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OCCUPATION TIME LARGE DEVIATIONS FOR CRITICAL
BRANCHING BROWNIAN MOTION, SUPER-BROWNIAN

MOTION AND RELATED PROCESSES

By Jean-Dominique Deuschel and Jay Rosen1

Technische Universität Berlin and College of Staten Island, CUNY

We derive a large deviation principle for the occupation time func-
tional, acting on functions with zero Lebesgue integral, for both super-
Brownian motion and critical branching Brownian motion in three dimen-
sions. Our technique, based on a moment formula of Dynkin, allows us
to compute the exact rate functions, which differ for the two processes.
Obtaining the exact rate function for the super-Brownian motion solves
a conjecture of Lee and Remillard. We also show the corresponding CLT
and obtain similar results for the superprocesses and critical branching
process built over the symmetric stable process of index β in Rd, with
d < 2β < 2+ d.

1. Introduction. Consider a critical branching Brownian motion in R3:
particles are initially distributed in R3 according to a Poisson random field
with uniform density τ > 0. Letting ξτt denote the countable set of sites in R3

occupied at time t, the particle at each x ∈ ξτt undergoes a Brownian motion
until it either splits into two particles or disappears with exponential rate τ,
independently of the other particles. If h is any function in L1�R3�, we define

Nτ
t �h� =

∑
x∈ξτt

h�x�


In particular, if A ⊆ R3 is a bounded measurable set, then Nτ
t �A� =Nτ

t �1A� is
just the number of particles in A at time t
 In case τ = 1, we simply write Nt

for N1
t . As τ → ∞, the law of 	�1/τ�Nτ

t � t ≥ 0� converges weakly to the law
of the Dawson–Watanabe super-Brownian motion 	µt� t ≥ 0� in R3 starting
from the Lebesgue measure µ (cf. [4]). For h ∈ L1�R3�, we write, as above,
µt�h� =

∫
R3 h�x�µt�dx�


Let T > 0 and define

N̄T ≡
1
T

∫ T
0
Ns ds and µ̄T ≡

1
T

∫ T
0
µs ds�

the occupation time functionals of N and µ. Note that

µ̄T�h� =
1
T

∫
R3
h�x�LxT µ�dx��
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BRANCHING BROWNIAN MOTION 603

where 	LxT� x ∈ R3� T ≥ 0� is the local time of the super-Brownian motion in
R3 (cf. [8], [9]).

For each h ∈ L1�R3�, both N̄T�h� and µ̄T�h� converge almost surely as
T → ∞ to the space average �h�µ� ≡ ∫

R3 h�x�µ�dx�
 This convergence has
been the object of several papers; compare [2] for critical branching Brownian
motion and [10] and [7] for super-Brownian motion. In particular, in case
�h�µ� > 0� Iscoe and Lee [10] proved a large deviation principle at critical
speed T1/2 for both N̄T�h� and µ̄T�h�, with identical rate function �∗h. Here
�∗h is expressed in terms of the Legendre transform of �h�θ� = ���h�µ�θ�,
where

��θ� = logEµ�exp�θL0
1��


Note that �h depends only on �h�µ�. In particular, �h ≡ 0 in case �h�µ� = 0.
This yields an infinite rate �∗h�x� = ∞ for x �= 0 and suggests a differ-
ent scaling in this case. Take for example h�x� = 1A�x� − 1B�x�, where A
and B are disjoint bounded sets with same Lebesgue measure µ�A� = µ�B�.
Then Nt�h� =Nt�A�−Nt�B�, the difference between the number of particles
present at time t in the sets A and B, reduces the fluctuations of the time
average N̄T�h�. In fact, Lee and Remillard have shown in a recent paper [11]
that P�T1/4µ̄T�h� > b� is of the order exp�−O�T1/2�� and they conjecture the
corresponding exact large deviation principle.

The object of this paper is to prove such a large deviation principle for both
T1/4N̄T�h� and T1/4µ̄T�h�, when �h�µ� = 0 and to identify the correspond-
ing rate functions. Unlike the previous situation when �h�µ� > 0� the rate
functions for T1/4N̄T�h� and T1/4µ̄T�h� turn out to be different.

More precisely, let �0 be the set of measurable h� R3 → R such that

�h�µ� = 0 and
∫
R3
�1+ �x���h�x��dx <∞
(1.1)

Next, set

σ�h� = − 1
2π

∫ ∫
�x− y�h�x�h�y�dxdy(1.2)

and

ρ�h� = 1
2π

∫ ∫
�x− y�−1 h�x�h�y�dxdy
(1.3)

Introduce the rate functions �µ� ∗h � �
N� ∗
h � R→ �0�∞�:

�
µ� ∗
h �x� = sup

θ∈R

{
xθ− ��σ�h�θ2�}�

�
N� ∗
h �x� = sup

θ∈R

{
xθ− ���σ�h� + ρ�h��θ2�}


Our main result is the following large deviation principle.
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Theorem 1. If h ∈ �0, then for each x ≥ 0,

lim
T→∞

1
T1/2

logP�T1/4µ̄T�h� ≥ x� = −�µ� ∗h �x��(1.4)

lim
T→∞

1
T1/2

logP�T1/4N̄T�h� ≥ x� = −�N� ∗h �x�
(1.5)

Note that the first equality is precisely Conjecture 1 of [11].
The crucial step in the proof of Theorem 1 is the convergence of the moment

generating functions

lim
T→∞

1
T1/2

logEµ

[
exp

(
T3/4θµ̄T�h�

)] = ��σ�h�θ2��(1.6)

for �θ� < θc�h and

lim
T→∞

1
T1/2

logEµ

[
exp

(
T3/4θN̄T�h�

)] = ���σ�h� + ρ�h��θ2��(1.7)

for �θ� < θcb�h� where θc�h and θcb�h are defined by

θ∗ = σ�h�θ2
c� h and θ∗ = �σ�h� + ρ�h��θ2

cb� h�

and θ∗ = sup	θ ∈ R� ��θ� < ∞�
 Once (1.6) and (1.7) are proved, the large
deviation results follow from the Ellis–Gärtner theorem.

Unlike [11], where the asymptotics of the left-hand side of (1.6) are investi-
gated with non-linear PDE techniques, our proof is based on Dynkin’s moment
formula [8]. This approach provides a graphical method for organizing the se-
ries expansion of (1.6), which enables us to prove convergence up to the critical
value θc�h, a condition which is necessary for the derivation of the full large
deviation principle.

As a byproduct of (1.6), we also get a large deviation principle for{
x� R3 → 1

T3/4
�LxT −L0

T�
}
�

viewed as a continuous function on R3; compare Theorem 5, below.
Our methods are not restricted to Brownian motion. We also show similar

results for the superprocess µβ�d� t and critical branching process Nβ�d� t built
over the symmetric stable process of index β in Rd, with d < 2β < 2+ d. Let
	LxT� T ≥ 0� x ∈ Rd� be the local time of µβ�d�T. Set

�β�d�θ� = logEµ�exp�θL0
1��
(1.8)

Let

σβ�d�h� = −cβ�d
∫ ∫

�x− y�2β−d h�x�h�y�dxdy�(1.9)

where

cβ�d =
∫ ∞

0
s�p�s�0� − p�s� u��ds <∞�(1.10)
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and p�s� y� denotes the transition density for the symmetric stable process of
index β in Rd and u ∈ Rd is an arbitrary unit vector. Let

ρβ�d�h� =
"��d− β�/2�
2βπd/2"�β/2�

∫ ∫
�x− y�−�d−β� h�x�h�y�dxdy
(1.11)

Introduce the rate functions �µ� ∗β�d�h� �
N� ∗
β�d�h� R→ �0�∞�:

�
µ� ∗
β�d�h�x� = sup

θ∈R

{
xθ− �β�d�σβ�d�h�θ2�}�

�
N� ∗
β�d�h�x� = sup

θ∈R

{
xθ− �β�d

(�σβ�d�h� + ρβ�d�h��θ2)}

Let

N̄β�d�T ≡
1
T

∫ T
0
Nβ�d� s ds and µ̄β�d�T ≡

1
T

∫ T
0
µβ�d� s ds�

the occupation time functionals of Nβ�d and µβ�d.
Our main result for stable processes is the following large deviation prin-

ciple.

Theorem 2. Let d < 2β < 2+ d. If h ∈ �0, then for each x ≥ 0,

lim
T→∞

1
Td/β−1

logP�T1−d/�2β�µ̄β�d�T�h� ≥ x� = −�µ� ∗β�d�h�x��(1.12)

lim
T→∞

1
Td/β−1

logP�T1−d/�2β�N̄β�d�T�h� ≥ x� = −�N� ∗β�d�h�x�
(1.13)

Finally, a simple consequence of our methods gives the following central
limit theorem, which should be contrasted with Theorem 6.1 of [9] and Theo-
rem 1 of [2] for the case where �h� λ� > 0 (see also [3]).

Let �0�Rd� = � �Rd�∩�0 be the set of rapidly decreasing test functions with
0 integral over Rd. We view 	√Tµ̄T�h�� h ∈ �0�Rd�� and 	√TN̄T�h�� h ∈
�0�Rd�� as distribution valued processes. Next, let 	Wi�h�� h ∈ �0�Rd��� i =
1�2 be centered Gaussian processes with covariance

E�W2
1�h�� = 2σ�h�� E�W2

2�h�� = 2�σ�h� + ρ�h��


Theorem 3. In the sense of weak convergence, we have

lim
T→∞

√
Tµ̄T =W1(1.14)

and

lim
T→∞

√
TN̄T =W2
(1.15)
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Note that (1.14) is shown in Main Theorem of [11], which also contains a
moderate deviation result for the super-Brownian motion. Similarly, we can
show the following central limit theorem for the processes built over stable
processes: let 	Wβ�i�h�� h ∈ �0�Rd��� i = 1�2 be centered Gaussian processes
with covariances

E
[
W2

β�1�h�
] = 2σβ�d�h�� E

[
W2

β�2�h�
] = 2�σβ�d�h� + ρβ�d�h��


Theorem 4. Let d < 2β < d+ 2, then, in the sense of weak convergence,

lim
T→∞

√
Tµ̄β�d�T =Wβ�1(1.16)

and

lim
T→∞

√
TN̄β�d�T =Wβ�2
(1.17)

The rest of this paper is divided into five sections. Section 2 deals with
the large deviation principle. Section 3 shows the convergence of the moment
generating function for differences of local times LxT−L0

T for super-Brownian
motion. This is a preliminary step for the convergence in (1.6) which is proved
in Section 4. We present a proof of (1.7) in Section 5 and in Section 6 we show
the convergence in the stable case.

2. The large deviation principle. Our first step is a proof of Theorem 1.
Note that the proof of Theorem 2 is completely analogous.

Proof of Theorem 1. The upper bounds

lim sup
T→∞

1
T1/2

logP�T1/4µ̄T�h� ≥ x� ≤ −�µ� ∗h �x��

lim sup
T→∞

1
T1/2

logP�T1/4N̄T�h� ≥ x� ≤ −�N� ∗h �x��

are simple consequences of (1.6) and (1.7) and Chebyshev’s inequality. The
lower bounds

lim inf
T→∞

1
T1/2

logP�T1/4µ̄T�h� ≥ x� ≥ −�µ� ∗h �x��

lim inf
T→∞

1
T1/2

logP�T1/4N̄T�h� ≥ x� ≥ −�N� ∗h �x��

follow from the Gärtner–Ellis theorem, once the the steepness of θ →
��σ�h�θ2� at θ = θc�h, respectively, of θ → ���σ�h� + ρ�h��θ2� at θ = θcb�h is
verified, (cf. Section 2.3 of [5]). The steepness follows easily from the fact that
� ∈ C1 on �−∞� θ∗� with

lim
θ↗θ∗

�′�θ� = ∞�(2.1)

where �′�θ� = �d/dθ���θ�; compare [10]. This concludes the proof of Theo-
rem 1. ✷
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Our next purpose is to derive a large deviation principle simultanuously
for all h. We will concentrate on the super-Brownian motion, which is simpler
since we can use the local time. Let C0 = 	f ∈ C�R3�R�� f�0� = 0� endowed
with the topology of uniform convergence on compact sets. Let C∗

0 be the dual
of C0, that is, the set of bounded signed measures ν with compact support in
R3 such that ν�R3� = 0, and write �f� ν� for the duality relation.

Next, for each T > 0 define x� R3 → L̄xT ∈ C0 by

L̄xT ≡
1
T

(
LxT −L0

T�� x ∈ R3


Note that

�L̄T� ν� =
∫
R3
L̄xT ν�dx�

so that by Theorem 10 below we have

lim
T→∞

1
T1/2

logE
[
exp

(
T3/4�L̄T� ν�

)]
= lim

T→∞
1
T1/2

logE
[
exp

(
T−1/4

∫
R3
LxT ν�dx�

)]
= ��σ�ν���

(2.2)

where

σ�ν� = − 1
2π

∫ ∫
�x− y� ν�dx� ν�dy�


Define the rate function I� C0 → �0�∞�,
I�φ� = sup

ν∈C∗
0

{�φ� ν� − ��σ�ν��}

Our main result in this section is the following large deviation principle.

Theorem 5. For each closed F ∈ C0 and open G ∈ C0,

lim inf
T→∞

1
T1/2

logP�T1/4L̄T ∈ G� ≥ − inf
G
I�(2.3)

lim sup
T→∞

1
T1/2

logP�T1/4L̄T ∈ F� ≤ − inf
F
I
(2.4)

Proof. The first step in the proof is the exponential tightness. For a com-
pact set K ⊆ R3, 0 ∈K and α ∈ �0� 1

2�, let

�f�K�α ≡ sup
{ �f�x� − f�y��

�x− y�α � x �= y ∈K� �x− y� ≤ 1
}
� f ∈ C0

be the α-Hölder norm of f in K. We claim the existence of δ > 0 such that

lim sup
T→∞

1
T1/2

logE
[
exp�δT3/4�L̄T�K�α�

]
<∞
(2.5)
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Let β∈ �0� 1
2�. For fixed x �=y∈K, �x−y� ≤1, set ν�dz�= �δ/�x−y�β��δx�dz�−

δy�dz��, then �LT� ν� = δ��LxT −LyT�/�x− y�β� with σ�ν� = �δ2/π��x−y�1−2β ≤
δ2. Thus for δ <

√
θ∗ we have

lim sup
T→∞

1
T1/2

logE
[
exp

(
T3/4δ

�L̄xT − L̄yT�
�x− y�β

)]

= lim sup
T→∞

1
T1/2

logE
[
exp

(
T−1/4δ

LxT −LyT
�x− y�β

)]

≤ ��σ�ν�� ≤ ��δ2� <∞

Now (2.5) follows from the Garsia–Rodemich–Rumsey inequality [1].

Next, let �L�K ≡ 	f ∈ C0� �f�α�K ≤ L�, which is a compact subset of C0.
Equation (2.5) implies the exponential tightness

lim
L→∞

lim sup
T→∞

1
T1/2

logP
(
T1/4L̄T /∈�L�K

) = −∞
(2.6)

This together with (2.2) implies the upper bound (2.4).
As far as the lower bound is concerned, let us first prove a finite-dimensional

result. For d ∈N and fixed distinct x1� 
 
 
 � xd ∈ R3, let

L̄T�d = �L̄x1
T � 
 
 
 � L̄

xd
T � ∈ Rd


Next let

� d� ∗
0 =

{
ν =

d∑
i=1

νiδxi� with
d∑
i=1

νi = 0
}

and then for ν ∈ � d� ∗
0 we have σ�ν� = −�1/π�∑d

i� j=1 �xi−xj� νi νj
 Set �d�ν� ≡
��σ�ν��� ν ∈ � d� ∗

0 and define Id�f� = sup	�f� ν� − �d�ν�� ν ∈ � d� ∗
0 �
 Of course

Id�f� ≤ I�f�. We then prove a lower bound for T1/4L̄T�d with rate Id. In view
of the Ellis–Gärtner theorem, it suffices to show the steepness of �d. Let

D =
{
ν = �ν1� 
 
 
 � νd�� νd = −

d−1∑
i=1

νi� σ�ν� < θ∗
}
�

∂D =
{
ν = �ν1� 
 
 
 � νd�� νd = −

d−1∑
i=1

νi� σ�ν� = θ∗
}



We view D as a subset of Rd−1 and set ∇iσ�ν� = �d/dνi�σ�ν�� i = 1� 
 
 
 � d−1.
Then �d is C1 in D with ∇�d�ν� = �′�σ�ν��∇σ�ν�. Thus, let 	νn� n ∈N� ⊆ D
be such that limn→∞ νn = ν ∈ ∂D. Then, in view of (2.1), we have the following
steepness result:

lim
n→∞ �∇�d�νn�� = lim

n→∞ �∇σ�νn�� ��
′�σ�νn��� = ∞
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Now an application of the Ellis–Gärtner theorem implies

lim inf
T→∞

1
T1/2

logP
(
T1/4L̄T�d ∈ Gd

) ≥ − inf
Gd

Id�(2.7)

for all open Gd ∈ Rd.
Once the lower bound is verified for each finite-dimensional cylinder set,

the lower bound (2.3) follows from the exponential tightness by a routine ar-
gument, (cf., e.g., [6] or Section 5.1 of [5]). Let f ∈ G be such that I�f� < ∞.
We may assume that BK�f� ε� = 	g ∈ C0� supx∈K �f�x� − g�x�� < ε� ⊆ G
for some ε > 0 and compact set K ⊆ R3. For each L > 0, we can then
find d = d�L�ε� ∈ N, and x1� 
 
 
 � xd ∈ R3 such that BK�d�f� ε/2� ∩�L�K ⊆
BK�f� ε�∩�L�K where BK�d�f� ε/2� = 	g ∈ C0� maxdi=1 �f�xi�−g�xi�� < ε/2�.
In view of the exponential tightness (2.6) we then have

lim inf
T→∞

1
T1/2

logP�T1/4L̄T ∈ BK�f� ε��

≥ lim
L→∞

lim inf
T→∞

1
T1/2

logP
(
T1/4L̄T�d ∈ BK�d

(
f� ε

2

))
≥ −Id�f� ≥ −I�f�


This completes the proof of Theorem 5. ✷

Before concluding this section, let us briefly indicate how the above results
can be extended to stable processes in Rd. Let 	LxT� T ≥ 0� x ∈ Rd� be
the local time of the symmetric superstable process of index β in Rd when
d < 2β < 2+ d. Set

�β�d�θ� = logEµ�exp�θL0
1��
(2.8)

Following [10], we can show the existence of 0 < θ∗β�d <∞ such that �β�d�θ� <
∞ for θ < θ∗β�d and limθ↑θ∗β�d�d�β�d�θ�/dθ� = ∞. Also by rescaling, we have for
each θ < θ∗β�d,

1
Td/β−1

logEµ�exp�T−�2−d/β�θL0
T�� = logEµ�exp�θL0

1�� = �β�d�θ��(2.9)

compare (6.9) below.
Let ν be a signed measure with compact support in Rd, such that∫

Rd
dν�x� = 0
(2.10)

Next set

σβ�d�ν� = −cβ�d
∫ ∫

�x− y�2β−d dν�x�dν�y��(2.11)

where cβ�d is defined in (1.10), and assume that σβ�d�ν� < θ∗β�d. Then we show
below in Theorem 13 that

lim
T→∞

1
Td/β−1

logEµ

(
exp

(
Td/�2β�

∫ 1
T
L
y
T dν�y�

))
= �β�d�σβ�d�ν��
(2.12)
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Our first result in this context is a large deviation principle for 	�1/T�LxT�
x ∈ Rd� viewed as an element of C = C�Rd�R� endowed with the topology of
uniform convergence on compact sets.

Theorem 6. Let �∗β�d be the Legendre transform of �β�d and define the
good rate function Jβ�d� C→ �0�∞�,

Jβ�d�φ� = �∗β�d�c�� φ�x� ≡ c� x ∈ Rd

and ∞ otherwise. Then for each closed F ∈ C and open G ∈ C,

lim inf
T→∞

1
Td/β−1

logP
(

1
T
LT ∈ G

)
≥ − inf

G
Jβ�d�(2.13)

lim sup
T→∞

1
Td/β−1

logP
(

1
T
L̄T ∈ F

)
≤ − inf

F
Jβ�d
(2.14)

Proof. Using (2.12), we see that for each x�y ∈ Rd and θ ≥ 0,

lim
T→∞

1
Td/β−1

logEµ

[
exp�Td/βθ�LxT −LyT��

] = 0
(2.15)

This shows via the Garsia–Rodemich–Rumsey inequality [1] that, for each
α ≥ 0, ε > 0 and compact K  0,

lim
T→∞

1
Td/β−1

logPµ

(∥∥∥∥ 1
T
LT

∥∥∥∥
K�α

≥ ε
)
= −∞(2.16)

and implies exponential tightness. Thus in order to prove the upper bound,
all we need to show is that

lim
ε↘0

lim sup
T→∞

1
Td/β−1

logPµ

(
1
T
LT ∈ BK�φ� ε�

)
≤ −Jβ�d�φ�
(2.17)

Note that by (2.16), the right-hand side of (2.17) is −∞, unless φ�x� ≡ c� x ∈
Rd. In this case Pµ��1/T�LT ∈ BK�φ� ε�� ≤ Pµ���1/T�L0

T − c� < ε� with

lim
ε↘0

lim sup
T→∞

1
Td/β−1

logPµ

(∣∣∣∣ 1
T
L0
T − c

∣∣∣∣ < ε
)
≤ −�∗β�d�c� = −Jβ�d�φ��(2.18)

which follows from (2.9). As for the lower bound, we may assume that the
open set G contains the ball BK�φ� ε� for some constant φ ≡ c and ε > 0.
Then 	��1/T�L0

T−c� < ε/2�∩	��1/T�LT�K�0 < ε/2� ⊆ BK�φ� ε� and therefore,
using (2.16), (2.9) and the steepness of �β�d,

lim inf
T→∞

1
Td/β−1

logPµ

(
1
T
LT ∈ G

)
≥ lim inf

T→∞
1

Td/β−1
logPµ

(∣∣∣∣ 1
T
L0
T − c

∣∣∣∣ < ε/2
)

≥ −�∗β�d�c� = −Jβ�d�φ�
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Finally let Iβ�d� C0 → �0�∞� be given by

Iβ�d�φ� = sup
ν∈C∗

0

{�φ� ν� − �β�d�σ�ν��}�
then, in view of (2.12), using precisely the same argument as in the proof of
Theorem 5, we get the following.

Theorem 7. Let 	L̄xT = �1/T��LxT − L0
T�� x ∈ Rd� ∈ C0
 For each closed

F ∈ C0 and open G ∈ C0,

lim inf
T→∞

1
Td/β−1

logP�T1−d/�2β�L̄T ∈ G� ≥ − inf
G
Iβ�d�(2.19)

lim sup
T→∞

1
Td/β−1

logP�T1−d/�2β�L̄T ∈ F� ≤ − inf
F
Iβ�d
(2.20)

3. Local time. Let Lxt denote the local time of super Brownian motion in
R3, and let µ denote the Lebesgue measure on R3. Set

��θ� = logEµ�exp�θL0
1��
(3.1)

Iscoe and Lee [10] have shown the existence of 0 < θ∗ <∞ such that ��θ� <∞
for θ < θ∗ and limθ↑θ∗�d��θ�/dθ� = ∞. Let θc be defined by

θ∗ = �y�θ2
c/π


Theorem 8. Let Lxt denote the local time of super-Brownian motion in R3,
and let µ denote Lebesgue measure on R3. Then

lim
T→∞

1
T1/2

logEµ

(
exp

(
θ

T1/4
�L0

T −LyT�
))

= ���y�θ2/π�(3.2)

for all θ < θc.

Proof. We begin with some preliminaries. We let � denote the set of
finite planar rooted unlabeled binary trees G. Here G consists of vertices and
arrows, that is, directed bonds. When G has more than one vertex, the vertices
of G consist of three types; the unique root r has no incoming arrows but two
outgoing arrows, the exits have one incoming but no outgoing arrows, while
the internal vertices have one incoming and two outgoing arrows. We use AG

to denote the arrows of G and E�G� to denote the exits of G. We use �n to
denote the set ofG ∈ � with n exits. Figure 1 contains an example of aG ∈ �11
with E�G� = 	ej� j = 1� 
 
 
 �11�.

Also included in � is the set Ĝ ∈ �1 with a single vertex, which we consider
both as root and exit.

Alternatively, � can be described as the set of finite family trees with a sin-
gle progenitor, r, where each individual can have either zero or two children.
Exits are precisely those individuals with zero children. The requirement that
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Fig. 1. G.

our trees be planar is equivalent to saying that whenever an individual has
two children, there is a natural order to their birth.

Let p�t� x�, t > 0 be the transition density for Brownian motion in R3. By
convention we set p�t� x� = 0 for t ≤ 0. According to Dynkin’s moment formula
[8] (see also [12]), which is itself derived from the Laplace transform and is
equivalent to the expansion used in [10], we have

logEµ�exp�θL0
T�� =

∞∑
n=1

θncn�T�(3.3)

with

cn�T� =
∑
�n

c�G�T��(3.4)

where

c�G�T� =
∫ ∫

:TG

p�tr� xr −w�
∏
a∈AG

p�taf − tai� xaf − xai�

× ∏
e∈E�G�

δ0�xe�dtdxdw

(3.5)

In the above formula, for each a ∈ AG we use ai� af to denote the initial and
final vertices of a. To each vertex v ∈ G is associated the pair of variables
�tv� xv� ∈ R+ ×R3. We set

:TG = {
tv� v ∈ G�0 ≤ tv ≤ T� ∀ v ∈ G and tai < taf� ∀ a ∈ AG

}



For notational convenience we have used the convention that δy�x�dx stands
for the probability measure with unit mass at the point y. With our conven-
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tions

c�Ĝ�T� =
∫ ∫

:T
Ĝ

p�tr� xr −w�δ0�xr�dtdxdw = T


It is easily seen by induction that for each G ∈ �n we have �G� = 2n − 1
and �AG� = �G� − 1. Hence by scaling we see that

c�G�T� = T�G�T−�3/2���AG�+1�T�3/2���G�−n+1�c�G�1�
= T2n−1T−�3/2��2n−1�T�3/2�nc�G�1�
= Tn/2+1/2c�G�1�


(3.6)

We now show how to bound c�G�1�, or more generally,

c�G�B� ze� e ∈ E�G�� =
∫ ∫

B
p�tr� xr −w�

∏
a∈A0

G

p�taf − tai� xaf − xai�

× ∏
a∈Ae

G

p�taf − tai� zaf − xai�dtdxdw�
(3.7)

where B ⊆ :1
G, A0

G denotes the set of internal arrows, that is, all arrows which
do not lead to an exit, while Ae

G denotes the set of n arrows leading to the
n exits. [We note that (3.7) with B = :1

G is the contribution from the (now
labelled) graph G to Eµ�

∏
e L

ze
1 �.] When ze = 0� ∀ e ∈ E�G�, we write c�G�B�

for the expression in (3.7).
We use ∫ 1

0
p�t� x�dt ≤ e

∫ ∞

0
e−tp�t� x�dt = eu1�x��(3.8)

where

u1�x� = e−�x�

2π�x�
to bound (3.7) by

c�G�B� ze� e ∈ E�G�� ≤ e2n
∫
u1�xr −w�

∏
a∈A0

G

u1�xaf − xai�

× ∏
a∈Ae

G

u1�zaf − xai�dxdw

(3.9)

To obtain our bound we proceed step by step, moving upwards along the
tree from its root. The dw integral over the first factor, u1�xr −w�, just gives
1. At the next step, we use the fact that u1�x� ∈ L2 to bound the dxr integral
and then keep repeating the procedure.

Using the dominated convergence theorem, it is now easy to show that
c�G�B� ze� e ∈ E�G�� is continuous in B�ze, e ∈ E�G� in the obvious sense.
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In particular, to see the continuity in ze, e ∈ E�G� we use the mean-value
theorem in the form

�p�t� x� − p�t� y�� ≤ c�x− y�δ
tδ/2

�p�t� x� + p�t� y��

Furthermore, we easily see from these considerations that

c�G�B� ze� e ∈ E�G�� ≤ cn(3.10)

for some c <∞ independent of n, G ∈ �n, B ⊆ :1
G, and ze, e ∈ E�G�.

When B = :TG we write c�G�T� ze� e ∈ E�G�� for c�G�B� ze� e ∈ E�G��. We
note for future reference that

c�G�B� ze� e ∈ E�G�� ≤ c�G�B�(3.11)

for all ze, e ∈ E�G�. This follows easily from the definitions by writing the
kernel p�t� x� in terms of its Fourier transform.

After these preliminaries we now come to our theorem. As in (3.3)–(3.5) we
have

1
T1/2

logEµ

(
exp

(
θ

T1/4
�L0

T −LyT�
))

=
∞∑
n=1

θn

Tn/4+1/2
dn�T�y��(3.12)

where

dn�T�y� =
∑
�n

d�G�T�y�(3.13)

and

d�G�T�y� =
∫ ∫

:TG

p�tr� xr −w�
∏
a∈A0

G

p�taf − tai� xaf − xai�

× ∏
a∈Ae

G

{
p�taf − tai�−xai�−p�taf − tai� y−xai�

}
dtdxdw


(3.14)

As before, scaling leads to

d�G�T�y� = Tn/2+1/2d�G�1� y/
√
T�(3.15)

so that
d�G�T�y�
Tn/4+1/2

= Tn/4d�G�1� y/
√
T�(3.16)

and consequently

1
T1/2

logEµ

(
exp

(
θ

T1/4
�L0

T −LyT�
))

=
∞∑
n=1

θnTn/4
∑
�n

d�G�1� y/
√
T�
(3.17)

Fix θ0 < θc so that

���y�θ2
0/π� =

∞∑
n=1

��y�θ2
0/π�n

∑
�n

c�G�1� <∞(3.18)

and choose θ < θ0. The following lemma will be proven later in this section.
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Lemma 1. We can find T′�C′ <∞ such that

∞∑
n=1

θnTn/4
∑
�n

�d�G�1� y/
√
T�� ≤ C′(3.19)

for all T ≥ T′.

Then, to establish our theorem for such a θ, it will suffice to study the T→∞
limit term by term.

Let us say that an exit e ofG is twinned if there is a vertex v, the immediate
predecessor of e, such that the two vertices which branch directly from v are e
and another exit e′. Otherwise we say that the exit e is untwinned. In Figure 1,
	e1� e2� e4� e5� e6� e7� e9� e10� is the set of twinned exits, and 	e3� e8� e11� is the
set of untwinned exits. Following our proof below of Lemma 1 we will be able
to show that in the T → ∞ limit the only graphs which contribute to (3.12)
are the graphs G in which all exits are twinned. If G ∈ �n is a graph in which
all exits are twinned, we have n = 2m and there are m vertices u1� 
 
 
 � um,
(the pre-exits) such that from each uj branch two exits which we denote by
v2j−1� v2j. Let G0 ∈ �m be the graph obtained from G by removing all exits,
and all arrows leading to those exits. Thus, the exits of G0 are the pre-exits
of G, which we continue to denote by u1� 
 
 
 � um. We will soon prove that

lim
T→∞

d�G�T�y�
Tn/4+1/2

= c�G0�1�
( �y�
π

)m

(3.20)

In view of (3.16)–(3.18) and our remarks following Lemma 1 this establishes
our theorem. We now prove (3.20).

If G ∈ �n is a graph in which all exits are twinned, with the notation of the
last paragraph,

d�G�T�y�
Tn/4+1/2

=
∫ ∫

�0�1�m

∫
:1
G0

p�tr� xr −w�
∏

a∈AG0

p�taf − tai� xaf − xai�

×
m∏
j=1

δsj�tuj�δzj�xuj�dtdxdw

×
m∏
j=1

T1/2
(∫ 1

sj

�p�r− sj� z�−p�r− sj� z−y/
√
T��dr

)2

dsdz

=
∫ ∫

�0�1�m

∫
:1
G0

p�tr� xr −w�
∏

a∈AG0

p�taf − tai� xaf − xai�

×
m∏
j=1

δsj�tuj�δzj�xuj�dtdxdw
m∏
j=1

fT�1− sj� zj� y�dsdz�

(3.21)
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where

fT�t� z� y� def= T1/2
(∫ t

0
�p�r� z� − p�r� z− y/

√
T��dr

)2

= T1/2
∫ t

0

∫ t
0
�p�r� z� − p�r� z− y/

√
T��

× �p�s� z� − p�s� z− y/
√
T��drds


(3.22)

We note that

p�t� x� > p�t� x′� ⇔ �x� < �x′��(3.23)

which implies that fT�t� z� y� is increasing in t, and therefore for any t,∫
fT�t� z� y�dz ≤

∫
fT�∞� z� y�dz
(3.24)

We can compute∫
fT�∞� z� y�dz = 2T1/2

∫ ∞

0

∫ ∞

0
�p�r+ s�0� − p�r+ s� y/

√
T��drds

= 2T1/2
∫ ∞

0
s�p�s�0� − p�s� y/

√
T��ds

= �y�/π


(3.25)

We will soon show the following.

Lemma 2. ∫
fT�∞� z� y�dz =

∫
fT�T−1/2� z� y�dz+O�T−1/4��(3.26)

and that for any δ > 0

lim
T→∞

∫
�z�≥δ

fT�T−1/2� z� y�dz = 0
(3.27)

We will use the notation I�B� for the integral similar to the integral in
(3.21), but in which the ds integration is over the region B ⊆ �0�1�m rather
than �0�1�m. Thus we have

d�G�T�y�
Tn/4+1/2

= I��0�1�m� = I��0�1−T−1/2�m� + I�BT��(3.28)

where

BT = �0�1�m − �0�1−T−1/2�m
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We first write

I��0�1−T−1/2�m�

=
∫ ∫

�0�1−T−1/2�m

∫
:1
G0

p�tr� xr −w�
∏

a∈AG0

p�taf − tai� xaf − xai�

×
m∏
j=1

δsj�tuj�δzj�xuj�dtdxdw
m∏
j=1

fT�T−1/2� zj� y�dsdz

+
∫ ∫

�0�1−T−1/2�m

∫
:1
G0

p�tr� xr −w�
∏

a∈AG0

p�taf − tai� xaf − xai�

×
m∏
j=1

δsj�tuj�δzj�xuj�dtdxdw

×
{ m∏
j=1

fT�1− sj� zj� y� −
m∏
j=1

fT�T−1/2� zj� y�
}
dsdz


(3.29)

Since, as noted above, fT�t� z� y� is positive and monotone increasing in t,
using (3.24)–(3.26) in conjunction with (3.10) and (3.11), we see that the last
integral on the right-hand side of (3.29) is O�T−1/4�. Using once again (3.25)
and (3.26) in conjunction with (3.10) and (3.11), we see that

I�BT� =
∫ ∫

BT

∫
:1
G0

p�tr� xr −w�
∏

a∈AG0

p�taf − tai� xaf − xai�

×
m∏
j=1

δsj�tuj�δzj�xuj�dtdxdw
m∏
j=1

fT�1− sj� zj� y�dsdz

≤ O�c�G0�BT��


(3.30)

Similarly, again decomposing �0�1�m into �0�1−T−1/2�m and BT and bounding
the integral over BT as in (3.30) we see that for the first integral on the right-
hand side of (3.29) we have∫ ∫

�0�1−T−1/2�m

∫
:1
G0

p�tr� xr −w�
∏

a∈AG0

p�taf − tai� xaf − xai�

×
m∏
j=1

δsj�tuj�δzj�xuj�dtdxdw
m∏
j=1

fT�T−1/2� zj� y�dsdz

=
∫ ∫

�0�1�m

∫
:1
G0

p�tr� xr −w�
∏

a∈AG0

p�taf − tai� xaf − xai�

×
m∏
j=1

δsj�tuj�δzj�xuj�dtdxdw

×
m∏
j=1

fT�T−1/2� zj� y�dsdz+O�c�G0�BT��


(3.31)
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The continuity of c�G0�BT� in BT, as described following (3.9), implies that
c�G0�BT� → 0 as T→∞. Putting this all together and using (3.26) and (3.27)
establishes (3.20).

Proof of Lemma 2. We now prove (3.26). Note that by (3.23) the inte-
grands which appear in the following display are all positive:

T1/2
∫ ∫ ∞

T−1/2

∫ ∞

0
�p�r� z� − p�r� z− y/

√
T��

× �p�s� z� − p�s� z− y/
√
T��drdsdz

= T1/2
∫ ∞

T−1/2

∫ ∞

0

(
2p�r+ s�0� − p�r+ s� y/

√
T�

− p�r+ s�−y/
√
T�)drds

= 2T1/2
∫ (∫ ∞

T−1/2

∫ ∞

0
�1− cos�py/

√
T��

× exp�−�r+ s��p�2/2�drds
)
d3p

= 8T1/2
∫ �1− cos�py/√T��

�p�4 exp�−�p�2/�2T1/2��d3p

≤ �y�2T
1/2

T

∫ 1
�p�2 exp�−�p�2/�2T1/2��d3p

= c�y�2T−1/4�

(3.32)

with an analogous bound for the integral over the region{
0 ≤ r ≤ T−1/2� T−1/2 ≤ s ≤ ∞}




To see (3.27), we note that for �y�/√T < δ/2,∫
�z�≥δ

fT�T−1/2� z� y�dz

≤ T1/2
∫ T−1/2

0

∫ T−1/2

0

∫
�x�≥δ/2

p�r� x�p�s� x�dxdrds

≤ cT1/2
∫ T−1/2

0

∫ T−1/2

0
exp�−δ2/�4r��

∫
p�r/2� x�p�s� x�dxdrds

≤ cT1/2 exp�−T1/2δ2/4�
∫ T−1/2

0

∫ T−1/2

0

1
�r+ s�3/2

drds

≤ cT1/2 exp�−T1/2δ2/4� → 0

(3.33)

as T→∞. This completes the proof of Lemma 2. ✷

Proof of Lemma 1. A vertex v ∈ G will be called a pre-exit if it is the
immediate predecessor of an exit. We use PT�G� to denote the set of pre-exits
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for twinned exits, and PU�G� to denote the set of pre-exits for untwinned
exits. In Figure 1, PT�G� = 	p1� p2� b�p3�, and PU�G� = 	c� v� a�. To each
rooted binary tree G ∈ � we now associate a new rooted tree, F�G�, called the
frame of G as follows. The vertices of F�G� consist of the root r of G together
with PU�G�, all pre-exits for untwinned exits in G. Two vertices v� v′ ∈ F�G�
are connected by a bond in F�G� if there is a path from v to v′ in G which
does not pass through any other vertices in PU�G�. In Figure 2 we give F�G�
for the G of Figure 1. Note that F�G� is a rooted tree but not necessarily a
binary tree. Let � denote the set of finite rooted trees.

If F ∈ � and 0 < ε < 1, let pε�F� be the probability that F is the family
tree in a geometric Galton–Watson process with parameter ε. In other words,
if S�v� denotes the set of successors of the vertex v,

pε�F� =
∏
v∈F

�1− ε�ε�S�v��
(3.34)

We intend to prove (3.19) by showing that for any ε sufficiently small we can
find Tε <∞ and Cε <∞ such that∑

G�F�G�=F
θ�E�G��T�E�G��/4�d�G�1� y/

√
T�� ≤ Cεpε�F�(3.35)

for all T ≥ Tε and all F ∈ � . Lemma 1 then follows since∑
F∈�

pε�F� ≤ 1�(3.36)

because this sum is the extinction probability of our Galton–Watson process.
In order to prove (3.35) we will use a specific decomposition of G ∈ � which

we refer to as the frame decomposition of G. For each v ∈ F�G�, v �= r we let
Gv denote the rooted binary subtree of G consisting of all non-exits w �= v of
G for which there exists a path in G from v to w which does not pass through
any vertices in PU�G�. In other words, the condition for a non-exit w �= v to
be in Gv is that u /∈ PU�G� for every u �= v, u �= w in the path from v to w.
See Figure 3 for the Gv corresponding to the G of Figure 1. Now p2 and p3 are
not in Gv since, for example, the path from v to p2 passes through c ∈ PU�G�.
Note that the root of Gv, denoted by rv, is the vertex in G which is the unique
non-exit successor to v. The exits of Gv are of two types. The first set of exits,
which we denote by D�Gv�, consists of the vertices in G which were pre-exits

Fig. 2. F�G�.



620 J.-D. DEUSCHEL AND J. ROSEN

Fig. 3. Gv.

for twinned exits. The second set of exits, which we denote by S�Gv� consists
of the vertices in S�v�, the successors of v in F. [As a set, S�Gv� is the same
as S�v� but we use the notation S�Gv� when we think of it as a subset of the
binary tree Gv.] In Figure 3, D�Gv� = 	b� and S�Gv� = 	a� c�. When v = r we
take Gr as above except that we also include r. See Figure 4. In our notation,
rr = r.

Note that the data �F�Gv� v ∈ F� does not determine G, that is, does not
allow us to reconstruct G. We also need to specify S�Gv�, v ∈ F to tell us
which of the exits of Gv are the elements of S�v�. Hence there are

∏
v∈F

( �E�Gv��
�S�v��

)
(3.37)

binary trees G ∈ � giving rise to the same data �F�Gv� v ∈ F�. We refer to
�F�Gv�S�Gv�� v ∈ F� as the frame decomposition of G.

With the notation

c̃�G�T�u� s� =
∫ ∫

:TG

∏
a∈AG

p�taf − tai� xaf − xai�δu�xr�δs�tr�

× ∏
e∈E�G�

δ0�xe�dtdx
(3.38)

for G �= Ĝ and

c̃�Ĝ�T�u� s� = 1	s≤T�δ0�u��

we have the following lemma.

Fig. 4. Gr.
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Lemma 3.

T�E�G��/4�d�G�1� y/
√
T�� ≤ ∏

v∈F

(∫
c̃�Gv�1� u�0�du

)
��y�/π��D�Gv��

×
(
Q̃T�y

∫ 1

0
�p�t� ·��5/2 dt

)�S�v��
�

(3.39)

where

Q̃T�y = T1/4 sup
0≤t≤1

∥∥∥∥∫ t0 �p�b� ·� − p�b� · − y/
√
T��db

∥∥∥∥
5/3

and

lim
T→∞

Q̃T�y = 0
(3.40)

We prove Lemma 3 at the end of this section.
Choose 0 < ε0 < 1 so that �1+ ε0�2θ ≤ θ0 and consequently

���1+ ε0�2�y�θ2/π� =
∞∑
n=1

��1+ ε0�2�y�θ2/π�n∑
�n

c�G�1� <∞
(3.41)

It is easily seen that
∫ 1

0 �p�t� ·��5/2 dt <∞. Hence, by (3.40), for any ε ≤ ε0
we can find Tε <∞ such that

Q̃T�y

∫ 1

0
�p�t� ·��5/2 dt ≤ �1− ε�ε3��y�θ2/π�����1+ ε�2�y�θ2/π��−1(3.42)

for all T ≥ Tε.
Note that

c�G�T� =
∫
p�s� u−w�c̃�G�T�u� s�dwduds

=
∫
c̃�G�T�u� s�duds


(3.43)

Since c̃�Gv�1� x�0� = c̃�Gv�1 + ε� x� ε� for any ε, as follows from translation
invariance, we have, using (3.43) and (3.6), that∫

c̃�Gv�1� x�0�dx =
∫
c̃�Gv�1+ ε� x� ε�dx

≤ ε−1
∫ ε

0

∫
c̃�Gv�1+ ε� x� t�dxdt

≤ ε−1
∫ 1

0

∫
c̃�Gv�1+ ε� x� t�dxdt

= ε−1c�Gv�1+ ε�
≤ ε−1�1+ ε��E�Gv��c�Gv�1�


(3.44)
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Thus (3.39) gives the estimate

θ�E�G��T�E�G��/4�d�G�1� y/
√
T��

≤ ∏
v∈F

ε−1c�Gv�1���1+ ε��y�θ2/π��E�Gv��
( �1− ε�ε3

���1+ ε�2�y�θ2/π�
)�S�v��



(3.45)

Hence, using (3.37) we see that for fixed F�Gv; v ∈ F,∑
G &→�F�Gv�v∈F�

θ�E�G��T�E�G��/4�d�G�1� y/
√
T��

≤ ∏
v∈F

ε−1c�Gv�1���1+ ε��y�θ2/π��E�Gv��
( �E�Gv��
�S�v��

)
ε�S�v��

×
( �1− ε�ε2

���1+ ε�2�y�θ2/π�
)�S�v��

≤ ∏
v∈F

ε−1c�Gv�1���1+ ε��y�θ2/π��E�Gv���1+ ε��E�Gv��

×
( �1− ε�ε2

���1+ ε�2�y�θ2/π�
)�S�v��

= ∏
v∈F

ε−1c�Gv�1���1+ ε�2�y�θ2/π��E�Gv��
( �1− ε�ε2

���1+ ε�2�y�θ2/π�
)�S�v��




(3.46)

Therefore, letting S�F� = F− 	r� be the set of successors in F, we have∑
G�F�G�=F

θ�E�G��T�E�G��/4�d�G�1� y/
√
T��

≤ ∏
v∈F

ε−1
( ∑
G∈�

c�G�1���1+ ε�2�y�θ2/π��E�G��
)

×
( �1− ε�ε2

���1+ ε�2�y�θ2/π�
)�S�v��

= ∏
v∈F

ε−1���1+ ε�2�y�θ2/π�
( �1− ε�ε2

���1+ ε�2�y�θ2/π�
)�S�v��

=
( ∏
v∈F

ε−1���1+ ε�2�y�θ2/π�ε�S�v��
)

×
( ∏
v∈S�F�

�1− ε�ε
���1+ ε�2�y�θ2/π�

)

≤ ε−1�1− ε�−1���1+ ε�2�y�θ2/π� ∏
v∈F

�1− ε�ε�S�v��

(3.47)

and (3.35) now follows. This completes the proof of Lemma 1. ✷
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It remains to justify the assertion we made in the paragraph following
Lemma 1 that in the T→∞ limit the only graphs which contribute to (3.12)
are the graphs G in which all exits are twinned. This follows easily from our
proof of (3.19), in particular from (3.39) if we use (3.44) with ε = 1/2 to bound
the c̃ integrals and then use (3.40).

Proof of Lemma 3. Using the frame decomposition we can rewrite

T�E�G��/4d�G�1� y/
√
T�

=
∫ ∫

p�tr� xr −w�

× ∏
v∈F

(∫
c̃�Gv� xrv� trv � �ze�Te�� e ∈ E�Gv��

∏
e∈D�Gv�

qT�y�Te� ze�

× ∏
e∈S�Gv�

q̃T�y�Te� ze� tre� xre�dTe dze
)
dtrv dxrv dw


(3.48)

Here

qT�y�t� z� def= T1/2
∫ 1

0

∫ 1

0
�p�r− t� z� − p�r− t� z− y/

√
T��

× �p�s− t� z� − p�s− t� z− y/
√
T��drds�

= T1/2
(∫ 1

0
�p�r− t� z� − p�r− t� z− y/

√
T��dr

)2

= fT�1− t� z� y��

(3.49)

q̃T�y�t� z� s� x�

= T1/4p�s− t� x− z�
∫ 1

0
�p�b− t� z� − p�b− t� z− y/

√
T��db

(3.50)

and

c̃�G�u� s� �ze�Te�� e ∈ E�G��

=
∫ ∫ ∏

a∈A0
G

p�taf − tai� xaf − xai�

× ∏
a∈Ae

G

p�Taf − tai� zaf − xai�1	Taf≤1�δu�xr�δs�tr�dtdx
(3.51)

for G �= Ĝ and

c̃�Ĝ� u� s� z�T� = δu�z�δs�T�1	T≤1�


(Note, e.g., in the G of Figure 1 we have that Ga = 	p3�.)
We will use the notation

QT�y = sup
t

∫
qT�y�t� x�dx




624 J.-D. DEUSCHEL AND J. ROSEN

We have seen in (3.24), (3.25) that

QT�y ≤ �y�/π
(3.52)

We note by Hölder’s inequality that

sup
x

∫
�q̃T�y�t� z� s� x��dz ≤ Q̃T�y�p�s− t� ·��5/2(3.53)

We now explain how to obtain the following bound for (3.48).

T�E�G��/4�d�G�1� y/
√
T��

≤
∫ ∫

p�tr� xr −w�

× ∏
v∈F

(∫
c̃�Gv� xrv� trv � �ze�Te�� e ∈ E�Gv��

× ∏
e∈D�Gv�

qT�y�Te� ze�

× ∏
e∈S�Gv�

�q̃T�y�Te� ze� tre� xre��dTe dze
)
dtrv dxrv dw

≤
∫ ∫ ∏

v∈F

(∫
c̃�Gv� xrv� trv � �ze�Te�� e ∈ E�Gv��

× ∏
e∈D�Gv�

qT�y�Te� ze�

× ∏
e∈S�Gv�

�q̃T�y�Te� ze� tre� xre��dTe dze
)
dtrv dxrv

≤
∫ ∏
v∈F

(∫ ∫
c̃�Gv� xrv� trv � �0�Te�� e ∈ E�Gv��dxrv

× ∏
e∈D�Gv�

QT�y

∏
e∈S�Gv�

Q̃T�y�p�tre −Te� ·��5/2 dTe

)
dtrv 


(3.54)

In the first inequality we use the fact that c̃ and qT�y�Te� ze� are positive,
while the second inequality simply comes from integrating out w [so that now
xr occurs only in the c̃�Gr� ·� term]. To explain the last inequality we begin by
noting as in (3.11) that∫

c̃�G�x� t� �ze�Te�� e∈E�G��dx≤
∫
c̃�G�x� t� �0�Te�� e∈E�G��dx(3.55)

for all �ze�Te�, e ∈ E�G�. We then apply this repeatedly, moving upwards from
the root in F�G�. Thus, we first estimate∫ (∫

c̃�Gr� xr� tr� �ze�Te�� e ∈ E�Gr��dxr
)

× ∏
e∈D�Gr�

qT�y�Te� ze�
∏

e∈S�Gr�
�q̃T�y�Te� ze� tre� xre��dTe dze
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≤
∫ (∫

c̃�Gr� xr� tr� �0�Te�� e ∈ E�Gr��dxr
)

× ∏
e∈D�Gr�

qT�y�Te� ze�
∏

e∈S�Gr�
�q̃T�y�Te� ze� tre� xre��dTe dze

=
∫ (∫

c̃�Gr� xr� tr� �0�Te�� e ∈ E�Gr��dxr
)

× ∏
e∈D�Gr�

(∫
qT�y�Te� ze�dze

)

× ∏
e∈S�Gr�

(∫
�q̃T�y�Te� ze� tre� xre��dze

)
dTe

=
∫ (∫

c̃�Gr� xr� tr� �0�Te�� e ∈ E�Gr��dxr
)

× ∏
e∈D�Gr�

QT�y

∏
e∈S�Gr�

Q̃T�y�p�tre −Te� ·��5/2 dTe


At this stage, for each v ∈ S�Gr� we see that xrv occurs only in the c̃�Gv� ·�
term, hence we can repeat the last series of inequalities with Gr replaced by
Gv for such v, that is, for the immediate successors of r in F�G�. Continuing
in this manner, we obtain the last inequality of (3.54).

We now explain how to obtain the following bound for the right-hand side
of (3.54): ∫ ∏

v∈F

(∫ ∫
c̃�Gv� xrv� trv � �0�Te�� e ∈ E�Gv��dxrv

× ∏
e∈D�Gv�

QT�y

∏
e∈S�Gv�

Q̃T�y�p�tre −Te� ·��5/2 dTe

)
dtrv

≤ ∏
v∈F

(∫ ∫
c̃�Gv� xrv�0� �0�Te�� e ∈ E�Gv��dxrv dTe

)

× ∏
e∈D�Gv�

QT�y

∏
e∈S�Gv�

Q̃T�y

(∫ 1

0
�p�t� ·��5/2 dt

)



(3.56)

To explain the last inequality we begin by noting the simple monotonicity
bounds ∫ ∫

c̃�Gv� xrv� trv � �0�Te�� e ∈ E�Gv��dxrv dTe

≤
∫ ∫

c̃�Gv� xrv�0� �0�Te�� e ∈ E�Gv��dxrv dTe
(3.57)

and ∫ 1

0
�p�t− s� ·��5/2 dt ≤

∫ 1

0
�p�t� ·��5/2 dt
(3.58)
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We will apply these repeatedly, this time working downwards from the top of
our tree F�G�. Thus, to begin, if v is a vertex in F�G� with no successor, S�Gv�
is necessarily empty, so that Te, e ∈ E�Gv� occurs only in the c̃�Gv� ·� term and
we can apply (3.57). Following this, trv now occurs only in the �p�tre−Te� ·��5/2
term where v = e ∈ S�Gv′ � and v′ is the predecessor of v in F�G�. We then
apply (3.58), and after doing this for all e ∈ S�Gv′ � we find that Te, e ∈ E�Gv′ �
occurs only in the c̃�Gv′� ·� term. Continuing in this manner we obtain (3.56).
In view of (3.38) this proves (3.39).

We now prove (3.40). Using (3.23) again, we see that for any t ≤ 1,∫ t
0
��p�s� x� − p�s� x− y/

√
T���ds

≤ e
∫ ∞

0
e−s��p�s� x� − p�s� x− y/

√
T���ds

= e�u1�x� − u1�x− y/
√
T��


(3.59)

The proof of (3.40) will be complete once we show that

�u1�·� − u1�· − y/
√
T��5/3 ≤ cT−3/8 �y�3/4
(3.60)

To prove (3.60) we note that∣∣∣∣e−�x��x� − exp�−�x− y/√T��
�x− y/√T�

∣∣∣∣
≤ �y�√

T

(
exp�−�x�/2�

�x�2 + exp�−�x− y/√T�/2�
�x− y/√T�2

)(3.61)

to see by interpolating that∣∣∣∣e−�x��x� − exp�−�x− y/√T��
�x− y/√T�

∣∣∣∣
≤ �y�3/4
T3/8

(
exp�−�x�/4�

�x�7/4 + exp�−�x− y/√T�/4�
�x− y/√T�7/4

)(3.62)

and ∥∥∥∥exp�−�x�/4�
�x�7/4

∥∥∥∥
5/3
<∞


This completes the proof of Lemma 3. ✷

4. Functionals. If h is a function on R3, let

σ�h� = − 1
2π

∫ ∫
�x− y�h�x�h�y�dxdy
(4.1)

With the notation of Theorem 8, let θc�h be defined by

θ∗ = σ�h�θ2
c� h
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Theorem 9. Let µt denote super-Brownian motion in R3, and let µ denote
the Lebesgue measure on R3. If h is a function on R3 with∫

R3
�1+ �x���h�x��dx <∞(4.2)

and ∫
R3
h�x�dx = 0(4.3)

then with the notation of Theorem 8,

lim
T→∞

1
T1/2

logEµ

(
exp

(
θ

T1/4

∫ T
0
µs�h�ds

))
= ��σ�h�θ2�(4.4)

for all θ < θc�h.

Proof. The proof follows along the lines of the proof of Theorem 8. As in
(3.12) we have

1
T1/2

logEµ

(
exp

(
θ

T1/4

∫ T
0
µs�h�ds

))
=

∞∑
n=1

θn

Tn/4+1/2
dn�T�h��(4.5)

where now

dn�T�h� =
∑
�n

d�G�T�h�(4.6)

and

d�G�T�h� =
∫ ∫

:TG

p�tr� xr −w�
∏
a∈A0

G

p�taf − tai� xaf − xai�

× ∏
a∈Ae

G

∫
p�taf − tai� y− xai�h�y�dydtdxdw


(4.7)

Using (4.3), we can rewrite this as

d�G�T�h� =
∫ ∫

:TG

p�tr� xr −w�
∏
a∈A0

G

p�taf − tai� xaf − xai�

× ∏
a∈Ae

G

∫ {
p�taf − tai�−xai� − p�taf − tai� y− xai�

}
× h�y�dydtdxdw


(4.8)

As before, scaling leads to

d�G�T�h� = Tn/2+1/2d�G�1� hT��(4.9)

where hT�y� = T3/2h�y√T� so that∫
g�y�hT�y�dy =

∫
g�y/

√
T�h�y�dy
(4.10)
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Thus

d�G�T�h�
Tn/4+1/2

= Tn/4d�G�1� hT�
(4.11)

As in (3.21), when all exits in G are twinned we can write (4.7) as

d�G�T�h�
Tn/4+1/2

=
∫ ∫

�0�1�m

∫
:1
G0

p�tr� xr −w�
∏

a∈AG0

p�taf − tai� xaf − xai�

×
m∏
j=1

δsj�tuj�δzj�xuj�dtdxdw
m∏
j=1

fT�1− sj� zj� h�dsdz�
(4.12)

where

fT�t� z� h� = T1/2
∫ ∫ ∫ t

0

∫ t
0
p�r� z− x/

√
T�p�s� z− y/

√
T��

× h�x�h�y�dxdydrds�

= T1/2
(∫ ∫ t

0
p�r� z− y/

√
T�h�y�dydr

)2

= T1/2
(∫ ∫ t

0
�p�r� z− y/

√
T� − p�r� z��h�y�dydr

)2




(4.13)

It is easy to check that
∫
fT�t� z� h�dz <∞ for fixed t�T <∞.

We also note that∫
fT�t� z� h�dz

= T1/2
∫ ∫ ∫ t

0

∫ t
0
p�r+ s� �x− y�/

√
T�h�x�h�y�dxdydrds�

= T1/2
∫ ∫ ∫ ∫ t

0

∫ t
0
p��r+ s�/2� z− x/

√
T�p��r+ s�/2� z− y/

√
T��

× h�x�h�y�dxdydzdrds�

= T1/2
∫ ∫ t

0

∫ t
0

(∫
p��r+ s�/2� z− y/

√
T�h�y�dy

)2

drdsdz�

(4.14)

which shows that
∫
fT�t� z� h�dz is positive and monotone increasing in t.

Because of (4.3),

lim
t→∞

∫
fT�t� z� h�dz

= T1/2 lim
t→∞

∫ ∫ ∫ t
0

∫ t
0
p�r+ s� �x− y�/

√
T�h�x�h�y�drdsdxdy

= −T1/2 lim
t→∞

∫ ∫ (∫ t
0

∫ t
0
�p�r+ s�0� − p�r+ s� �x− y�/

√
T��drds

)
× h�x�h�y�dxdy(4.15)
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= −T1/2
∫ ∫ (∫ ∞

0
s�p�s�0� − p�s� �x− y�/

√
T��ds

)
h�x�h�y�dxdy

= σ�h�

We next show that uniformly in t ≥ T−1/2 ≥ 1,∫

�fT�t� z� h� − fT�T−1/2� z� h��dz = O�T−1/8��(4.16)

and for any δ > 0,

lim
T→∞

∫
�z�≥δ

fT�T−1/2� z� h�dz = 0
(4.17)

To prove (4.16) we use (4.13), (3.23)–(3.25) and the analogue of (3.32) to see
that

T1/2
∫ ∣∣∣∣

(∫ ∫ t
T−1/2

�p�r� z− x/
√
T� − p�r� z��h�x�dxdr

)

×
(∫ ∫ T−1/2

0
�p�s� z− y/

√
T� − p�s� z��h�y�dyds

)∣∣∣∣dz
≤ T1/2

∫ (∫ ∫ ∞

T−1/2
�p�r� z− x/

√
T� − p�r� z�� �h�x��dxdr

)

×
(∫ ∫ 1

0
�p�s� z− y/

√
T� − p�s� z�� �h�y��dyds

)
dz

≤ T1/2
∫ ∥∥∥∥∫ ∞

T−1/2
�p�r� z− x/

√
T� − p�r� z��dr

∥∥∥∥
2
�h�x��dx

×
∫ ∥∥∥∥∫ 1

0
�p�s� z− y/

√
T� − p�s� z��ds

∥∥∥∥
2
�h�y��dy

≤ cT−1/8
(∫

�x��h�x��dx
)1/2(∫

�y�1/2�h�y��dy
)1/2

≤ cT−1/8


(4.18)

There is an analogous bound for the integrals over the regions{
0 ≤ r ≤ T−1/2� T−1/2 ≤ s ≤ t}� {

T−1/2 ≤ r ≤ t� T−1/2 ≤ s ≤ t}

The proof of (4.17) is similar to that of (3.27) once we note that by (4.2),∫

	�y�/√T≥δ/2�
�h�y��dy→ 0(4.19)

as T→∞.
Putting all this together as in the proof of Theorem 8, we see that for any

graph G ∈ �n with n = 2m and all exits twinned we have

lim
T→∞

d�G�T�h�
Tn/4+1/2

= c�G0�1�σm�h�
(4.20)
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Our theorem will then follow as in the proof of Theorem 8 once we establish
the analogue of (3.19). All that is really needed is to show that

lim
T→0

Q̃T�h = 0�(4.21)

where now, without risk of confusion,

Q̃T�h = T1/4 sup
0≤t≤1

∥∥∥∥∫ t0
∫
�p�b� ·� − p�b� · − y/

√
T��h�y�dydb

∥∥∥∥
5/3



Using (3.23) again, we see that for any t ≤ 1,∫ t
0

∫
��p�s� x� − p�s� x− y/

√
T����h�y��dyds

≤ e
∫ ∫ ∞

0
e−s��p�s� x� − p�s� x− y/

√
T���ds�h�y��dy

= e
∫
�u1�x� − u1�x− y/

√
T���h�y��dy�

(4.22)

and using (3.60) we have∥∥∥∥∫ �u1�·� − u1�· − y/
√
T���h�y��dy

∥∥∥∥
5/3

≤
∫
�u1�·� − u1�· − y/

√
T��5/3�h�y��dy

≤ cT−3/8
∫
�y�3/4�h�y��dy


(4.23)

This completes the proof of Theorem 9. ✷

The same proof will also lead to the following theorem. If ν is a signed
measure with on R3, let

σ�ν� = − 1
2π

∫ ∫
�x− y�dν�x�dν�y�
(4.24)

With the notation of Theorem 8, let θc� ν be defined by

θ∗ = σ�ν�θ2
c� ν


Theorem 10. Let µt denote super-Brownian motion in R3, and let µ denote
the Lebesgue measure on R3. If ν is a signed measure on R3 with∫

R3
�1+ �x��d�ν��x� <∞(4.25)

and ∫
R3
dν�x� = 0(4.26)
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then with the notation of Theorem 8,

lim
T→∞

1
T1/2

logEµ

(
exp

(
θ

T1/4

∫
L
y
T dν�y�

))
= ��σ�ν�θ2�(4.27)

for all θ < θc� ν.

Proof of Theorem 3. We first prove (1.14). We will show that for all θ,

lim
T→∞

logE
[
exp

(
θ
µ̄T�h�√
T

)]
= σ�h�θ2
(4.28)

As in (4.5) we have

logE
[
exp

(
θ
µ̄T�h�√
T

)]
=

∞∑
n=1

θn

Tn/2
dn�T�h��(4.29)

where

dn�T�h� =
∑
�n

d�G�T�h�(4.30)

and d�G�T�h� is defined in (4.7). We note that

d1�T�h� = d�Ĝ�T�h� = �h� λ� = 0(4.31)

so that the sum in (4.29) is actually over n ≥ 2.
From (3.20) we see that for any graph G ∈ �n with n = 2m and all exits

twinned we have

lim
T→∞

d�G�T�h�
Tn/4+1/2

= c�G0�1�σm�h��(4.32)

while for any other G ∈ �n the limit is 0. We note that n/4+1/2 < n/2 for all
n > 2, while for the unique graph G ∈ �2 we have c�G0�1� = 1. Hence

lim
T→∞

dn�T�h�
Tn/2

=
{
σ�h�� if n = 2�
0� otherwise.(4.33)

Equation (1.14) now follows from the proof of Theorem 9, which shows that
we can take the limit in (4.29) term by term.

Equation (1.15) is proven similarly, which completes the proof of Theo-
rem 3. ✷

5. Critical branching Brownian motion in R3. Let ξt = ξ1
t denote the

critical branching Brownian motion in R3 described in the Introduction with
τ = 1. Similarly, we will write Nt�h� for N1

t �h�.
Recall the notation

σ�h� = − 1
2π

∫ ∫
�x− y�h�x�h�y�dxdy
(5.1)

Let

ρ�h� = 1
2π

∫ ∫
�x− y�−1 h�x�h�y�dxdy
(5.2)
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With the notation of Theorem 8, let θcb�h be defined by

θ∗ = �σ�h� + ρ�h��θ2
cb� h


Theorem 11. Let h be a bounded function on R3 with∫
R3
�1+ �x���h�x��dx <∞(5.3)

and ∫
R3
h�x�dx = 0
(5.4)

Then with the notation of Theorem 8,

lim
T→∞

1
T1/2

logE
(

exp
(

θ

T1/4

∫ T
0
Ns�h�ds

))
= ���σ�h� + ρ�h��θ2�(5.5)

for all θ < θbc�h.

Proof. As explained in Section 2 of [2] we have the Campbell formula

logE
(

exp
(

θ

T1/4

∫ T
0
Ns�h�ds

))

=
∫
R3

{
E

(
exp

(
θ

T1/4

∫ T
0
Ny
s �h�ds

))
− 1

}
dy�

(5.6)

where

N
y
t �h� =

∑
x∈ξyt

h�x��(5.7)

with ξ
y
t denoting critical branching Brownian motion starting with a single

particle at y ∈ R3. From the formulas of Section 2 [2] we can easily develop the
following graphical representation for the right-hand side of (5.6) analogous
to (4.6). Write � n = ⋃n

i=0 �
n
i , where � n

i denotes the set of unlabeled directed
graphs with one root r, n − i exits and a distinguished subset � of internal
vertices with �� � = i, and such that each vertex in � has one incoming and
one outgoing arrow, while all other internal vertices in G have one incoming
and two outgoing arrows. We then have

1
T1/2

∫
R3

{
E

(
exp

(
θ

T1/4

∫ T
0
Ny
s �h�ds

))
−1

}
dy=

∞∑
n=1

θn

Tn/4+1/2
gn�T�h��(5.8)

where now

gn�T�h� =
∑
� n

g�G�T�h�(5.9)



BRANCHING BROWNIAN MOTION 633

and for G ∈ � n
i ,

g�G�T�h� =
∫ ∫

:TG

p�tr� xr −w�
∏
a∈A0

G

p�taf − tai� xaf − xai�
∏
v∈�

h�xv�

× ∏
a∈Ae

G

∫
p�taf − tai� y− xai�h�y�dydtdxdw


(5.10)

We can think of G ∈ � n
i as obtained from a graph G̃ ∈ �n−i by placing i

vertices on the arrows of G̃. (G̃ is obtained fron G by removing the distin-
guished vertices � and filling in the gaps, that is, joining the incoming and
outgoing arrow for each such vertex into a single arrow.) It is then easily seen
that �G� = 2�n − i� + i − 1 and �AG� = �G� − 1 = 2�n − i� + i − 2. Hence by
scaling we see that

g�G�T�h� = T�G�T−�3/2���AG�+1�T�3/2���G�−n+1�g�G�1� hT�
= T2�n−i�+i−1T−�3/2��2�n−i�+i−1�T�3/2��n−i�g�G�1� hT�
= T�1/2��n−i�+1/2−i/2g�G�1� hT�

(5.11)

where as before hT�y� = T3/2h�y√T�. Thus

g�G�T�h�
Tn/4+1/2

= T�1/4��n−i�−�3/4�ig�G�1� hT�
(5.12)

Let � 2m
i�0 ⊆ � 2m

i doenote the set of graphs with m pre-exits and i distin-
guished vertices, such that all i distinguished vertices are pre-exits, (necessar-
ily the predecessors of untwinned exits), and the remaining m−i pre-exits are
predecessors of twinned exits. We will explain below how to adapt the methods
used in the proof of Theorem 8 to show that it suffices to study the T → ∞
limit of (5.8) term by term, and furthermore, that the only graphs G which
contribute to (5.8) in the T→∞ limit are the graphs in � 2m

i�0 , i = 0�1� 
 
 
m.
As in (4.12), when G ∈ � 2m

i�0 we have

g�G�T�h�
T�2m�/4+1/2

=
∫ ∫

�0�1�m

∫
:1
G0

p�tr� xr −w�
∏

a∈AG0

p�taf − tai� xaf − xai�

×
m∏
j=1

δsj�tuj�δzj�xuj�dtdxdw
m∏
j=1

f̄T�1− sj� zj� h�

×
m−i∏
j=1

fT�1− sj� zj� h�dsdz�

(5.13)

where fT�t� z� h� is as in (4.13) and

f̄T�t� z� h� = T−1/2
∫ ∫ t

0
p�r� z− y�hT�z�hT�y�dydr
(5.14)
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If we now scale out T from the hT factors in f̄T�1 − sj� zj� h� then f̄T�1 −
sj� zj� h� becomes f̄T�0�1− sj� zj� h� where

f̄T�0�t� z� h� = T−1/2
∫ ∫ t

0
p�r� �z− y�/

√
T�h�z�h�y�dydr�(5.15)

but also each factor in the integral in (5.13) of the form

p�taf − tai� zj − xai�

is changed to

p�taf − tai� zj/
√
T− xai�
(5.16)

It follows easily from (3.59)–(3.62) and the bounds of this section that the error
introduced in replacing (5.16) by

p�taf − tai�−xai�(5.17)

can be bounded by a factor which goes to 0 as T → ∞. Thus we can can
remove all zj’s from the inner integral in (5.13) and study

∫
f̄T�0�t� z� h�dz = T−1/2

∫ t
0

∫ ∫
p�r� �z− y�/

√
T�h�z�h�y�dzdydr
(5.18)

Using the fact that p�r� x−y� is positive definite [see (4.14)], we can see that∫
f̄T�0�t� z� h�dz is positive and monotone increasing in t. Using (5.3) and (5.4)

to get the estimate

�ĥ�p�� ≤ �p��∇ĥ�∞ ≤ c�p�
∫
�x��h�x��dx ≤ c�p��(5.19)

where ĥ denotes the Fourier transform of h, we see that

T−1/2
∫ ∞

T−1/2

∫ ∫
p�s� �z− y�/

√
T�h�z�h�y�dzdydr

= T−1/2
∫ (∫ ∞

T−1/2
�ĥ�p/

√
T��2 exp�−r�p�2/2�dr

)
d3p

= 2T−1/2
∫ �ĥ�p/√T��2

�p�2 exp�−�p�2/�2T1/2��d3p

≤ cT−3/2
∫

exp�−�p�2/�2T1/2��d3p

= O�T−3/4�

(5.20)

so that arguing as in Sections 3 and 4 we see that for each G ∈ � 2m
i�0 we have

lim
T→∞

g�G�T�h�
T�2m�/4+1/2

= �ρ�h��i�σ�h��m−ic�G0�1��(5.21)
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where

ρ�h� = lim
t→∞

∫
f̄T�0�t� z� h�dz

= T−1/2
∫ ∞

0

∫ ∫
p�r� �z− y�/

√
T�h�z�h�y�dzdydr

= T−1/2
∫ ∫

u0��z− y�/
√
T�h�z�h�y�dzdy

= T−1/2
∫ ∫ 1

2π
��z− y�/

√
T�−1h�z�h�y�dzdy

= 1
2π

∫ ∫
�z− y�−1 h�z�h�y�dzdy


(5.22)

Since for each G0 ∈ �m there are
(
m
i

)
graphs in � 2m

i�0 for which G0 is the
corressponding graph of pre-exits (we choose i exits of G0 to be distinguished
vertices and the remaining m − i exits of G0 will be pre-exits for twinned
exits), by (5.21) the contribution of all such graphs will be

m∑
i=0

(
m

i

)
�ρ�h��i�σ�h��m−ic�G0�1� = �ρ�h� + σ�h��mc�G0�1��

and this will complete the proof of Theorem 11 as soon as we explain how
to adapt the methods used in the proof of Theorem 8 to get the analogue of
(3.19).

Before doing this, we explain the main technical difficulty in trying to adapt
the methods used in the proof of Theorem 8. In the very first inequality of
(3.54) we bounded the factors in the frame decomposition by positive factors.
The expression qT�y is itself positive, while q̃T�y was bounded by its absolute
value �q̃T�y�. Since each factor of �q̃T�y� gives rise to a small error term which
goes to zero as T→∞, nothing was lost in replacing q̃T�y by �q̃T�y�. However,
in the present situation, whenever there are distinguished pre-exits, we have
factors f̄T which are not positive, but which give rise to contributions f̄T�0
which are nonzero in the limit as T→∞. Replacing f̄T by �f̄T� would increase
that contribution, so that we would never be able to prove convergence all
the way up to θ < θbc�h. On the other hand, the methods used in the proof
of Theorem 8 were based on working with positive factors. The somewhat
complicated approach outlined below is designed to cope with this difficulty.

For each distinguished pre-exit with coordinates �r� y�, let �r′� y′� denote
the coordinates of its successor, which is an exit, and �t� z� the coordinates of
its predecessor. Using

p�r− t� y/
√
T− z� = p�r− t�−z� + {

p�r− t� y/
√
T− z� − p�r− t�−z�}

we then rewrite

T−1/2
∫
p�r− t� y− z�hT�y�p�r′ − r� y′ − y�hT�y′�dr′ dy′ drdy

= T−1/2
∫
p�r− t� y/

√
T− z�

× h�y�p�r′ − r� �y′ − y�/
√
T�h�y′�dr′ dy′ drdy

(5.23)
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as ∫
p�r− t�−z�

∫
q∗T�h�r� y�dydr+ f̄∗T�h�t� z��(5.24)

where

q∗T�h�r� y� = T−1/2h�y�
∫
p�r′ − r� �y′ − y�/

√
T�h�y′�dr′ dy′(5.25)

and

f̄∗T�h�t� z� = T−1/2
∫ {
p�r− t� y/

√
T− z� − p�r− t�−z�}

× h�y�p�r′ − r� �y′ − y�/
√
T�h�y′�dr′ dy′ drdy


(5.26)

We note that
∫
q∗T�h�r� y�dy ≥ 0 for any r, and

Q∗
T�h

def= sup
r

∫
q∗T�h�r� y�dy ≤ ρ�h�
(5.27)

See (5.22). Set

q̃∗T�h�t� z� s� x� = p�s− t� x− z�f̄∗T�h�t� z�

We have

sup
x

∫
�q̃∗T�h�t� z� s� x��dz ≤ Q̃∗

T�h�p�s− t� ·��5/2�(5.28)

where [see (5.22), (3.53) and (3.60)]

Q̃∗
T�h

def= sup
0≤t≤1

�f̄∗T�h�t� ·��5/3

≤ 1
2π

∫
sup

0≤t≤1

∥∥∥∥ ∫ t0 �p�r� y/
√
T− ·� − p�r�−·��dr

∥∥∥∥
5/3

× �y− y′�−1�h�y�� �h�y′��dydy′

≤ cT−3/8
∫
�y�3/4�y− y′�−1�h�y�� �h�y′��dydy′

≤ cT−3/8


(5.29)

We shall refer to the complex which consists of a distinguished pre-exit, the
exit which is its successor and the arrow connecting them, as a ∗-exit. The
predecessor of a ∗-exit will be called a pre∗-exit. In the previous paragraph,
the pre∗-exit was the vertex with coordinates �t� z�. With the above notation,
each ∗-exit contributes a sum of two factors, one which involves q∗T�h and the
other q̃∗T�h. In comparison with the proof of Theorem 1, q∗T�h should be asso-
ciated with the sort of analysis attached to twinned exits, while q̃∗T�h should
be associated with the sort of analysis attached to untwinned exits. These dif-
ferent exits naturally lead to different frame decompositions. In order to deal
with the combinatorics in a systematic way, we will create new “mirror image”
graphs for each ∗-exit. Here are the details.

Let � ∗� n
i denote the set of decorated � n

i graphs. A decorated � n
i graph

consists of a graph G ∈ � n
i together with a decoration in which each ∗-exit is
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assigned a label 0 or 1, in which case the ∗-exit, as well as the associated pre∗-
exit, will be said to be of type 0 or 1. Thus, ifG ∈ � n

i has k ∗-exits, there will be
2k graphs in � ∗� n

i corresponding to the various possible decorations of G. The
set of all possible decorations of G ∈ � n

i will be denoted L�G�. Let G∗ ∈ � ∗� n
i .

We define F�G∗� in a manner similar to the way we defined F�G�, except that
in addition to all vertices in PU�G�, we also include all distinguished vertices
which are not pre-exits, as well as all pre∗-exits of type 1. In defining G∗

v,
each ∗-exit will be considered as a single vertex; G∗

v is defined analogously to
Gv except that G∗

v has five possible types of exits. In addition to D�G∗
v� and

S�G∗
v�, we also have D0�G∗

v�, the set of ∗-exits of type 0, S1�G∗
v�, the set of

pre∗-exits of type 1, and S2�G∗
v�, the set of distinguished vertices which are

not pre-exits. In analogy with the frame decomposition (3.48) we have

d�G�1� hT� =
∑

	G∗∈L�G��
d�G∗�1� hT��(5.30)

where

T�E�G��/4d�G∗�1� hT�
=

∫ ∫
p�tr� xr −w�

× ∏
v∈F�G∗�

(∫
c̃�G∗

v� xrv� trv � �z∗e�Te�� e ∈ E�G∗
v��

× ∏
e∈D�G∗

v�
qT�h�Te� ze�

∏
e∈S�G∗

v�
q̃T�h�Te� ze� tre� xre�

× ∏
e∈D0�G∗

v�
q∗T�h�Te� ze�

∏
e∈S1�G∗

v�
q̃ ∗T�h�Te� ze� tre� xre�

× ∏
e∈S2�G∗

v�
q̌T�h�Te� ze� tre� xre�dTe dze

)

× dtrv dxrv dw


(5.31)

Here z∗e = 0 if e ∈ D0�G∗
v� and z∗e = ze otherwise, to take (5.24) into account,

and

q̌T�h�t� z� s� x� = T−3/4hT�z�p�s− t� x− z�
(5.32)

In analogy with (3.40) we see that

Q̌T�h
def= sup

t� x

∫ ∫
�q̌T�h�t� z� s� x��dsdz

≤ cT−3/4
∫
u1�x− z� �hT�z��dz

≤ cT−3/4
∫ 1
�x− z� �hT�z��dz

= cT−1/4
∫ 1

�z−√
Tx� �h�z��dz

≤ cT−1/4


(5.33)
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Note that e ∈ S�G∗
v�∩S1�G∗

v� is possible. In this case we can assign e arbitrarily
to either S�G∗

v� or S1�G∗
v�. Since either case leads to an arbitrarily small

contribution, the choice will not be important.
In view of all these bounds, it is now a straightforward matter to proceed

along the path mapped out in the proof of Theorem 8 and establish the needed
analogue of (3.19). We only wish to point out that the multiplicity of graphs
introduced by “decoration” is easily controlled, since all decorations of type 1
can be controlled using (5.28) systematically, as we did for untwinned exits in
the proof of Theorem 8. This completes the proof of our theorem. ✷

6. Superprocesses and critical branching processes over stable pro-
cesses. In this section we show how the methods developed in previous
sections to study large deviations for superprocesses and critical branching
processes based on Brownian motion in R3 can be easily adapted to prove
analogous results for superprocesses and critical branching processes based
on the symmeteric stable process of index β in Rd when d < 2β < 2 + d. We
first state the analogue of Theorem 8.

Let Lxt denote the local time of the symmetric superstable process of index
β in Rd, with d < 2β < 2+d, and let µ denote the Lebesgue measure on Rd.
As in the Introduction, set

�β�d�θ� = logEµ�exp�θL0
1��
(6.1)

Following [10], we can show the existence of 0 < θ∗β�d <∞ such that �β�d�θ� <
∞ for θ < θ∗β�d and limθ↑θ∗β�d��d�β�d�θ��/dθ� = ∞. Let θβ�d� c be defined by

θ∗β�d = 2cβ�d�y�2β−dθ2
β�d� c�

where

cβ�d =
∫ ∞

0
s�p�s�0� − p�s� u��ds <∞�(6.2)

and p�s� y� denotes the transition density for the symmetric stable process of
index β in Rd and u ∈ Rd is an arbitrary unit vector.

Theorem 12. Let Lxt denote the local time of the symmetric superstable
process of index β in Rd, with d < 2β < 2 + d. Let µ denote the Lebesgue
measure on Rd. Then

lim
T→∞

1
Td/β−1

logEµ

(
exp

(
θ

T1−d/�2β� �L0
T−LyT�

))
=�β�d�2cβ�d�y�2β−dθ2�(6.3)

for all θ < θβ�d� c.

We will indicate briefly the necessary modifications in the proofs of previous
sections needed to obtain the proof of Theorem 12.

Let cβ�d�G�T�, dβ�d�G�T�y� be defined just as we defined c�G�T�,
d�G�T�y� except that now p�s� x� denotes the transition density for the
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symmetric stable process of index β in Rd. We have

logEµ�exp�θL0
T�� =

∞∑
n=1

θncn�β�d�T�(6.4)

with

cn�β�d�T� =
∑
�n

cβ�d�G�T�(6.5)

and

1
Td/β−1

logEµ

(
exp

(
θ

T1−d/�2β� �L0
T −LyT�

))

=
∞∑
n=1

θn

T�1−d/�2β��n+d/β−1
dn�β�d�T�y��

(6.6)

where

dn�β�d�T�y� =
∑
�n

dβ�d�G�T�y�
(6.7)

The scaling

p�sT�x� = T−d/βp�s� x/T1/β�(6.8)

leads to

cβ�d�G�T� = T�G�T−d/β��AG�+1�Td/β��G�−n+1�cβ�d�G�1�
= T2n−1T−d/β�2n−1�Td/βncβ�d�G�1�
= T�2−d/β�n+d/β−1cβ�d�G�1�

(6.9)

and

dβ�d�G�T�y�
T�1−d/�2β��n+d/β−1

= T�1−d/�2β��ndβ�d�G�1� y/T1/β�
(6.10)

With

fT�t� z� y� def= T2−d/β
(∫ t

0
�p�r� z� − p�r� z− y/T1/β��dr

)2

�(6.11)

we first note that as in (3.25) and using the scaling (6.8) we can compute∫
fT�∞� z� y�dz = 2T2−d/β

∫ ∞

0

∫ ∞

0
�p�r+ s�0� − p�r+ s� y/T1/β��drds

= 2T2−d/β
∫ ∞

0
s�p�s�0� − p�s� y/T1/β��ds

= 2cβ�d�y�2β−d


(6.12)



640 J.-D. DEUSCHEL AND J. ROSEN

We also have the analogue of (3.32),

T2−d/β
∫ ∞

T−1/2

∫ ∞

0
�p�r� z� − p�r� z− y/T1/β��
× �p�s� z� − p�s� z− y/T1/β��drdsdz

= T2−d/β
∫ ∞

T−1/2

∫ ∞

0

(
2p�r+ s�0� − p�r+ s� y/T1/β�

− p�r+ s�−y/T1/β�)drds
= 2T2−d/β

∫ (∫ ∞

T−1/2

∫ ∞

0
�1− cos�py/T1/β��

× exp�−�r+ s��p�β�drds
)
ddp

= 2T2−d/β
∫ �1− cos�py/T1/β��

�p�2β exp�−�p�β/�T1/2��ddp

≤ �y�2T2−d/β−2/β
∫ 1
�p�2β−2

exp�−�p�β/�T1/2��ddp

= c�y�2T−1/�2β��2+d−2β�


(6.13)

The last integral is finite because of our condition 2β < 2+ d.
It remains to provide the analogues of (3.53) and (3.40). If q� q′ denote

conjugate indices, so that by 1/q + 1/q′ = 1, then by Hölder’s inequality we
have

T1−d/�2β� sup
x

∫
p�s− t� x− z�

×
∣∣∣∣∫ 1

0
�p�b− t� z� − p�b− t� z− y/T1/β��db

∣∣∣∣dz
≤ Q̃β�d�T�y�p�s− t� ·��q�

(6.14)

where, as in (3.23),

Q̃β�d�T�y = T1−d/�2β� sup
0≤t≤1

∥∥∥∥∫ t0 �p�b� ·� − p�b� · − y/T1/β��db
∥∥∥∥
q′

≤ T1−d/�2β��u1�x� − u1�x− y/T1/β/���q′ 

(6.15)

We first note by scaling that

�pt�·��q = t−d/β
(∫

p1�x/t1/β�dx
)1/q

= t−d/β�1−1/q��p1�·��q

(6.16)

The strict inequality in our condition 2β > d then implies that∫ 1

0
�pt�·��q dt <∞(6.17)

for some q > 2.
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Since, then, q′ < 2 we can choose ε > 0 such that q′�1 + 2ε� < 2. Since
β−d/2 < 1 we can choose ε so small that also β−d/2+ ε < 1. We claim that

�u1�x� − u1�x− y/T1/β/���q′ ≤ cT−�1−d/�2β�+ε/β� �y�β−d/2+ε�(6.18)

which will give us the analogue of (3.40).
For the last inequality we use the analogue of (3.61),

�u1�x� − u1�x− y/T1/β�� ≤ �y�
T1/β

(
u1�x�
�x� + u1�x− y/T1/β�

�x− y/T1/β�
)
�(6.19)

to see by interpolating that

�u1�x� − u1�x− y/T1/β��

≤ �y�β−d/2+ε
T�β−d/2+ε�/β

(
u1�x�

�x�β−d/2+ε +
u1�x− y/T1/β�

�x− y/T1/β�β−d/2+ε
)(6.20)

and u1�x��x�−�β−d/2+ε� ∈ Lq′ as long as q′�d − β + �β − d/2 + ε�� < d which
follows from our condition that q′�1+ 2ε� < 2.

This completes our proof of Theorem 12. ✷

Similarly we can show the following analogue of Theorem 10: if ν is a signed
measure on Rd, let

σβ�d�ν� = −cβ�d
∫ ∫

�x− y�2β−d dν�x�dν�y�
(6.21)

With the notation of Theorem 12, let θβ�d� c� ν be defined by

θ∗β�d = σ�ν�θ2
β�d� c� ν


Theorem 13. Let Xt denote the symmetric superstable process of index β
in Rd, with d < 2β < 2 + d, and let µ denote the Lebesgue measure on Rd. If
ν is a signed measure on Rd with∫

Rd
�1+ �x��d�ν��x� <∞(6.22)

and ∫
Rd
dν�x� = 0(6.23)

then with the notation of Theorem 12,

lim
T→∞

1
Td/β−1

logEµ

(
exp

(
θ

T1−d/�2β�

∫
L
y
T dν�y�

))
= �β�d�σ�ν�θ2�(6.24)

for all θ < θβ�d� c� ν.
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Here is our theorem for critical branching stable processes. As in (6.21), let

σβ�d�h� = −cβ�d
∫ ∫

�x− y�2β−d h�x�h�y�dxdy
(6.25)

Let

ρβ�d�h� =
"��d− β�/2�
2βπd/2"�β/2�

∫ ∫
�x− y�−�d−β� h�x�h�y�dxdy
(6.26)

With the notation of Theorem 12, let θβ�d� cb� h be defined by

θ∗β�d = �σβ�d�h� + ρβ� d�h��θ2
β�d� cb� h


Theorem 14. Consider the critical branching symmetric stable process of
index β in Rd, with d < 2β < 2 + d, and let µ denote Lebesgue measure on
Rd. Let h be a bounded function on Rd with∫

Rd
�1+ �x���h�x��dx <∞(6.27)

and ∫
Rd
h�x�dx = 0
(6.28)

Then with the notation of Theorem 12,

lim
T→∞

1
Td/β−1

logE
(

exp
(

θ

T1−d/�2β�

∫ T
0
Ns�h�ds

))
= �β�d��σβ�d�h� + ρβ�d�h��θ2�

(6.29)

for all θ < θβ�d� bc� h.

This follows as above once we note the analogue of (5.22):

ρ�h� = T1−d/β
∫ ∞

0

∫ ∫
p�r� �z− y�/T1/β�h�z�h�y�dzdydr

= T1−d/β
∫ ∫

u0��z− y�/T1/β�h�z�h�y�dzdy

= T1−d/β "��d− β�/2�
2βπd/2"�β/2�

∫ ∫
��z− y�/T1/β�−�d−β�h�z�h�y�dzdy

= "��d− β�/2�
2βπd/2"�β/2�

∫ ∫
�z− y�−�d−β� h�z�h�y�dzdy


(6.30)

Finally, we mention that the proof of Theorem 4 follows along the lines of
the proof of Theorem 3.
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