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OCCUPATION TIME LARGE DEVIATIONS FOR CRITICAL
BRANCHING BROWNIAN MOTION, SUPER-BROWNIAN
MOTION AND RELATED PROCESSES

BY JEAN-DOMINIQUE DEUSCHEL AND JAY ROSEN?

Technische Universitat Berlin and College of Staten Island, CUNY

We derive a large deviation principle for the occupation time func-
tional, acting on functions with zero Lebesgue integral, for both super-
Brownian motion and critical branching Brownian motion in three dimen-
sions. Our technique, based on a moment formula of Dynkin, allows us
to compute the exact rate functions, which differ for the two processes.
Obtaining the exact rate function for the super-Brownian motion solves
a conjecture of Lee and Remillard. We also show the corresponding CLT
and obtain similar results for the superprocesses and critical branching
process built over the symmetric stable process of index 8 in R, with
d<2B<2+d.

1. Introduction. Consider a critical branching Brownian motion in R3:
particles are initially distributed in R® according to a Poisson random field
with uniform density 7 > 0. Letting £; denote the countable set of sites in R®
occupied at time ¢, the particle at each x € £ undergoes a Brownian motion
until it either splits into two particles or disappears with exponential rate 7,
independently of the other particles. If 4 is any function in L'(R?), we define

Ni(h) =} h(x).

xeéf

In particular, if A € R® is a bounded measurable set, then N;(A) = Nj(1,) is
just the number of particles in A at time ¢. In case 7 = 1, we simply write N,
for N}. As 1 — oo, the law of {(1/7)N7}, t > 0} converges weakly to the law
of the Dawson-Watanabe super-Brownian motion {u,, ¢ > 0} in R® starting
from the Lebesgue measure w (cf. [4]). For A € L'(R?®), we write, as above,
mi(h) = [pa h(x) i (dx).

Let T > 0 and define

- 1 /7 _ I
NT:T/O NSdS and [.LTzT/O [.Lsds,

the occupation time functionals of N and u. Note that

frh) = [ (x) L u(dx),
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BRANCHING BROWNIAN MOTION 603

where {L%, x € R®, T > 0} is the local time of the super-Brownian motion in
R3 (cf. [8], [9D).

For each h € L'(R®), both Ny(h) and ir(h) converge almost surely as
T — oo to the space average (h,u) = [zs h(x)u(dx). This convergence has
been the object of several papers; compare [2] for critical branching Brownian
motion and [10] and [7] for super-Brownian motion. In particular, in case
(h,n) > 0, Iscoe and Lee [10] proved a large deviation principle at critical
speed T%/2 for both N,(h) and ap(h), with identical rate function A}. Here
A7 is expressed in terms of the Legendre transform of A,(0) = A({(h, u)0),
where

A(6) = log E,, [exp(6LY)].

Note that A, depends only on (A, u). In particular, A;, = O in case (A, u) = 0.
This yields an infinite rate Aj(x) = oo for x # 0 and suggests a differ-
ent scaling in this case. Take for example A(x) = 1,(x) — 1g(x), where A
and B are disjoint bounded sets with same Lebesgue measure w(A) = wu(B).
Then N,(h) = N,(A)— N,(B), the difference between the number of particles
present at time ¢ in the sets A and B, reduces the fluctuations of the time
average Ny (h). In fact, Lee and Remillard have shown in a recent paper [11]
that P(TY*ar(h) > b) is of the order exp(—O(T*/?)) and they conjecture the
corresponding exact large deviation principle.

The object of this paper is to prove such a large deviation principle for both
TY4Np(h) and TY*@p(h), when (h, u) = 0 and to identify the correspond-
ing rate functions. Unlike the previous situation when (A, u) > 0, the rate
functions for TY* N (k) and TY*a,(h) turn out to be different.

More precisely, let ¢, be the set of measurable 2: R® — R such that

1.1) (h,u) =0 and /R3(1 + |x))|h(x)| dx < 0.
Next, set

(1.2) a(h) = —% /Ix =y h(x) h(y)dxdy
and

(1.3) p(h) = o [ [1x = 31 A(x) hy) dcdy.

Introduce the rate functions A% *, AY"*: R — [0, oo):

Ak*(x) = sup [x8 — A(a(Rh)6%)},
0cR
AR (x) = sup {6 = A((o(h) + p(h)6%)}.

Our main result is the following large deviation principle.
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THEOREM 1. If h e 50, then for each x > 0,

(1.4) fim o log (T4 (k) = %) = ~Af (),

(1.5) Jim T1/2 log P(TY*Np(h) > x) = AN *(x).

Note that the first equality is precisely Conjecture 1 of [11].
The crucial step in the proof of Theorem 1 is the convergence of the moment
generating functions

(1.6) I T1/2 log E ,[exp (T3*0ir(h))] = A(o(h)6?),

for |6] < 6, , and

1.7) Ii T1/2 log E ,[exp (T?**0Np(h))] = A((o(h) + p(h))6?),

for [0| < 0.4, 4, Where 6. , and 6., ; are defined by
6 = a(h)6?, and 6* = (a(h)+ p(h))62, ;.

and 6* = sup{# € R: A(0) < oo}. Once (1.6) and (1.7) are proved, the large
deviation results follow from the Ellis—Gartner theorem.

Unlike [11], where the asymptotics of the left-hand side of (1.6) are investi-
gated with non-linear PDE techniques, our proof is based on Dynkin’s moment
formula [8]. This approach provides a graphical method for organizing the se-
ries expansion of (1.6), which enables us to prove convergence up to the critical
value 6, ,, a condition which is necessary for the derivation of the full large
deviation principle.

As a byproduct of (1.6), we also get a large deviation principle for

{x: R® — T3/4(Lx L‘;)},

viewed as a continuous function on R3; compare Theorem 5, below.

Our methods are not restricted to Brownian motion. We also show similar
results for the superprocess wg 4 ., and critical branching process N ; , built
over the symmetric stable process of index 8 in R?, with d <28 <2 +d. Let
{L%, T >0, x € R} be the local time of ug 4 7. Set

(1.8) Ag 4(0) = log E,[exp(6L?)].

Let
(19) o5.a(h) = —cg a [ [ Ix =y~ h(x)h(y) dx dy,
where

(1.10) Cgd = /Ooo s(p(s,0) — p(s,u))ds < oo,
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and p(s, y) denotes the transition density for the symmetric stable process of
index B in R? and u € R? is an arbitrary unit vector. Let

T'((d—-p)/2) /f'

267d/2T(B/2) y[7 P h(x)h(y) dx dy.

111)  pga(h) =
Introduce the rate functions Aj’7 ., AB a.n B — [0, 00):
A a,1(x) = SUp {x0 = Ag o(0, (W6},
Apla.1(%) = SUp {20 = Ay a(7p, a(h) + P, a(1)6°) .
Let

- - _ 1 /T
NB,d,TET/O Ng 4..ds and /U«B,d,TET/O Mg d, s ds,

the occupation time functionals of N ; and ug 4.
Our main result for stable processes is the following large deviation prin-
ciple.

THEOREM 2. Letd < 2B <2+d. If h € €, then for each x > 0,

. 1 *
(1.12) Jim s log P(T™ Py 4 p(h) = x) = —Af 7 (%),
. 1
(1.13) I| N AT log P(T*4CAIN, 4 1(h) = x) = B 7 n(%).

Finally, a simple consequence of our methods gives the following central
limit theorem, which should be contrasted with Theorem 6.1 of [9] and Theo-
rem 1 of [2] for the case where (A, A) > O (see also [3]).

Let /4 (R?Y) = .7 (R%)N¢, be the set of rapidly decreasing test functions with
0 integral over R?. We view {v'Tir(h), h € A(R%)} and {VTNp(h), h €
A (R%)} as distribution valued processes. Next, let {W;(h), h € A(R%)}, i =
1, 2 be centered Gaussian processes with covariance

E[(Wi(h)]=20(h),  E[W5(h)]=2(a(h)+ p(h)).

THEOREM 3. In the sense of weak convergence, we have

(1.14) Jim VTip =W,
and
(1.15) lim VTN, = W,.

T—o0
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Note that (1.14) is shown in Main Theorem of [11], which also contains a
moderate deviation result for the super-Brownian motion. Similarly, we can
show the following central limit theorem for the processes built over stable
processes: let {W ;(h), h € A(R%)}, i =1, 2 be centered Gaussian processes
with covariances

E[WE (W] =205 a(h),  E[W§ o(h)] = 2(0p a(h) + pg,a(h).

THEOREM 4. Letd < 2B < d + 2, then, in the sense of weak convergence,

(1.16) Nim VT 0= Wy
and
(1.17) TlLrgofNB ar=Wg,.

The rest of this paper is divided into five sections. Section 2 deals with
the large deviation principle. Section 3 shows the convergence of the moment
generating function for differences of local times L7 — LOT for super-Brownian
motion. This is a preliminary step for the convergence in (1.6) which is proved
in Section 4. We present a proof of (1.7) in Section 5 and in Section 6 we show
the convergence in the stable case.

2. The large deviation principle. Our first step is a proof of Theorem 1.
Note that the proof of Theorem 2 is completely analogous.

PROOF OF THEOREM 1. The upper bounds

IirTn Sup —— T1/2 log P(TY*far(h) > x) < —Ay " (),

I|m 1SUP 775 Tl 7 log P(TY*Np(h) = x) < =AY *(x),

are simple consequences of (1.6) and (1.7) and Chebyshev’s inequality. The
lower bounds

liminf —— T1/2 log P(TY*p(h) > x) = —A¥*(x),

liminf T1/2 log P(TY*Np(h) > x) = —Ap *(x),
follow from the Gartner-Ellis theorem, once the the steepness of 6 —
A(o(h)6?) at 6 = 6, ;, respectively, of 6 — A((o(h) + p(h))6?) at 6 = 6, ;, is
verified, (cf. Section 2.3 of [5]). The steepness follows easily from the fact that
A € C* on (—o0, %) with
(2.2) (!I/I’QA (0) =

where A'(0) = (d/d@)A(6); compare [10]. This concludes the proof of Theo-
reml. O
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Our next purpose is to derive a large deviation principle simultanuously
for all . We will concentrate on the super-Brownian motion, which is simpler
since we can use the local time. Let Cy = {f € C(R?; R): f(0) = 0} endowed
with the topology of uniform convergence on compact sets. Let Cj; be the dual
of Cy, that is, the set of bounded signed measures » with compact support in
R3 such that »(R®) = 0, and write (f, v) for the duality relation.

Next, for each T' > 0 define x: R® — L. € C, by

Ly =_(Ly-LY%), «xeR.

N

Note that
(Ly,v) / Lz v(dx)

so that by Theorem 10 below we have

M, 19 Flon(r )
(2.2) = I|m T1/2 log E[exp( —1/4 /33 L7 v(dx))]
= A(o(v)),

where

1
o) =—5= [ [1x = ylv(dx) v(dy).
Define the rate function I: Cy, — [0, o0],

I(¢) = sup {{($, ) — A(o(»))}.

veCy

Our main result in this section is the following large deviation principle.
THEOREM 5. For each closed F € C and open G € C,,

(2.3) I|m |nf T s log P(TY* Ly € G) > — mf I,

(2.4) I|m sup log P(TY*Lp e F) < — |nf I.

T1/2

PROOF. The first step in the proof is the exponential tightness. For a com-
pact set K € R3 0€ K and « € (0, 3), let

£l o = sup| HOLL

be the a-Hdélder norm of f in K. We claim the existence of § > 0 such that

4yeK, |x—y|sl}, feCy

(2.5) I|m sup log E[exp(8T%*|Ly| k. o)] < oo

T1/2
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Let Be(0, ). For fixed x £ y e K, |x — y| <1, set v(dz) = (§/|x — y|P)(8,.(dz) —
8,(d2)), then (Lp,v) = 8((Ly — L)/|x — y|P) with o(v) = (8?/m)|x— y|' 2P <
82. Thus for § < v/6* we have

x _ 7Y
log E[exp(Ts/“B—lLT LT')]
lx — y|P

x _ 1Y
log E[exp(T‘”“SM)}
lx — |

Ilmsup T1/2

= I|m sup T1/2

< A(o(v)) < A(8%) < oo.

Now (2.5) follows from the Garsia—Rodemich—Rumsey inequality [1].
Next, let %7 g = {f € Co: | fll.. x < L}, which is a compact subset of C.
Equation (2.5) implies the exponential tightness

(2.6) I|m Ilmsup

Pt Tl/2 IOg P(T1/4LT ¢ ji/L K) —0Q.

This together with (2.2) implies the upper bound (2.4).
As far as the lower bound is concerned, let us first prove a finite-dimensional
result. For d € N and fixed distinct x4, ..., x; € R3, let

LT,d == (L';‘l, ceey E;wd) (S Rd
Next let
d d
Kod’* = {V =Y 18, with Y v, = 0}
i=1 i=1

and then for v € 551’* we have o(v) = —(1/7) Z?, je1 i — x|y v Set Ag(v) =

Ao (v)), v e 65" and define 1,(f) = sup{(f,v) — Ag(v): v € 65" *}. Of course
I,(f) < I(f). We then prove a lower bound for T%*L ; with rate ;. In view
of the Ellis—Gartner theorem, it suffices to show the steepness of A,;. Let

d-1
D= {V:(Vl,...,Vd)Z vg=—> v, o)< 0*},
=1

d-1
dD = {V: V1, vg)ivg=— Y v, o(v)= 9*}.
i=1

We view D as a subset of R?~! and set Vo (v) = (d/dv;)o(v), i =1,...,d—1.
Then A, is Ct in D with VA,(v) = A'(a(v))Vo(v). Thus, let {v,, ne N} < D
be such that lim,,_, v, = v € dD. Then, in view of (2.1), we have the following
steepness result:

lim [VA(v,)| = lim [Vo(v,)[ [N (0(v,))] = 00
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Now an application of the Ellis—Gartner theorem implies

2.7) I|m mf T1/2 log P(T**Ly 4 € Gg) > — |nf 1,
for all open G, € R?.

Once the lower bound is verified for each finite-dimensional cylinder set,
the lower bound (2.3) follows from the exponential tightness by a routine ar-
gument, (cf., e.g., [6] or Section 5.1 of [5]). Let f € G be such that I(f) < cc.
We may assume that Bg(f;¢) = {g € Cy: sup,.x|f(x) — g(x)| < e} € G
for some ¢ > 0 and compact set K € R3. For each L > 0, we can then
find d = d(L,S) € N, and X15-..5Xg € R3 such that BK’d(f;E/Z)m%/L7K -
By (f;e)N 7, g Where Bg 4(f;¢/2) ={g € Cy: maX‘iizl |7 (x;) — g(x;)| < &/2}.
In view of the exponential tightness (2.6) we then have

I|m |nf T1/2 log P(TY*Ly € Bg(f;¢))

> lim liminf —— T > log P<T1/4LT 4 € Bk, d(f 8))

—o00 T—oo 2

= —1,(f) = —I(f).

This completes the proof of Theorem 5. O

Before concluding this section, let us briefly indicate how the above results
can be extended to stable processes in RY. Let {L%, T > 0, x € R%} be
the local time of the symmetric superstable process of index 8 in R¢ when
d<2B<2+d. Set

(2.8) Ag, 4(0) = log E ,[exp(0L?)].

Following [10], we can show the existence of 0 < 63 ;, < co such that A, 4(0) <
oo for 6 < 6, ; and Ilmgw J(dAg 4(0)/d) = oo. Also by rescaling, we have for

each 6 < 0; a
1
(2.9) TP log E,[exp(T~# 4P 9Ly)] = log E,,[exp(0L9)] = Ag_4(0);

compare (6.9) below.
Let v be a signed measure with compact support in R?, such that

(2.10) /R L du(x) =0
Next set
(2.11) 05.a(v) = —cp.a [ [ 1x =y~ du(x) du(y),

where cg 4 is defined in (1.10), and assume that op 4(v) < 63 ,. Then we show
below in Theorem 13 that

. 1
(2.12) || N TdE1 |OgE (exp(Td/(ZB)/ Ly dv(y))) _ AB,d(UB,d(V))'
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Our first result in this context is a large deviation principle for {(1/T)L%:
x € R4} viewed as an element of C = C(R%; R) endowed with the topology of
uniform convergence on compact sets.

THEOREM 6. Let Ay , be the Legendre transform of Ag ; and define the
good rate function /g 4: C — [0, o0],

Jg a(P) = Ag 4(c), d(x)=c,x € R?¢

and oo otherwise. Then for each closed F' € C and open G € C,

1 1 .
(2.13) I|m|nf Ta/p1 log P( Ly e G) > —|rG1f I as

1 1. .
(2.14) Ilmsup Ta/p1 log P(TLT € F) < —|rp1f Jg a-

PROOF. Using (2.12), we see that for each x, y € R? and 6 > 0,

(2.15) i log E,,[exp(T%/#6(L% — L}))] =

1
im N TaE1
This shows via the Garsia—Rodemich—Rumsey inequality [1] that, for each
a >0, e >0 and compact K >0,

] 1
(2.16) lim Td/ﬁllogP( Ly

> 8) = —oo
K,a

and implies exponential tightness. Thus in order to prove the upper bound,
all we need to show is that

- 1 1
(2.17) LI\I’B Iern sup Ta/p1 log PP«(TLT € Br(¢; e)) < —dJg a(P).

Note that by (2.16), the right-hand side of (2.17) is —oo, unless ¢(x) =c, x €
R In this case P,((1/T)Ly € Bg(¢;e)) < P,(|(1/T)LY — c| < &) with

1
TL% — cl < 8) < —AE,d(C) = _Jﬁ,d(d))’

1
(2.18) I@Ilmsup B a1 109 Py < |

which follows from (2.9). As for the lower bound, we may assume that the
open set G contains the ball Bg(¢;¢) for some constant ¢ = ¢ and ¢ > 0.
Then {|(1/T)LS —c| < e/2y{[(1/T)Lr| k.0 < &/2} € Bg(¢; &) and therefore,
using (2.16), (2.9) and the steepness of Ag 4,

< 8/2)

1 1 1
I|rrL|£f TdiB- a1 109 P (TLT€G> >|'”L'£f Ta/B- a1 109 P <

> —Ap 4(c) = =g a(¢).

1
TL%—C
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Finally let I ;: Cy — [0, oo] be given by
I a(d) = SUP{((b v) = Ag a(o(v))},

veCy
then, in view of (2.12), using precisely the same argument as in the proof of
Theorem 5, we get the following.

THEOREM 7. Let {L% = (1/T)(L% — LY), x € R?} € C,. For each closed
F € Cy and open G € C,

1

(2.19) I|m|nf TR log P(T* 4P L, e G) > —|nf I 4,
1

(2.20) I|m 1SUP 7 log P(TY" YA L, e F) < — inf Iy 4.

3. Local time. Let L} denote the local time of super Brownian motion in
R3, and let u denote the Lebesgue measure on R3. Set

(3.1) A(6) = log E,, (exp(8L?)).

Iscoe and Lee [10] have shown the existence of 0 < 6* < oo such that A(6) < oo
for 0 < 6* and limg,,.(dA(0)/d0) = cc. Let 6. be defined by

= |y|6Z/m.

THEOREM 8. Let L} denote the local time of super-Brownian motion in R?,
and let u denote Lebesgue measure on R3. Then

(3.2) I T1/2 log E (exp(Tl/4 (LS - L%))) = A(|y|6?/7)
for all 6 < 6,.

PrROOF. We begin with some preliminaries. We let 4 denote the set of
finite planar rooted unlabeled binary trees G. Here G consists of vertices and
arrows, that is, directed bonds. When G has more than one vertex, the vertices
of G consist of three types; the unique root r has no incoming arrows but two
outgoing arrows, the exits have one incoming but no outgoing arrows, while
the internal vertices have one incoming and two outgoing arrows. We use A,
to denote the arrows of G and E(G) to denote the exits of G. We use .4, to
denote the set of G € & with n exits. Figure 1 contains an example ofa G € #;;
with E(G) ={e;; j=1,...,11}

Also included in .¢ is the set G e &, with a single vertex, which we consider
both as root and exit.

Alternatively, - can be described as the set of finite family trees with a sin-
gle progenitor, r, where each individual can have either zero or two children.
Exits are precisely those individuals with zero children. The requirement that
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€4 €s €9 €10

Fic. 1. G.

our trees be planar is equivalent to saying that whenever an individual has
two children, there is a natural order to their birth.

Let p(t, x), t > O be the transition density for Brownian motion in R3. By
convention we set p(t, x) = 0 for ¢ < 0. According to Dynkin’s moment formula
[8] (see also [12]), which is itself derived from the Laplace transform and is
equivalent to the expansion used in [10], we have

(3.3) log Eﬂ(exp(eL‘%)) = i 0"c,(T)
n=1
with
(34) cn(T) = ZC(G7 T)7
Zn
where

(G, T)= //AT p(t, x, —w) [] p(taf —tq, Xa, — Xq,)
(3.5) ‘ @ch
x [] 8&o(x,)dtdxdw.

ecE(G)

In the above formula, for each a € A; we use a;, a, to denote the initial and
final vertices of a. To each vertex v € G is associated the pair of variables
(t,, x,) € R, x R3. We set

Ab={t; veG|0O<t,<T, VveGandt, <t,, ¥acAg]

For notational convenience we have used the convention that §,(x) dx stands
for the probability measure with unit mass at the point y. With our conven-
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tions

(G, T)= p(t., x, — w)dy(x,)dtdxdw = T.
I,

It is easily seen by induction that for each G € £, we have |G| =2n -1
and |Aq4| = |G| — 1. Hence by scaling we see that

(G, T) = TIOIT-@20 A D PERG-1D (@, 1)
(36) — T2n—1T—(3/2)(2n—1)T(3/2)nC(G’ 1)
— Tn/2+1/ZC(G’ 1)

We now show how to bound ¢(G, 1), or more generally,

C(G’ Ba 2, €€ E(G)) = //‘B p(tr’ Xp — w) l_[ p(taf - taia xaf - xai)

acAY,

(3.7)
x [T plta, = ta;s 24, — %q,) dt dx dw,

e
acAg

where B C AL, A2 denotes the set of internal arrows, that is, all arrows which
do not lead to an exit, while A¢, denotes the set of n arrows leading to the
n exits. [We note that (3.7) with B = A}; is the contribution from the (now
labelled) graph G to E ([, Li).] When z, =0, V e € E(G), we write ¢(G, B)
for the expression in (3.7).

We use
1 o0
(3.8) / p(t, x)dt < e/ e 'p(t, x)dt = eu'(x),
0 0
where
— x|
1,0 €
W) = o]

to bound (3.7) by
¢(G, B;z,, ec E(Q)) < eznful(xr —w) [] ul(xaf — %)
acAY,

x |] ul(zaf — x,)dx dw.

e
acAg

(3.9)

To obtain our bound we proceed step by step, moving upwards along the
tree from its root. The dw integral over the first factor, u*(x, — w), just gives
1. At the next step, we use the fact that u*(x) € L? to bound the dx, integral
and then keep repeating the procedure.

Using the dominated convergence theorem, it is now easy to show that
c(G, B;z,, e € E(G)) is continuous in B, z,, e € E(G) in the obvious sense.
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In particular, to see the continuity in z,, e € E(G) we use the mean-value
theorem in the form

18
ot )~ ot 1) = (e, ) + 0t ).

Furthermore, we easily see from these considerations that
(3.10) c(G, B;z,, ec E(G)) <c"

for some ¢ < oo independent of n, G € %,, B C A}, and z,, e € E(G).
When B = AL we write ¢(G, T; z,, e € E(G)) for ¢(G, B;z,, e c E(G)). We
note for future reference that

(3.12) c(G, B;z,, ec E(G)) < c(G, B)

for all z,, e € E(G). This follows easily from the definitions by writing the
kernel p(¢, x) in terms of its Fourier transform.

After these preliminaries we now come to our theorem. As in (3.3)—(3.5) we
have

1 0 o 0"
(3.12) T log E, <exp<m(L% — L%))) = gmdn(T, y),
where
(3.13) d,(T,y)=) d(G,T,y)
and

dG.T.9) = [ [, pltrx, = w) T] Plta, = ta, %a, — %a)
0

(3.14) ‘ acdo

x [] {p(taf —to;, —%q,) = Pta, —ta; ¥ — x,)} dtdx dw.

e
acAg

As before, scaling leads to

(3.15) d(G,T,y)=T"*"?2d(G, 1, y/VT)
so that
d(G’ T7 y) n/4

(3.16) ~panz =T *d(G, 1, y/JT)
and consequently

1 0 &
(3.17) T log Eu<exp<m(L% - L%))) = 20 T “;d(G, 1, y/¥T).

Fix 6y < 6, so that
(3.18) A(|9165/m) = Y (1y165/m)" Y (G, 1) < oo
n=1 Z,

and choose 6 < 6,. The following lemma will be proven later in this section.
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LEMMA 1. We can find T, C’ < oo such that

(3.19) i 0"T™* 3" d(G, 1, y/VT)| < C’
n=1 <,

n

forall T>1T".

Then, to establish our theorem for such a 6, it will suffice to study the T — oo
limit term by term.

Let us say that an exit e of G is twinned if there is a vertex v, the immediate
predecessor of e, such that the two vertices which branch directly from v are e
and another exit ¢’. Otherwise we say that the exit e is untwinned. In Figure 1,
{e1, ey, €4, €5, €5, €7, €9, €15} IS the set of twinned exits, and {es, eg, €11} is the
set of untwinned exits. Following our proof below of Lemma 1 we will be able
to show that in the T' — oo limit the only graphs which contribute to (3.12)
are the graphs G in which all exits are twinned. If G € &, is a graph in which
all exits are twinned, we have n = 2m and there are m vertices uy, ..., u,,,
(the pre-exits) such that from each u ; branch two exits which we denote by
Uyj_1, U2 Let G € &, be the graph obtained from G by removing all exits,
and all arrows leading to those exits. Thus, the exits of G, are the pre-exits

of G, which we continue to denote by u,, ..., ©,,. We will soon prove that
d(G,T,y) ly\™

In view of (3.16)—(3.18) and our remarks following Lemma 1 this establishes
our theorem. We now prove (3.20).

If G € &, is a graph in which all exits are twinned, with the notation of the
last paragraph,

d(G T, y)
Tn/4+1/2 //0 1 /Al p(tr’x w) H p(taf a’ a,c_xal-)

aeAGO

x [T 85,(t,)8;,(x, ) dt dx dw

=1

(3.21) x ]_[T1/2</ (p(r—s;,2)— p(r— J,z—y/«/—))dr> dsdz

_//0 1 Al p(trax LU) H p(taf —tai’xaf _xai)

acAg,

x [] 8,,(2,,)8; (x,,)dt dx dw [1fr(1—s;,2; y)dsdz,

j=1 j=1
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where

def

¢ 2
Fr(t, 2, ) & T2 ( [ (b 2) = p(r, 2= 3/VT)) dr)

(3.22) _ i /Ot /Ot(p(r,z) — p(r,z— y/NT))

x (p(s, z) — p(s, z— y/¥T))drds.

We note that
(3.23) p(t,x) > p(t,x') & |x] <[,
which implies that f (¢, z, y) is increasing in ¢, and therefore for any ¢,
(3.24) /fT(t, 2, y)dz < /fT(oo, 2, y)dz.
We can compute

/fT(oo, z,y)dz =2T"? /OOO /Ooo(p(r +35,0)— p(r+s, y/ﬁ)) drds
(3.29) =272 [~ s(p(s,0) = p(s. y/VT))ds
= |yl/m

We will soon show the following.

LEMMA 2.
(3.26) [ Frioe, 2, yydz = [ Fo(T712, 2, y)dz + O(T74),
and that for any 6 > 0

(3.27) lim fr(T7Y2, 2z, y)dz =0.

T—o0 |z|>8

We will use the notation I(B) for the integral similar to the integral in
(3.21), but in which the ds integration is over the region B C [0, 1]™ rather
than [0, 1]™. Thus we have

d(G,T,y)

628 i

= I([0, 1]™) = I([0, 1 — T~Y?]"™) + I(Br),
where

By =[0,1]™ —[0,1— T2},
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We first write
I([0,1— T7Y/2™)

=/f[0 . Til/Z]m/Al p(te, x, —w) ] pta, —ta,» %4, — %a,)
’ - GD

acAg,

X 1_[6 J(t4,)8, (x, )dtdxdw]_[f (T2, 2, y)dsdz
J=1 j=1

(3.29) B _ B
+ //[0, 1-T-1/2]m ‘/Algo p(tr’ r w) H p(ta/ t“i’ xaf x“i)

aeAGO

x T 85,(t4,)8, (%) dt dx dw

J=1

X { [1Ffr(A—=s;,2;5)—]1 fT(T_l/Z,zj,y)}dsdz.

j=1 j=1

Since, as noted above, fr(t, z, ) is positive and monotone increasing in ¢,
using (3.24)—(3.26) in conjunction with (3.10) and (3.11), we see that the last
integral on the right-hand side of (3.29) is O(T~'/#). Using once again (3.25)
and (3.26) in conjunction with (3.10) and (3.11), we see that

1B = [ [, [, pltrxr=w) TI plts, = to 0, = %)

acAg,

(3.30) % T1 8 (tu )5, (x, )dtdxdw [ fr(1—s;.2;. y)dsdz
J:l J J J J J:]_

< O(c(Go, Br)).

Similarly, again decomposing [0, 1]™ into [0, 1 — T-%?]™ and B, and bounding

the integral over By as in (3.30) we see that for the first integral on the right-

hand side of (3.29) we have

//[0 112y /Al p(ty, x, —w) [[ p(ta, —to,> *a, — Xa,)
£ - GO

aeAGO

x]_[‘d (t4,)8 (%, )dtdxdefT(T Y2 z,,y)dsdz
Jj=1

(3.31) —f/“ fA p(ty, 2, —w) [] plta, = ta,> Xa, — %a,)

acAg,

<1 8, (ty,)8; (%) dt dx dw

Jj=1

x [T Fr(T~Y2, z;, y)dsdz + O(e(Go, By)).
j=1
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The continuity of ¢(Gg, Br) in By, as described following (3.9), implies that
¢(Gy, By) — 0as T — oo. Putting this all together and using (3.26) and (3.27)
establishes (3.20).

PROOF OF LEMMA 2. We now prove (3.26). Note that by (3.23) the inte-
grands which appear in the following display are all positive:

T2 [ [ [ (et 2) = plr.z = yNT)
x (p(s,z) — p(s, z— y/~T))drdsdz
= T2 /:1/2 /Ooo(Zp(r +35,0)— p(r+s, y/ﬁ)
— p(r+s, —y/ﬁ)) drds

(3.32) = 21" / </T001,2 /000(1 — cos(py/~'T))

x exp(—(r + s)|p|2/2) dr ds) d3p

exp(—|p|*/(2T"?))d°p

_ 8T1/2/ (1 - cos(py/~T))
|pl*
T1/? 1
2 o+ —pl2/(2TY2)) 43
< lyPog [ o exe IR T dp
= cly? T4,
with an analogous bound for the integral over the region
[0<r<T Y2, T7Y2 <5 < o).
To see (3.27), we note that for |y|/v/T < /2,

fr(T™Y2, 2, y)dz

|z|=8

T—l/Z T—l/Z

< Tl/Z/ / f p(r,x)p(s,x)dxdrds
0 0 |x[>8/2

T-1/2 T7-1/2
(3.33) < ch/Z/ / exp(_ﬁz/(4r))/p(r/2, x)p(s, x)dx drds
0 0
T-1/2  p-1/2 1
1/2 1282 -
<cT"“exp(—T"“8 /4)/0 /0 (r + 5)3/2 drds

< cTY?exp(-TY?6%/4) — 0

as T' — oo. This completes the proof of Lemma 2. O

PrOOF OF LEMMA 1. A vertex v € G will be called a pre-exit if it is the
immediate predecessor of an exit. We use PT(G) to denote the set of pre-exits
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for twinned exits, and PU(G) to denote the set of pre-exits for untwinned
exits. In Figure 1, PT(G) = {p1, p», b, p3}, and PU(G) = {c, v, a}. To each
rooted binary tree G € & we now associate a new rooted tree, F(G), called the
frame of G as follows. The vertices of F(G) consist of the root r of G together
with PU(G), all pre-exits for untwinned exits in G. Two vertices v, v’ € F(G)
are connected by a bond in F(G) if there is a path from v to v" in G which
does not pass through any other vertices in PU(G). In Figure 2 we give F(G)
for the G of Figure 1. Note that F(G) is a rooted tree but not necessarily a
binary tree. Let .7 denote the set of finite rooted trees.

If Fe 7 and 0 < ¢ < 1, let p.(F) be the probability that F is the family
tree in a geometric Galton—Watson process with parameter ¢. In other words,
if S(v) denotes the set of successors of the vertex v,

(3.34) ps(F) = [](1—&)e!SOI,

veF
We intend to prove (3.19) by showing that for any ¢ sufficiently small we can
find T, < oo and C, < oo such that

(3.35) S GE@ITIEGI (G, 1, y/VT)| < C,p(F)
G:F(G)=F

forall T > T, and all F €.7. Lemma 1 then follows since

(3.36) Y pAF) <1,
FeT

because this sum is the extinction probability of our Galton—Watson process.

In order to prove (3.35) we will use a specific decomposition of G €  which
we refer to as the frame decomposition of G. For each v € F(G), v # r we let
G, denote the rooted binary subtree of G consisting of all non-exits w # v of
G for which there exists a path in G from v to w which does not pass through
any vertices in PU(G). In other words, the condition for a non-exit w # v to
be in G, is that u ¢ PU(G) for every u # v, u # w in the path from v to w.
See Figure 3 for the G, corresponding to the G of Figure 1. Now p, and p5 are
not in G, since, for example, the path from v to p, passes through ¢ € PU(G).
Note that the root of G, denoted by r,, is the vertex in G which is the unique
non-exit successor to v. The exits of G, are of two types. The first set of exits,
which we denote by D(G,), consists of the vertices in G which were pre-exits

r

Fic. 2. F(G).
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c b

Fic. 3. @G,.

for twinned exits. The second set of exits, which we denote by S(G,) consists
of the vertices in S(v), the successors of v in F. [As a set, S(G,) is the same
as S(v) but we use the notation S(G,) when we think of it as a subset of the
binary tree G,.] In Figure 3, D(G,) = {b} and S(G,) = {a, c}. When v = r we
take G, as above except that we also include r. See Figure 4. In our notation,
r.=r.

Note that the data (F, G,, v € F) does not determine G, that is, does not
allow us to reconstruct G. We also need to specify S(G,), v € F to tell us
which of the exits of G, are the elements of S(v). Hence there are

E@G,)|
(3.37) HF( 1S(0) )

binary trees G € ¢ giving rise to the same data (¥, G,, v € F). We refer to
(F,G,,S(G,), veF) as the frame decomposition of G.
With the notation

E(G, T, u, S) = /AT l_[ p(taf - tai’ xa/ - xai)au(xr)as(tr)
G acAg

(3.38)
x J[ 6o(x,)dtdx
ecE(G)
for G # G and

g(éy T’ u’ 8) = 1{s§T}80(u)’

p\/v

r

we have the following lemma.

Fic. 4. G,.
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LEMMA 3.

TIEC (G, 1, y/NT)| < ] ( [@G.. 1, 0>du)<|y|/w)D<Gv>

(3.39) vek
~ 1 [S(v)]
x (QT,yfo I p(t, )52 dt) ,
where
~ t
Qry =T sup| [ (p(b, )~ plb, - — y/VT)) db|
0<t<1|/0 ll5/3
and
(3.40) T!I—Ego QT,y —0.

We prove Lemma 3 at the end of this section.
Choose 0 < g, < 1 so that (1 + &)?6 < 6, and consequently

(3.41) AL+ 80)?|y]67/m) = D ((1 4 &0)°|y|6%/7)" Y ¢(G, 1) < oo.
n=1 <,

It is easily seen that fol [ (¢, )ls/2 dt < co. Hence, by (3.40), for any & < &
we can find T', < oo such that

~ 1
(342) Qr, y/O Ip(2, sz dt < (1 e)e(|y]67/m)(A((L + &)?|y]6% /7))~

forall T > T,.
Note that

(G, T) = /p(s, u—w)dG,T,u,s)dwduds
(3.43)
:/E(G, T, u,s)duds.

Since ¢(G,, 1, x,0) = ¢(G,,1 + &, x, &) for any ¢, as follows from translation
invariance, we have, using (3.43) and (3.6), that

/’E(GU, 1,x,0)dx = /E(GU, 1+e x, e)dx

< 8_1/08/8(GU,1+8,x, t)dx dt

3.44 1
(344) 58—1/ fg(Gv,l—i-s,x,t)dxdt
0

=¢e1¢(G,, 1+ ¢)
< &1+ &) EGle(G,, 1).
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Thus (3.39) gives the estimate
YIE@ITIEGI/Ad(G, 1, y/VT)|
(3.45) ( (1-— 8)83 )S(U)

-1 2 1\ E(GL)]
< 1 &7 e(Gu D@+ o)lylo?/m) O G s

Hence, using (3.37) we see that for fixed F',G,; v € F,

S GEOITIEGI (G, 1, VT
G~ (F, G,;veF)

_ g 1EG,)]
< & 1 (; & 2 T I ( u)‘ S‘S(U)‘
= Ulel (G, (L + &)|y[6°/m) ( 1S(v)| )

(1—g)e? [S()|
) (A(<1+s>2|y|02/w)>
< 1 e *e(Gy, 1)((1 + &)|y|6?/m) EGI(1 + &) EGI
veF

(1 _ 8)82 [S(v)|
) (A((1+e>2|y|02/w))

= g_l e 2 2 - |E(G,)| (l — g)gz [S(v)|
T #72e(@ DX+ P01/ ™ (g )

(3.46)

Therefore, letting S(F) = F — {r} be the set of successors in F, we have

S E@ITIEGIq(@, 1, y/VT)|
G:F(G)=F

= [1 8_1( > oG, (A + 8)2|y|02/77)E(G)')

veF Ged
(1 . 8)82 [S(v)]
* (A<(1+a>2|y|62/w>>

(3.47) =TT e *A((1 + £)?| y| 62 /77)(

veF

(1 _ 8)82 [S(v)]
AL+ 8)2|y|92/77))

= ( [T e A1+ a)2|y|02/7,-)88(v>>

veF
N (1-¢)e
(UJS_([F) K@ o)

< M1 — &) AL + &)y |67/ m) T] (1 — )&l
veF

and (3.35) now follows. This completes the proof of Lemma 1. O
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It remains to justify the assertion we made in the paragraph following
Lemma 1 that in the T' — oo limit the only graphs which contribute to (3.12)
are the graphs G in which all exits are twinned. This follows easily from our
proof of (3.19), in particular from (3.39) if we use (3.44) with ¢ = 1/2 to bound
the ¢'integrals and then use (3.40).

ProOF oF LEMMA 3. Using the frame decomposition we can rewrite

TEGIA(G, 1, y/VT)

=//p(tr,xr—w)

(3.48) < T1([@Gun 105 (20 T € € G TT ar (T2
veF ecD(G,)

x [I @r (T 2. t,, %, )dT, dze> dt, dx, dw.

eeS(G,)
Here
1.1
ar,,(t:2) E T2 [ [ (p(r—t.2) = p(r —t,2 = y/VT))
0 Jo
x(p(s—t,2z)— p(s—t,z—y/NT))drds,
(3.49) ) 2
= T1/2</ (p(r—t,2)—p(r—t,z— y/ﬁ))dr)
0
= fT(l_t’Za y)a
aT,y(t, 2,8, %)
(3.50) 1
=T p(s — t.x = 2) [ (p(b—t.2) = p(b— 1.2 = y/VT))db
and
dG,u,s;(z,,T,), ec E(G))
= l_[ p(ta, — tai’xa _xai)
(3.51) /] aeas '
X l_[ p(Taf - taia Zaf - xai)l{Tafgl}Su(xr)as(tr)dt dx
acAg

for G # G and
&G, u, 52, T)= 8,(2)8,(T)Lipay-

(Note, e.g., in the G of Figure 1 we have that G, = {ps}.)
We will use the notation

QT,y = Slﬂp/qT,y(ta x) dx.
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We have seen in (3.24), (3.25) that

(3.52) Qr , < |yl/m.
We note by Hoélder’s inequality that

(353) sup [ 1dr, (. 25, %) dz = @r, [ P(s — £, )]sz

We now explain how to obtain the following bound for (3.48).

TIEG4\4(G, 1, y/VT)

< /fp(tr,xr —w)

< TG00t e T e € BG)

veF
X l_[ qT,y(Teaze)
ecD(G,)

x [T 197, (T, 2., t,,, x, )| AT, dze> dt, dx, dw
eeS(G,)

(3.54) < // I </E(Gv,x,v,trv; (2., T.), e € E(G,))

veF
X H qT,y(Te’Ze)
ecD(G,)

X H |(7T,y(Te7 Zes tre7 xre)| dTe dze) dtrv dxr,,
eeS(G,)

-/n (/ [@Gus st 0.1, e < Gy,

<« Tl @r, TI éT,ynp(t,e—Te,->||5/2dTe)dtrv.

eeD(Gy) eeS(G,)

In the first inequality we use the fact that ¢ and qr (7., 2,) are positive,
while the second inequality simply comes from integrating out w [so that now
x, occurs only in the ¢(G,, -) term]. To explain the last inequality we begin by
noting as in (3.11) that

(3.55) /E(G,x, t:(2,,T.), ec E(G))dx < /E(G, x,£(0,T,), ec E(G))dx

forall (z,,T,), e € E(G). We then apply this repeatedly, moving upwards from
the root in F(G). Thus, we first estimate

f(/ aG,, x,,t,; (2,,T,), ec E(G,))dx,>

X 1_[ QT,y(Tea Ze) l_[ |aT,y(Te’ Zes trea xre)l dTe dze
ecD(G,) ecS(G,)
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< f(f &G, x,, 6,5 (0,T,), ec E(G,))dxr)

S 1_[ qT,y(Te’ Ze) ]_[ |aT,y(Tea Zes trea xre)| dTe dze
eeD(G,) ecS(G,)

= [([ G2t .1, e e B,

< T1 ([an(Tez)dz)

eeD(G,)

X H </|(7T,y(Teaze’tre»xre)|dze> dTe
eeS(G,)

-/ ( [&G,. xp,t,: (0.T,), e E(Gr»dx,)
x 1 Qry, I1 Qr,lIpt, —Te sy dT,.

eeD(G,) eeS(G,)

At this stage, for each v € S(G,) we see that x, occurs only in the ¢(G,, -)
term, hence we can repeat the last series of inequalities with G, replaced by
G, for such v, that is, for the immediate successors of » in F(G). Continuing
in this manner, we obtain the last inequality of (3.54).

We now explain how to obtain the following bound for the right-hand side
of (3.54):

/Q(//E(Gx t,; (0,T,), e < E(G,))dx,

< T @r. TI QT,ynp(t,e—Te,->||5/2dTe)dtru
eeD(G,) eS(G,)
(3.56)

<11 (//E(Gv,xrv,o; (0.T.,), e B(G,))dx,, dTe)
veF
~ 1
< I @Qr,y 1 QT,y(/ o, ')||5/2dt>.
eeD(G,) ecS(G,) 0

To explain the last inequality we begin by noting the simple monotonicity
bounds

//’c“(GU, %5 (0, T,), e € E(G,))dx, dT,
(3.57)
< f/E(G,,,x,v,o; (0,T,), ee E(G,))dx, dT,

and

1 1
(3:58) [ (=5 Mszdt < [ 11p(2. sz
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We will apply these repeatedly, this time working downwards from the top of
our tree F(G). Thus, to begin, if v is a vertex in F(G) with no successor, S(G,)
is necessarily empty, so that T',, e € E(G,) occurs only in the ¢(G,, -) term and
we can apply (3.57). Following this, ¢, now occurs only in the || p(¢, —T,, -)|s/2
term where v = e € S(G,) and v’ is the predecessor of v in F(G). We then
apply (3.58), and after doing this for all e € S(G,) we find that T',, e € E(G,/)
occurs only in the ¢(G,, -) term. Continuing in this manner we obtain (3.56).
In view of (3.38) this proves (3.39).
We now prove (3.40). Using (3.23) again, we see that for any ¢ < 1,

/Ot |(p(s, x) — p(s, x — y/vT))|ds
(3.59) < e/0°° e*|(p(s, x) — p(s, x — y/NT))| ds

= elu'(x) — u'(x — y/VT)|.
The proof of (3.40) will be complete once we show that
(3.60) lut(:) = u'(- = y/NT)llsjz < T8 |y
To prove (3.60) we note that
el exp(—|x — y/VT))|

|
(3.61) |x] |x—y/ﬁ| |
<Lg<wm+ﬂﬂ) wmﬁx—WJﬂﬂ»
- JT |x[2 |x — y/VT|?

to see by interpolating that
el exp(—|x — y/VT|)

(3.62) it = /YT
- |y|3/4<e><p(—|x|/4) eXp(—|x—y/~/7|/4))
=\ e x— 3/
and
exp(—|x|/4)
|74 lg/

This completes the proof of Lemma 3. O
4. Functionals. If & is a function on R3, let
1
(4.1) o(h)= -5 // lx — y| A(x)R(y) dx dy.
With the notation of Theorem 8, let 6, ; be defined by
0" = o(h)6Z .
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THEOREM 9. Let u, denote super-Brownian motion in R3, and let . denote
the Lebesgue measure on R3. If & is a function on R® with

(4.2) / (1+ %) A(x)| dx < 0o
RS
and
(4.3) fR3 h(x)dx =0
then with the notation of Theorem 8,
1 o T )
(4.4) TILngOW log E,, | exp mfo us(h)ds) ) = A(a(h)6?)

forall 0 < 6, ;.

PrRoOOF. The proof follows along the lines of the proof of Theorem 8. As in
(3.12) we have

1 6 T i 0"
(4.5) 7175 100 B, ( exp Wfo wy(h)ds) ) = gwdn(n n),
where now
(4.6) d, (T, h)=Y"d(G, T, )
j’l
and
d(G, T, h) = f/AG p(t,, x, — w)l_[A P(ty, =t X4, — %4)
4.7) ¢

x T1 [ plta, = tas ¥ = %4 )h(y) dy dt dx duw.

acAg
Using (4.3), we can rewrite this as

d(G, T, h) = //A Pt x, —w) T] plta, = to,. %a, — %4,)

0
acAg

(4.8) X l_[ /{p(taf _taia_xai)_p(taf _tai’y_xai)}

acAy,
x h(y)dydtdxdw.

As before, scaling leads to

(4.9) d(G, T, h)=T"*"12d(G, 1, hy),

where hp(y) = T%2h(y~/T) so that

(4.10) [ ehr(y)dy = [ g(y/VTIh(y)dy.
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Thus
d(G,T, h)

(@.11) s

= T"*d(G, 1, hy).
As in (3.21), when all exits in G are twinned we can write (4.7) as
d(G T,h)
CTrA+L2 //o 1jm /Al Pt 2, —w) 1] P(ta, = to,> Xa, — %q,)

acAg,
(4.12) N )
x [] Ssj(tuj)SZj(xuj)dt dxdw [| fr(1—sj,2;, h)dsdz,

j=1 j=1

where

Frtt. o) =2 [ [ [ p(r,2 = 2N Tp(s, 2 = yN')
x h(x)h(y)dxdydrds,

(4.13) = T1/? ( / fo t p(r,z— y/NT)h(y)dy dr>2

= T2 </ /Ot(p(r, z—y/NT) = p(r, 2))h(y)dy dr)z.

It is easy to check that [ f (¢, z, h) dz < oo for fixed ¢, T' < oo.
We also note that

ffT(t,z, h)dz
= T1/2/[/Ot /Ot p(r +s, (x — y)/NT)h(x)h(y) dx dy dr ds,

(4.14) = Tl/Z/[//Ot /Ot p((r+5s)/2,z—x/NT)p((r + s)/2, z— y/¥'T))
x h(x)h(y)dxdydzdrds,

= Tl/Zf/Ot /(:(/p((r—i—s)/Z,z— y/ﬁ)h(y)dy)zdrdsdz,

which shows that [ f7(¢, z, h)dz is positive and monotone increasing in ¢.
Because of (4.3),

tILrDO/fT(t, 2, h)dz

= T2 lim //‘/()t /Ot p(r+8, (x _ y)/ﬁ)h(x)h(y)drdexdy

t—>00

— T2 jim //(/Ot /Ot(p(r+s, 0)— p(r+s, (x — y)/ﬁ))drds)

t—o00

(4.15) x h(x)h(y)dx dy
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=192 [ ([ s(p(s.0) = pls. (e = )T ds ) (x)h(y) dcdy
= o(h).

We next show that uniformly in ¢ > T-1/2 > 1,
(4.16) [1F2(t,2.h) = f1(T Y2, 2, h)| dz = O(T /%),
and for any 6 > 0,
(4.17) lim Fr(T™Y2 2z, h)dz = 0.

T—o00 |2|=8

To prove (4.16) we use (4.13), (3.23)—(3.25) and the analogue of (3.32) to see
that

Tl/Z/‘(/ /;_1/2(p(r, z— x/NT) — p(r, 2))h(x) dx dr>

L

= T /</ /Toi/z |p(r, - x/ﬁ) a p(r, Z)l |h(x)| dx d’")

dz

(p(s,z = y/NT) = p(s, 2))h(y) dy ds>

(4.18) ) </ /ol |p(s, 2= y/N'T) = p(s, 2)| [h(y)| dy ds) dz

< Tl/z/'/;l/z \p(r, 2 = x/NT) = p(r, 2)| dr

|A(x)| dax
2

|h(y)| dy
2
1/2

< [ [ 16,2 = y/VT) = pls. 2 ds|
(170 |

<o [emeoras) ([ @)

< T8,

There is an analogous bound for the integrals over the regions
0<r=T Y2, T2 <s<t}, [TV <r<t, T <s<t}

The proof of (4.17) is similar to that of (3.27) once we note that by (4.2),

(4.19) |h(y)|dy — O

/{\yl/ﬁzé/Z}
as T — oo.

Putting all this together as in the proof of Theorem 8, we see that for any
graph G € 4, with n = 2m and all exits twinned we have

(4.20) lim 4G 1. 1)

fim S = e(Go. Do (h),



630 J.-D. DEUSCHEL AND J. ROSEN

Our theorem will then follow as in the proof of Theorem 8 once we establish
the analogue of (3.19). All that is really needed is to show that

4.21 lim Q, , =0,
(4.21) lim Qr, ),
where now, without risk of confusion,

A 1/4
Qpr,,=T /* sup
0<t<1

[ o6, )~ plb, ~ yVT () dy

5/3

Using (3.23) again, we see that for any ¢ < 1,
[ [ 15, )= pls, x = 3/ TYIIa)] dy ds

@.22) <e [ [ e (p(s %) = p(s, x — VT dsl(y)] dy
= e [ Jut(x) - ul(x — y/NDIA()| dy,

and using (3.60) we have

1626 = i = yNDIk(s) dy |

I IIs/3

(4.23) < [1u*C) = ' = y/VDlsgalh(2)] dy
=T [ |y 1)) dy.

This completes the proof of Theorem 9. O

The same proof will also lead to the following theorem. If v is a signed
measure with on R3, let

1
(4.24) o(v) = —Z//pc — y|duv(x) dv(y).
With the notation of Theorem 8, let 6, , be defined by

0" = O'(V)OS’ L

THEOREM 10. Let u, denote super-Brownian motion in R3, and let u denote
the Lebesgue measure on R3. If v is a signed measure on R® with

(4.25) [, @+ =D dlvi(x) < o0
and

(4.26) /R3 dv(x) =0
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then with the notation of Theorem 8,

(4.27) TILngo % log E, (exp(% fL% du(y))) = A(o(v)6?)

forall 6 <0, ,.

PrOOF OoF THEOREM 3. We first prove (1.14). We will show that for all 6,

(4.28) TILngO log E[exp(@ﬁ%(;)ﬂ = o(h)6%.
As in (4.5) we have
(4.29) log E[exp(@’u\T/T )} = n§1 de(T, h),
where
(4.30) d, (T, h)=Y"d(G, T, h)
<,

n

and d(G, T, h) is defined in (4.7). We note that
(4.31) d(T,h)= d(@, T,h)=(h,A)=0

so that the sum in (4.29) is actually over n > 2.
From (3.20) we see that for any graph G € %, with n = 2m and all exits
twinned we have

_d(G, T, h)
(4.32) m =

while for any other G € &, the limit is 0. We note that n/4+1/2 < n/2 for all
n > 2, while for the unique graph G € %, we have ¢(Ggy, 1) = 1. Hence

. d,(T,h) [o(h), ifn=2,
(4.33) T'L”;‘o Tn/2 {0, otherwise.
Equation (1.14) now follows from the proof of Theorem 9, which shows that
we can take the limit in (4.29) term by term.

Equation (1.15) is proven similarly, which completes the proof of Theo-
rem3. O

= ¢(Go, 1)o™(h),

5. Critical branching Brownian motion in R3. Let ¢, = &6 denote the
critical branching Brownian motion in R described in the Introduction with
7 = 1. Similarly, we will write N,(k) for Ni(h).

Recall the notation

(5.1) o(h) = o [ [ 2= Y h()h(y) dx dy.
Let

(5.2) p(h) = o [ [1x =y Ax)h(y) dx dy.
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With the notation of Theorem 8, let 6., ; be defined by
0" = (o(h) + p(h))6% -

THEOREM 11. Let 4 be a bounded function on R3 with

(5.3) /R3(1 + |x)|a(x)| dx < oo
and
(5.4) /RB h(x)dx = 0.

Then with the notation of Theorem 8,

. 1 T
(5.5) Tllﬁngo T2 log E(exp(%[0 N (h) ds)) = A((a(h) + p(h))6?)
for all 0 < 0, 5.

PROOF. As explained in Section 2 of [2] we have the Campbell formula

log E(exp(% fOT N (h) ds))

(5.6)
_ /R3{E<exp(% /OT N;V(h)ds>) - 1}dy,

where

(5.7) Ni(h) =} h(x),

xeg]

with & denoting critical branching Brownian motion starting with a single
particle at y € R®. From the formulas of Section 2 [2] we can easily develop the
following graphical representation for the right-hand side of (5.6) analogous
to (4.6). Write ™ = J_, 4", where & denotes the set of unlabeled directed
graphs with one root r, n — i exits and a distinguished subset .# of internal
vertices with |.#| = i, and such that each vertex in .# has one incoming and
one outgoing arrow, while all other internal vertices in G have one incoming
and two outgoing arrows. We then have

1 o T > o

where now

(5.9) gu(T,h) =3 8(G,T,h)

gn
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and for G € 4},

8G.T.h) = [ [ ptrx—w) TT plta, = ta %, = %0) [T b))

acA ves
(5.10)
x T1 [ (ta, = tap ¥y = x4 )h(y) dy dt dx duw.

e
acAg

We can think of G € 4" as obtained from a graph G e <,_; by placing i
vertices on the arrows of G. (G is obtained fron G by removing the distin-
guished vertices .# and filling in the gaps, that is, joining the incoming and
outgoing arrow for each such vertex into a single arrow.) It is then easily seen
that |G| =2(rn—i)+i—1and |[Ag| = |G| —1=2(n—i)+i— 2. Hence by
scaling we see that

g(G, T, h)= T|G|T*(?’/Z)(‘AG|+1)T(3/2)(‘G|*n+1)g(G’ 1, hy)
(511) — T2(n—i)+i—1T—(3/2)(2(n—i)+i—l)T(3/2)(n—i)g(G’ 1, hT)
— T(1/2)(n—i)+1/2—i/2g(G’ 1, hT)

where as before hp(y) = T¥2h(y/T). Thus

g(G, T, h
(5.12) W = TWH=D=CDig(G, 1, hy).

Let 475" € 7™ doenote the set of graphs with m pre-exits and i distin-
guished vertices, such that all i distinguished vertices are pre-exits, (necessar-
ily the predecessors of untwinned exits), and the remaining m —i pre-exits are
predecessors of twinned exits. We will explain below how to adapt the methods
used in the proof of Theorem 8 to show that it suffices to study the 7' — oo
limit of (5.8) term by term, and furthermore, that the only graphs G which
contribute to (5.8) in the T'— oo limit are the graphs in ff’” 1=0,1,...m

As in (4.12), when G € 47 we have

8(G,T,h)
T@m)/A+12 f/o 1m /Al p(ty,x, —w) [[ p(ta, —to,» *a, — %a,)

aeAG0

m

(513) X H Ssj(tuj)ézj(xuj)dtdx dw l_[ fT(l J’ J’ h)

j=1 j=1

x ] fr(l1—s;,z;,h)dsdz,

j=1

where fr(¢, 2z, h) is as in (4.13) and

618 Frta =T [ [ (2= Dhe(he(y)dydr.
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If we now scale out 7' from the &y factors in f(1—s;, z;, k) then fp(1 —
s;,z;, h) becomes fr o(1—s;,z;, h) where

615 Froltz ) =T [ [ p(r.(z = VDR dydr,
but also each factor in the integral in (5.13) of the form
Pt = ta, 2 — %4,)
is changed to
(5.16) P(ta, — to, 2;/NT = x,,).

It follows easily from (3.59)—(3.62) and the bounds of this section that the error
introduced in replacing (5.16) by

(5.17) P(ta, —ta,s —%q,)

can be bounded by a factor which goes to 0 as T — oo. Thus we can can
remove all z;'s from the inner integral in (5.13) and study

_ t
(618) [ Fro(t.zh)dz=T"2[ [ [p(r,(z= y)/NT)(2)h(y)dzdydr.
0
Using the fact that p(r, x — y) is positive definite [see (4.14)], we can see that

i nyo(t, z, h) dz is positive and monotone increasing in ¢. Using (5.3) and (5.4)
to get the estimate

(5.19) A(p)] = |PlIVAl < clp| [ 2llA(x)] dx < c|pl,
where A denotes the Fourier transform of h, we see that
T2 [ ] [ pGs (2 = VDR R(y) dzdydr
=172 [( [ VDR exp(-rlpf/2)dr) d*p
T—l/Z

5.20 h(p/T)I?
20 =217 —'h(p/ f)' exp(—|p[2/(2TY2)) d*p
p
< T2 [ exp(~|pI?/(2T*2)) d*p
— O(T—3/4)
so that arguing as in Sections 3 and 4 we see that for each G € yf'g we have

. G, T, h . .
(5.21) tim ST — (o)) (o) e(Go, D),
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where
p(h) = lim [ Fro(t, 2, h)dz
=172 [ [ [ p(r, (2 = )VIR()(y) dz dy dr
(5.22) =172 [ [u((z = 9)/VD(2)h(y) dz dy
=12 [ [ (e~ )/ VT h(2)h(y) de dy

= o= [ 12— s M h(2)h(y) dzdy.

Since for each Gy € ., there are (') graphs in 4’{’3 for which Gy is the
corressponding graph of pre-exits (we choose i exits of G to be distinguished
vertices and the remaining m — i exits of G, will be pre-exits for twinned
exits), by (5.21) the contribution of all such graphs will be

m o /m . .

> ( ; >(p(h))l(cr(h))m‘c(Go, 1) = (p(h) + a(h))"c(Go, 1),

i=0
and this will complete the proof of Theorem 11 as soon as we explain how
to adapt the methods used in the proof of Theorem 8 to get the analogue of
(3.19).

Before doing this, we explain the main technical difficulty in trying to adapt
the methods used in the proof of Theorem 8. In the very first inequality of
(3.54) we bounded the factors in the frame decomposition by positive factors.
The expression qr , is itself positive, while g7 , was bounded by its absolute
value |gr, ,|. Since each factor of |g7 ,| gives rise to a small error term which
goes to zero as T — oo, nothing was lost in replacing g , by g7 ,|. However,
in the present situation, whenever there are distinguished pre-exits, we have
factors f, which are not positive, but which give rise to contributions f_T,o
which are nonzero in the limit as T' — co. Replacing fr by |f| would increase
that contribution, so that we would never be able to prove convergence all
the way up to 6 < 6. ;. On the other hand, the methods used in the proof
of Theorem 8 were based on working with positive factors. The somewhat
complicated approach outlined below is designed to cope with this difficulty.

For each distinguished pre-exit with coordinates (r, y), let (#/, y’) denote
the coordinates of its successor, which is an exit, and (¢, z) the coordinates of
its predecessor. Using

p(r—t, y/NT —2) = p(r—t,—2) + | p(r —t, y/NT — 2) — p(r —t, —2)}

we then rewrite
T2 [ p(r—t,y = e (9)p(r =1,y = Vhe(y)dr' dy' dr dy
(5.23) _ T’l/Z/p(r —t,y/NT - 2)
< h(y)p(r' = r,(y = ¥)/VT)h(y") dr' dy dr dy
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as
(5.24) [ ptr=t.=2) [ ap a(roy)dy dr + fr (. 2),
where
(525) g5 4(r9) =T 2h(y) [ p(r' = 7, (5’ = y)/NTIh(y) dr' dy’
and
o (t2) = T2 [{p(r —t, y/NT = 2) = p(r — £, ~2)}
x h(y)p(r' —r, (¥ = y)/NT)h(y') dr' dy dr dy.
We note that [ g7 ,(r, y)dy > 0 for any r, and

(5.26)

«  def N
(5.27) Q7.1 = sup [ ap 4 (r ¥)dy < p(h).
See (5.22). Set
Tp a(t: 2,8, %) = p(s — t,x = 2)f 7 (¢, 2).
We have
(5.28) SUP/ 197, 1(t: 2,8, x)| dz < Qi},h”p(s —t,)s/2>
where [see (5.22), (3.53) and (3.60)]
) def [
QT , = sup 1£7, (8 ss
O<t<1

IA

o [ sup | [ (p(r 3/VT =)= pir, ) dr

2m 0<t<1

|y = ¥ I7HRDA(Y)] dy dy'
< T8 [1y4]y - /| R |A(Y)| dy dy'

< ¢T38,

(5.29) ”5/3

We shall refer to the complex which consists of a distinguished pre-exit, the
exit which is its successor and the arrow connecting them, as a x-exit. The
predecessor of a x-exit will be called a prex-exit. In the previous paragraph,
the prex-exit was the vertex with coordinates (¢, z). With the above notation,
each x-exit contributes a sum of two factors, one which involves g7 , and the
other ‘7*T,h- In comparison with the proof of Theorem 1, g7 , should be asso-
ciated with the sort of analysis attached to twinned exits, while g% , should
be associated with the sort of analysis attached to untwinned exits. These dif-
ferent exits naturally lead to different frame decompositions. In order to deal
with the combinatorics in a systematic way, we will create new “mirror image”
graphs for each x-exit. Here are the details.

Let £°" denote the set of decorated £/ graphs. A decorated 4 graph
consists of a graph G < .4 together with a decoration in which each x-exit is
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assigned a label 0 or 1, in which case the x-exit, as well as the associated prex-
exit, will be said to be of type O or 1. Thus, if G € 4" has k x-exits, there will be
2k graphs in &;"" corresponding to the various possible decorations of G. The
set of all possible decorations of G € 47" will be denoted L(G). Let G* € & ".
We define F(G*) in a manner similar to the way we defined F(G), except that
in addition to all vertices in PU(G), we also include all distinguished vertices
which are not pre-exits, as well as all prex-exits of type 1. In defining G%,
each x-exit will be considered as a single vertex; G} is defined analogously to
G, except that G} has five possible types of exits. In addition to D(G3}) and
S(G%), we also have Dy(G?), the set of x-exits of type 0, S,(G?), the set of
prex-exits of type 1, and S,(G?), the set of distinguished vertices which are
not pre-exits. In analogy with the frame decomposition (3.48) we have

(5.30) d(G,1, hyp)= > d(G* 1, hp),

{G*eL(G)}

where
T‘E(G)V“d(G*, 1, hy)

=//p(tr,xr —w)

< T1([aGh 0105 2T € 2 BGY)
veF(G¥)

x 1 arw(Te2ze) 1 Gra(Te zes tr,, %)
(5.31) eeD(G?) o eeS(GY) o

X 1_[ Q;‘,h(Te’Ze) 1_[ a;‘,h(Teazeatre’xre)
eeDy(G3) ecS1(G;)
X l_[ éT,h(Tev Ze> tre’ xre)dTe dze)
eeS,(Gy)
x dt, dx, dw.

Here 2 =0 if e € Dy(G3) and z; = z, otherwise, to take (5.24) into account,
and

(532) (}T, h(ta 2,8, DC) = T73/4hT(2)p(S —i,x— Z)'
In analogy with (3.40) we see that
X def

= su q t,z,8,x) dsd
Qrn L sup [ [ldr st 2.5 0] dsdz

IA

cT—3/4 / ul(x — 2) |hp(2)| dz

(5.33) T34 /

IA

1
ol dz

1
— —1/4
=cT /|z—ﬁx||h(z)|dz

cT—1/4,

IA
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Note that e € S(G*)NS1(G?) is possible. In this case we can assign e arbitrarily
to either S(G?) or S1(G?). Since either case leads to an arbitrarily small
contribution, the choice will not be important.

In view of all these bounds, it is now a straightforward matter to proceed
along the path mapped out in the proof of Theorem 8 and establish the needed
analogue of (3.19). We only wish to point out that the multiplicity of graphs
introduced by “decoration” is easily controlled, since all decorations of type 1
can be controlled using (5.28) systematically, as we did for untwinned exits in
the proof of Theorem 8. This completes the proof of our theorem. O

6. Superprocesses and critical branching processes over stable pro-
cesses. In this section we show how the methods developed in previous
sections to study large deviations for superprocesses and critical branching
processes based on Brownian motion in R® can be easily adapted to prove
analogous results for superprocesses and critical branching processes based
on the symmeteric stable process of index 8 in R? when d < 28 <2+ d. We
first state the analogue of Theorem 8.

Let L} denote the local time of the symmetric superstable process of index
B in R¢, with d < 28 < 2+d, and let u denote the Lebesgue measure on R¢.
As in the Introduction, set

(6.1) Ag 4(0) =log E ,(exp(6LY)).

Following [10], we can show the existence of 0 < 6 ;, < cosuch that A; ;(0) <

oo for 6 < 63 , and Iim,,THE_d((dAB,d(O))/dO) = o0o. Let 05 4 . be defined by
0.0 = 2¢5.aly[*P 7005 4 o

where
(6.2) ¢p.a= [ s(p(s.0) = p(s,u))ds < o,

and p(s, y) denotes the transition density for the symmetric stable process of
index B8 in R? and u € R? is an arbitrary unit vector.

THEOREM 12. Let L} denote the local time of the symmetric superstable
process of index B in R? with d < 28 < 2 + d. Let u denote the Lebesgue
measure on R%. Then

. 1 0 -
63) Jim s 100 B, (o0 iz (L3 — 1)) ) =g, a2, lyP4P)
forall 6 <05 4 -

We will indicate briefly the necessary modifications in the proofs of previous
sections needed to obtain the proof of Theorem 12.

Let ¢ 4(G,T), dg q(G,T,y) be defined just as we defined c¢(G,T),
d(G, T, y) except that now p(s,x) denotes the transition density for the
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symmetric stable process of index 8 in R?. We have

(6.4) log E,,(exp(0L$)) = Y 0", g a(T)
n=1
with
(6.5) cn,p,d(T)=>_cga(G,T)
jn
and

1 0 0 y
= log E, <exp(m(LT — LT)>)

(6.6) . o
- nX::l Fa-dregymrap-1ne.dls ),
where
(6.7) dy pa(T,y) = ;dﬁ,d(G> T, y).
The scaling
(6.8) p(sT, x) = T~V p(s, x/TYP)
leads to

cp.a(G, T) = T|G\T*d/5(|AG|+1)Td/B(|G|*"+1)CB’d(G, 1)
(69) — T2n—lT—d/ﬁ(2n—l)Td/BnCB,d(G’ 1)
— T(Z_d/ﬂ)n+d/3_lcﬁ’d(G, 1)

and
dg 4(G, T, y)
B,d _ 1-d/(2B))n 1/B
(6.10) T(l—d/(ZB))ner/B—l_T( Oy o(G. 1, y/THP).
With

(611)  fr(t,2,y) S T> 9 (/ot(p(r, 2) = p(r,z— y/T”B))dr>2,

we first note that as in (3.25) and using the scaling (6.8) we can compute
/fT(oo, 2,y)dz =2T* /P /OOO fooo(p(r +5,0)— p(r+s,y/TYP))drds

(6.12) = 2778 [ s(p(s.0) - pls. /T"#)) ds

= 2¢g 4|y
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We also have the analogue of (3.32),

oo}

28 [* [T(p(r,2) ~ p(r, 2~ y/TVE))
T-12J0
x (p(s.2) ~ pls.z — y/T"*))dr dsdz

_ 2-d/B / (2p(r +5,0) — p(r+s, y/T"P)
0

T-1/2

— p(r+s,—y/T"?))drds
_op2-dig [( [T [T1— 18
= 2T /(/T//O (1 — cos(py/TYB))

x exp(—(r + s)|p|P) dr ds) dep

(6.13)

1 —cos TR

— 2T2—d/B/ ( |;l|)23/;/ )) exp(_|p|ﬁ/(Tl/2)) ddp
1

< Iy P72 28 [ s exp(-l ol (T2 dp

— c|y]2 T-V@P@+d-2p),

The last integral is finite because of our condition 28 < 2 +d.

It remains to provide the analogues of (3.53) and (3.40). If ¢, ¢’ denote
conjugate indices, so that by 1/g + 1/q’ = 1, then by Hdélder’s inequality we
have

T4/ syp / p(s—t,x—2)
x

(6.14) /Ol(p(b —t,2)— p(b—t,z—y/TYP))db|dz

X

= QB,d, T,y”p(s -t ')”qa
where, as in (3.23),

; I
B — 7428 sup | [ (p(b,-) — p(b, - — y/TY#)) db|
(6.15) pri oy OstslH‘/O (# (6. ( ) H

< TP ut(x) — ut(x = y/TYP))llg-
We first note by scaling that

p 1/q
12Ol = ¢ ( [ pa(are?)dx
_ A py (),

The strict inequality in our condition 28 > d then implies that

q

(6.16)

1
(6.17) L 12Ol di < 00

for some ¢ > 2.
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Since, then, ¢’ < 2 we can choose ¢ > 0 such that ¢'(1 + 2¢) < 2. Since
B —d/2 <1 we can choose & so small that also 8 —d/2+ & < 1. We claim that

(6.18)  Jul(x) —ul(x —y/T"))||y < T~ HCOIR) |y prdize,

which will give us the analogue of (3.40).
For the last inequality we use the analogue of (3.61),

ol (uix) | wdx—y/TP)
T7F\ "l Tx— /TR )

(6.19) |u'(x) —u'(x — y/TVP)| <

to see by interpolating that

|ut(x) — ut(x — y/TYP)|

(6.20) - |y|B-d/2+e ul(x) ul(x — y/TYB)
= T(B-d/z+e)/B\ |x|B-d/2te " |x — y/T1L/B|B-d/2+e

and ul(x)|x|"(B~4/2+2) ¢ L9 as long as q'(d — B+ (B — d/2 + €)) < d which
follows from our condition that ¢'(1 + 2¢) < 2.
This completes our proof of Theorem 12. O

Similarly we can show the following analogue of Theorem 10: if v is a signed
measure on RY, let

(6.21) 05.a(r) = —cg.a [ [ lx— P~ du(x) du(y).
With the notation of Theorem 12, let 6, ,; . , be defined by
0 0 =0)05 4 .,
THEOREM 13. Let X, denote the symmetric superstable process of index B8

in RY, with d < 28 < 2 +d, and let u denote the Lebesgue measure on R¢. If
v is a signed measure on R? with

(6.22) / (1 + |x]) d|v|(x) < o0
Rd
and
(6.23) /R dv(x)=0
then with the notation of Theorem 12,
2 li ! g E 4 Ld A 2
(6.24)  lim o log B, (xp( s [ L dv(9) ) ) = Ag a(c()6%)

forall 6 <05 4 .-
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Here is our theorem for critical branching stable processes. As in (6.21), let

(6.25) op.a(h) = —cp.a [ [1x =y~ h(x)h(y) dx dy.
Let

d
62600 ppah) = 3y cqaronsy | 15— 1P hGh() d .

With the notation of Theorem 12, let 60, ; . 5, be defined by
05 a = (05 a(h)+pg, a()05 4 b 1-
THEOREM 14. Consider the critical branching symmetric stable process of

index B in R?, with d < 28 < 2 + d, and let u denote Lebesgue measure on
R?. Let A be a bounded function on R? with

(6.27) /Rd(l + |2])|A(x)| dx < oo
and
(6.28) /Rd h(x)dx =0

Then with the notation of Theorem 12,

lim s l0g E o (" N(hyd
(6.29) s et 09 H &P m/o s(h)ds
= Ag, a((05,a(h) + pg, a(h))6%)

fOI’ a“ 0 < Qﬁ’d’bc’h.
This follows as above once we note the analogue of (5.22):
p(h) = T4/ f / / p(r, (z — y)/TYP)h(2)h(y) dz dy dr
0

= T8 [ [0((z ~ 3)/ TP )h(2)h(y) dz dy

(6.30)
=T d/ﬁgr;a(q(;[iz/z—lf(gzg//zz))//l(z — y)/TYB|" =P p(2)h(y) dz dy
I'((d - B)/2) (-
Zﬁwd/ZF(B/Z)//| yl (d=F) h(2)h(y)dzdy.

Finally, we mention that the proof of Theorem 4 follows along the lines of
the proof of Theorem 3.
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