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A general class of finite variance critical �ξ��� k�-superprocesses X in
a Luzin space E with cadlag right Markov motion process ξ� regular local
branching mechanism � and branching functional k of bounded character-
istic are shown to continuously depend on ���k�� As an application we show
that the processes with a classical branching functional k�ds� = 
s�ξs�ds
[that is, a branching functional k generated by a classical branching rate

s�y�] are dense in the above class of �ξ��� k�-superprocessesX. Moreover,
we show that, if the phase space E is a compact metric space and ξ is a
Feller process, then always a Hunt version of the �ξ��� k�-superprocess X
exists. Moreover, under this assumption, we even get continuity in ���k�
in terms of weak convergence of laws on Skorohod path spaces.
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1. Introduction.

1.1. Motivation, purpose and main results. While the characterization of
the class of �ξ��� k�-superprocesses X is obviously a fundamental part of the
theory of measure-valued branching processes, it cannot alone fully describe
the reach structure of this class. In particular, it would be natural to define
a meaningful metric in terms of only the parameters �ξ��� k�. Topological
properties of this metric, such as, for instance, the description of dense or
compact subsets, or such as the completeness property, would give further
insight into the nature of superprocesses. As a long-term goal, it seems to
be desirable to express properties of �ξ��� k�-superprocesses (as their path
properties, for example) in terms of the properties of the parameters �ξ��� k�,
and this paper should be seen as a step in this direction.

Indeed, we focus here on the question of jointly continuous dependence on
the branching mechanism � and the branching functional k� Once one has
such a continuous dependence, one can, for instance, use it to derive certain
properties of a class of superprocesses by starting from more elementary pro-
cesses, rather than by a direct analysis. We will in fact include such applica-
tions below.

The problem of continuous dependence of superprocesses on their branching
rate is not entirely new. For instance in [4], Lemma 2.3.5 and its application in
Sections 2.4 and 2.5, it was used to construct a class of one-dimensional super-
processes with catalytic branching rate 
s�dy� by starting from superprocesses
with classical branching rate 
s�y�dy. In [5], Proposition 1 and Subsection 3.1,
continuity in k was exploited to construct super-Brownian motions in Rd with
(only) locally admissible branching functional k by approximating them by
(globally) admissible ones. In this way, a class of super-Brownian motions con-
structed in [9] could be extended. Finally, in [12], a truncation procedure of
branching rate was applied to construct a one-dimensional super-Brownian
motion with the locally infinite catalytic mass �y�−2dy. (In contrast to the
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present paper, this superprocess does not have a finite variance even though
the branching mechanism is “binary critical.”)

The question of continuous dependence of superprocesses on their branch-
ing mechanism � and branching functional k is studied here on its own and in
a general �ξ��� k�-superprocess setting. Then we use this continuity to prove
that for each �ξ��� k�-superprocess considered in this paper, a Hunt version
exists, provided that the phase space is a compact metric space and the motion
process ξ is Feller (Theorem 40). In this case we even get continuity in ���k�
in terms of weak convergence of the laws on the Skorohod space of cadlag
paths (Theorem 42).

The construction of superprocesses with regularity properties of the paths
has a long history. Concerning recent general results, in the first place we
refer to [11], which proved the existence of a right or even Hunt version of a
superprocess if the motion process is right or Hunt, respectively, provided that
the branching mechanism is time-homogeneous and the branching functional
is given by k�ds� = ds� Fitzsimmons’ right version result is generalized in [8]
and [14]. Then [15] generalized Fitzsimmons’ Hunt result to a general class
of �ξ��� k�-superprocesses with finite variance and admissible (in the sense
of Dynkin) functional k� One of our motivations was to obtain such result
for nonadmissible k of bounded characteristic. Finally, we mention the recent
paper [17], which deals with the construction and path regularity of �ξ��� k�-
superprocesses with metrizable co-Souslin spaces as phase space.

We also note that the results of the present paper play a crucial role
in [16] where a martingale problem is established for a class of �ξ��� k�-
superprocesses under mild conditions.

1.2. Setup. Before going further, recall that the main steps of the method
of construction of superprocesses via the analysis of the related evolution equa-
tion (see, for instance, [2, 4, 7, 9, 15, 12, 5]) more or less resemble the fol-
lowing procedure. First, find for fixed n a measure-valued process Xn whose
log-Laplace functional vn = vn�f� = vn•� t�f� solves an evolution equation

vn = �n�vn��(1)

Second, show that, for a certain norm � · � (typically a supremum norm � · �∞�
or a closely related one),

∥∥vm − vn∥∥ ≤ 1
2

∥∥vm − vn∥∥+ qm�n�
where qm�n is a nonnegative quantity converging to zero as m�n → ∞� By
completeness, this shows, that vn converges. It is usually possible to conclude
the following.

1. The limit v again satisfies an evolution equation

�2� v = ��v��
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2. v is the unique solution to that equation.
3. Each vr� t�x� is the log-Laplace functional of a random measure.
4. v determines a semigroup.

This semigroup then uniquely characterizes a superprocess X (log-Laplace
functional characterization).

Suppose now that (1) is the �ξ��n� kn�-evolution equation of the so-called
�ξ��n� kn�-superprocess Xn� Here �n is a functional of ξ��n� kn� where we
have the following.

1. The particles’ motion process ξ = �ξt�
� πr�x� is cadlag right Markov.
2. �n is a critical local branching mechanism with finite variance [see As-

sumption 13(f )].
3. The branching functional kn is a continuous additive functional of ξ of

bounded characteristic.

Our key result can briefly be described as follows. Suppose that kn con-
verges to a continuous additive functional k of ξ in an appropriate sense, and
the �n converge uniformly to a regular branching mechanism �� then the
log-Laplace functionals vn converge to some v solving the �ξ��� k�-evolution
equation (2). As in [15], this equation is then used to construct a �ξ��� k�-
superprocess X with v as its log-Laplace functional. Since the convergence
vn→n v of log-Laplace functionals implies the convergence Xn ⇒n X in the
sense of (weak) convergence of all finite-dimensional distributions (fdd), the
�ξ��� k�-superprocess continuously depends on ���k� (Theorem 20).

This fdd continuity theorem can be extended to weak convergence on some
Skorohod path spaces, and several applications are supplied. In particular, if
the phase space is a compact metric space and ξ is Feller, we show that a Hunt
version of X exists and “classical” �ξ���
s�ξs�ds�-superprocesses are weakly
dense in the set of all �ξ��� k�-superprocesses.

1.3. Outline. To prove the continuity theorem, we follow essentially the
method described in the previous subsection. We use the norm � · �C defined
to be the supremum over the set C of all those points �r� x� such that

�α� πr�x

∞∨
n=1

kn�r� t� <∞�

�β� πr�x

{
kn�⇒

n
k
}
= 1

(recall πr�x refers to the law of the motion process ξ with initial data r� x).
Starting from a point �r� x� ∈ C� it is crucial to know that πr�x-a.s. all points
�s� ξs�� s > r� also belong to C. This is essentially what we will cover in
Section 2.

After introducing more carefully in the beginning of Section 3 the model
we deal with in detail, we formulate our key result, the fdd continuity Theo-
rem 20. Then we discuss the assumptions on the branching functional in that
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theorem and review the log-Laplace functional characterization of �ξ��� k�-
superprocesses. However, the central part of our argument is Proposition 34.
It states that in the case �n ≡ �� for “small” test functions f (the parameter
entering into the linear term of the evolution equation (2) coming from the
log-Laplace functional), and for starting points �r� x� in C� the log-Laplace
functionals vn converge to some v.

The derived fdd continuity theorem has strong implications. First, as an
application we establish in Theorem 23 that each �ξ��� k�-superprocess can be
approximated by ones with “classical” branching functional k� “Classical” here
means that the branching functional k can be represented as k�ds� = 
s�ξs�ds
with 
 a bounded (classical) function. In this case, a particle at time s at site y
splits with branching rate 
s�y�� In other words, the approximating processes
are “classical” superprocesses.

We mention that by fdd convergence of Xn to X we actually mean

E exp
[ m∑
i=1

〈
Xn
ti
�−fi

〉]→ E exp
[ m∑
i=1

〈
Xti
�−fi

〉]
as n→∞

for any choice of bounded measurable nonnegative functions f1� � � � � fm on
E� [�µ�f� abbreviates the integral

∫
f�x�µ�dx��] In other words, we have

fdd convergence in every topology on E compatible with the measurability
structure �E�� � of our Luzin space E�

A more subtle question is the convergence of laws on path spaces. Here
one needs some further restrictive assumptions on the data �ξ��� k�� In order
to avoid expensive technicalities, in Section 4 we restrict our attention to the
special case of a Feller motion process ξ in a compact metric space �E�d�� Then
the continuity and approximation theorems can be used to construct a Hunt
version of the �ξ��� k�-superprocesses (Theorem 40). These Hunt �ξ��� k�-
superprocesses depend continuously on ���k� in terms of weak convergence
of the laws on the Skorohod path spaces, rather than only fdd (Theorem 42).

In the Appendix, we collect some results, which are purely technical.
As a standard reference for weak convergence we refer to [10] and for

�ξ��� k�-superprocesses to [9].

1.4. Basic assumptions: motion process ξ and branching functional k. In
this paper, “nonnegative” always means R+-valued, R+ �= �0�∞�� But in some
cases we also need to consider variables with values in the one-point compact-
ification R+ �= �0�∞� of R+� In this case, we will explicitly refer to this.

Throughout this paper, the following assumptions are in force.

Assumption 1 (Motion process and branching functional).

(a) (Phase space) The phase space E is a Luzin space. That is a topological
space E which is homeomorphic to a Borel subset of a compact metrizable
space. [Note that, for example, every complete separable metric space is Luzin
(see, e.g., [18], page 370).] Let � denote the Borel σ-algebra of E and �+ =
�+�E� the set of all R+-valued measurable functions f on E� Moreover, write
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b�+ = b�+�E� for the subset of all bounded f ∈ �+� equipped with the topology
of bounded pointwise convergence.

(b) (Measure space) Let �f =�f �E� = �f �� � denote the set of all finite
measures on � � Endowed with the topology of weak convergence, �f is a Luzin
space.

(c) (Time interval) We consider first of all stochastic processes on a fixed
finite interval I �= �0�T�� T > 0� or on subintervals of I� later, in Section 4,
we extend to R+�

(d) (Underlying particle’s motion process ξ) Once and for all, fix an E-
valued process ξ on I satisfying the following conditions.

(d1) (Markov process) ξ is a (time-inhomogeneous) Markov process
�ξt�
� πr�x� in the setting of [9], Section 2.2.1.

(d2) (Right process) This Markov process ξ is assumed to be a right
process which means the following:

(i) t �→ ξt�ω� is right continuous (in the Luzin E), for each ω�
(ii) For 0 ≤ r ≤ t ≤ T� µ ∈�f � and f ∈ �+ fixed, the function s �→

πs� ξsf�ξt�� s ∈ �r� t�� is right continuous πr�µ-almost everywhere. [Note that
our terminology differs slightly from [9] which includes the cadlag property
(d3) in the notion of a right process. In this situation we call it a cadlag right
process.]

(d3) (Cadlag) The process ξ is required to be cadlag [additionally to (i)];
that is, for each ω� the limits lims↑t ξs =� ξt− exist in E for all t ∈ �0�T�.

(d4) (Hunt) Sometimes we additionally assume that the cadlag right
Markov process ξ is Hunt. In this case we work with I = R+ as the time axis.

(e) (Branching functional) As a rule, the letter k refers to a (nonnegative)
continuous additive functional of ξ ([9], Section 2.4.1) of bounded charac-
teristic:

sup
�r� x�∈I×E

πr�xk�r�T� <∞�(3)

We call such k a branching functional. Intuitively, k�ds� is the rate of branch-
ing of a particle with position ξs at time s�

Remark 2 (Admissible functionals). Note that condition (3) is weaker than
the admissibility requirement in [9], Section 3.3.3:

sup
x∈E

πr�xk�r� t� → 0� s ∈ I as r� t→ s�(4)

(In fact, read the proof of Lemma 3 in [5] with φp replaced by 1.)

Remark 3 (Natural functionals k). Several partial results in the present
paper remain valid if the (limiting) additive functional k is only natural (in-
stead of continuous). But we stress the fact that in our key Theorem 20, the
assumption on the continuity of k cannot be dropped.

2. Path and preservation properties. In this section we investigate the
following question. Suppose that for a “starting point” �r� x� a certain property
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℘ of particles’ motion process ξ holds πr�x-a.s. When can we say that, πr�x-a.s.,
the process s �→ �s� ξs� passes only through those points �s� y� such that the
property ℘ is valid πs�y-a.s.?

For example, suppose that k1� k2� � � � are (continuous) additive functionals
of the (cadlag right Markov) process ξ = �ξt�
� πr�x�. Fix a starting point
�r� x� ∈ I × E� Assume that πr�x-almost surely the measures kn (as finite
measures on �r�T�� converge weakly to k as n→∞� Is it then the case that
πr�x-almost surely, for every s ∈ �r�T�� with πs� ξs -probability 1, kn converges
weakly to k (as measures on �s�T�)?

With Proposition 9, we will give a positive answer to this type of question.
At this place it might be helpful to give a heuristic reasoning which indicates
the strategy we will use. Suppose that the following expectation vanishes:

πr�x

(
sup
s∈�r�T�

lim sup
n

∣∣kn�s�T� − k�s�T�∣∣) = 0�

Then, for any point s ∈ �r�T�� the Markov property gives that

πs� ξs

(
sup
t∈�s�T�

lim sup
n

∣∣kn�t�T� − k�t�T�∣∣) = 0� πr�x-a.s.

Obviously, this remains true for a countable dense set of times s ∈ �r�T��
Hence, if the process

s �→ πs� ξs

(
sup
t∈�s�T�

lim sup
n

∣∣kn�t�T� − k�t�T�∣∣)

could be verified to be right continuous, we get that

sup
s∈�r�T�

πs� ξs

(
sup
t∈�s�T�

lim sup
n

∣∣kn�t�T� − k�t�T�∣∣) = 0� πr�x-a.s.�

as wanted.
This reasoning motivates in particular the following subsection.

2.1. Path properties of a class of processes. For convenience, we impose the
following assumption (which will be in force throughout this subsection).

Assumption 4 (A pair of processes). Fix a starting point �r� x� ∈ I×E� For
s ∈ �r�T�� letYs andZs be R+-valued 
�s�T�-measurable variables. [Note that
s �→ 
�s�T� is not a filtration since 
�s�T� ⊇ 
�s′�T�� s ≤ s′ ≤ T� Here 
�s�T�
is the sub-σ-field of 
 of “events observable during” the interval �s�T��] Define
ys �= πs� ξsYs and zs �= πs� ξsZs (which could be infinite at this stage). Suppose
πr�xYr <∞�

The main result of this subsection is the following proposition.

Proposition 5 [Nonnegative cadlag processes of class (D)]. Let �Y�Z� be
a pair of processes satisfying Assumption 4. In addition, suppose s �→ Ys is
right continuous and nonincreasing (for each ω� as R+-valued function). Then
the following statements hold.
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(i) The process y = �ys� r ≤ s ≤ T� is πr�x-indistinguishable from a non-
negative cadlag process of class (D).

(ii) If additionally Z ≤ Y and s �→ Zs is cadlag (as R+-valued function),
then z = �zs� r ≤ s ≤ T� is also πr�x-indistinguishable from a nonnegative
cadlag process of class (D).

Before providing the proof, we need some preparation. Consider Y�y as in
Assumption 4. For every c ∈ �0�∞�� define

ycs �= πs� ξsYcs� Ycs �= c ∧Ys�
Note that Y∞s = Ys and y∞s = ys�

Lemma 6 (Preparations). Let c ∈ �0�∞�.
(a) Suppose that with respect to πr�x the process yc is indistinguishable from

a nonnegative process and belongs to class (D). Then it is πr�x-almost surely
right continuous.

(b) For every c ∈ �0�∞�� the nonnegative process yc is πr�x-a.s. right contin-
uous and belongs to class (D).

(c) The R+-valued process y is πr�x-indistinguishable from a nonnegative
process (that is, R+-valued process).

(d) With πr�x-probability 1, y is nonnegative and belongs to class (D).

Proof. (a) We first establish that yc is optional. For n ≥ 1� introduce the
step function

yn� cs �=
n−1∑
n=0

1�sni � sni+1��s�πs� ξsYcsni+1
� r ≤ s ≤ T�(5)

where sni �= r+�i/n��T−r�� for i = 0� � � � � n. Obviously, the πr�x-almost surely
nonnegative process yn� c is πr�x-a.s. right continuous and thus optional. [If Ys
has the formYs �= f�s� ξs� for a measurable bounded f then the πr�x-a.s. right
continuity of yn� c is immediate from the definition of a right process (see [9],
page 27). The more general case reduces to the just mentioned one by taking
the conditional expectation.] Clearly, pointwise ycs = limn y

n� c
s holds. Therefore

yc is also optional.
Let σn ≤ T be r-stopping times nonincreasing to (the r-stopping time) σ

as n → ∞� Then by the definition of yc� the strong Markov property, right
continuity of Yc and the monotone convergence theorem, we have

lim
n
πr�xy

c
σn
= lim

n
πr�xπσn� ξσn

Ycσn = lim
n
πr�xY

c
σn
= πr�xYcσ = πr�xycσ �

Hence, according to [9], A.1.1.D, page 116, the πr�x-a.s. nonnegative process
yc is πr�x-a.s. right continuous.

(b) This is immediate from (a) and the fact that these processes are bounded
(by the constant c).
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(c) According to (b), for c finite, the nonnegative process yc is πr�x-a.s. right
continuous. Therefore, supr≤s≤T ycs is measurable and monotonously converges
to supr≤s≤T ys as c ↑ ∞� Hence, for η > 0�

πr�x

{
sup
r≤s≤T

ys > η
}
= lim
c→∞πr�x

{
sup
r≤s≤T

ycs > η
}
�

We can thus invoke Proposition A2 in the Appendix, and continue with

πr�x

{
sup
r≤s≤T

ys > η
}
≤ η−1 lim

c→∞ sup
r≤σ≤T

πr�xy
c
σ

= η−1 lim
c→∞ sup

r≤σ≤T
πr�xY

c
σ

≤ η−1 lim
c→∞πr�xY

c
r

≤ η−1πr�xYr <∞�

Letting η→∞ gives the claim.
(d) First, for r-stopping times σ ≤ T�

sup
r≤σ≤T

πr�xyσ = sup
r≤σ≤T

πr�xYσ ≤ πr�xYr <∞

by the Markov property and monotonicity of Y�
Consider a collection of measurable sets +n with the property πr�x�+n� ↘ 0

as n → ∞� Let us denote by π
�r�σ�r� x the conditional expectation with respect
to 
�r� σ�� We have that

πr�x1+nyσ = πr�xπ
�r� σ�r� x 1+nyσ = πr�x
(
π
�r� σ�r� x 1+n

)
yσ

since yσ is measurable with respect to 
�r� σ��
By the strong Markov property, we can continue with

πr�x
(
π

�r� σ�
r� x 1+n

)
yσ = πr�x

(
π
�r� σ�r� x 1+n

)
πσ�ξσYσ = πr�x

(
π
�r� σ�r� x 1+n

)
Yσ

≤ πr�x
(
π
�r� σ�r� x 1+n

)
Yr�

Because Yr is measurable with respect to 
�r� σ�� the chain of inequalities
can be continued with

= πr�x
(
π
�r� σ�r� x 1+nYr

) = πr�x1+nYr�
Appealing to the dominated convergence theorem (in the version of [10], The-
orem A.1.2), the latter expression tends to zero as n→∞� Hence

lim sup
n

sup
r≤σ≤T

πr�x1+nyσ = 0�

That is, y belongs to class (D). ✷
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Proof of Proposition 5. We start with part (ii). BesidesY� considerZ as
in the theorem. Immediately from Lemma 6(c), (d) and (a) it follows that y is
πr�x-a.s. a nonnegative right continuous process of class (D). Since 0 ≤ Zs ≤ Ys
we get that 0 ≤ zs ≤ ys� and therefore z belongs to class (D). We have to show
that z is πr�x-a.s. cadlag.

Consider

zns �=
n−1∑
n=0

1�sni � sni+1��s�πs� ξsZsni+1
� r ≤ s ≤ T�

where again sni �= r + �i/n��T − r�, for i = 0� � � � � n. The process zn is cadlag
πr�x-a.s. and thus optional. We have that

1�sni � sni+1��s�Zsni+1
≤ 1�sni � sni+1��s�Ysni+1

≤ 1�sni � sni+1��s�Ys�
Since ys = πs� ξsYs < ∞� πr�x-a.s., the above inequalities allow invoking the
dominated convergence theorem and we obtain

n−1∑
n=0

1�sni � sni+1��s�πs� ξsZsni+1
→
n
πs� ξsZs�

That is zns →n zs� Therefore the process z is optional.
Let σ1� σ2� � � � ≤ T be a nonincreasing sequence of r-stopping times con-

verging to σ . Recall that by assumption Z is R+-valued cadlag, and that

0 ≤ sup
r≤s≤T

Zs ≤ Yr ∈ L1�πr�x��

Hence, Z is πr�x-a.s. nonnegative and by definition,

πr�xzσn = πr�xπσn� ξσnZσn = πr�xZσn�
Invoking the dominated convergence theorem, we get

lim
n
πr�xzσn = lim

n
πr�xZσn = πr�xZσ = πr�xzσ�

Hence, z is πr�x-a.s. right continuous (recall [9], A.1.1.D, page 116). An analo-
gous reasoning, invoking Lemma A1 from the Appendix, shows that z has also
left limits πr�x-a.s. Consequently, z is πr�x-a.s. nonnegative cadlag, proving (ii).

It remains to prove part (i). Now Y itself satisfies the assumptions on Z in
(ii), since it is in particular cadlag. Hence, by the already proved statement (ii),
together with z, also y is πr�x-a.s. nonnegative cadlag, completing the proof. ✷

2.2. The case of indistinguishability from zero. Recall that in this section
we investigate conditions under which the following holds. If a certain property
℘ is true πr�x-a.s., then πr�x-a.s., the property ℘ is true πs� ξs-a.s. for all s in
�r�T�. In this subsection, ℘ is the property of being indistinguishable from
zero. The following result is an immediate consequence of a standard result;
see, for instance, [9], A.1.1.E, page 116.

Lemma 7 (Preservation of indistinguishability from zero). Fix a starting
point �r� x� ∈ I×E� Let Ys� s ∈ �r�T�� again be R+-valued 
�s�T�-measurable
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variables. Suppose that Y = �Ys�s∈�r�T� is nonincreasing and right continuous
and that πr�xYr <∞� If �Ys�s∈�r�T� is πr�x-indistinguishable from zero, then

πr�x
{�Yt�t∈�s�T� is πs� ξs -indistinguishable from zero, ∀s ∈ �r�T�} = 1�(6)

or equivalently

πr�x

(
sup
s∈�r�T�

πs� ξs

(
sup
t∈�s�T�

Yt

))
= 0�(7)

2.3. Preservation of initial properties for additive functionals.

Assumption 8 (Initial properties of additive functionals). Denote by k1�
� � � � k∞ (nonnegative) continuous additive functionals of our cadlag right pro-
cess ξ = �ξt�
� πr�x�� In the sequel we also write k instead of k∞. We assume
that, for the starting point �r� x� ∈ I×E we have the following:

�α� πr�x
∨∞
n=1 k

n�r�T� <∞;
�β� with πr�x-probability 1, kn�s�T� →n k�s�T� for every s ∈ �r�T�.

Note that we included k∞ in the definition of kn� so that k∞ is also involved
in a supremum expression such as in �α�.

Also note that the requirement “for every s ∈ �r�T�” in part �β� can be
replaced by “for every rational s ∈ �r�T� and s = r,” hence it is a measurable
assertion. In fact, kn�s�T� and k�s�T� are monotone and continuous in s� Note
finally that �β� implies that

πr�x-almost surely� kn�s� t� →n k�s� t� whenever r ≤ s ≤ t ≤ T(8)

(indeed, consider differences).
The main result of this section is the following proposition.

Proposition 9 (Preservation of initial properties). Under Assumption 8,
with πr�x-probability 1 the process s �→ �s� ξs�� s ∈ �r�T�� will pass only
through those points �s� y� such that the following hold:

�α� πs�y
∨∞
n=1 k

n�s�T� <∞;

�β� with πs�y-probability 1, kn�t�T� →n k�t�T� for every t ∈ �s�T�.

Before providing the proof of Proposition 9, we need to establish some pre-
liminary results. For this purpose, for s ∈ �r�T� introduce the following nota-
tion:

Y1
s �=

∞∨
n=1

kn�s�T�� Y2
s �= sup

t∈�s�T�
lim sup

n
�kn�t�T� − k�t�T���(9)

Y3
s �= lim sup

n
�kn�s�T� − k�s�T��(10)

and set yis �= πs� ξsYis for i = 1�2�3. Note that the variables Yis� i = 1�2�3�
s ∈ �r�T�� are measurable.
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Lemma 10. Under Assumption 8, the nonincreasing R+-valued processes
Y1 and Y2 are right continuous.

Proof. First, Y2 is right continuous, since for any function g� the nonin-
creasing process s �→ supt>s g�s� is right continuous.

Next, suppose that Y1 is not right continuous. That is, for some s (and a
fixed ω),

∞∨
n=1

kn�s�T� �= α > β �= lim
t↘s

∞∨
n=1

kn�t�T��

Then, for every n�

β ≥ lim
t↘s
kn�t�T� = kn�s�T��

since kn is a measure. Thus β ≥ ∨∞
n=1 k

n�s�T� = α which is a contradiction.
Therefore Y1 is right continuous. ✷

Remark 11. Note that under Assumption 8, by Lemma 10 and according
to Proposition 5(i), the processes y1 and y2 are πr�x-a.s. nonnegative cadlag
and of class (D).

Lemma 12. Under Assumption 8, for l = 1� � � � �∞ and s ∈ �r�T�� let ψls
be 
�s�T�-measurable nonnegative variables. Suppose that with respect to
πr�x the random functions ψ1� ψ2� � � � � ψ∞ are measurable processes uniformly
bounded by a (nonrandom) constant. For r ≤ s ≤ T and M ∈ �1� � � � �∞� put

Zs�M� �=
M∨
n=1

∣∣∣∣
∫
�s�T�

ψnt k
n�dt� −

∫
�s�T�

ψ∞t k
∞�dt�

∣∣∣∣
and

zs�M� �= πs� ξsZs�M��
Then the process z�∞� is πr�x-indistinguishable from a nonnegative cadlag
process of class (D).

Proof. Set B �= supn� s �ψns �� and let M be finite. Note that

Zs�M� ≤ 2B
∞∨
n=1

kn�s�T� = 2BY1
s ∈ L1�πr�x�(11)

and that Z�M� is nonnegative cadlag. Hence, by Lemma 10 and Proposi-
tion 5(ii), the process z�M� is πr�x-a.s. a nonnegative cadlag process of class
(D). By monotone convergence, zs�∞� = limM zs�M�� and therefore z�∞� is
optional. For all M� from (11) we get zs�M� ≤ 2By1

s � and recalling Remark
11, we conclude that z�∞� is πr�x-a.s. nonnegative and belongs to class (D). All
that remains to be proved is that z�∞� is cadlag, πr�x-a.s. Clearly, because of
(11) and the monotonicity of Y1� we have that Z�∞� is πr�x-a.s. nonnegative.
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From the elementary identity
∨
n

�an − a� =
(∨
n

an − a
)
∨
(
a−∧

n

an

)

we conclude with Lemma 10 and Corollary A4 that Z�∞� is πr�x-a.s. a right
continuous nonnegative process. Now, if σn ≤ T are r-stopping times non-
increasing to σ� by the strong Markov property, πr�x zσn�∞� = πr�x Zσn�∞��
By right continuity, Zσn�∞� converges to Zσ�∞� as n → ∞� Because of
(11) we can invoke the dominated convergence theorem to derive that
limn πr�x zσn�∞� = πr�x Zσ�∞�� But again πr�x Zσ�∞� = πr�x zσ�∞�� and
hence limn πr�x zσn�∞� = πr�x zσ�∞�� This proves that z is πr�x-a.s. nonnega-
tive right continuous. A similar reasoning, invoking Lemma A1 shows that z
also has left limits πr�x-a.s. ✷

Proof of Proposition 9.
Step 1. According to Remark 11, the processes y1 and y2 are πr�x-a.s. non-

negative cadlag processes of class (D). By Lemma 12, if we put for N ≥ 1�

Y3
s�N� �=

∞∨
n=N

∣∣kn�s�T� − k�s�T�∣∣� y3
s�N� �= πs� ξs Y3

s�N��

then y3�N� is also πr�x-a.s. a nonnegative cadlag process of class (D). Since
Y3
s�N� ≤ Y1

s <∞� πr�x-a.s., and Y3
s�N� ↘ Y3

s [defined in (10)] as N→∞� we
get by dominated convergence that y3

s�N� ↘ y3
s as N→∞� This establishes

that y3 is a nonnegative optional process of class (D).
Step 2. Recall that y1 is in particular πr�x-indistinguishable from a nonneg-

ative process by Remark 11. In other words, πr�x-a.s. the process s �→ �s� ξs�
passes only through points �s� y� such that πs�y

∨∞
n=1 k

n�s�T� <∞.
Step 3. Recall that Y2 defined in (9) is R+-valued nonincreasing and right

continuous, and by Assumption 8, πr�x-indistinguishable from 0. Hence, by
Lemma 7, the statement (7) holds (with Y2 instead of Y). In other words,
with πr�x-probability 1, the process �s� ξs� passes only through points �s� y�
such that πs�y-almost surely, kn�t�T� →n k�t�T� for every t ∈ �s�T�. (Note
that t = s is not yet included in the statement.)

Step 4. From Step 1 we know that y3 is a nonnegative optional process
of class (D). Moreover, by the strong Markov property, we have for every
r-stopping time σ ≤ T that

πr�xy
3
σ = πr�x lim sup

n

∣∣kn�σ�T� − k�σ�T�∣∣ = 0�

And therefore, according to [9], A.1.1.E, page 116, the process y3 is πr�x-a.s.
indistinguishable from zero. In other words, with πr�x-probability 1, the pro-
cess �s� ξs� passes only through points �s� y� such that πs�y-almost surely,
kn�t�T� →n k�t�T�� for t ∈ �s�T�� ✷

3. Key result: fdd continuity in (�, k). After the preparations in the
previous section, we turn to the continuous dependence of finite-dimensional
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distributions of �ξ��� k�-superprocesses on their regular branching mecha-
nism � and branching functional k (Theorem 20). A key step in deriving this
will be Proposition 34 describing the convergence of log-Laplace functionals
for those starting points �r� x� such that s �→ �s� ξs� will pass πr�x-a.s. only
through those points which preserve some moment and convergence properties
of the branching functionals in the sense of Proposition 9. As an application
we prove that �ξ��� k�-superprocesses can fdd be approximated by “classical”
superprocesses (Theorem 23).

3.1. Basic assumptions: branching mechanism �. Now we complement
the basic Assumption 1 concerning the motion process ξ and branching func-
tional k.

Assumption 13 (Branching mechanism �).

(f) (Branching mechanism) � is always a (local) branching mechanism of
the form

��r� x� λ� = br�x�λ2 +
∫ ∞

0
e�uλ�n�r� x�du�� �r� x� λ� ∈ I×E×R+�

where e�z� �= e−z + z − 1� where 0 ≤ br�x� ≤ 1 is measurable in �r� x� and
where n is a kernel satisfying the condition

0 ≤
∫ ∞

0
u2 n�r� x�du� ≤ 1� �r� x� ∈ I×E�

Here “kernel” means that n� R+×E→� is measurable, where � =� �0�∞�
is the set of all measures on the locally compact space �0�∞�� finite on compact
subsets, endowed with the topology of vague convergence (Polish space).

(g) (Regular �� Additionally, the branching mechanism � is often assumed
to be regular in the following sense: if for each starting point �r� x� in I ×E
the process s �→ zs is nonnegative cadlag with πr�x-probability 1, then so is
s �→ ��s� ξs� zs��

The following result is taken from Leduc [15], Theorem 1.2, which general-
ized Theorem 5.2.1 of [9] where the admissibility (4) on k was imposed rather
than only the boundedness (3) of characteristic.

Lemma 14 (“Unique” existence of the �ξ��� k�-superprocess X). The
�ξ��� k�-superprocess X exists, for each cadlag right Markov process ξ�
branching mechanism � and branching functional k� More precisely, an
�f -valued �time-inhomogeneous� Markov process �Xt�� �Pr�µ� exists �in the
sense of Assumption 1(d1)] with log-Laplace transition functional

− logPr�µ exp �Xt�−f� =
∫
vr� t�f��x�µ�dx��(12)

0 ≤ r ≤ t ≤ T� x ∈ E� f ∈ b�+� where v = v�f� = v•� t�f� ≥ 0 solves the
�ξ��� k�-evolution equation

vr� t�f��x� = πr�xf�ξt� − πr�x
∫
�r� t�

�
(
s� ξs� vs� t�ξs�

)
k�ds��(13)
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Uniqueness of the solution v�λf� to (13) can be either formulated for small
nonnegative λ� or in terms of the analyticity of the map λ �→ v�λf�� λ ≥ 0�
See, for instance, Proposition 32(i) or Section 3.10 below.

Terminology 15. From now on, when we refer to �ξ��� k�-superprocesses,
we in particular assume that ξ is a cadlag right process, k a branching func-
tional and � a branching mechanism, all according to our basic Assump-
tions 1 and 13. Moreover, since the log-Laplace transition functional (12) of
the �ξ��� k�-superprocess X is uniquely determined by v� for simplicity we
call v the log-Laplace functional related to X (as we already did in Section 1).

Remark 16 (Projection, criticality, total mass process). The motion process
ξ of the �ξ��� k�-superprocess X (which we consider in this paper) can be
recovered by projection (expectation formula):

Pr�µ�Xt�f� = πr�µf�ξt�� 0 ≤ r ≤ t ≤ T� µ ∈�f � f ∈ b�+�
This in particular implies that X is critical; that is, the total mass process
t �→ �Xt�1� is a martingale (with respect to the natural filtration of X).

Remark 17 (Finite variances). The (present) �ξ��� k�-superprocesses have
(uniformly) finite second moments:

sup
r≤t
Pr�µ�Xt�1�2 <∞� t ∈ I� µ ∈�f �

3.2. The fdd joint continuity theorem. The formulation of our main result
will be based on the following definition.

Definition 18 (Uniformly of bounded characteristic). If the branching
functionals k1� � � � � k∞ = k satisfy

∞∨
n=1

sup
�r� x�∈I×E

πr�xk
n�r�T� <∞�(14)

they are said to be uniformly of bounded characteristic.

For convenience, we introduce the following assumption.

Assumption 19. Consider branching mechanisms �1��2� � � � converging
uniformly to a regular branching mechanism �� Moreover, consider branching
functionals k1� � � � � k∞ = k being uniformly of bounded characteristic. Suppose
that for every starting point �r� x� ∈ I ×E and every r-stopping time σ ≤ T
we know that kn�r� σ� converges to k�r� σ� in L1�πr�x� as n→∞�

Theorem 20 (Joint continuity in fdd). If Assumption 19 is satisfied, the
related log-Laplace functionals converge:

vnr� t�f��x� →n vr� t�f��x�� 0 ≤ r ≤ t ≤ T� x ∈ E� f ∈ b�+�(15)

Consequently, the related superprocesses converge fdd.
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For fixed branching functional k� the fdd continuity in the branching mech-
anism � can be sharpened by using a weaker convergence concept for � and
by allowing nonregular limiting �.

Proposition 21 (Fdd continuity in � only). Fix a branching functional k�
If the branching mechanisms �n converge boundedly pointwise to the branch-
ing mechanism � as n→∞� then the related log-Laplace functionals vn and
v converge as expressed in (15).

The proof of Theorem 20 requires some preparation, provided in the follow-
ing subsections. We first consider the case �n ≡ �� After some preliminaries,
we prove the result in this case in Section 3.10 following the arguments given
in [15], Proposition 4.20. Then in Section 3.11 we remove the �n ≡ � restric-
tion by an approximation procedure.

The proof of Proposition 21 is postponed to Section 3.12.
The following example demonstrates that the requirement in Theorem 20

that the limiting � is regular cannot be dropped.

Example 22 (Fdd discontinuity for a nonregular �). Let I = �0�1� and C
the Cantor subset of I� Consider the following nonregular branching mecha-
nism ��s� x� λ� �≡ λ21I\C�s�� That is, consider the “binary splitting,” but only
at time points s outside the Cantor set C� Let k denote a singularly continu-
ous (with respect to Lebesgue measure) law on I with support C� Assume that
kn be (deterministic) absolutely continuous probability laws on I converging
weakly to k as n → ∞� Note that ��s� ξs� λ�kn�ds� ≡ λ2kn�ds�� for any mo-
tion process ξ� Hence, the �ξ��� kn�-superprocess is precisely the �ξ� λ2� kn�-
superprocess. Therefore, by Theorem 20, the �ξ��� kn�-superprocesses con-
verge fdd to the �ξ� λ2� k�-superprocess as n → ∞, which is different from
the �ξ��� k�-superprocess. In fact, the �ξ� λ2� k�-superprocess is nondegener-
ate, since it has nonzero variance: Var0� δx�X1�1� ≡ 2k�I� = 2� On the other
hand, ��s� ξs� λ�k�ds� ≡ 0� Thus, the �ξ��� k�-superprocess is degenerate. In
fact it is the deterministic mass flow according to the semigroup of the motion
process. Summarizing, for this nonregular �� fdd continuity in k is violated.

3.3. Application: fdd approximation by classical processes. Before we come
to the proofs of Theorem 20 and Proposition 21, we want to give an application
of our continuity result. Indeed, we can use our fdd continuity Theorem 20 to
show that all the �ξ��� k�-superprocesses (of the present paper) with regular
branching mechanism � can be approximated by superprocesses with a “clas-
sical” branching rate. Note that the approximating branching functionals kn

are in particular absolutely continuous with respect to the Lebesgue measure.

Theorem 23 (Fdd approximation by classical processes). Let � be a regu-
lar branching mechanism and k be a branching functional. Then there exist
bounded measurable functions 
n� I×E→ R+� n ≥ 1� such that the �ξ��� kn�-
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superprocesses Xn with “classical” branching functional

kn�ds� �= 
ns �ξs�ds(16)

converge fdd to the �ξ��� k�-superprocess X as n→∞.

The proof of this theorem will be provided in Section 3.13.

3.4. Convergence of branching functionals. Next we want to reformulate
the convergence of additive functionals occurring in Assumption 19.

Proposition 24 (Convergence criterion for additive functionals). Let
k1� � � � � k∞ = k be continuous additive functionals of ξ. Fix a time point r ∈ I�
and a measure µ ∈�f � The following two conditions are equivalent.

(i) kn�r� σ� converges to k�r� σ� in L1�πr�µ� as n→∞� for each r-stopping
time σ ≤ T.

(ii) For every subsequence �knm� of �kn� there exists a subsequence �knmi � of
�knm� such that

�α� πr�µ

∞∨
i=1

knmi �r�T� <∞�

�β� sup
s� t� r≤s≤t≤T

∣∣knmi �s� t� − k�s� t�∣∣→ 0� πr�µ-a.e. as i→∞

Proof (i)⇒ (ii)�α�. Let �knm� be a subsequence of �kn�. Since knm�r�T�
converges to k�r�T� in L1�πr�µ� as m→∞� it is uniformly integrable. Hence,

πr�µ
(
1
{
knm�r�T� > k�r�T� + 1

}
knm�r�T�)→ 0 as m→∞�

By choosing a subsequence such that the above terms not only converge to
zero but also form a convergent series, we get (ii)�α�.

(i)⇒ (ii)�β�. Let �knm� be a subsequence of �kn�. With the use of Cantor’s
diagonalization method, one finds a subsequence �knmi � such that∣∣knmi �r� q� − k�r� q�∣∣ →

i
0 for every rational q ∈ �r�T� and q = T�(17)

πr�µ-a.e. However, then, because the mappings t �→ knmi �r� t� are nondecreas-
ing, that implies that πr�µ-almost everywhere, knmi �r� t� →i k�r� t� for all t in
�r�T��

(ii)⇒ (i). To show this implication, suppose that (i) is not verified. Then, for
some r-stopping time σ ≤ T� it is possible to find an ε > 0 and a subsequence
�knm� of �kn� such that for every m,

πr�µ
∣∣knm�r� σ� − k�r� σ�∣∣ > ε�(18)

On the other hand, according to (ii), it is possible to choose a subsequence
�knmi � of �knm� such that (ii)�α� and (ii)�β� are satisfied. Passing to differences,
with Lebesgue’s theorem this implies that knmi �r� σ� converges to k�r� σ� in
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L1�πr�µ�� This obviously contradicts (18), and the proof of the proposition is
finished. ✷

For applications of our main Theorem 20 the following sufficient criterion
for the convergence of additive functionals might be helpful. (The proof is left
to the reader.)

Lemma 25 (Sufficient criterion). Let k1� � � � � k∞ = k be branching function-
als which are uniformly of bounded characteristic. Fix r ∈ I = �0�T� and
µ ∈ �f � Let πr�µ-almost everywhere kn weakly converge to k as n→∞� Then
the assertions (i) and (ii) in Proposition 24 hold.

3.5. Review: the log-Laplace characterization of �ξ��� k�-superprocesses.
For convenience, here we review the log-Laplace functional characterization
of �ξ��� k�-superprocesses and some related facts on log-Laplace functionals;
the latter are versions of Proposition 4.20 and Lemmas 4.23, 4.25 and 4.26 in
[15].

Lemma 26 (Log-Laplace characterization). Suppose that f �→ vr� t�f��x��
f ∈ b�+� is the log-Laplace functional of an �f -valued random measure, for
every choice of 0 ≤ r ≤ t ≤ T and x ∈ E� Moreover, let x �→ vr� t�f��x� be
measurable. Finally, let �vr� t� 0 ≤ r ≤ t ≤ T� form a semigroup on b�+:

vr� s
(
vs� t�f�

)�x�=vr� t�f��x�� 0≤ r≤ s≤ t≤T� x∈E� f∈ b�+�(19)

Then there exists a unique (in the sense of finite-dimensional distributions)
�f -valued Markov process X with log-Laplace functional v [recall (12)].

For c > 0, let us introduce the following set:

b� c+ �=
{
f ∈ b�+� f ≤ c

}
�(20)

Lemma 27 (Continuity in f). Let � be any branching mechanism. Fix t ∈ I
and δ > 0� Let �r� x� → vr�tf�x� be a nonnegative solution of the �ξ��� k�-
evolution equation (13), for each f ∈ b� 2δ

+ � Moreover, let f �→ v•� t�f� be in-
creasing. Then, for each �r� x� ∈ �0� t�×E fixed, the functional f �→ vr� t�f��x� is

continuous on b� δ+ (in the topology of bounded pointwise convergence induced
by b�+��

Lemma 28 (Convergence of Laplace functionals). Assume that LPn is the
Laplace functional of some �f -valued random variable, for each n ≥ 1. Sup-
pose there exists δ > 0 such that LPn�f� → L�f� as n→∞� for every f ∈ b� δ+
and that L is continuous on that set. Then there exists an extension of L to
all of b�+ and a probability measure P∞ on �f such that L is the Laplace
functional of P∞ and LPn�f� → L�f� as n→∞� for every f in b�+.
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Lemma 29 (Semigroup property of solutions). Suppose

f �→ �µ� vr� t�f��� f ∈ b�+�
is the log-Laplace functional of an �f -valued random measure, for every choice
of 0 ≤ r ≤ t ≤ T and µ ∈�f � Moreover, let � be a branching mechanism, k be
a branching functional, and let �r� x� → vr� tf�x� solve the �ξ��� k�-evolution
equation (13), for each t ∈ I and f ∈ b�+ fixed. Then the semigroup property
(19) holds.

3.6. Solutions to the evolution equation in the case of small f. By a slight
abuse of notation, we adopt the following convention.

Convention 30. For convenience, we will often write �g�r� x��∞ instead
of �g�·� ·��∞ = supr� x �g�r� x��� That is, even though the time space variable
�r� x� in I ×E appears under the norm sign, the supremum is always taken
over them, even if extra parameters are involved.

The following lemma is taken from [15], Lemma 4.21.

Lemma 31 (Local Lipschitz continuity). Let � be a branching mechanism.
Then, ��r� x�0� ≡ 0� Moreover, for every c > 0 and λ1� λ2 ∈ �0� c��∥∥��r� x� λ1� −��r� x� λ2�

∥∥
∞ ≤ 3 c�λ1 − λ2��(21)

Finally, if 0 ≤ λ1 ≤ λ2 then 0 ≤ ��r� x� λ1� ≤ ��r� x� λ2�, �r� x� ∈ I×E.

As a first step toward the proof of our main theorem, here we want to give
an independent construction of a solution to the �ξ��� k�-evolution equation
(13) in the case of small f�

Proposition 32 (Solution for small f). Fix t ∈ I� a regular branching
mechanism � and a branching functional k� Let δ > 0 satisfy

3 δ sup
�r� x�∈�0� t�×E

πr�xk�r� t� ≤ 1
2 �(22)

Then, for f ∈ b� δ+� we have the following.

(i) (Unique existence) A unique measurable function v•� t�f� ≥ 0 exists
which solves the �ξ��� k�-evolution equation (13).

(ii) (Cadlag regularity) The process s �→ vs� t�f��ξs�� s ∈ �r� t�� is cadlag
πr�x-a.s., for every starting point �r� x� ∈ �0� t� ×E�

Proof. Fix t��� k� f as in the proposition. Let �t� δ be the set of all mea-
surable mappings u from �0� t� × E to �0� δ� such that s �→ us�ξs� is cadlag.
Equipped with the metric generated by the supremum norm � · �∞� this is a
complete metric space. Define an operator G on �t� δ by

G�u��r� x� �= πr�xf�ξt� − πr�xf�ξt� ∧ πr�x
∫
�r� t�

��s� ξs� us�ξs��k�ds��
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We want to show that G maps �t� δ into �t� δ� Let σn ≤ t be nondecreasing
r-stopping times converging to σ as n→∞� Only by the Markov property,

πr�xπσn� ξσn
f�ξt� ≡ πr�xπσ� ξσf�ξt��

Similarly, together with monotone convergence, we get

lim
n→∞πr�xπσn� ξσn

∫
�σn� t�

��s� ξs� us�ξs��k�ds�

= πr�xπσ� ξσ
∫
�σ� t�

��s� ξs� us�ξs��k�ds��

By [9], A.1.1.D, page 116 and our Lemma A1, this establishes that the pro-
cesses

s �→ πs� ξsf�ξt� and s �→ πs� ξs

∫
�s� t�

�
(
s′� ξs′� us′ �ξs′ �

)
k�ds′�

are cadlag πr�x-a.s. for every starting point �r� x� ∈ I×E� Thus

lim
n→∞πr�xG�u��σn� ξσn� = πr�xG�u��σ� ξσ��

showing that s �→ G�u��s� ξs� is cadlag. Hence, G maps �t� δ into itself.
Let z1 and z2 be two mappings in �t� δ� From (21), we get∣∣�(s� ξs� z1

s�x�
)−�(s� ξs� z2

s�x�
)∣∣ ≤ 3 δ�z1 − z2�∞�(23)

Thus,
∣∣G�z1��r� x� −G�z2��r� x�∣∣ ≤ 3 δπr�x

∫
�r� t�
�z1 − z2�∞ k�ds�

≤ 3 δ�z1 − z2�∞ sup
r� x

πr�xk�r� t�

≤ 1
2 �z1 − z2�∞�

(24)

where we used (22). Hence, G is a contraction on �t� δ� By the Banach fixed
point theorem, there exists a (unique) element u in �t� δ which solves

ur�x� = G�u��r� x� = πr�xf�ξt� − πr�xf�ξt� ∧ πr�x
∫
�r� t�

��s� ξs� us�ξs��k�ds�

on I×E� Let us now show that, indeed, u solves (13). To do this, let

σr �= inf
{
s ∈ �r� t�� πs� ξs

∫
�s� t�

��s′� ξs′� us′ �ξs′ ��k�ds′� ≤ πs� ξsf�ξt�
}
�

Note that us�ξs� = G�u��s� ξs� = 0 for s ∈ �r� σr�� hence ��s� ξs� us�ξs�� van-
ishes for those s� Thus, using the strong Markov property, we are allowed to
write

ur�x� = πr�xf�ξt� − πr�xf�ξt� ∧ πr�xπσr� ξσr
∫
�σr� t�

�
(
s� ξs� us�ξs�

)
k�ds��

for all r� x� But, by definition of σr�

πr�xπσr� ξσr

∫
�σr� t�

��s� ξs� us�ξs��k�ds� ≤ πr�xπσr� ξσr f�ξt� = πr�xf�ξt��
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Consequently,

πr�xf�ξt� ∧ πr�x
∫
�r� t�

��s� ξs� us�ξs��k�ds� = πr�x
∫
�r� t�

��s� ξs� us�ξs��k�ds��

Therefore, u solves (13), proving the existence part of the proposition.
Assume now we have two nonnegative solutions u1 and u2�
Estimate the differences of related right-hand sides of (13) as in (23) and

(24), and uniqueness follows. This completes the proof. ✷

3.7. Special notation. For convenience, we introduce the following special
notation.

Notation 33. Consider a regular branching mechanism � and branching
functionals k1� � � � � k∞ = k of uniformly bounded characteristic. For n ≥ 1� let
vn denote the log-Laplace functional related to the �ξ��� kn�-superprocess.

(i) (Nice starting points) Denote by C = C�k1� � � � � k∞� the set of all points
�r� x� ∈ �0�T� ×E such that

�α� πr�x

∞∨
n=1

kn�r�T� <∞�

�β� πr�x-a.s., kn�s� t� →n k�s� t� whenever r ≤ s ≤ t ≤ T�
(ii) (Special norm) For any mapping h� �0�T� ×E→ R, we set

�h�r� x��C �= sup
�r� x�∈C

�h�r� x��

(applying the Convention 30 introduced for � · �∞ analogously to � · �C).
(iii) For t ∈ I and f ∈ b�+ fixed, for n ≥ 1 and r ∈ I we pose

vnr �= vnr� t�ξr�� vr �= vr� t�ξr��
�nr �= ��r� ξr� vnr� t�ξr��� �r �= ��r� ξr� vr� t�ξr���

Snr �= sup
l≥n

∣∣∣∣
∫
�r� t�

�ls k
l�ds� −

∫
�r� t�

�s k�ds�
∣∣∣∣�

reading such quantities as 0 if r > t�
(iv) B will denote the following supremum expression:

sup
t∈I

{∥∥∥πr�x lim
n
Snr

∥∥∥
C
∨ sup

l

∥∥∥∥πr�x
∣∣∣∣
∫
�r� t�

�ls k
l�ds� −

∫
�r� t�

�s k�ds�
∣∣∣∣
∥∥∥∥
∞

}
�

3.8. Key step: convergence of log-Laplace functionals for nice starting points.
The central part in deriving our key result is the following proposition con-
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cerning the convergence of log-Laplace functionals for small test functions f�
and for starting points in C (guaranteeing some convergence of the function-
als kn).

Proposition 34 (Convergence starting in C). Consider a regular branch-
ing mechanism � and branching functionals k1� � � � � k∞ = k which are uni-
formly of bounded characteristic. Let f ∈ b�+ be such that

3 �f�∞�πr�xk�r�T��∞ ≤ 1
2 �(25)

Then for the log-Laplace functionals vn�f� = vn� n ≥ 1� of (12) related to
k1� k2� � � � � respectively, we have

lim
n
vnr� t�x� = vr� t�x�� �r� x� ∈ C� t ∈ �r�T��

with v = v�f� the (unique) “small solution” of the �ξ��� k�-evolution equation
(13) constructed in Proposition 32.

Proof. For r� x� t as in the proposition, we clearly have

∣∣vnr� t�x� − vr� t�x�∣∣ ≤ πr�x
∣∣∣∣
∫
�r� t�

�ns k
n�ds� −

∫
�r� t�

�s k�ds�
∣∣∣∣

and thus ∣∣vnr� t�x� − vr� t�x�∣∣ ≤ πr�xSnr �(26)

Assume for the moment that we have already showed the following statement:

lim
n
πr�xS

n
r = 0 for all �r� x� ∈ C and t ∈ �r�T��(27)

Then (26) will establish the claim in Proposition 34. ✷

It remains to verify (27). Start with the following fact.

Lemma 35. We have B <∞�

Proof. From the definition of � in Assumption 13(f ) we obtain

���r� x� λ��∞ ≤ 3
2 λ

2�(28)

since 0 ≤ e�z� ≤ z2/2� z ≥ 0� Recall that the log-Laplace functionals vn solve
the �ξ��� kn�-evolution equation (13) (with k replaced by kn�� Hence,

0 ≤ vnr� t�f��x� ≤ �f�∞�(29)

Using this domination, altogether we get the estimate∣∣∣∣
∫
�r� t�

�ls k
l�ds� −

∫
�r� t�

�s k�ds�
∣∣∣∣ ≤ 3

2 �f�2
∞�kl�r�T� + k�r�T���(30)

Taking the πr�x-expectation, the finiteness of the second part in the definition
of B immediately follows from (14). On the other hand, for the first part, take
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the supremum on l ≥ n and the limit as n → ∞ of the r.h.s. of (30) to get
3 �f�2

∞ k�r�T� with πr�x-probability 1, for each �r� x� ∈ C� Hence,∥∥∥πr�x lim
n
Snr

∥∥∥
C
≤ const�πr�xk�r�T��∞

which is finite, again by (14). ✷

We also need the following simple fact.

Lemma 36 (Convergence of functionals). Fix a starting point �r� x� ∈ C
[with C defined in Notation 33(i)] and t ∈ �r�T�� For s ∈ �r� t�� let ψs
denote 
�s� t�-measurable nonnegative variables, and let s �→ ψs be πr�x-
indistinguishable from a cadlag process, bounded by a (nonrandom) constant.
Then, ∫

�r� t�
ψs k

l�ds� →
l

∫
�r� t�

ψs k�ds�

with πr�x-probability 1.

The proof immediately follows from [1], Theorem 5.1.

3.9. Proof of (27).
Step 0. For the moment, fix t ∈ I. For n ≥ 0� r ∈ �0� t� and x ∈ E� set

onr�x �= πr�x sup
l≥n

∣∣∣∣
∫
�r� t�

�s k
l�ds� −

∫
�r� t�

�s k�ds�
∣∣∣∣�(31)

Just as we derived (30),

sup
l≥n

∣∣∣∣
∫
�r� t�

�s k
l�ds� −

∫
�r� t�

�s k�ds�
∣∣∣∣ ≤ 3�f�2

∞
∞∨
l=1

kl�r� t� ∈ L1�πr�x��

Therefore, we can invoke Lebesgue’s theorem, Proposition 32(ii), the regularity
of � and Lemma 36 to obtain that, for every �r� x� ∈ C� r ≤ t�

lim
n
onr� x = 0�

Step 1. We next establish that, for �r� x� ∈ C� r ≤ t and n ≥m�

πr�xS
n
r ≤ 3�f�∞πr�x

(
sup
l≥n

∫
�r� t�

B ∧ �πs� ξsSms �kl�ds�
)
+ onr�x�(32)

In fact, we have

Snr ≤ sup
l≥n

∣∣∣∣
∫
�r� t�
��ls −�s�kl�ds�

∣∣∣∣+ sup
l≥n

∣∣∣∣
∫
�r� t�

�s k
l�ds� −

∫
�r� t�

�s k�ds�
∣∣∣∣�

and therefore [by (31)],

πr�xS
n
r ≤ πr�x

(
sup
l≥n

∣∣∣∣
∫
�r� t�
��ls −�s�kl�ds�

∣∣∣∣
)
+ onr�x�
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Using the Lipschitz inequality (21) and domination (29) we can continue with

πr�xS
n
r ≤ 3�f�∞πr�x

(
sup
l≥n

∫
�r� t�

∣∣vls − vs∣∣kl�ds�
)
+ onr�x

and thus, from (26),

πr�xS
n
r ≤ 3�f�∞πr�x

(
sup
l≥n

∫
�r� t�

B ∧ (
πs� ξsS

l
s

)
kl�ds�

)
+ onr�x�(33)

However, for l ≥ n ≥m� we have Sl ≤ Sn ≤ Sm and (33) yields (32).
Step 2. We will now derive from (32) that for �r� x� ∈ C and t ∈ �r�T� fixed,

πr�x lim
n
Snr ≤ 3�f�∞πr�x

(∫
�r� t�

B ∧ (
πs� ξs lim

n
Sns

)
k�ds�

)
�(34)

Indeed, s �→ B∧πs� ξsSms is cadlag πr�x-a.s., according to Lemma 12. Therefore,
in view of Lemma 36,∫

�r� t�
B ∧ (

πs� ξsS
m
s

)
kl�ds�→

l

∫
�r� t�

B ∧ (
πs� ξsS

m
s

)
k�ds�(35)

with πr�x-probability 1. Note that

0 ≤ sup
l≥n

∫
�r� t�

B ∧ (
πs� ξsS

m
s

)
kl�ds� ≤ B

∞∨
l=1

kl�r�T� ∈ L1�πr�x��

Hence, from monotone convergence, inequality (32), Lebesgue’s theorem and
(35), we get

πr�x lim
n
Snr = lim

n
πr�xS

n
r ≤ 3�f�∞πr�x

(∫
�r� t�

B ∧ (
πs� ξsS

m
s

)
k�ds�

)
�

Passing to the monotone limit as m→∞, this yields (34).
Step 3. We will show that (34) implies∥∥∥πr�x lim

n
Snr

∥∥∥
C
≤ 3�f�∞

∥∥πr�x k�r�T�∥∥∞
∥∥∥πr�x lim

n
Snr

∥∥∥
C
�(36)

In fact, according to Proposition 9, for every point �r� x� ∈ C�
πr�x

{�s� ξs� ∈ C for every s ∈ �r�T�} = 1�

Moreover, for any point �r� x� ∈ C, we have, by definition of B, that

B ∧ πr�x lim
n
Snr = πr�x lim

n
Snr �

Hence, for any point �r� x� ∈ C� inequality (34) implies that

πr�x lim
n
Snr ≤ 3�f�∞

∥∥∥πr�x lim
n
Snr

∥∥∥
C
πr�x k�r�T��

Taking the supremum over �r� x� ∈ C, we obtain (36).
Step 4. Recall that according to Lemma 35, �πr�x limn S

n
r�C ≤ B < ∞�

Using assumption (25), therefore (36) implies that �πr�x limn S
n
r�C = 0� and, in

particular, πr�x limn S
n
r = 0 for r� x� t as considered in the lemma. By monotone

convergence, this completes the proof of (27). ✷



586 D. A. DAWSON, K. FLEISCHMANN AND G. LEDUC

3.10. Final steps of proof of fdd continuity if �n ≡ �. Here we complete
the proof of Theorem 20 in the case �n ≡ �. Consider branching functionals
k1� � � � � k∞ = k which are uniformly of bounded characteristic. Let f ∈ b�+
satisfy the smallness property (25). Fix a starting point �r� x� ∈ I ×E� Con-
sider a subsequence �knm� of �kn�� By Assumption 19, and by the convergence
criterion Proposition 24, there exists a subsequence �knmi � of �knm� such that
�α� and �β� in (ii) of this proposition hold. We conclude that �r� x� belongs
to the set C introduced in Notation 33(i), related to this sequence �knmi �� By
Proposition 34, we then get that v

nmi
r� t �f��x� converges to vr� t�f��x� as i→∞

for each t ∈ �r�T�� with v•� t�f� the (unique) small solution to (13). Hence, the
limit is independent of the choice of the subsequences, and we get the latter
convergence statement along the whole sequence �kn�.

But each vnr� t�f��x� is monotone as a functional of f satisfying assumption
(25) (since it is a log-Laplace functional), and therefore this property is shared
by vr� t�f��x�. According to Lemma 27, the mapping f �→ vr� t�f��x� must
then be continuous, for all sufficiently small f. As a consequence, Lemma 28
implies that vnr� t�f��x� converges to some vr� t�f��x� as n → ∞� for any f in
b�+� where vr� t�·��x� is the log-Laplace functional of some random measure.
In order to finish the proof, it suffices to show according to Lemma 26 that
the family �vr� t� 0 ≤ r ≤ t ≤ T� determines a semigroup on b�+, and that in
fact v•� t�f� solves the �ξ��� k�-evolution equation (13).

Recall that v•� t�f� solves (13) for f small in the sense of (25). On the other
hand, for any f ∈ b�+� the mapping θ �→ vr� t�θf��x� is analytic on the half
line �0�∞�, since exp�−vr� t�·��x�� is a Laplace functional. By replacing f by
θf, we get that both sides of the �ξ��� k�-evolution equation (13) are analytic
mappings of θ (since � is analytic in its third variable, and by the imposed
moment assumptions). Since both sides of (13) coincide for small values of θ,
by the uniqueness of analytic continuation, they are hence equal for every θ�
Specializing to θ = 1, this shows that v•� t�f� solves (13) not only for small
f but in fact for every f ∈ b�+. Since �r� x� is arbitrary, by Lemma 29, the
semigroup property (19) holds, and the proof is complete. ✷

3.11. Extension to fdd joint continuity. To complete the proof of Theo-
rem 20, we have to remove the �n ≡ � restriction. Consider �1� � � � � �∞ = �
and k1� � � � � k∞ = k as in Assumption 19. Fix f ∈ b�+� Write vn�m = vn�m�f�
for the log-Laplace functional related to �n� km, where n�m = 1� � � � �∞� For
0 ≤ r ≤ t ≤ T and x ∈ E� consider

∣∣vn�nr� t �x� − v∞� nr� t �x�
∣∣�(37)

We use the abbreviation �i�vn�m� for �i�r� ξr� vn�mr� t �ξr��, where i� n�m =
1� � � � �∞� In view of the evolution equation (13), we obtain the following
upper bound of (37):

πr�x

∫
�r� t�

∣∣�n�vn�n� −�∞�v∞� n�∣∣kn�ds��
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Compare now both terms in the latter formula line with �n�v∞� n�� In the first
case, by the Lipschitz property (21) and the domination (29), we get the bound

3 �f�∞
∥∥vn�n•� t − v∞� n•� t

∥∥
∞πr�xk

n�r� t��
The other part is bounded by ��n−�∞�∞πr�xkn�r� t�� Since all the branching
functionals are uniformly of bounded characteristic and �n → � in uniform
convergence, putting both together, for �f�∞ small enough we get

lim
n→∞

∥∥vn�n•� t − v∞� n•� t
∥∥
∞ = 0�

However, v∞� ns� t �x� converges pointwise to v∞�∞s� t �x� as n → ∞� hence vn�ns� t �x�
approaches v∞�∞s� t �x� as n→∞� too, for all sufficiently small f� By Lemma 28,
this extends to all f ∈ b�+� completing the proof of Theorem 20. ✷

Remark 37 (Indexed sequences of branching functionals). In the beginning
of Section 3.10, we fixed a starting point �r� x�� constructed vr� t�f��x�� for any
t and f� and verified the properties we needed. Note that all the arguments
would work, if the sequence of branching functionals k1� k2� � � �we started from
depended on �r� x�� provided that only the “limiting” k∞ = k is independent
of �r� x�� Hence, the fact that in Theorem 20 the sequence �kn� of branching
functionals is assumed to be independent of the choice of the starting point
r� x is not essential. One could consider a family �knr�x� of sequences indexed
by �r� x�� with the “limiting” k∞ = k independent of �r� x��

3.12. Fdd continuity in only the branching mechanism. The purpose of
this subsection is to provide the proof of Proposition 21. First, note that the
log-Laplace functionals vn and v exist by Lemma 14. Set

vr� t�f��x� �= lim sup
n

vnr� t�f��x�� vr� t�f��x� �= lim inf
n

vnr� t�f��x��

By the evolution equation (13), we have

vr� t�f��x� = πr�xf�x� − lim inf
n

πr�x

∫ t
r
�n

(
s� ξs� v

n
s� t�f��ξs�

)
k�ds��

Since� is nondecreasing in its third variable, for eachM ≥ 1�we may continue
with

≤ πr�xf�x� − lim inf
n

πr�x

∫ t
r
�n

(
s� ξs� inf

m≥M
vms� t�f��ξs�

)
k�ds��

which equals

πr�xf�x� − πr�x
∫ t
r
�
(
s� ξs� inf

m≥M
vms� t�f��ξs�

)
k�ds��

Letting M→∞� we conclude that

vr� t�f��x� ≤ πr�xf�x� − πr�x
∫ t
r
�
(
s� ξs� vs� t�f��ξs�

)
k�ds��(38)
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Analogously,

vr� t�f��x� ≥ πr�xf�x� − πr�x
∫ t
r
�
(
s� ξs� vs� t�f��ξs�

)
k�ds��(39)

By the local Lipschitz Lemma 31, from (38) and (39) we get

vr� t�f��x� − vr� t�f��x� ≤ 3�f�∞πr�x
∫ t
r

(
vs� t�f��ξs� − vs� t�f��ξs�

)
k�ds��

Hence,∥∥vr� t�f��x�−vr� t�f��x�∥∥∞≤3�f�∞
∥∥vr� t�f��x�−vr� t�f��x�∥∥∞

∥∥πr�xk�r� t�∥∥∞
(recall Convention 30). Thus, for functions f small enough, the limit of the
l.h.s. in (15) exists. Repeating the argument with v instead of v and v we
conclude that the inequalities (38) and (39) hold for v� That is, v solves the
log-Laplace equation (12). By uniqueness [Proposition 32(ii)], we arrive at
the desired limit v�f� in (15), for these small f�

Now v�f� is the limit of functionals which are monotone in f and is therefore
monotone in f. The rest of the proof is identical to the arguments to our main
Theorem in the end of Section 3.10. ✷

3.13. Proof of the fdd approximation by classical processes. For the proof
of Theorem 23, by Theorem 20 it obviously suffices to verify the following
lemma.

Lemma 38 (Approximation by classical branching functionals). Let k be a
branching functional. Then there exist bounded measurable functions 
n� I×
E → R+� n ≥ 1� such that the classical branching functionals kn�ds� =

ns �ξs�ds of (16) are uniformly of bounded characteristic and have the fol-
lowing property: for every starting point �r� x� ∈ I × E and every r-stopping
time σ ≤ T fixed, kn�r� σ� converges to k�r� σ� in L1�πr�x� as n→∞�

Proof. Fix k� r� x as in the lemma. Consider πr�x� To the branching func-
tional k there corresponds the supermartingale

t �→ htT�ξt� �= πt� ξtk�t�T�� t ∈ �r�T��
with compensator t �→ k�r� t�� Following [6], Remark VII.22(b), we also con-
sider the approximating sequence of supermartingales

t �→ nhtT�ξt� �= πt� ξtn
∫ �1/n�∧�T−t�

0
ht+uT �ξt+u�du

= πt� ξtn
∫ 1/n

0
k�t+ u�T�du

with compensator

t �→ kn�r� t� �= n
∫ t
r

(
hsT�ξs� − πs� ξsk

(
s+ 1

n
�T

])
ds

= n
∫ t
r
hs�s+1/n�∧T�ξs�ds� n ≥ 1�

(40)
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Note that nhtT�ξt� increases to htT�ξt� as n → ∞. It follows from Proposi-
tion 5(i) (with Ys = k�s�T�� that s �→ hsT�ξs� is πr�x-indistinguishable from a
nonnegative cadlag process of class (D). Moreover, for every r-stopping time
σ ≤ T� by the strong Markov property,

πr�x
(
hσT�ξσ� − h�σ+δ�∧TT �ξ�σ+δ�∧T�

) = πr�x(k�σ�T� − k�σ + δ�T�)�
which converges to 0 as δ ↓ 0� uniformly in σ� In fact, s �→ k�s�T� is uni-
formly continuous, and the integrand is bounded by 2k�r�T� ∈ L1�πr�x�� By
Proposition A2 their uniform convergence to zero implies that

πr�x

{
sup
t∈�r�T�

∣∣∣htT�ξt� − h�t+δ�∧TT �ξ�t+δ�∧T�
∣∣∣ > ε}→ 0 as δ ↓ 0�

for all ε > 0� Hence, for any sequence of r-stopping times σn ≤ T and ε > 0�

πr�x

{∣∣∣hσnT �ξσn� − h�σn+δ�∧TT �ξ�σn+δ�∧T�
∣∣∣ > ε}→ 0 as n→∞�

In other words, the process t �→ htT�ξt� satisfies Aldous’s criterion, hence it is
quasi-left continuous (see [13], Remark VI.4.7, page 321). We can then invoke
Theorem VII.20 of [6] to conclude that kn�r� σ� defined in (40) converges to
k�r� σ� in L1�πr�x� as n → ∞� for every r-stopping time σ ≤ T. Finally,
it is easy to see that the kn are uniformly of bounded characteristic (recall
Definition 18). Altogether, the function

�s� x� �→ 
ns �x� �= nhs�s+1/n�∧T�x�
entering into (40) satisfies all requirements. This completes the proof. ✷

4. Special case: Feller � on a compactum. Since T is arbitrary, the
�ξ��� k�-superprocesses on the interval I = �0�T� considered so far can easily
be extended to the whole time half axis R+. This we will actually do from now
on. Of course, conditions as (3) and (14) are then required to hold for all T > 0�

Recall that a cadlag right Markov process ξ = �ξt�
� πr�x� in a Luzin space
is called a Hunt process if it is quasi-left continuous. That is, for 0 ≤ r ≤ T <∞
and µ ∈�f fixed, we have ξσn →n ξσ� πr�µ-a.e. for every sequence of r-stopping
times σn ≤ T nondecreasing to (the r-stopping time) σ as n→∞�

From now on we will pay attention to the following special case, although
some of our results below—such as the existence of a Hunt version—can be
extended to a more general situation by making use of Ray–Knight methods
as exploited in [15]. However, this would require considerably more technical
proofs, and the Feller case on a compact space perfectly illustrates our method.

Assumption 39 (Feller on a compactum). Suppose that the phase space is
a compact metric space �E�d�� Moreover, let ξ be time-homogeneous and in-
deed be a Feller process.

However note that the related �ξ��� k�-superprocess is in general time-
inhomogeneous.
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Recall that we introduced in �f = �f �� � the weak topology [Assump-
tion 1(b)]. It can be generated by the Prohorov metric in the sense of [10],
Problem 9.5.6, page 408, which we denote by wd� Recall that ��f �wd� is sep-
arable ([10], Theorem 3.1.7).

Moreover, for each r ≥ 0 we will introduce the Skorohod spaces �r =
� ��r�∞���f �� of all �f -valued cadlag functions on �r�∞� equipped with the
Skorohod metric sd� based on d (actually on wd�. Recall that ��r� sd� is sepa-
rable ([10], Theorem 3.5.6), since �f is separable.

4.1. Results under the Feller assumption. So far we have considered a
�ξ��� k�-superprocess only as a Markov process in the sense of Assumption
1(d1). Now we will be concerned with regularity properties of its (measure-
valued) paths. In fact, in this section, under Assumption 39, we extend the
fdd convergence results of Section 3 to convergence in law on path space. Also,
we show that for our �ξ��� k�-superprocesses a Hunt version exists.

Theorem 40 (Existence of a Hunt version). Impose Assumption 39. Let �
be a branching mechanism and k be a branching functional. Then there exists
a Hunt version of the �ξ��� k�-superprocess.

The proof of this theorem is postponed to Section 4.4.1.
As an application of the previous Theorem 40, using an argument from [9],

Chapter 6, we show that under the present Feller assumption the �ξ��� k�-
superprocess is continuous exactly in the “binary splitting” case, regardless of
the choice of the branching functional k.

Corollary 41 (Characterization of continuous processes). Under the as-
sumptions of Theorem 40, the �Hunt� �ξ��� k�-superprocess X has almost
surely continuous paths if and only if � has the form ��s� x� λ� = bs�x�λ2

[recall Assumption 13(f )].

Proof. Note that X is Hunt by the previous theorem. Moreover, X is
almost surely continuous if and only if its modified Lévy measure vanishes,
which occurs if and only if the projection of the latter ([9], Section 6.8.1) dis-
appears. But this happens if and only if n = 0 in the definition of � [recall
Assumption 13(f )]. ✷

Based on Theorem 40, our fdd continuity Theorem 20 can be sharpened in
terms of convergence in law on Skorohod path spaces.

Theorem 42 (Continuity in law on path spaces). Under Assumptions 39
and 19, for r�µ fixed, the laws Pnr�µ on the Skorohod space �r of the Hunt
�ξ��n� kn�-superprocesses converge weakly towards the law Pr�µ of the Hunt
�ξ��� k�-superprocess.

The proof of this theorem will follow in Section 4.4.2.
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For fixed branching functional k� the continuity in the branching mecha-
nism � can be sharpened by using a weaker convergence concept for �� just
as in the fdd case (Proposition 21).

Proposition 43 (Continuity on path spaces concerning � only). Fix a
branching functional k� If the branching mechanisms �n converge boundedly
pointwise to a �not necessarily regular� branching mechanism � as n → ∞�
then, under Assumption 39, the related superprocesses converge in law on the
Skorohod path spaces �r�

The proof of this result is postponed to Section 4.4.3.
We can combine Theorem 42 with Lemma 38 to conclude for the follow-

ing approximation in law by classical superprocesses (detailed arguments will
follow in Section 4.4.4).

Theorem 44 (Approximation by classical processes). Impose Assumption 39.

(a) (Regular �) If � is a regular branching mechanism, then, on Skorohod
spaces �r� any �ξ��� k�-superprocess X can be approximated in law by clas-
sical Hunt superprocesses Xn [based on classical branching functionals kn as
in (16)].

(b) (Arbitrary �) If � is an arbitrary branching mechanism, then, for every
r ≥ 0 and µ ∈ �f � there exists a collection of regular branching mechanisms
�n and classical branching functionals kn such that the laws Pnr�µ on �r of
the �ξ��n� kn�-superprocesses Xn converge weakly to the law Pr�µ on �r of the
�ξ��� k�-superprocess X.

4.2. A sufficient criterion for tightness on path space. The proofs of the
claims listed in Section 4.1 will be provided in a slightly different order. A
basic step will be the verification of the following criterion, which extends a
result from [15], Proposition 6.40. Write �d�E� for the set of all nonnegative
d-uniformly continuous functions defined on E�

Proposition 45 (Tightness on path space). Let �1��2� � � � be a collection
of branching mechanisms and let k� k1� k2� � � � be branching functionals which
are uniformly of bounded characteristic (on bounded intervals). Assume that for
each starting point �r� x� ∈ R+×E� eachT ≥ r and each r-stopping time σ ≤ T,
we know that kn�r� σ� converges to k�r� σ� in L1�πr�x� as n→∞� Suppose that
each Xn = �Xn�� �Pnr�µ� is a cadlag right �ξ��n� kn�-superprocess, n ≥ 1�
Then, for r ≥ 0 and µ ∈ �f fixed, the laws Pnr�µ of the Xn� as measures on
the Skorohod space �r� are tight. Moreover, for T ≥ r and r-stopping times �n
bounded by T and δn ↘ 0� we have

lim
n→∞P

n
r�µ

∣∣exp
〈
Xn

�n
�−f〉− exp

〈
Xn

�n+δn�−f
〉∣∣2 = 0�(41)

for each f ∈ �d�E��
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To prepare for the proof, define F as the linear span of all functions Ff�

Ff�µ� �= exp�µ�−f�� µ ∈�f �

where f varies in �d�E��

Lemma 46 (Separation of points). Each F ∈ F is a bounded nonnegative
continuous function on �f � Moreover, F separates the points of �f �

Proof. Note that F separates points if the collection of all functions
− logFf� f∈�d�E�� is separating. Therefore, it suffices to show that �d�E�
separates the points of E ([10], Theorem 3.4.5(a)). But this is obvious
(use d). ✷

Proof of Proposition 45. Fix r ≥ 0 and µ in �f � and consider the laws
Pnr�µ on �r of the Xn� n ≥ 1� We will use Jakubowski’s criterion (see, e.g., [3],
Theorem 3.6.4) to verify the tightness of these laws.

To check the first condition in Jakubowski’s criterion, we show that the
processesXn “almost live” on a common compact subset of �f . More precisely,
we verify that for T > r and ε > 0 fixed,

Pnr�µ

(
sup
s∈�r�T�

〈
Xn
s �1

〉
>

1
ε

)
≤ ε�µ�1�� n ≥ 1�(42)

But using the Doob type inequality of Proposition A2, the l.h.s. can be esti-
mated by

≤ ε sup
�
Pnr�µ

〈
Xn

� �1
〉

(43)

with the supremum running over all r-stopping times � ≤ T� But the
right superprocesses Xn are critical; hence the processes t → �Xn

t �1� are
right-continuous martingales (recall Remark 16). So our estimate (43) equals
εPnr�µ�Xn

r�1� = ε�µ�1�� proving (42).
Next, for the second condition in Jakubowski’s criterion, using the separa-

tion Lemma 46 it is sufficient to check the tightness of the laws of the cadlag
processes t �→ Ff�Xn

t �� n ≥ 1� on the Skorohod space � ��r�∞��R+�� for each
fixed f in �d�E�� For this purpose, we use Aldous’s criterion (see, for instance,
[3], Theorem 3.6.5), from which we get that it suffices to show that, givenT ≥ r
and r-stopping times �n bounded by T and δn ↘ 0� claim (41) holds. Expand-
ing the binomial in (41), we get, in particular, a term exp�Xn

�n+δn�−2f�� Its
Pnr�µ-expectation can be written as

Pnr�µ exp
〈
Xn

�n
�−vn�n��n+δn�2f�

〉
�

using the strong Markov property at time �n� and the log-Laplace transition
functional representation (12). Here vn�2f� solves the evolution equation (13)
with f���k replaced by 2f��n� kn� respectively. We will compare this term
with

Pnr�µ exp
〈
Xn

�n
�−2vn�n��n+δn�f�

〉
�
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Calculating the other term similarly, for the expectation expression in (41) we
get

Pnr�µ
∣∣exp

〈
Xn

�n
�−f〉− exp

〈
Xn

�n
�−vn�n��n+δn�f�

〉∣∣2
+Pnr�µ

(
exp

〈
Xn

�n
�−vn�n��n+δn�2f�

〉− exp
〈
Xn

�n
�−2vn�n��n+δn�f�

〉)
�

To get an upper bound for this, we may drop the exponent 2 and continue with

≤ Pnr�µ
〈
Xn

�n
�
∣∣f− vn�n��n+δn�f�

∣∣〉
+Pnr�µ

〈
Xn

�n
�
∣∣vn�n��n+δn�2f� − 2vn�n��n+δn�f�

∣∣〉�
Using again [9], Theorem 6.2.1, to each �n there exists an r-randomized stop-
ping time τn ≤ T for ξ such that the latter equals

πr�µ
∣∣f�ξτn� − vnτn� τn+δn�f��ξτn�

∣∣
+ πr�µ

∣∣vnτn� τn+δn�2f��ξτn� − 2vnτn� τn+δn�f��ξτn�
∣∣�(44)

Applying the evolution equation (13), and the strong Markov property for ξ,
for the first term in (44) we get the bound

πr�µ
∣∣f�ξτn� − πτn� ξτn f�ξτn+δn�

∣∣
+ πr�µ

∫ τn+δn
τn

�n
(
s� ξs� v

n
s� τn+δn�f��ξs�

)
kn�ds��

(45)

Since ξ is a time-homogeneous strong Markov process, the first term is
bounded by �µ�1� supx �f�x� − π0� xf�ξδn��� and by the Feller property this
will disappear as n → ∞. If now �knm� is a subsequence of �kn�� by the
reformulation Proposition 24, there exists a subsequence �knmi � of �knm� such
that

�α� πr�µ

∞∨
i=1

knmi �r�T� <∞�

�β� sup
s∈�r�T�

∣∣knmi �s�T� − k�s�T�∣∣→ 0� πr�µ-a.e. as i→∞�

Combined with the uniform bound (28) of the �n and (29), we get that the
second term in (45) will vanish as nmi

→ ∞� hence as n → ∞� So (45) will
disappear in the limit.

The proof that the second term in (44) goes to zero is similar. Consequently,
(44) will vanish in the limit, hence (41) is true, and Jakubowski’s criterion is
fulfilled. ✷

Corollary 47 (Convergence on path space). Suppose in addition to the
hypotheses of Proposition 45 that the Xn = �Xn

t �� �P
n
r�µ� converge fdd to a

�ξ��� k�-superprocess X with a regular branching mechanism �� Then for
each r�µ� the laws Pnr�µ on �r converge weakly to some distribution P∞r�µ�
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Proof. Since tightness on path space plus fdd convergence implies weak
convergence on path space, we immediately get from Proposition 45 and
the assumed fdd convergence that Pnr�µ converges weakly to some P∞r�µ as
n→∞� ✷

4.3. Existence of a cadlag right version X. Recall that �E�d� is a compact
metric space. For convenience, we introduce the following notion.

Definition 48 (Almost sure notions). For the moment, consider an �f -
valued Markov process X = �Xt�� �Pr�µ� with phase space �E�d�� We say
that X is an a.s. cadlag right process if we have the following.

(i) For r ≥ 0 and µ ∈�f �

Pr�µ
{
t→Xt is cadlag, t ∈ �r�∞�} = 1

(which implicitly contains the measurability requirement);
(ii) For 0 ≤ r < t� for µ ∈�f and for measurable F��f → R+, the function

s �→ 1s<tPs�Xs
F�Xt�� s ∈ �r� t�

is Pr�µ-a.s. right continuous.

An a.s. cadlag right process X is said to be an a.s. Hunt process if it is quasi-
left continuous.

As shown in [15], Lemma 5.29, the two introduced a.s. notions are not
substantially different from the ones without “a.s.”

Lemma 49 (Dropping “a.s.”). Let X be an a.s. Hunt (respectively, a.s. cad-
lag right) process. Then there exists a Hunt (respectively, cadlag right) version
of X.

Now we are ready to state the following result.

Lemma 50 (Cadlag right version). Impose Assumption 39. Let � be a
branching mechanism and k a branching functional. Then there exists a cad-
lag right version of the �ξ��� k�-superprocess.

Proof. Recall that the �ξ��� k�-superprocess X exists by Lemma 14. Ac-
cording to [8], Theorem 2.1, there is a right version X = �Xt�� �Pr�µ� of
this process. Let �A�� �A�� be the strong generator of the Feller process ξ.
Recall that � �A� ⊆ �d�E�. Fix r ≥ 0 and µ ∈�f � Note that for f ∈ � �A�
the processes t �→ �Xt�f� −

∫ t
r �Xs�Af�ds� t ≥ r� are right continuous Pr�µ-

martingales and therefore, withPr�µ-probability 1, cadlag martingales. Hence,
the process t �→ �Xt�f�� t ≥ r� is Pr�µ-a.s. cadlag. Let �fm� m ≥ 1� ⊆ � �A�
be a convergence determining set (for the weak topology in �f �� Recall that
�fm� m ≥ 1� is separating. Let

Dr �=
{
ω� t �→ �Xt�ω�� fn�� t ≥ r� is cadlag, n ≥ 1

}
�
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Note that Pr�µ�Dr� = 1� Recall also that on every bounded interval �r�T�, the
cadlag trajectory t �→ �Xt�ω��1� is bounded. Also, the sets �µ� �µ�1� ≤N� are
compact in �f . Consider ω ∈ Dr� t > r� and let tn ↑ t� tn < t. It follows that
the family �Xtn

�ω��n≥1 ⊆ �f is tight. Hence, it has an accumulation point
Xt−�ω�. But since ω ∈ Dr� this accumulation point is unique and independent
of the choice of the sequence �tn� n ≥ 1�� Thus lims↑t Xs�ω� = Xt−�ω�� Since
t was arbitrary, it follows that t �→ Xt�ω� is cadlag, for ω ∈ Dr. An appeal to
Lemma 49 completes the proof. ✷

4.4. Remaining proofs.
4.4.1. Proof of existence of a Hunt version. The next result is taken from

[15], Lemma 6.39.

Lemma 51. Let �yt� 0 ≤ t ≤ T� and �zt� 0 ≤ t ≤ T� be �0�1�-valued
stochastic processes over a filtered probability space �D�
�P�. Suppose that y
is P-indistinguishable from a right-continuous process. Let τn ≤ T be stop-
ping times converging to some stopping time τ as n→∞. Then there exists a
sequence δn ↘n 0 such that

lim
n→∞P

∣∣zτnyτ − zτnyτn+δn
∣∣ = 0�

Recall that a cadlag right process X = �Xt�� �Pr�µ� is a Hunt process
if and only if Pr�µ�X� − = X� � = 1 for r ≥ 0, µ ∈ �f and every bounded
predictable r-stopping time � .

Proof of Theorem 40. Take ξ��� k as in the theorem. Recalling Lem-
ma 50, let X = �Xt�� �Pr�µ� be a cadlag right version of the �ξ��� k�-
superprocess. Fix r ≥ 0, µ ∈ �f and f ∈ �d�E�� Consider a collection of
r-stopping times �n < � nondecreasing to the bounded predictable stopping
time � . From Lemma 51 we conclude that there exists δn ↓ 0 such that

lim
n→∞Pr�µ

∣∣ exp�X�n
�−f� − exp�X� �−f�

∣∣
= lim
n→∞Pr�µ

∣∣ exp�X�n
�−f� − exp�X�n+δn�−f�

∣∣�(46)

Applying the tightness Proposition 45 with Xn ≡X, we obtain

lim
n→∞Pr�µ

∣∣ exp�X�n
�−f� − exp�X�n+δn�−f�

∣∣2 = 0�

which implies that (46) vanishes. Using Fatou’s lemma, we conclude

Pr�µ
∣∣ exp�X� −�−f� − exp�X� �−f�

∣∣ = 0�

Hence �X� −� f� = �X� � f�withPr�µ-probability 1. Arguing with a separating
sequence of functions f ∈ �d�E� yields X� − = X� with Pr�µ-probability 1,
completing the proof. ✷
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4.4.2. Proof of the joint continuity result. Theorem 42 follows directly from
Theorem 40 (the process is Hunt), Theorem 20 (which guaranties fdd conver-
gence) and Corollary 47 (from which we conclude the weak convergence).

4.4.3. Proof of the continuity in � only. Proposition 43 is derived from
Theorem 40 (which guaranties the existence of a Hunt version), from Propo-
sition 21 (which yields the fdd continuity in �� and from Corollary 47 (from
which we conclude the desired weak convergence).

4.4.4. Proof of approximation by classical superprocesses. We will need the
following lemma.

Lemma 52 (“Approximation” by regular �). Every branching mechanism �
belongs to the bp-closure of the set of all regular branching mechanisms.

Proof. If the maps �s� x� �→ bs�x� and �s� x� �→ n�s� x� du� in Assump-
tion 13(f ) on a branching mechanism � are additionally continuous, then
the corresponding branching mechanisms � are regular. Thus, the bp-closure
of all regular branching mechanisms contains all (�0�1�-valued) measurable
�s� x� �→ bs�x� and continuous �s� x� �→ n�s� x� du�� ([10], Proposition 3.4.2).
In particular, this is true for n�s� x� du� of the form f�s� x�n�du�� where f is
continuous. Hence, the bp-closure contains all measurable functions �s� x� �→
bs�x� and �s� x� �→ 1A�s� x�n�du� with A denoting a measurable subset of
R+ ×E. Now let n1�du�� n2�du�� � � � be a dense subset of � = � �0�∞� [in-
troduced in Assumption 13(f )]. Then every n�s� x� du� is the pointwise limit
of kernels of the form nN�s� x� du� �=

∑∞
l=1 1AlN�s� x�nl�du� where

AlN �=
{
�s� x�� dv�nl� n� <

1
N

and dv�ni� n� ≥
1
N
� i = 1� � � � � l− 1

}
�

with dv denoting a metric on � which generates the vague topology in � .
Using this fact completes the proof. ✷

Proof of Theorem 44.
Step 1. First we start from a �ξ��� k�-superprocess X where � is regular.

Note that, from Theorem 23 and Lemma 38, we can fdd approximate X by
classical �ξ��� k�-superprocesses Xn in such a way that the kn satisfy the
conditions imposed in Proposition 45. Note that the Xn are Hunt. It suffices
to invoke Corollary 47 to conclude that there exist laws P∞r�µ on path space
such that Pnr�µ ⇒n P

∞
r�µ.

Step 2. Suppose now that � is arbitrary. Fix r ≥ 0� µ ∈ �f � and denote by
P
�ξ��� k�
r�µ the law on �r of the �ξ��� k�-superprocess with initial data �r�µ�� Let

� refer to the closure of the set of all laws P�ξ��� k�r�µ for which the branching
functional k is classical [recall (16)] and the branching mechanism� is regular.
As shown in Step 1, the set � contains all P�ξ��� k�r�µ with arbitrary k and
regular �. Consider the set �ξ� k of all � such that P�ξ��� k�r�µ belongs to � �
From Theorem 40 (Hunt) and Proposition 21 (fdd convergence) we can invoke
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Corollary 47 (weak convergence) and therefore conclude that the set �ξ� k is
bp-closed. Therefore, since it contains all regular branching mechanisms, �ξ� k

finally contains all branching mechanisms, by Lemma 52. In other words, all
P
�ξ��� k�
r�µ belong to � � Hence, for every �k��� there exists a sequence �kn��n�

with classical kn and regular �n such that

P
�ξ��n� kn�
r�µ ⇒ P

�ξ��� k�
r�µ as n→∞�

This completes the proof. ✷

APPENDIX

Here we collect some technical results. The following lemma is a slight
modification of [9], A.1.1.A, page 116.

Lemma A1 (Characterization of the existence of left limits). Let y = �yt�
0 ≤ t ≤ T� denote a nonnegative right continuous process of class (D) over a
filtered space �D�
�P�. Then y is P-a.s. cadlag if and only if for every sequence
of nondecreasing stopping times σn ≤ T we have that limn Pyσn exists.

Proof. Step 1 �⇒�. Suppose that y is cadlag. Let ys− denote the left limit
limt↑s yt� Hence if σn ↗ σ as n→∞ then limn yσn = yσ−� But since y belongs
to class (D),

Pyσ− = P lim
n
yσn = lim

n
Pyσn�

Therefore limn Pyσn exists.
Step 2 �⇐�. Suppose now that y is not P-a.s. cadlag, but assume that for

every sequence of nondecreasing stopping times σn ≤ T� the limit limn Pyσn
exists. Hence, there exists a set 	 of positive P-probability such that for every
ω ∈ 	 � (i) the process y•�ω� has a left oscillation, or (ii) the process y•�ω�
has a left explosion.

We will show that each of these statements yield a contradiction.

(i) Suppose that the trajectory y�ω� has a left oscillation. Then there exist
numbers q� δ in the set Q+ of all nonnegative rationales such that y�ω� oscil-
lates around q with oscillations of magnitude larger than δ. In other words,
the sequence �σq� δn �ω��∞n=0 defined by σq� δ0 �ω� �= 0 and, for m ≥ 0�

σ
q� δ
2m+1�ω� �= inf

{
t > σ

q� δ
2m �ω�� yt�ω� − q > δ

}
�

σ
q� δ
2m+2�ω� �= inf

{
t > σ

q� δ
2m+1�ω�� yt�ω� − q < −δ

}

has the property that σq� δ0 �ω� < · · · < σq�δn �ω� < σq�δn+1�ω� < · · · < T� Setting
again inf � �= T� then clearly, the random times σq� δn are stopping times. Let
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us define

Aq�δ �=
{
ω� σq� δ0 �ω� < · · · < σq�δn �ω� < σq�δn+1�ω� < · · · < T

}
�

Moreover, let y∗t �ω� �= 1Acq� δ�ω�yt�ω� where Acq� δ �= D \ Aq�δ� Note that for

ω ∈ Acq� δ� the sequence σq� δn �ω� eventually reachesT. Thus, since y is assumed
to be right continuous, y∗

σ
q� δ
n

converges to y∗T�ω�� Because, by assumption, y,
hence y∗, belongs to class (D), this implies that

lim
n→∞P

(
y∗
σ
q� δ
n+1
− y∗

σ
q� δ
n

) = 0�(A1)

On the other hand, we have

lim
n→∞P

(
1Aq�δ

(
yσq�δ2n+1

− yσq�δ2n

)) ≥ 2δP�Aq�δ��

From (A1) and the assumption that limn→∞P�yσq�δ2n+1
−yσq�δ2n

� = 0� we conclude
that P�Aq�δ� = 0. Therefore, we obtain

P

( ⋃
q� δ∈Q+

Aq�δ

)
= 0�

That is, with probability 1, there is no left oscillation, yielding a contradiction.
(ii) The proof is analogous. Write σ0 �= 0� and for n ≥ 0� define σn+1 �=

inf�t > σn� yt > n�. (Here again, inf � �= T.) We put

A �= {
σn < T for every n ≥ 0

}
�

In the same way as in (i) we have that the existing limit of P�yσn� implies
that P�A� = 0. Thus there is no explosion towards +∞. This completes the
proof altogether. ✷

Proposition A2 (A Doob type inequality). Let �yt� t ∈ �0�T�� denote a
real-valued right-continuous process of class (D) on a filtered probability space
�D�� �P�. Then, for each η > 0�

P
{

sup
s≤T
�ys� > η

}
≤

(
2
η

sup
σ
�Pyσ � +P�yT�

)
∧
(

1
η

sup
σ
P�yσ �

)
�

where σ denotes any stopping time (bounded by T).

Proof. Let ση+ �= inf�s ∈ I� ys > η�� Then by right continuity,

P
{

sup
s
ys > η

}
≤ P�yση+ ≥ η��

and by Markov’s inequality we can continue with

≤ 1
η

(
Pyση+ +P�yT�

)
�
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On the other hand, with ση− �= inf�s ∈ I� ys < −η�� using again right conti-
nuity and Markov’s inequality,

P
{

inf
s
ys < −η

}
≤ P�yση− ≤ −η� = P�−yση− ≥ η�

≤ 1
η

(−Pyση− +P�yT�
)
�

Adding both cases, the first part of the claim follows. To get the other one,
start with ση �= inf�s ∈ I� �ys� > η�� and proceed directly in order to complete
the proof. ✷

Lemma A3. Let an� bn be real numbers. Then
∣∣∣∣
∞∧
n=1

an −
∞∧
n=1

bn

∣∣∣∣ ≤
∞∨
n=1

�an − bn�

provided that at least one of the infimum expressions is finite.

Proof. Obviously,

∞∧
n=1

an ≤
∞∧
n=1

�bn + �an − bn�� ≤
∞∧
n=1

(
bn +

∞∨
n=1

�an − bn�
)

=
∞∧
n=1

bn +
∞∨
n=1

�an − bn��

By symmetry, the claim follows. ✷

Corollary A4. Suppose kn�ds�� k�ds� are finite (deterministic) measures
on I = �0�T� such that kn�r� t� converges to k�r� t� as n→∞� for every r < t ≤
T. For each n ≥ 1� let s �→ ψns be uniformly bounded nonnegative measurable
functions on I� Then the function t �→ F�t� �= ∧∞

n=1

∫
�t�T�ψ

n
s k

n�ds� is right

continuous.

Proof. Fix t� Consider t < t+ δ ≤ T and set B �= supn �ψn�∞. By Lemma
A3 we have

�F�t� −F�t+ δ�� ≤
∞∨
n=1

∣∣∣∣
∫
�t�T�

ψns k
n�ds� −

∫
�t+δ�T�

ψns k
n�ds�

∣∣∣∣

=
∞∨
n=1

∫
�t� t+δ�

ψns k
n�ds��

Thus,

�F�t� −F�t+ δ�� ≤ B
∞∨
n=1

kn�t� t+ δ��(A2)
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Take any ε > 0 and choose δ = δε so small that k�t� t+δ� ≤ ε� Then there exists
N = Nε�δ such that for every n ≥ N we have �kn�t� t+ δ� − k�t� t + δ�� ≤ ε�
Thus, for all δ0 ∈ �0� δ��

∞∨
n=N

kn�t� t+ δ0� ≤
∞∨
n=N

kn�t� t+ δ� ≤ k�t� t+ δ� + ε ≤ 2ε�

But for δ0 ∈ �0� δ� small enough (keeping the N = Nε�δ�� we have∨N−1
n=1 k

n�t� t+ δ0� ≤ 2ε. Consequently, for δ0 > 0 sufficiently small,

∞∨
n=1

kn�t� t+ δ0� ≤ 2ε�

Returning to (A2), we get

�F�t� −F�t+ δ0�� ≤ 2Bε�

This completes the proof. ✷
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