Lemma 3.2, and A�t� defined as in (3.9), we set

?1 =
{∫ ᾱ log ᾱ

0
�ζt ∩A�t��dt < ε′

0�B�L��l�δ−1�
}

∩?0
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By Lemma 3.4 and Markov’s inequality, we have, for an appropriate con-
stant C,

P

(∫ ᾱ log ᾱ

0
�ζt ∩A�t��dt ≥ ε′

0�B�L��l�δ−1�
)

≤
{
C/�ε′

0 log
(
δ−1�)� in d = 2,

C/�ε′
0 logL�� in d ≥ 3.

Also, P�?0� ≥ 1−1/Ld+1 by Lemma 3.2. So, for small α and δ, P�?1� ≥ 1−ε′
0.

Having defined the event ?1, we note that it will enter into our estimates
only when handling the term Ŷ4. Also, we emphasize that, for the rest of this
section, I = 
M�Mr�.

We now proceed to estimate Ŷi, i = 1� 
 
 
 �5. By (6.4), this will give us
bounds on N�B�L�� I�, and hence on NL�I�, as needed for Proposition 6.1.

6.1. The term Ŷ1. Since the mass of a particle in ζ̂B�L�
t is not larger than

the mass of the corresponding particle in ζ
B�L�
t , and the total mass of the

particles in ζB�L�
t is at most �B�L��, it is easy to see that

�6
7� ∣∣ζ̂B�L�
t �I��∣∣ ≤ ∣∣ζ̂B�L�

t

(
M�∞�)∣∣ ≤ ∣∣ζB�L�
t

(
M�∞�)∣∣ ≤ �B�L��
M




Since TM1 = ε1Ml�M�, it follows that

∫ TM1
0

∣∣ζ̂B�L�
t �I�∣∣dt ≤ ε1�B�L��l�M�


By Lemma 2.1 and the above inequality, there is a Poisson random variable
X, with EX = αε1�B�L��l�M�, such that P�Ŷ1 ≤ X� = 1. The assumptions
L ≥ βᾱ1/2�log ᾱ�2 and M ≤ δα̂ imply that, for small α,

α�B�L�� ≥ �log ᾱ�2 ≥ logM


Thus, EX ≥ ε1 logM, and by Lemma 2.2,

P�X ≥ 2EX� ≤ exp�−c2EX� ≤M−ρ

for some ρ > 0. Since we are assuming 2ε1 < ε
′
0, it follows that

�6
8� P
(
Ŷ1 ≥ ε′

0α�B�L��l�M�) ≤M−ρ


This is the desired bound for small times.

6.2. The term Ŷ2. The argument for moderate times is somewhat involved,
so we give a brief outline before turning to the details. We proceed in a series of
steps. In Steps 2a and 2b, we show that �ζ̂B�L�

t �I�� ≈ E�ζ̂Lt �I�� and E�ζ̂Lt �I�� ≈
E�ζLt �I�� up to appropriate error terms. We demonstrate in Step 2c that these
error terms are negligible. We show, in Step 2d, that

∫ TM2
TM1

E
∣∣ζLt �I�∣∣dt ≈ �B�L��l�M��log r�/γd
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In Step 2e, we combine the above results to deduce that with probability close
to 1, ∫ TM2

TM1

∣∣ζ̂B�L�
t �I�∣∣dt ≈ �B�L��l�M��log r�/γd


We finish the argument by applying the Poisson domination estimate from
Section 2, obtaining

Ŷ2 ≈ α�B�L��l�M��log r�/γd
with probability close to 1.

Step 2a. To show that �ζ̂B�L�
t �I�� ≈ E�ζ̂Lt �I�� for all t ≤ TM2 with probability

close to 1, we will employ Lemma 3.3 to obtain E�ζ̂B�L�
t �I�� ≈ E�ζ̂Lt �I��, and

then Proposition 4.1 to obtain �ζ̂B�L�
t �I�� ≈ E�ζ̂B�L�

t �I��. We first note that a
simple computation, using the bounds M ≤ δα̂ and L ≥ βᾱ1/2�log ᾱ�2, shows
that

�6
9� TM2 = o�L2/�logL�3� as α→ 0


So, we may assume TM2 ≤ L2/�logL�3. By Lemma 3.3(ii),∣∣∣E∣∣ζ̂B�L�
t �I�∣∣ −E∣∣ζ̂Lt �I�∣∣∣∣∣ ≤ 2�A�t��pt for t ≤ TM2 


By (5.26), there exists a constant C such that, for large L, �A�t�� ≤
C�B�L��/ logL for all t ≤ L2/�logL�3. Thus, for small α,∣∣∣E∣∣ζ̂B�L�

t �I�∣∣ −E∣∣ζ̂Lt �I�∣∣∣∣∣ ≤ 2C�B�L��pt/ logL for t ≤ TM2 

But, by Proposition 4.1, for an appropriate constant C and small α,

P

(∣∣∣∣∣ζ̂B�L�
t �I�∣∣ −E∣∣ζ̂B�L�

t �I�∣∣∣∣∣ > C�B�L��pt
�logL�1/6

for some t ≤ TM2
)

≤ C log logL
�logL�3/2




By the last two estimates and the triangle inequality, it follows that, for an
appropriate constant C,

�6
10�
P

(∣∣∣∣∣ζ̂B�L�
t �I�∣∣ −E∣∣ζ̂Lt �I�∣∣∣∣∣ > C�B�L��pt

�logL�1/6
for some t ≤ TM2

)

≤ C log logL
�logL�3/2




Step 2b. Here, we estimate the difference in mass between particles in
ζ̂Lt and ζLt and then use this information to make precise the approximation
E�ζ̂Lt �I�� ≈ E�ζLt �I��, the desired bounds being given by (6.14) and (6.15). Let
It�x� = nt�x� − n̂t�x� and mL

t = ∑
x∈B�L� It�x�. Note that It�x� is always

nonnegative.
We first show that

�6
11� ∑
x∈B�L�

P�It�x� ≥ ε2M� ≤ α�B�L��t/ε2M
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for ε2 > 0; this gives us control over the number of sites in B�L� which have
lost mass of order of magnitude M. In Step 2d, we will specify ε2.

To see (6.11), we note that

EmL
t = E

( ∑
x∈B�L�

∑
y∈Zd

1
{
ζ
y
t = x� ζ̂yt = �

})

= �1 − e−αt� ∑
x∈B�L�

∑
y∈Zd

P
(
ζ0
t = x− y) = �B�L���1 − e−αt�


Since 1 − e−u ≤ u, one has

�6
12� EmL
t ≤ α�B�L��t


By Markov’s inequality,

�6
13� ∑
x∈B�L�

P�It�x� ≥ ε2M� ≤ ∑
x∈B�L�

E
(
It�x�)/ε2M = EmL

t /ε2M


Together with (6.12), this implies (6.11).
We now consider which sites x ∈ B�L� have It�x� < ε2M, which leads to

the decomposition∣∣ζ̂Lt �I�∣∣ ≤ ∑
x∈B�L�

1
{
It�x� < ε2M� n̂t�x� ∈ I} + ∑

x∈B�L�
1
{
It�x� ≥ ε2M

}



Since It�x� = nt�x� − n̂t�x�, we have{
It�x� < ε2M� n̂t�x� ∈ I} ⊂ {

nt�x� ∈ 
M�M�r+ ε2��
}
�

which implies∑
x∈B�L�

1
{
It�x� < ε2M� n̂t�x� ∈ I} ≤ ∣∣ζLt (
M�M�r+ ε2�

)∣∣

Combining the last two inequalities, and taking expectations, we obtain

E
∣∣ζ̂Lt �I�∣∣ ≤ E∣∣ζLt �
M�M�r+ ε2��

∣∣ +E
( ∑
x∈B�L�

1
{
It�x� ≥ ε2M

})



The last expectation equals the left side of (6.11); substituting in this bound
gives

�6
14� E
∣∣ζ̂Lt �I�∣∣ ≤ E∣∣ζLt (
M�M�r+ ε2��

)∣∣ + α�B�L��t/ε2M�

which is the upper bound we desire.
We argue similarly for an inequality in the reverse direction:

E
∣∣ζ̂Lt �I�∣∣ ≥ E

( ∑
x∈B�L�

1
{
It�x� < ε2M�nt�x� ∈ [

M�1 + ε2��Mr
)})

≥ E
( ∑
x∈B�L�

1
{
nt�x� ∈ [

M�1 + ε2��Mr
)})

−E
( ∑
x∈B�L�

1
{
It�x� ≥ ε2M

})





SPATIAL MODEL FOR THE ABUNDANCE OF SPECIES 695

By (6.11), this implies

�6
15� E
∣∣ζ̂Lt �I�∣∣ ≥ E∣∣ζLt (
M�1 + ε2��Mr�

)∣∣ − α�B�L��t/ε2M


Step 2c. Our goal in this step is to show that the “error terms” in (6.10),
(6.14) and (6.15) are negligible. To do this, we set

eL�M�t� = C�B�L��pt/�logL�1/6 + α�B�L��t/ε2M�

and show that for fixed ε2, and small enough δ and α,

�6
16� 1
�B�L��l�M�

∫ TM2
TM1

eL�M�t�dt < ε′
0


Verification of (6.16) involves just straightforward computation. We restrict
ourselves to the case d = 2, since the reasoning for d ≥ 3 is the same except
for the absence of the factors of logM in the following estimates.

The left side of (6.16), for d = 2, equals

�6
17� C

logM�logL�1/6

∫ TM2
TM1

pt dt+ α

ε2M logM

∫ TM2
TM1

t dt


By (5.6) and the definitions of TM1 and TM2 ,

�6
18�
∫ TM2
TM1

pt dt ≤ C(�logTM2 �2 − �logTM1 �2)
= C(log�K1/ε1�

)(
log�K1M logM� + log�ε1M logM�))

for appropriate C, since M ≥ δ−1 is large for small δ. So,
∫ TM2
TM1

pt dt ≤ C logM,
where C depends on ε1 and K1. On account of this, the first term in (6.17) is
bounded above by C/�logL�1/6.

The second term in (6.17) is bounded above by

α

ε2M logM
�K1M logM�2 ≤ δγ2K

2
1

ε2 log ᾱ
log

(
δγ2ᾱ

log ᾱ

)
≤ δγ2K

2
1

ε2

for small α, the first inequality following from M ≤ δγ2ᾱ/ log ᾱ. Together
with the bound in the previous paragraph, this shows that (6.17) is bounded
above by

C/�logL�1/6 + δγ2K
2
1/ε2


For fixed ε2, and small δ and α, this implies (6.16).

Step 2d. Here, we show that
∫ TM2
TM1

E�ζLt �I��dt ≈ �B�L��l�M��log r�/γd. Let
1 ≤ a < b <∞ and set

fM�s� =MP(nsMl�M� ∈ 
Ma�Mb�)� s > 0
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It follows easily from (1.11) and (1.12), that the functions fM�·� are uniformly
bounded on the interval 
ε1�K1�, and that

fM�s� → ga�b�s� as M→ ∞�
where ga�b�s� is given by (6.5). By the bounded convergence theorem,

�6
19� lim
M→∞

∫ K1

ε1

fM�s�ds =
∫ K1

ε1

ga�b�s�ds


Furthermore, by the comments after (6.5), for a sufficiently close to 1 and b
sufficiently close to r, with r > 1,

�6
20�
∣∣∣∣
∫ K1

ε1

ga�b�s�ds− log r
γd

∣∣∣∣ < ε′
0


We also note that

�6
21�
∫ TM2
TM1

E
∣∣ζLt (
Ma�Mb�)∣∣dt = �B�L��

∫ TM2
TM1

P
(
nt ∈ 
Ma�Mb�)dt�

and that the change of variables t = sMl�M� gives

�6
22�
∫ TM2
TM1

P
(
nt ∈ 
Ma�Mb�)dt = l�M�

∫ K1

ε1

fM�s�ds


By (6.21), (6.22) and (6.19), for given a > 0 and b > 0, there exists δ > 0 such
that, for M ≥ δ−1,

�6
23�

∣∣∣∣
∫ TM2
TM1

E
∣∣ζLt �
Ma�Mb��∣∣dt− �B�L��l�M�

∫ K1

ε1

ga�b�s�ds
∣∣∣∣

≤ ε′
0�B�L��l�M�


If we set a = 1 and b = r + ε2, where ε2 is small, then (6.20) and (6.23)
imply that, for large L,

�6
24�
∫ TM2
TM1

E
∣∣ζLt (
M�M�r+ ε2�

)∣∣dt
≤ �B�L��l�M��log r�/γd + 2ε′

0�B�L��l�M�

Similarly, if we set a = 1 + ε2 and b = r, we obtain, for large L,

�6
25�
∫ TM2
TM1

E
∣∣ζLt (
M�1 + ε2��Mr�

)∣∣dt
≥ �B�L��l�M��log r�/γd − 2ε′

0�B�L��l�M�

Inequalities (6.24) and (6.25) are the desired bounds.
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Step 2e. We now use the estimates we have obtained in the previous steps,
along with Lemmas 2.1 and 2.2, to complete our treatment of moderate times.
We consider the upper bound. First, we choose ε2 > 0 and δ > 0 such that
for small enough α, and M ∈ 
δ−1� δα̂�, (6.16) and (6.24) hold. On account of
(6.10) and (6.14), the probability that

�6
26�
∫ TM2
TM1

∣∣ζ̂B�L�
t �I�∣∣dt ≥

∫ TM2
TM1

(
E
∣∣ζLt (
M�M�r+ ε2�

)∣∣ + eL�M�t�)dt
is at most C�log logL�/�logL�3/2. By (6.16) and (6.24), the right side of (6.26)
is bounded above by

�B�L��l�M�[�log r�/γd + 3ε′
0

]



It follows from Lemma 2.1 that there is a Poisson random variable X, with
expectation EX = α�B�L��l�M�
�log r�/γd + 3ε′

0�, such that

�6
27� P
(
Ŷ2 ≥X) ≤ C�log logL�/�logL�3/2


Since L ≥ βᾱ1/2�log ᾱ�2 and M ≤ δα̂, one has EX ≥ β2�log ᾱ�4�log r�/γd ≥
logM for small α. Therefore, using Lemma 2.2, there exists, for given ε > 0,
a ρ > 0 such that

�6
28� P
(
X ≥ �1 + ε�EX) ≤M−ρ


Also, the inequalities L ≥ βᾱ1/2�log ᾱ�2 and M ≤ δα̂ imply that M ≤ L2 for
small α. Thus,

log logM
�logM�3/2

≥ log log�L2�(
log�L2�)3/2 ≥ log logL

23/2�logL�3/2

for small α. Therefore, for small enough ε, (6.27) and (6.28) imply that for
small δ and α,

�6
29� P
(
Ŷ2 ≥ α�B�L��l�M�[�log r�/γd + 4ε′

0

]) ≤ C�log logM�/�logM�3/2

for a constant C. This is the desired upper bound for Ŷ2.
Similar reasoning may be applied to the lower bound, with (6.25) replacing

(6.24) in the above estimates. One then obtains the bound

�6
30� P
(
Ŷ2 ≤ α�B�L��l�M�[�log r�/γd − 4ε′

0

]) ≤ C�log logM�/�logM�3/2


6.3. A lemma for large times estimates. In order to show that Ŷ3 and
Ŷ4 are small, we need accurate estimates on the size of �ζ̂B�L�

t �I�� for times
t ∈ 
K1Ml�M�� ᾱ log ᾱ�. Unfortunately, the estimates that have proven useful
for smaller times are not adequate for these larger times. Instead, we use
Lemma 6.1, which provides the more accurate information we need. We first
state and prove this result, and then turn to the estimation of Ŷ3 and Ŷ4.
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Lemma 6.1. There exists a constant C1 such that, for small δ > 0, α > 0,
and M ∈ 
δ−1� δα̂�,

�6
31� E

(∫ ∞

bMl�M�

∣∣ζ̂Lt �I�∣∣dt) ≤ C1�B�L��l�M�/b for b ∈ 
1�M�


The basic voter model ηzt and the coalescing random walk ζA� ts were defined
in Section 2 using the percolation substructure. Here, we need a variant of the
basic voter model, which we call the voter model with killing, denoted by η̂At .
Its definition is similar to that of ηAt . Namely, we let η̂At denote the collection
of sites y such that there is a path up from some �x�0�, x ∈ A, to �y� t�,
with no mutation event on the path. It is apparent from the construction that
η̂At ⊂ ηAt and that ∣∣η̂xt ∣∣ = ∑

y∈Zd
1
{
ζ̂
y� t
t = x}


From this and the definition of n̂t�x�, one sees that

�6
32� ∣∣η̂xt ∣∣ =d n̂t�x� 

On account of (6.32), P��η̂xt � ∈ 
a� b�� = P�n̂t�x� ∈ 
a� b�� for any 1 ≤ a ≤ b <
∞. By translation invariance, these probabilities do not depend on x.

Proof of Lemma 6.1. We begin by setting T = bMl�M�, b ∈ 
1�M�, and
note that

�6
33�

E

(∫ ∞

T

∣∣ζ̂Lt �I�∣∣dt) = ∑
x∈B�L�

∫ ∞

T
P�n̂t�x� ∈ I�dt

= �B�L��
∫ ∞

T
P
(∣∣η̂Ot ∣∣ ∈ I)dt

= �B�L��E
(∫ ∞

T
1
{∣∣η̂Ot ∣∣ ∈ I}dt)


So, to obtain (6.31), we wish to estimate the total “occupation time” after time
T for �η̂Ot � of I. We do this as follows. Given that �η̂Os � ∈ I, we wait a certain
further amount of time uM to see whether η̂Os+uM = �, which will happen with
a certain probability. If this does not happen, we wait until the first time t
after s + uM when �η̂Ot � enters I and then repeat the procedure. Since the
probability of the nth such event decreases geometrically in n, one obtains
good enough bounds for (6.31). We turn now to the details of this argument.

First, let uM = 3rMl�M�/γd. Also, let σ0 = T and inductively define, for
n ≥ 1,

τn = inf
{
t ≥ σn−1�

∣∣η̂Ot ∣∣ ∈ 
M�Mr�}�
σn = τn + uM
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Since �η̂Ot � ≤ �ηOt �, the asymptotics (1.11) imply that there is a constant C such
that

�6
34� P�τ1 <∞� ≤ P(ηOσ0
�= �

) = pT ≤ C/bM

for large M. Our choice of uM guarantees that for large M, and all A ⊂ Zd

with �A� ≤ rM,

�6
35� P
(
η̂AuM �= �

) ≤ P(ηAuM �= �
) ≤ 1/2


To see that this is the case, we note that

P
(
ηAuM �= �

) ≤ ∑
x∈A

P
(
ηxuM �= �

) ≤ rMpuM


For d = 2, pt ∼ �log t�/γ2t as t→ ∞ by (1.11), and so, as M→ ∞,

rMpuM ∼ rM log�M logM�
3rM logM

= 1
3

(
1 + log logM

logM

)



Thus, rMpuM → 1/3 as M → ∞. For d ≥ 3, the asymptotics (1.11) give
puM ∼ 1/3rM, so again rMpuM → 1/3 as M→ ∞. This verifies (6.35).

By the Markov property and (6.35), each time �η̂Ot � hits I, there is probability
at least 1/2 that η̂Ot will die out within uM time units. Thus,

P�τn <∞� ≤ P�τ1 <∞��1/2�n−1


Furthermore, at most uM can be added to the total occupation time of I by
�η̂Ot � during each interval 
τn� τn+1�. Therefore,

∫ ∞

bMl�M�
1��η̂Ot � ∈ I�dt ≤ uM

∞∑
n=1

1�τn <∞�

and, consequently,

E

(∫ ∞

bMl�M�
1
{�η̂Ot � ∈ I}dt) ≤ uMP�τ1 <∞�

∞∑
n=1

�1/2�n−1 ≤ C

bM
2uM�

where we have used (6.34) in the last inequality. The proof of (6.31) is com-
pleted by plugging in the value of uM and applying (6.33). ✷

6.4. The term Ŷ3. The idea is to show, over the time period 
TM2 �TM3 �, that
�ζ̂B�L�
t �I�� ≈ E�ζ̂B�L�

t �I�� and that the latter quantity is approximatelyE�ζ̂Lt �I��,
where, as before, I = 
M�Mr�. Lemma 6.1 can be employed to show that this
is small. Lemmas 2.1 and 2.2 then give the desired bound.

We first note that TM3 ≤ TM4 ≤ ᾱ log ᾱ and recall from (3.16) that ᾱ log ᾱ ≤
2L2/β2�logL�3. As in (5.26), one can check that, for t ≤ TM3 ,

�A�t�� ≤ C�B�L��/ logL�
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where A�t� is given in (3.9). Thus, by combining Lemma 3.3 and Proposi-
tion 4.1, we see that there is a constantC such that, for small α, the probability
of the complement of the event

�6
36�
{∣∣ζ̂B�L�

t �I�∣∣ ≤ E∣∣ζ̂Lt �I�∣∣ + C�B�L��pt
�logL�1/6

for all t ≤ TM3
}

is at most C�log logL�/�logL�3/2. On the event in (6.36),∫ TM3
TM2

∣∣ζ̂B�L�
t �I�∣∣dt ≤

∫ TM3
TM2

(
E
∣∣ζ̂Lt �I�∣∣ + C�B�L��pt

�logL�1/6

)
dt


Lemma 6.1, with b =K1, implies that∫ TM3
TM2

E
∣∣ζ̂Lt �I�∣∣dt ≤ C1�B�L��l�M�/K1


Also, using the asymptotics (5.6), it is easy to see that there is a constant C
such that, for large M,∫ TM3

TM2

pt dt = q(TM3 ) − q(TM2 ) ≤ Cl�M� log logM


Recall that M ≥ δ−1. Therefore, on the event in (6.36),

�6
37�
∫ TM3
TM2

∣∣ζ̂B�L�
t �I�∣∣dt ≤ �B�L��l�M�

[
C1

K1
+ C log logM

�logL�1/6

]



We recall that K1 was chosen so that K1 > C1/ε
′
0 and also that M ≤ δα̂

and L ≥ βᾱ1/2�log ᾱ�2 imply M ≤ L2 for small α. It follows that for small α,
the right side of (6.37) is no larger than 2ε′

0�B�L��l�M�. Consequently, there
is a constant C such that

P

(∫ TM3
TM2

∣∣ζ̂B�L�
t �I�∣∣dt > 2ε′

0�B�L��l�M�
)

≤ C log logL
�logL�3/2




Applying the Poisson domination estimate and Lemma 2.2, and again using
M ≤ L2, it follows that for small α and δ,

�6
38� P
(
Ŷ3 > 3ε′

0α�B�L��l�M�) ≤ C�log logM�
�logM�3/2

for all M ∈ 
δ−1� δα̂�. This is the desired upper bound for Ŷ3.

6.5. The term Ŷ4. Here, we make use of the event ?1 given below (6.6).
Since ?1 ⊂ ?0 and TM4 ≤ L2, Lemma 3.3(i) implies that∣∣∣∣∣ζ̂B�L�

t �I�∣∣ − ∣∣ζ̂Lt �I�∣∣∣∣∣ ≤ �ζt ∩A�t�� for t ≤ TM4
on ?1. Also, by definition,∫ TM4

TM3

�ζt ∩A�t��dt < ε′
0�B�L��l�δ−1�
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on ?1. Combining these bounds gives

�6
39�
∫ TM4
TM3

∣∣ζ̂B�L�
t �I�∣∣dt ≤

∫ TM4
TM3

∣∣ζ̂Lt �I�∣∣dt+ ε′
0�B�L��l�δ−1�

on ?1.
By Lemma 6.1, with b = �logM�2,

E

(∫ TM4
TM3

∣∣ζ̂Lt �I�∣∣dt) ≤ C1�B�L��l�M�/�logM�2

for large M. By Markov’s inequality, this implies

�6
40� P

(∫ TM4
TM3

∣∣ζ̂Lt �I�∣∣dt > ε′
0�B�L��l�M�

)
≤ C1/ε

′
0�logM�2


Combining (6.39) and (6.40) and using M ≥ δ−1, we have, for small δ,

P

(∫ TM4
TM3

∣∣ζ̂B�L�
t

∣∣dt > 2ε′
0�B�L��l�M��?1

)
≤ C1/ε

′
0�logM�2


It therefore follows from the Poisson domination estimate and Lemma 2.2 that
there is a constant C such that

�6
41� P
(
Ŷ4 > 3ε′

0α�B�L��l�M�� ?1
) ≤ C

ε′
0�logM�2

for small α and δ, and M ≥ δ−1. This is the desired upper bound for Ŷ4.

6.6. The term Ŷ5. By the conservation of mass,

M
∣∣ŶB�L�

t�∞
(
M�Mr�)∣∣ ≤ ∑

x∈B�L�
1
{
ζ̂xt �= �

}



The right side has expected value e−αt�B�L��. Therefore, setting t = TM4 =
ᾱ log ᾱ,

EŶ5 ≤ exp�−αTM4 ��B�L��/M = α�B�L��/M


Thus, Markov’s inequality implies

�6
42� P
(
Ŷ5 ≥ ε′

0α�B�L��) ≤ 1/ε′
0M�

which is the desired upper bound on Ŷ5.
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6.7. Conclusion. In order to complete the proof of Proposition 6.1, we need
only assemble the various estimates we have derived, and check that they
imply (6.2). The bound P�?1� > 1 − ε′

0 was given using Lemmas 3.2 and
3.4 immediately after the definition of ?1. By the upper and lower bounds
(6.29) and (6.30), there exists a constant C such that for small α and δ and
M ∈ 
δ−1� δα̂�,

�6
43� P

(∣∣∣∣Ŷ2 − α�B�L��l�M� log r
γd

∣∣∣∣ > 4ε′
0α�B�L��l�M�

)
≤ C log logM

�logM�3/2



Also, by the upper bounds (6.8), (6.38), (6.41) and (6.42), there exists a constant
C such that for small α and δ, and M ∈ 
δ−1� δα̂�,

�6
44� P
(
Ŷ1 + Ŷ3 + Ŷ4 + Ŷ5 > 8ε′

0α�B�L��l�M��?1
) ≤ C log logM

�logM�3/2



Summing up Ŷi as in (6.4), one obtains

P

(∣∣∣∣N(
B�L�� I) − α�B�L��l�M� log r

γd

∣∣∣∣ > 12ε′
0α�B�L��l�M��?1

)
≤ C log logM

�logM�3/2

for suitable C. Normalization by �B�L�� implies (6.2) for ε0 = 12ε′
0, which

completes the proof of Proposition 6.1.
We remark that one can, if one wishes, modify Theorem 2 by replacing the

approximations αk�log r�2/π, in d = 2, and α�log r�/γd, in d ≥ 3, used to
define EL�k� by

�6
45� α
∫ ∞

0
pt

(
exp�−rkpt� − exp�−rk+1pt�

)
dt

in both cases. By doing this, one is essentially “going back one step” in the
analysis of NL�
rk� rk+1�� by using the approximation (1.12) but not (1.11)
for pt. The advantage of using (6.45) is that, according to simulations, con-
vergence is substantially faster in this setting. This modification is used in
Bramson, Cox and Durrett (1997) to compare the prediction in Theorem 2
with field data from Hubbell (1995). The justification of the substitution in
(6.45) is not difficult, and follows by applying (1.11) and reasoning similar to
that between (6.5) and (6.6)

7. Proof of Theorem 3. Our strategy here will be to first estimate the
mean of NL�
aα̂� bα̂�� (in 7.1), and then to show that NL�
aα̂� bα̂�� is close to
its mean with probability close to 1 (in 7.2). This will give us (1.6). The first
part includes an application of Sawyer’s limit (1.15); the second part employs
estimates similar to those in Sections 5 and 6. Since we consider only fixed a
and b, our probability estimates need not tend to zero at a specific rate (as in
Section 6), which simplifies matters here. Throughout this section, we write I
for the interval 
aα̂� bα̂�.
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7.1. Estimation of ENL�I�. The goal here is to show the limit (7.12). For
this, we first rewrite NL�I�. In keeping with the notation given in the intro-
duction, we denote by νA�x�, A ⊂ Zd, the patch size in A of x, that is,

νA�x� = ∑
z∈A

1
{
ξ∞�z� = ξ∞�x�}


As before, ξ∞ denotes the unique equilibrium distribution of the voter model
with mutation ξt. Since the patch at site x in B�L� has exactly νB�L��x� mem-
bers, one has

�7
1� N�B�L�� I� = ∑
x∈B�L�

1�νB�L��x� ∈ I�
νB�L��x� 


In this subsection, we will estimate the expectation of the right side of (7.1);
division by �B�L�� will then produce our estimate on ENL�I�.

Our strategy will be to show that one can replace νB�L��x� in (7.1) with ν�x�,
without significant error. Note that once the replacement is made, one has by
translation invariance,

�7
2� E

( ∑
x∈B�L�

1�ν�x� ∈ I�
ν�x�

)
= �B�L��E

(
1�ν�O� ∈ I�

ν�O�
)



Using h�u� = �1/u�1�u ∈ 
a� b��, one can write

Eh�ν�O�/α̂� = α̂E
(

1�ν�O� ∈ I�
ν�O�

)



By (1.15) and the asymptotics immediately above it, ν�O�/α̂ converges in dis-
tribution, as α→ 0, to a mean–one exponential random variable. It therefore
follows that

�7
3� α̂E

(
1�ν�O� ∈ I�

ν�O�
)

→
∫
h�u�e−u du =

∫ b
a

e−u

u
du as α→ 0


Together with (7.2), this implies that

α̂

�B�L��E
( ∑
x∈B�L�

1�ν�x� ∈ I�
ν�x�

)
→

∫ b
a

e−u

u
du as α→ 0

for all L. We want to show the analogous result for νB�L��x� replacing ν�x�,
and L ≥ βᾱ1/2�log ᾱ�2. We will employ (7.3) for this.

To approximate the right side of (7.1) by the left side of (7.2), we use duality.
For x ∈ Zd, let τ�x� be the the time at which the random walk starting at x is
killed; that is, τ�x� = inf�t > 0� ζ̂xt = ��. Then, τ�x� is an exponential random
variable with mean ᾱ. For A ⊂ Zd, let ν̃A�x� be the number of walks starting
from A that coalesce with the walk starting from x before either is killed;
that is,

�7
4� ν̃A�x� = ∑
z∈A

1
{
ζ̂zt = ζ̂xt for some t < τ�x� ∧ τ�z�}
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It is easy to see from the percolation substructure, that

�7
5� ν̃A�·� =d ν
A�·�


So, to compute ENL�I�, one can use

�7
6� N�B�L�� I� =d

∑
x∈B�L�

1�ν̃B�L��x� ∈ I�
ν̃B�L��x�

in place of (7.1).
Our basic approach will be to estimate the expected value of the right side

of (7.6), restricted to x ∈ B�L� for appropriate L ≤ L, and to subsets ?2�x�
with P�?2�x�� ≈ 1. For this, we set L = L−wL�ᾱ log ᾱ�, where wL is defined
in (3.3). By (3.16), for small α and L = L�α� ≥ βᾱ1/2�log ᾱ�2, ᾱ log ᾱ is at
most 2L2/β2�logL�3. With this estimate, one can easily check that there is a
constant C such that, for small α,

wL�ᾱ log ᾱ� ≤ CL/�logL�

We now show that the contribution to the right side of (7.6) from x /∈ B�L�

is negligible. Since ν̃B�L��x� ≥ aα̂ if the indicator function 1�ν̃B�L��x� ∈ I� is
not 0, there are constants C such that

α̂
∑

x∈B�L�\B�L�

1�ν̃B�L��x� ∈ I�
ν̃B�L��x� ≤ ∣∣B�L� \B�L�∣∣/a

≤ CLd−1wL�ᾱ log ᾱ�/a
≤ C∣∣B�L�∣∣/a�logL�

for small α. From this, it follows that

�7
7� α̂

�B�L��E
( ∑
x∈B�L�\B�L�

1�ν̃B�L��x� ∈ I�
ν̃B�L��x�

)
→ 0 as α→ 0


For x ∈ B�L�, we restrict ourselves to a “good set”?2�x�, over which ν̃B�L��x�
and ν̃�x� are identical. For this, we want to specify ?2�x� so that ν̃�x� is de-
termined by time ᾱ log ᾱ, and no particles from outside B�L� have moved far
enough by then to contribute to ν̃�x�. To this end, we define

?2�x� = {
τ�x� ≤ ᾱ log ᾱ

} ∩?0�

where ?0 is given below (3.4). It is not hard to see that

�7
8� ν̃B�L��x� = ν̃�x� on ?2�x�
for each x ∈ B�L�.

We check that one may safely neglect ?c2�x� for each x ∈ B�L�. Since
ν̃B�L��x� ≥ aα̂ when the indicator function is not 0,

α̂E

(
1
{
ν̃B�L��x� ∈ I}
ν̃B�L��x� �?c2�x�

)
≤ 1
a

(
P�τ�x� > ᾱ log ᾱ� +P�?0�

)
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Since P�τ�x� > ᾱ log ᾱ� = α, and P�?0� ≤ 1/Ld+1 by Lemma 3.2, this is at
most �α+ 1/Ld+1�/a. Thus,

�7
9� α̂E

(
1�ν̃B�L��x� ∈ I�

ν̃B�L��x� �?c2�x�
)

→ 0 as α→ 0

(and hence L → ∞), where the convergence is uniform in x ∈ B�L�. Exactly
the same argument shows that

�7
10� α̂E

(
1�ν̃�x� ∈ I�

ν̃�x� �?c2�x�
)

→ 0 as α→ 0

uniformly in x ∈ B�L�.
Turning to the contribution from ?2�x�, x ∈ B�L�, it follows from (7.8),

translation invariance and (7.5) that for each x ∈ B�L�,

E

(
1�ν̃B�L��x� ∈ I�

ν̃B�L��x� �?2�x�
)

= E
(

1�ν̃�x� ∈ I�
ν̃�x� �?2�x�

)

= E
(

1�ν�O� ∈ I�
ν�O�

)
−E

(
1�ν̃�x� ∈ I�

ν̃�x� �?c2�x�
)



Together with (7.3) and (7.10), this implies that

�7
11� α̂E

(
1�ν̃B�L��x� ∈ I�

ν̃B�L��x� �?2�x�
)

→
∫ b
a

e−u

u
du as α→ 0

uniformly in x ∈ B�L�.
As L → ∞, �B�L��/�B�L�� → 1. By combining (7.7), (7.9) and (7.11), we

therefore obtain

α̂

�B�L��E
( ∑
x∈B�L�

1�ν̃B�L��x� ∈ I�
ν̃B�L��x�

)
→

∫ b
a

e−u

u
du as α→ 0

for L = L�α� ≥ βᾱ1/2�log ᾱ�2. Substitution into (7.6) then gives

�7
12� α̂ENL�I� →
∫ b
a

e−u

u
du as α→ 0

for L ≥ βᾱ1/2�log ᾱ�2. This is the desired limit.

7.2. Deviation of NL�I� from its mean. We now estimate N�B�L�� I� as
in Sections 5 and 6. For given 0 < ε1 < K1 < ∞, define T0 = 0, T1 = ε1ᾱ,
T2 =K1ᾱ and T3 = ∞. Letting Ŷi = ŶB�L�

Ti−1�Ti
, we have, by (2.5),

�7
13� N�B�L�� I� =d Ŷ1 + Ŷ2 + Ŷ3


We will examine each of the three terms on the right side of (7.13). We
first show that Ŷ1 and Ŷ3 are small by showing that their expectations are
small; this gives us the bounds (7.15) and (7.18). On the other hand, the
upper and lower bounds for Ŷ2 in (7.23) and (7.24) will follow from (7.12)
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and Proposition 4.1. Together, (7.15), (7.18), (7.23) and (7.24) imply that for
L = L�α� ≥ βᾱ1/2�log ᾱ�2 and given ε > 0,

lim
α→0

P

(∣∣∣∣N�B�L�� I� − �B�L��
α̂

∫ b
a

e−u

u
du

∣∣∣∣ > ε�B�L��
α̂

)
= 0


This implies (1.6) and hence Theorem 3.
We proceed to estimate Ŷi, i = 1, 2, 3. In what follows, ε0 > 0 is assumed

to be fixed.
The term Ŷ1. By monotonicity and the conservation of mass,∣∣ζ̂B�L�

t �I�∣∣ ≤ ∣∣ζ̂B�L�
t

(
aα̂�∞�∣∣ ≤ ∣∣ζB�L�
t �
aα̂�∞��∣∣ ≤ �B�L��/aα̂


Thus, since T1 = ε1ᾱ, it follows from (2.6) that

EŶ1 = α
∫ ε1ᾱ

0
E
∣∣ζ̂B�L�
t �I�∣∣dt ≤ ε1�B�L��/aα̂


Setting ε1 = aε2
0, one obtains

�7
14� EŶ1 ≤ �B�L��
α̂

ε2
0

and thus, by Markov’s inequality,

�7
15� P
(
Ŷ1 ≥ ε0�B�L��/α̂) ≤ ε0


This is the desired bound for Ŷ1.
The term Ŷ3. Here, we use the elementary bound ŶB�L�

t�∞ �I� ≤ �ζ̂B�L�
t �. By

Lemma 3.3(ii),

�7
16� EŶ3 ≤ E∣∣ζ̂B�L�
K1ᾱ

∣∣ ≤ E∣∣ζ̂LK1ᾱ

∣∣ + 2
∣∣A�K1ᾱ�∣∣pK1ᾱ

≤ (�B�L�� + 2�A�K1ᾱ��)pK1ᾱ



Since by assumption L ≥ βᾱ1/2�log ᾱ�2, one has K1ᾱ ≤ L2/�logL�3 for small
α, which implies that �A�K1ᾱ�� ≤ C�B�L�� for an appropriate constant C.
Therefore,

EŶ3 ≤ C�B�L��pK1ᾱ

for another choice of C. By the asymptotics (1.11), as α→ 0,

pK1ᾱ
∼

{ �log�K1ᾱ��/πK1ᾱ� in d = 2,

1/γdK1ᾱ� in d ≥ 3.

Recalling the definition of α̂, it is clear that we may choose K1 large enough
so that for small α,

�7
17� EŶ3 ≤ ε2
0�B�L��/α̂�

where ε0 > 0 is given above. Consequently, by Markov’s inequality,

�7
18� P
(
Ŷ3 ≥ ε0�B�L��/α̂) ≤ ε0


This is the desired bound for Ŷ3.
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The term Ŷ2. Here, we show the bounds (7.23) and (7.24). Using (7.13) and
the bounds for ENL�I�, EŶ1 and EŶ3 in (7.12), (7.14) and (7.17), one has for
small α and L ≥ βᾱ1/2�log ᾱ�2,∣∣∣∣ α̂

�B�L��EŶ2 −
∫ b
a

e−u

u
du

∣∣∣∣ ≤ 3ε0


By (2.6), this implies

�7
19�
∣∣∣∣ αα̂

�B�L��
∫ K1ᾱ

ε1ᾱ
E�ζ̂B�L�

t �I��dt−
∫ b
a

e−u

u
du

∣∣∣∣ ≤ 3ε0


We next employ Proposition 4.1. Since K1ᾱ ≤ L2/�logL�3 for small α, the
event

�7
20�
{∣∣∣∣∣ζ̂B�L�

t �I�∣∣ −E∣∣ζ̂B�L�
t �I�∣∣∣∣∣ ≤ 8pt�B�2L��/�logL�1/6 for all t ≤K1ᾱ

}
has probability at least 1 − C�log logL�/�logL�3/2 for an appropriate con-
stant C. By (5.6), for an appropriate C and small α,

∫ K1ᾱ

ε1ᾱ
pt dt = q�K1ᾱ� − q�ε1ᾱ� ≤

{
C log ᾱ� in d = 2,

C� in d ≥ 3.

Consequently, on the event in (7.20),

�7
21� α

∣∣∣∣
∫ K1ᾱ

ε1ᾱ

∣∣ζ̂B�L�
t �I�∣∣dt−

∫ K1ᾱ

ε1ᾱ
E
∣∣ζ̂B�L�
t �I�∣∣dt∣∣∣∣ ≤ C�B�2L��

α̂�logL�1/6



Combining (7.19) and (7.21), we have, for small α and L ≥ βᾱ1/2�log ᾱ�2,

�7
22�
∣∣∣∣α

∫ K1ᾱ

ε1ᾱ

∣∣ζ̂B�L�
t �I�∣∣dt− �B�L��

α̂

∫ b
a

e−u

u
du

∣∣∣∣ ≤ 4ε0�B�L��
α̂

on the event in (7.20).
We now apply Lemmas 2.1 and 2.2. There is a Poisson random variable X

with mean

EX = �B�L��
α̂

(∫ b
a

e−u

u
du+ 4ε0

)

such that Ŷ2 ≤X on the event in (7.20). Since L ≥ βᾱ1/2�log ᾱ�2, �B�L��/α̂→
∞ as α → 0. Therefore, for given ε0 > 0, P�X ≥ �1 + ε0�EX� → 0 as α → 0,
and it follows that

�7
23� P

(
Ŷ2 ≥ �1 + ε0�

�B�L��
α̂

(∫ b
a

e−u

u
du+ 4ε0

))
→ 0 as α→ 0


A similar argument yields the inequality

�7
24� P

(
Ŷ2 ≤ �1 − ε0�

�B�L��
α̂

(∫ b
a

e−u

u
du− 4ε0

))
→ 0 as α→ 0


These are the desired bounds for Ŷ2.
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