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RANGE OF FLUCTUATION OF BROWNIAN MOTION
ON A COMPLETE RIEMANNIAN MANIFOLD

By Alexander Grigor’yan1 and Mark Kelbert

Imperial College and University of Wales, Swansea

We investigate the escape rate of the Brownian motionWx�t� on a com-
plete noncompact Riemannian manifold. Assuming that the manifold has
at most polynomial volume growth and that its Ricci curvature is bounded
below, we prove that

dist�Wx�t�� x� ≤
√
Ct log t

for all large t with probability 1� On the other hand, if the Ricci curvature
is nonnegative and the volume growth is at least polynomial of the order
n > 2� then

dist�Wx�t�� x� ≥
√
Ct

log1/�n−2� t log log�2+ε�/�n−2� t
�

again for all large t with probability 1 (where ε > 0).

1. Introduction and main results. Let M be a smooth connected Rie-
mannian manifold and let � be the Laplace operator of the Riemannian metric
of M. We consider the minimal diffusion Wx�t� on M (starting at the point
x ∈M) generated by the operator 1

2�� Let us denote by Px the corresponding
probability measure on the paths emanating from x.

This paper is primarily concerned with the distance dist�Wx�t�� x� the pro-
cess Wx�t� moves from the initial point x over time t. The escape rate of the
Brownian motion is measured by estimates of this distance for large t. A core
objective of the paper is to relate the escape rate to the appropriate geometric
properties of the manifolds.

In order to avoid trivial situations, we assume henceforth that the mani-
fold in question is noncompact and geodesically complete. Moreover, we will
deal only with stochastically complete manifolds. A manifold is stochastically
complete if, for all x ∈M and t > 0� Px	Wx�t� ∈M
 = 1, which prevents the
Brownian particle from reaching infinity in a finite time. In what follows, we
either explicitly assume stochastical completeness or it will be consequence of
other hypotheses.

The movement of the Brownian particle can be described in terms of an
upper radius and a lower radius. Let us denote by B�x� r� the geodesic ball of
radius r centered at the point x ∈M.
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Definition 1.1. For a fixed point x ∈ M� a nonnegative function R�t� is
called the upper radius of the process Wx�t� if

Px

{∃ T > 0 s.t. dist�Wx�t�� x� ≤ R�t� for all t > T
} = 1�

A nonnegative function r�t� is called the lower radius of the process Wx�t� if

Px

{∃ T > 0 s.t. dist�Wx�t�� x� > r�t� for all t > T
} = 1�

In other words, the process Wx�t� stays a.s. within the annulus

B�x�R�t��\B�x� r�t��
for large enough t�

It follows from the definition that if R1�t� ≥ R�t� for large t and if R�t�
is an upper radius, then R1�t� is also an upper radius, and the same is true
(with the opposite inequality) for a lower radius. The spheres ∂B�x�R�t�� and
∂B�x� r�t�� can be regarded as a forefront and a rear front, respectively, of the
diffusion as t→∞�

It is obvious that if R�t� and r�t� are upper and lower radii, respectively,
then with probability 1,

lim sup
t→∞

dist�Wx�t�� x�
R�t� ≤ 1(1.1)

and

lim inf
t→∞

dist�Wx�t�� x�
r�t� ≥ 1�(1.2)

In R
n� as a consequence of the law of the iterated logarithm, equality holds

in (1.1) for R�t� = √
2t log log t (see [11] and [14], and also [1] for the modern

account of the law of the iterated logarithm and related topics). The function

R�t� =
√
�2+ ε�t log log t

is an upper radius for any ε > 0� and it is not if ε ≤ 0.
The lower radius case is different. If the manifold M is parabolic (which

means that the Brownian motion on M is recurrent), then

lim inf
t→∞

dist�Wx�t�� x� = 0�

and a lower radius r�t� cannot be bounded away from 0� so that this case is not
particularly interesting. On the contrary, if the manifold M is nonparabolic,
then the lower radius r�t� can be regarded as a “measure” of transience.

As was shown by Dvoretzky and Erdös [5], in R
n with n > 2 the following

function is a lower radius:

r�t� = C
√
t

log1/�n−2� t�log log t��1+ε�/�n−2�(1.3)

for any ε > 0 and C > 0, and it is not a lower radius for ε = 0 irrespective of
C� It seems that there is no sharp lower radius for which the limit (1.2) would
be equal to 1: at least if the function r�t�/√t is decreasing, then this limit is
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either ∞ or 0 as follows from the theorem of Dvoretzky and Erdös [5] (see also
[11], Section 4.12). In other words, the rear front of the Brownian motion is
not as distinct as the forefront.

We shall construct upper and lower radii in the setting of manifolds of
polynomial volume growth, under some additional geometric assumption. The
case of superpolynomial volume growth will be addressed elsewhere.

Let us first introduce the necessary definitions. We say that the ball
B�x�R� ⊂ M possesses �a� ν�-isoperimetric inequality if for any region
� ⊂⊂ B�x�R� we have

λ1��� ≥
a

R2

(
VolB�x�R�

Vol�

)ν
�(1.4)

where a and ν are positive constants and λ1��� denotes the first eigenvalue
of the Laplace operator in � with the Dirichlet boundary condition.

For example, in R
n any ball possesses �a� ν�-isoperimetric inequality with

ν = 2/n and a = an� Indeed, since VolB�x�R� ∼ Rn then (1.4) amounts to

λ1��� ≥ a�Vol��−2/n�

which is true by the Faber–Krahn theorem with the constant a = an depending
only on n.

By the compactness argument, this implies that any ball on any geodesically
complete Riemannian manifold possesses �a� ν�-isoperimetric inequality with
some positive a and ν = 2/n� but the number a will in general depend on the
ball.

As was shown in [8], all balls on a manifold of nonnegative Ricci curvature
possess �an�2/n�-isoperimetric inequality with the same constant an, where
n = dimM� If the manifold has a (possibly negative) bounded-below Ricci
curvature, then the same is true for all balls of the bounded radius R < ρ� and
a depends on n� ρ and the lower bound on the Ricci curvature (see Appendix
C for more details).

We say thatM is a manifold with a weak bounded geometry if there are posi-
tive numbers a� ρ� ν such that any ball of radius smaller than ρ onM possesses
an �a� ν�-isoperimetric inequality. Normally, one has ν = 2/n� The number ρ
is referred to as a bounded geometry radius. For example, any manifold of a
Ricci curvature bounded from below, possesses a weak bounded geometry as
was explained above.

Let us state our main results:

Theorem 1.1. LetM be a complete noncompact Riemannian manifold with
a weak bounded geometry, and assume that, for some x∈M and for all R>R0,

VolB�x�R� ≤ ARN(1.5)

(where A > 0 and N > 0 do not depend on R). Then the function

��t� =
√
�2N+ 4�t log t

is an upper radius for Wx�t��
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Proof. The constant 2N + 4 is not claimed to be sharp. The function√
t log t is the same as that in the old theorem of Hardy and Littlewood for

sums of independent Bernoulli random variables (which was later improved by
Khinchin to

√
2t log log t). It is likely that, for certain manifolds satisfying the

hypotheses of Theorem 1.1, the function
√
Ct log log t is not an upper radius. ✷

Theorem 1.2. Let M be a complete noncompact Riemannian manifold and
suppose that the following are true:

(U) (uniform isoperimetric inequality) there are constants a > 0 and ν >
0 such that �a�2/ν�-isoperimetric inequality holds in every geodesic ball of
positive radius;

(V) (volume comparison condition) for some n > 2, for some x ∈M and for
all sufficiently large R and r such that R > r,

VolB�x�R�
VolB�x� r� ≥ c

(
R

r

)n
(1.6)

with a positive constant c�

Then for any ε > 0 and C > 0 the function

r�t� = C
√
t

log1/�n−2� t�log log t��2+ε�/�n−2�(1.7)

is a lower radius for Wx�t��

Proof. In the Euclidean case, Dvoretzky and Erdös [5] obtained a better
power of log log t in (1.3) than that in (1.7). In view of this, it seems likely
that our result is not the sharpest possible, but we have not yet succeeded in
replacing the exponent �2+ ε�/�n− 2� by �1+ ε�/�n− 2�.

Let us note that hypothesis (U) implies that, for any R > r > 0,

VolB�x�R�
VolB�x� r� ≤ const a� ν

(
R

r

)ν
(see [9], Proposition 5.2). In particular, the volume growth in this setting is
polynomial.

By the theorem of Cheng and Yau [3], if V�x�R� ≤ constR2 for R → ∞�
then the manifold is parabolic. Therefore, we cannot drop the condition (1.6)
with n > 2 which is partly intended to exclude parabolicity. Moreover, under
hypothesis (U), nonparabolicity of the manifold is equivalent to∫ ∞ dt

VolB�x�√t� <∞�(1.8)

which follows from the estimates of the heat kernel

C1

V�x�√t� ≤ p�t� x� x� ≤ C2

V�x�√t�
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(see [4], Corollary 7.3). Thus, condition (1.6) with n > 2 guarantees that M is
nonparabolic.

However, hypothesis (V) is somewhat excessive, and one may wonder if it
can be replaced by the exact condition (1.8). It should be possible to show
that this is the case using the same methods but it will be technically more
involved.

Under the assumptions of Theorem 1.2, one can say more about the upper
radius:

Theorem 1.3. Let a complete noncompact manifold M possess condition
(U) as above. Then for any x ∈M and ε > 0 the function

��t� =
√
�2+ ε�t log log t(1.9)

is an upper radius for Wx�t��

Under a more restrictive hyphothesis, we prove a full analogue of the law
of the iterated logarithm:

Theorem 1.4. Let a complete noncompact manifold M have a nonnegative
Ricci curvature. Then the function (1.9) is an upper radius for ε > 0, whereas
it is not an upper radius for ε < 0. In particular, we have, for any x ∈M,

lim sup
t→∞

dist�Wx�t�� x�√
2t log log t

= 1�

The hypotheses of the above theorems are related in the following way:

Ricci ≥ 0 ⇒ condition (U) ⇒ weak bounded geometry
⇓

condition (1.5)

[see [8] for the implication Ricci ≥ 0 ⇒ (U)]. It follows that the hypotheses
get stronger from Theorem 1.1 through Theorem 1.4 with the exception of
condition (V) in Theorem 1.2. [However, condition (V) is also implied by (U)
with some n > 0 rather than with n > 2 (see Appendix C).]

The proof of Theorems 1.1–1.4 splits naturally into two parts. In the first
part (Sections 2 and 3) we use the probabilistic argument based on the lemmas
of Borel and Cantelli and on Kolmogorov’s inequality, to reduce the question
of constructing upper and lower radii to certain estimates of the heat kernel.
Let us recall that the heat kernel p�t� x� y� is the density of the transition
probability Px; that is, for any Borel set E ⊂M and for any t > 0� we have

Px

{
Wx�t� ∈ E

} = ∫
E
p�t� x� y�dy�

In this part of the proof, no a priori geometric assumption is required. In
the second part of the proof (Sections 4–8), we obtain the necessary estimates



BROWNIAN MOTION ON A RIEMANNIAN MANIFOLD 83

Fig. 1.

of the heat kernel by analytic methods under appropriate geometric assump-
tions, and complete the proof. ✷

The logical relationships between the theorems are presented in the dia-
gram in Figure 1.

Notation. We denote by const x�y���� any positive constant depending on the
variables x�y� � � � � Different occurrences of this notation may refer to different
constants even within the same relation. For example, a+ const a = const a�

Other notation:

(a) M is a noncompact geodesically complete Riemannian manifold;
(b) Wx�t� is the standard Brownian motion on M starting at the point

x∈M;
(c) p�t� x� y� is the transition density of Wx�t� or, in other words, the min-

imal positive fundamental solution of the diffusion equation ∂u/∂t = 1
2�u�

(d) dist�x�y� is the geodesic distance between the points x�y ∈M�
(e) VolE is the Riemannian volume of a set E ⊂ M (all integrations over

M are done against the Riemannian volume);
(f ) B�x�R� is the (open) geodesic ball of radius R centered at the point

x ∈M;
(g) V�x�R� ≡ VolB�x�R��

2. Construction of the upper radius. Let p�t� x� y� be the heat ker-
nel of the diffusion Wx�t�. The following lemma is a manifold version of
Kolmogorov’s inequality. For any set � ⊂ M� we denote by �r the open r-
neighborhood of ��

Lemma 2.1. Let η� δ be positive numbers and let � be a region on M� We
assume for some t > 0 that

inf
s∈�0� t�

inf
z∈∂�

∫
B�z�η�

p�s� z� y�dy ≥ δ�(2.1)
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Fig. 2.

Then

Px

{
Wx�s� ∈ � for some s < t

} ≤ δ−1
Px

{
Wx�t� ∈ �η

}
�(2.2)

Proof. Let τ denote the first time the process Wx�t� enters �. Then

Px

{∃ s < t� Wx�s� ∈ �
} = Px	τ < t

= Px	τ < t and Wx�t� ∈ �η

+ Px	τ < t and Wx�t� ∈M\�η


≤ Px	Wx�t� ∈ �η

+ Px	τ < t and Wx�t� ∈M\�η
�

Let µ be the probability measure on ∂� equal to the distribution of the
random point z = Wx�τ�� We estimate the second term above by using the
strong Markov property of Brownian motion:

Px	τ < t and Wx�t� ∈M\�η

≤ Px	τ < t and dist�Wx�τ��Wx�t�� ≥ η


=
∫
∂�

∫ t

0
Pz	dist�z�Wz�t− s�� ≥ η
dsPx�τ < s�dzµ

≤ sup
z∈∂�

sup
s∈�0�t�

Pz	dist�z�Wz�t− s�� ≥ η

∫ t

0
dsPx�τ < s��

On the other hand, for all s ∈ �0� t� and any z ∈ ∂�,

Pz	dist�z�Wz�t− s�� ≥ η
 =
∫
M\B�z�η�

p�t− s� z� y�ds ≤ 1− δ
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by (2.1). Therefore

Px

{∃ s < t� Wx�s� ∈ �
} ≤ Px

{
Wx�t� ∈ �η

}+ �1− δ� ∫ t

0
dsPx�τ < s��

Since ∫ t

0
dsPx�τ < s� = Px�τ < t� = Px

{∃ s < t� Wx�s� ∈ �
}
�

we obtain (2.2), which concludes the proof. ✷

Let us denote

�x�t� = sup
s≤t

dist�Wx�s�� x��(2.3)

that is, let �x�t� be the maximum distance which the process moves from the
origin x over time t.

Corollary 2.2. Let ζ� η� δ be positive numbers and, for some x ∈ M and
for some t > 0, let

inf
s∈�0� t�

inf
z∈∂B�x� ζ�

∫
B�z�η�

p�s� z� y�dy ≥ δ�

Then

Px

{
�x�t� > ζ

} ≤ δ−1
Px

{
dist�Wx�t�� x� > ζ − η}�

Indeed, it follows immediately from Corollary 2.2 if we set � =M\B�x� ζ��
The following lemma provides a general method of constructing of an upper

radius assuming the existence of certain estimates of the heat kernel.

Lemma 2.3. Let 	tk
� 	Rk
� 	hk
, k = 1�2�3� � � � � be increasing sequences
of positive numbers going to ∞ as t → ∞. Let us assume that for some point
x ∈M the following hold:

∞∑
k=1

∫
M\B�x�Rk�

p�tk� x� y�dy <∞�(2.4)

for all k large enough,

inf
t∈�0� tk�

inf
z∈∂B�x�Rk+hk�

∫
B�z� hk�

p�t� z� y�dy ≥ δ(2.5)

with some δ > 0 which does not depend on k�
Define the function R�t� as follows:

R�t� ≡ Rk + hk if t ∈ �tk−1� tk�� k = 1�2� � � �

(where t0 ≡ 0). Then the function R�t� is an upper radius for Wx�t��
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Proof. Use the maximum process � �t� defined by (2.3). By Corollary 2.2,
we have for large k and t = tk, η = hk, ζ = Rk + hk,

Px

{
�x�tk� > Rk + hk

} ≤ δ−1
Px

{
Wx�tk� > Rk�

}
≤ δ−1

∫
M\B�x�Rk�

p�tk� x� y�dy�

By (2.4) it follows that
∞∑
k=1

Px

{
�x�tk� > Rk + hk

}
<∞�

and by the Borel–Cantelli lemma the inequality �x�tk� ≤ Rk+hk holds almost
surely for all k large enough. Let t ∈ �tk� tk+1�. Then, by monotonicity of �x�t�,

�x�t� ≤�x�tk+1� ≤ Rk+1 + hk+1 = R�t��
which was to be proved. ✷

Corollary 2.4. Let ��t� and h�t� be increasing positive functions of t�
and assume that for some x ∈M the following hold:∫ ∞(∫

M\B�x���t�−h�t��
p�t� x� y�dy

)
dt <∞�(2.6)

and, for all t large enough,

inf
s∈�0� t�

inf
z∈∂B�x���t��

∫
B�z� h�t��

p�s� z� y�dy ≥ δ�(2.7)

where δ > 0.
Then the function ��t+ ε� is an upper radius for the process Wx�t� for any

ε > 0�

Proof. We take advantage of the following elementary fact (see the proof
in Appendix A):

Lemma 2.5. If f�t� is a nonnegative measurable function on �0�+∞� and∫ ∞
0
f�t�dt <∞�

then, for almost all ξ > 0,

∞∑
k=1

f�kξ� <∞�(2.8)

Let us apply this lemma to the function

f�t� =
∫
M\B�x���t�−h�t��

p�t� x� y�dy
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and find ξ ∈ �0� ε� such that for tk = kξ, k = 1�2�3� � � � � hypothesis (2.4)
of Lemma 2.3 holds with Rk = ��tk� − h�tk�� Hypothesis (2.5) follows from
(2.7) for hk = h�tk�� Therefore, by Lemma 2.3, the function R�t� defined at
t ∈ �tk� tk+1� as

R�t� ≡ Rk+1 + hk+1 =��tk+1�
is the upper radius. So is the function ��t+ ε� because t+ ε ≥ tk + ξ = tk+1�
and by monotonicity of ��t� we have

��t+ ε� ≥��tk+1� = R�t�� ✷

Corollary 2.6. Let 	tk
, k = 1�2�3� � � � � be an increasing sequence such
that tk →∞, and let ��t� and h�t� be increasing positive functions on �0�+∞�
such that, for some ε > 0,

��tk+1� ≤ �1+ ε���tk�(2.9)

and, for some x ∈M,

∞∑
k=1

∫
M\B�x���tk�−h�tk��

p�tk� x� y�dy <∞�(2.10)

Let us also suppose that for all t large enough

inf
s∈�0� t�

inf
z∈∂B�x���t��

∫
B�z� h�t��

p�s� z� y�dy ≥ δ

for some δ > 0. Then the function �1+ε���t� is an upper radius for Brownian
motion.

Proof. Indeed, let us take Rk =��tk�−h�tk�, hk = h�tk�. Then we obtain
by Lemma 2.3 that the function R�t� which is defined for t ∈ �tk� tk+1� as

R�t� = Rk+1 + hk+1 =��tk+1�
is the upper radius for Wx�t�� Since for t ∈ �tk� tk+1� we have

R�t� =��tk+1� ≤ �1+ ε���tk� ≤ �1+ ε���t��
then the function �1+ ε���t� is the upper radius as well. ✷

3. Construction of a lower radius.

Lemma 3.1. Let x ∈M be a fixed point, let 	tk
 be an increasing sequence
of times and let 	R∗

k
� 	Rk
� 	rk
� 	hk
 be sequences of positive numbers such
that we have the following:

∞∑
k=1

∫
B�x�Rk�

p�tk� x� y�dy <∞(3.1)
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and
∞∑
k=1

∫
M\B�x�R∗k�

p�tk� x� y�dy <∞�(3.2)

and, for all k large enough,

inf
s∈�0� tk+1−tk�

inf
z∈B�x�R∗k+rk+hk�

∫
B�z� hk�

p�s� z� y�dy ≥ δ�(3.3)

where δ > 0 does not depend on k; and, finally,

∞∑
k=1

sup
z∈B�x�R∗k�

∫
M\B�z� rk�

p�tk+1 − tk� z� y�dy <∞�(3.4)

Then the function r�t� defined as

r�t� ≡ Rk − rk − hk if t ∈ �tk� tk+1�� k = 1�2� � � � �(3.5)

is the lower radius for the process Wx�t��

The proof of Lemma 3.1 will be given at the end of this section.

Corollary 3.2. Suppose that we have an increasing sequence 	tk
 of times,
tk →∞, and the sequences of positive numbers 	rk
 and 	hk
� Let ��t� be an
increasing function on �0�+∞�� and suppose that the sequence Rk ≡ ��tk�
satisfies for some ε > 0 and for all large k the conditions

Rk+1 ≤ �1+ ε�Rk(3.6)

and

rk + hk ≤ εRk�(3.7)

Let the following hypotheses hold on M:

(a) for some x ∈M,

∞∑
k=1

∫
B�x�Rk�

p�tk� x� y�dy <∞�(3.8)

(b) for all k large enough,

inf
s∈�0� tk+1−tk�

inf
z∈M

∫
B�z� hk�

p�s� z� y�dy ≥ δ�(3.9)

where δ > 0 does not depend on k�
(c) also

∞∑
k=1

sup
z∈M

∫
M\B�z� rk�

p�tk+1 − tk� z� y�dy <∞�(3.10)

Then the function �1− 2ε���t� is the lower radius.
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Proof of Corollary 3.2. Let us verify the hypotheses of Lemma 3.1.

(i) Hypothesis (3.1) of Lemma 3.1 coincides with (3.8).
(ii) There is no 	R∗

k
 so far to state (3.2). Let us take 	R∗
k
 to be an arbitrary

quickly growing sequence so that the sum in (3.2) is finite. It always exists
because ∫

M
p�t� z� y�dy ≤ 1�

(iii) Hypotheses (2.7) and (3.4) follow from (3.9) and (3.10), respectively,
because inf and sup in (3.9) and (3.10) are taken over the entire manifold M,
which makes these assumptions independent of the choice of R∗

k�

Thus, by Lemma 3.1 the function r�t� defined by (3.5) is the lower radius.
Finally, if t ∈ �tk� tk+1� and k is large enough, then by (3.7) and (3.6) we have

r�t� = Rk−rk−hk ≥ Rk−εRk ≥
1− ε
1+ εRk+1 ≥ �1−2ε���tk+1� ≥ �1−2ε���t��

whence it follows that �1− 2ε���t� is also the lower radius. ✷

Proof of Lemma 3.1. Hypothesis (3.1) implies that
∞∑
k=1

Px	Wx�tk� ∈ B�x�Rk�
 <∞

or, by the Borel–Cantelli lemma, we have that, with probability 1 for all
large k,

Wx�tk� /∈ B�x�Rk��(3.11)

Since for t = tk we have Rk > r�t�, then (3.11) implies that, for all large k
and t = tk,

Wx�t� ∈M\B�x� r�t���(3.12)

If we prove (3.12) for all large t (not only for t = tk), then r�t� is indeed the
lower radius. The main technical difficulty is to handle the values of t when
t ∈ �tk� tk+1�� To that end, we will estimate the deviation dist�Wx�t��Wx�tk��:

Px

{
sup

t∈�tk� tk+1�
dist�Wx�t��Wx�tk�� > rk + hk

}
= Px

{
sup

t∈�tk� tk+1�
dist�Wx�t��Wx�tk�� > rk + hk and

Wx�tk� ∈M\B�x�R∗
k�
}

+ Px

{
sup

t∈�tk� tk+1�
dist�Wx�t��Wx�tk�� > rk + hk and

Wx�tk� ∈ B�x�R∗
k�
}

(3.13)
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≤ Px

{
Wx�tk� ∈M\B�x�R∗

k�
}

+ Px

{
sup

t∈�tk� tk+1�
dist�Wx�t��Wx�tk�� > rk + hk and

Wx�tk� ∈ B�x�R∗
k�
}
�

For the first term on the right-hand side of (3.13) we have

Px

{
Wx�tk� ∈M\B�x�R∗

k�
} = ∫

M\B�x�R∗k�
p�x�u� tk�du�

and we will use (3.2) to ensure that it is small.
To estimate the second term, we apply Corollary 2.2. It says that, for any

point y ∈M,

Py

{
sup

t∈�0�tk+1−tk�
dist�Wy�t− tk�� y� > rk + hk

}
≤ δ−1

k�yPy

{
dist�Wy�tk+1 − tk�� y� > rk

}
�

where

δk�y ≡ inf
s∈�0� tk+1−tk�

inf
z∈∂B�y� rk+hk�

∫
B�z� hk�

p�s� z� u�du�

By taking y =Wx�tk� and by using the strong Markov property of Brownian
motion, we obtain

Px

{
sup

t∈�tk� tk+1�
dist�Wx�t��Wx�tk�� > rk + hk and Wx�tk� ∈ B�x�R∗

k�
}

≤ δ−1
k sup

y∈B�x�R∗k�
Py

{
dist

(
Wy�tk+1 − tk�� y

)
> rk

}
�

where

δk ≡ inf
y∈B�x�R∗k�

δk�y = inf
s∈�0� tk+1−tk�

inf
z∈B�x�R∗k+rk+hk�

∫
B�z� hk�

p�s� z� u�du�

As follows from (3.3), we have δk ≥ δ, whence

Px

{
sup

t∈�tk� tk+1�
dist�Wx�t��Wx�tk�� > rk + hk and Wx�tk� ∈ B�x�R∗

k�
}

≤ δ−1 sup
y∈B�x�R∗k�

∫
B�y� rk�

p�tk+1 − tk� y� u�du�

Finally, (3.13) implies

Px

{
sup

t∈�tk� tk+1�
dist�Wx�t��Wx�tk�� > rk + hk

}
≤

∫
M\B�x�R∗k�

p�x�u� tk�du+ δ−1 sup
y∈B�x�R∗k�

∫
B�y� rk�

p�tk+1 − tk� y� u�du
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and, by hypotheses (3.2) and (3.4),
∞∑
k=1

Px

{
sup

t∈�tk� tk+1�
dist�Wx�t��Wx�tk�� > rk + hk

}
<∞�

By the Borel–Cantelli lemma we conclude that, with probability 1 for all
large k,

sup
t∈�tk� tk+1�

dist�Wx�t��Wx�tk�� ≤ rk + hk�

Combining it with (3.12) we obtain that a.s., for all large k and all t ∈ �tk� tk+1�,
Wx�t� ∈M\B�x�Rk − rk − hk� =M\B�x� r�t���

which was required. ✷

4. Estimates of the integrals of the heat kernel. We denote by
V�x�R� the Riemannian volume of the ball B�x�R��

Lemma 4.1. Let a complete noncompact manifold M satisfy for some x ∈M
and for some R0 > 0 the following volume growth condition:

VolB�x�R� ≤ ARN

for all R > R0� For some ρ > 0, let the ball B�z� ρ� possess �a�2/n�-
isoperimetric inequality, where z is another point on M. Then for any R > R0,
t > 0 and D > 1 we have∫

M\B�z�R�
p�t� z� y�dy ≤ constA�N�a�n�D

tN/4 +RN/2 + dN/2

min	tn/4� ρn/2
 exp
(
− R2

2Dt

)
�

where d = dist�x� z��

Corollary 4.2. If, under the hypotheses of Lemma 4.1, z = x, then∫
M\B�x�R�

p�t� x� y�dy ≤ constA�N�a�n�D

tN/4 +RN/2

min	tn/4� ρn/2
 exp
(
− R2

2Dt

)
�

Proof of Lemma 4.1. Let us denote r = r�y� = dist�z� y�. We have, by the
Cauchy–Schwarz inequality,∫

M\B�z�R�
p�t� z� y�dy

≤
{∫

M
p2�t� z� y� exp

(
r2

Dt

)
dy

}1/2{∫
M\B�z�R�

exp
(
− r2

Dt

)
dy

}1/2

�

(4.1)

To treat the first integral on the right-hand side, we use the following results
of [9] (see also [7]). The integral∫

M
p2�t� z� y� exp

(
r2

Dt

)
dy



92 A. GRIGOR’YAN AND M. KELBERT

is known to be finite provided D > 1 and to be decreasing in t. Moreover, it
admits the following upper bound for any t < ρ2 (see [9], Corollary 4.2):∫

M
p2�t� z� y� exp

(
r2

Dt

)
dy ≤ const a�n

tn/2
�

Therefore, we can estimate it for all t > 0 as∫
M
p2�t� z� y� exp

(
r2

Dt

)
dy ≤ const a�n

min	tn/2� ρn
 �(4.2)

We estimate the second integral in (4.1) as follows, assuming R > R0:∫
M\B�z�R�

exp
(
− r2

Dt

)
dy =

∫ ∞
R

exp
(
− r2

Dt

)
drV�z� r�

= V�z� r� exp
(
− r2

Dt

)∣∣∣∣∞
R

+
∫ ∞
R

2r
Dt

exp
(
− r2

Dt

)
V�z� r�dr

≤
∫ ∞
R

2r
Dt

exp
(
− r2

Dt

)
V�z� r�dr�

Let us note that

V�z� r� ≤ V�x� r+ d� ≤ A�r+ d�N ≤ A2NrN +A2NdN�

whence ∫
M\B�z�R�

exp
(
− r2

Dt

)
dy ≤ 2N+1A

∫ ∞
R

rN+1

Dt
exp

(
− r2

Dt

)
dr

+ 2NA
∫ ∞
R

2rdN

Dt
exp

(
− r2

Dt

)
dr�

The second integral is equal to

2NAdN exp
(
−R

2

Dt

)
�

whereas, to estimate the first integral, we apply the following inequality:∫ ∞
q
sN+1 exp�−s2�ds ≤ constN�1+ qN� exp�−q2��

where q > 0 is arbitrary (see Appendix B for the proof).
Hence, we proceed as follows:∫

M\B�z�R�
exp

(
− r2

Dt

)
dy ≤ 2N+1A

∫ ∞
R/
√
Dt
DN/2tN/2sN+1 exp�−s2�ds

+ 2NAdN exp
(
−R

2

Dt

)
(4.3)
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≤ constA�D�Nt
N/2

(
1+

(
R√
Dt

)N)
exp

(
−R

2

Dt

)
+ 2NAdN exp

(
−R

2

Dt

)
≤ constA�N�D

(
tN/2 +RN + dN)

exp
(
−R

2

Dt

)
�

Finally, we substitute inequalities (4.4) and (4.2) into (4.1). ✷

Lemma 4.3. If a manifold M satisfies hypothesis (U) of Theorem 1.2, then,
for any x ∈M and any R > 0,∫

B�x�R�
p�t� x� y�dy ≤ const a� ν

V�x�R�
V�x�√t� �

Proof. We apply the result of [9] (see [9], Proposition 5.2) which says, in
particular, that the uniform isoperimetric inequality (U) implies the following:

(i) the heat kernel upper bound for all x�y ∈M and all t > 0,

p�t� x� y� ≤ const a� ν
V�x�√t� �(4.4)

(ii) the volume comparison condition: for any two balls B�y� r� ⊂ B�x�R�,
V�x�R�
V�y� r� ≤ const a�ν

(
R

r

)ν
�(4.5)

By using (4.4) we obtain∫
B�x�R�

p�t� x� y�dy ≤ const a� ν
V�x�√t�V�x�R��

which was to be proved. ✷

Remark 4.1. We have not used (4.5) in the proof, but we have mentioned
it for further applications.

Lemma 4.4. Let a complete noncompact manifoldM satisfy, for some x ∈M
and all R > 0, the volume growth condition

VolB�x�R� ≤ v�R��(4.6)

where the function v�·� is increasing on �0�+∞� and, for all R > 0,

v�2R�
v�R� ≤ A(4.7)
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with a (large) constant A� Also let the following inequality hold for any t > 0
and some C:

p�t� x� x� ≤ C

v�√t� �(4.8)

Then, for all R > 0, t > 0 and D > 1,∫
M\B�x�R�

p�t� x� y�dy ≤ constA�C�D exp
(
− R2

2Dt

)
�(4.9)

Proof. We start again with inequality (4.1):∫
M\B�x�R�

p�t� x� y�dy

≤
{∫

M
p2�t� x� y� exp

(
r2

Dt

)
dy

}1/2{∫
M\B�x�R�

exp
(
− r2

Dt

)
dy

}1/2

�

(4.10)

where r = r�y� = dist�x�y�� To estimate the first integral on the right-hand
side, we apply the result of [10] which says that the heat kernel on-diagonal
bound (4.8) known to be true at a point x and for all t > 0 implies, for any
D > 1� ∫

M
p2�t� x� y� exp

(
r2

Dt

)
dy ≤ constA�C�D

v�√t�(4.11)

provided the function v�·� satisfies the doubling property (4.7) that holds now.
The second integral in (4.10) can be estimated by using the upper bound of

the volume (4.6). As in the previous proof, we have∫
M\B�x�R�

exp
(
− r2

Dt

)
dy ≤

∫ ∞
R

2r
Dt

exp
(
− r2

Dt

)
V�x� r�dr

≤ 2
Dt

∫ ∞
R
rv�r� exp

(
− r2

Dt

)
dr�

By changing a variable s = r/
√
Dt, we get

2
Dt

∫ ∞
R
rv�r� exp

(
− r2

Dt

)
dr = 2

∫ ∞
R/
√
Dt
sv�s

√
Dt� exp�−s2�ds�

Let us denote w�s� = sv�s√Dt� and note that w�s� is an increasing function
and, for any s > 0,

w�2s� ≤ 2Aw�s��
As will be proved in Appendix B, for any positive q,∫ ∞

q
w�s� exp�−s2�ds ≤

(
K+ 2A

w�q�
q

)
exp�−q2��

where K ≡ w�q0��q0 + 2A/q0� and q0 =
√

1
3 log 2A.
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Let us notice that (4.7) implies the following inequality for all positive r1� r2:

v�r2�
v�r1�

≤ A

(
1+ r2

r1

)log2 A

�(4.12)

Indeed, if r2 ≤ r1, then this is true simply by monotonicity of v�·�� If r2 > r1�
then (4.12) is obtained by successive application of (4.7) to the balls of radii
r1�2r1�4r1� � � � at most 1+ log2�r2/r1� times (see Appendix C for details).

Returning to the constant K� we have obviously

K = q0v
(
q0

√
Dt

)(
q0 +

2A
q0

)
≤ constA�D

(
1+ q0

√
D
)log2 Av

(√
t
) = constA�Dv

(√
t
)
�

whence
2
Dt

∫ ∞
R
rv�r� exp

(
− r2

Dt

)
dr ≤ constA�D

(
v
(√
t
)+ v�R�) exp

(
−R

2

Dt

)
�

By combining this inequality with (4.11) and (4.10) we arrive at∫
M\B�x�R�

p�t� x� y�dy ≤ constA�C�D

(
1+ v�R�

v�√t�

)1/2

exp
(
− R2

2Dt

)
�

Since, by (4.12),

v�R�
v�√t� ≤ A

(
1+ R√

t

)log2 A

�

and the polynomial of R/
√
t can be absorbed by the exponential

exp�−R2/�2Dt�� at the cost of slightly increasing D� then we obtain (4.9). ✷

Corollary 4.5. If the manifold M satisfies hypothesis (U) of Theorem 1.2,
then, for all x ∈M, t > 0, R > 0 and D > 1,∫

M\B�x�R�
p�t� x� y�dy ≤ const a� ν�D exp

(
− R2

2Dt

)
�(4.13)

Indeed, let us fix x and take v�r� ≡ V�x� r�� As was mentioned in the course
of the proof of Lemma 4.3, condition (U) implies both (4.7) and (4.8) so that
Lemma 4.4 is applicable and yields (4.13).

Lemma 4.6. If the manifold M has a nonnegative Ricci curvature, then, for
all x ∈M, t > 0, R > 0 and D ∈ �0�1�,∫

M\B�x�R�
p�t� x� y�dy ≥ const n�Dθ

(
R√
t

)
exp

(
− R2

2Dt

)
�(4.14)

where

θ�s� ≡ const n

{
sn� if s ≤ 1�
sλ� if s > 1�

(4.15)

n = dimM and λ = λ�n� > 0�
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Proof. By the theorem of Li and Yau [12], on a manifold with nonnegative
Ricci curvature, there is the following uniform lower bound of the heat kernel:

p�t� x� y� ≥ const n�D
V�x�√t� exp

(
− r2

2Dt

)
�(4.16)

where r = dist�x�y� and D ∈ �0�1� is arbitrary.
Therefore, by taking any ε > 0� we have∫

M\B�x�R�
p�t� x� y�dy

≥ const n�D
V�√t�

∫ ∞
R

exp
(
− r2

2Dt

)
drV�x� r�

≥ const n�D
V�√t�

∫ �1+ε�R
R

exp
(
− r2

2Dt

)
drV�x� r�

≥ const n�D
V�√t� exp

(
−�1+ ε�

2R2

2Dt

)(
V�x� �1+ ε�R� −V�x�R�)�

On a manifold of nonnegative Ricci curvature one has, for any R2 > R1 > 0
and z ∈M,

V�z�R2�
V�z�R1�

≤
(
R2

R1

)n
�(4.17)

The property (4.17) (and, more generally, the doubling volume property) im-
plies on any noncompact complete manifold that, for any ε > 0,

V�x� �1+ ε�R�
V�x�R� ≥ 1+ δ�

where δ = δ�n� ε� > 0 (see Appendix C for the proof), whence

V�x� �1+ ε�R� −V�x�R� ≥ δV�x�R�
and ∫

M\B�x�R�
p�t� x� y�dy ≥ const n� ε�D

V�x�R�
V�x�√t� exp

(
−�1+ ε�

2R2

2Dt

)
�(4.18)

Next, let us show that, for any positive R1� R2,

V�x�R1�
V�x�R2�

≥ θ

(
R1

R2

)
�(4.19)

where θ�·� is defined by (4.15). Indeed, if R1 ≤ R2, then this follows from
(4.17). If R1 > R2, then we apply another consequence of (4.17) which says
(see Appendix C) that

V�x�R1�
V�x�R2�

≥ c

(
R1

R2

)λ
�

where c and λ are positive and depend on n only.
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Applying (4.19) in (4.18), we obtain∫
M\B�x�R�

p�t� x� y�dy ≥ const n� ε�D θ
(
R√
t

)
exp

(
−�1+ ε�2 R

2

2Dt

)
�

whence we get (4.14) by taking ε to be small enough and by absorbing �1+ ε�2
into D� ✷

5. Proof of Theorem 1.1 (Upper radius
√

t log t). Let ρ be the weak
bounded geometry radius of M and let �a�2/n�-isoperimetric inequality hold
in any ball of radius ρ� In order to construct the upper radius, we will apply
Corollary 2.4. Let us define the function h�t� in the following way:

h�t� =
{√

ct� for t < t0�√
bt log t� for t ≥ t0�

where the constant b is so far any positive number, c will be chosen below
to be large enough and t0 is taken from b log t0 = c to ensure continuity and
monotonicity of h�t�,

t0 = exp
(
c

b

)
�(5.1)

Let us also define the function ��t� in a similar way:

��t� = h�t� +
{√

c̃t� for t < t0�√
b̃t log t� for t ≥ t0�

where b̃ > 0 and c̃ are determined from the condition

c̃ = b̃c

b

to ensure continuity and monotonicity of ��t�.
We will see later that b should be taken greater than N/2 but arbitrarily

close to N/2, and b̃ should be greater than N/2 + 2 but arbitrarily close to
N/2+ 2� For such b and b̃ we will have

c̃ ≤ constN c�

which will be used below.
First we verify hypothesis (2.7) of Corollary 2.4. Given a large enough t,

namely,

t > max
{
t0� ρ

2� h−1�R0�
}
�(5.2)

any z ∈ ∂B�x���t�� and any s ∈ �0� t�� we will show that∫
B�z� h�t��

p�s� z� y�dy > 1
2(5.3)

provided c is chosen large enough.
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Lemma 4.1 yields the following for R = h�t� > R0, d ≡ dist�x� z� = ��t�
and any D > 1:∫

M\B�z� h�t��
p�s� z� y�dy

≤ constA�N�a�n�D

sN/4 + h�t�N/2 +��t�N/2

min	sn/4� ρn/2
 exp
(
−h�t�

2

2Ds

)
�

First of all, we show that s can be replaced by t at its any occurrence on the
right-hand side. To that end, it suffices to verify that the function

1
min	sn/4� ρn/2
 exp

(
−h�t�

2

2Ds

)
is increasing in s on �0� t�� If s ≥ ρ2, then this is obvious. If s < ρ2, then the
logarithmic derivative of this function is equal to

−n
4

1
s
+ h�t�2

2D
1
s2
�

which is positive provided

s <
2h�t�2
nD

�(5.4)

Since s ≤ t and for all t > 0 we have h�t� ≥ √ct� then (5.4) will follow from

2c
nD

> 1�

which can be ensured by taking c large enough. Hence, we obtain∫
M\B�z� h�t��

p�s� z� y�dy

≤ constA�N�a�n�D

tN/4 + h�t�N/2 +��t�N/2

min	tn/4� ρn/2
 exp
(
−h�t�

2

2Dt

)
�

By (5.2) we have ��t� > h�t� = √
bt log t ≥ √ct ≥ √t� and the inequality

above amounts to∫
M\B�z�h�t��

p�s� z� y�dy ≤ constA�N�a�n�D� ρ��t�N/2 exp
(
−h�t�

2

2Dt

)
= constA�N�a�n�D� ρ�t log t�N/4 exp

(
−b log t

2D

)
= constA�N�a�n�D� ρ�log t�N/4t−�b/�2D�−N/4�

(5.5)

It is easy to prove that the function

t−β logα t
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is decreasing when log t > α/β (assuming that α and β are positive). Whatever
is b > N/2, there exists D > 1 (may be very close to 1) such that

b

2D
− N

4
> 0�

Therefore, if

log t >
N/4

b/�2D� −N/4
�

then the right-hand side of (5.5) is decreasing in t� We would like to have this
property for all t ≥ t0� To that end it suffices to have

log t0 >
N/4

b/�2D� −N/4

or, by (5.1),

c >
bN/4

b/�2D� −N/�4� �

which may be assumed to be true by the choice of c.
Therefore, we proceed with (5.5) as follows:∫
M\B�z� h�t��

p�s� z� y�dy ≤ constA�N�a�n�D� ρ�log t0�N/4t
−�b/�2D�−N/4�
0

= constA�N�a�n�D� ρ

(
c

b

)N/4

exp
{
− c
b

(
b

2D
− N

4

)}
�

Again by choosing c to be large enough, we obtain that the right-hand side is
smaller than 1

2 �
Thus, we conclude, that for a proper choice of c we have∫

M\B�z� h�t��
p�s� z� y�dy < 1

2

for all large t� Since the polynomial volume growth (1.5) implies stochastical
completeness of the manifold (see [6]), then, for any s > 0 and z ∈M,∫

M
p�s� z� y�dy ≡ 1�

and we deduce that, for all z ∈ ∂B�x���t�� and t large enough,∫
B�z� h�t��

p�s� z� y�dy > 1
2 �(5.6)

Hence, we have verified hypothesis (2.7) of Corollary 2.4.
Now let us check hypothesis (2.6). By Corollary 4.2 for R = ��t� − h�t� =√
b̃t log t and by R >

√
t (which can be assumed for large enough t) we have,

for large t, ∫
M\B�x�R�

p�t� x� y�dy ≤ const
RN/2

ρn/2
exp

(
− R2

2Dt

)
�
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Therefore∫ ∞(∫
M\B�x���t�−h�t��

p�t� x� y�dy
)
dt ≤ const

∫ ∞ RN/2

ρn/2
exp

(
− R2

2Dt

)
dt

≤ const
∫ ∞(̃

bt log t
)N/4 exp

(
− b̃ log t

2D

)
dt

= const
∫ ∞

t−�̃b/�2D�−N/4� logN/4 t dt�

which is finite whenever b̃/�2D� −N/4 > 1 or b̃ > N/2 + 2 (since D can be
taken arbitrarily close to 1). By Corollary 2.4 the function ��t+ε� is the upper
radius of Wx�t� with any ε > 0�

To finish the proof we are left to notice that, for large t,

��t+ ε� = (√
b+

√
b̃
)√�t+ ε� log�t+ ε� <

√
�2N+ 4�t log t

since √
N

2
+

√
N

2
+ 2 < 2

√
N

2
+ 1 =

√
2N+ 4�

and b and b̃ can be taken arbitrarily close to N/2 and N/2+2, respectively. ✷

6. Proof of Theorem 1.2 (Lower radius). We will use Corollary 3.2
to construct the lower radius, and Lemma 4.3 and Corollary 4.5 to obtain
the necessary heat kernel estimates. Let us note that the latter two results
are applicable because they require only condition (U), which holds by the
hypothesis of Theorem 1.2.

Let 	tk
� 	Rk
� 	rk
� 	hk
 be so far arbitrary positive increasing sequences.
Let us impose on these sequences conditions strong enough to make them
satisfy all the assumptions of Corollary 3.2. By Lemma 4.3, hypothesis (3.8)
will follow from

∞∑
k=1

V�x�Rk�
V�x�√tk�

<∞�(6.1)

We assume in the sequel that Rk <
√
tk; then, by condition (V) of Theorem

1.2, (6.1) is implied by

∞∑
k=1

(
Rk√
tk

)n
<∞�(6.2)

Hypothesis (3.9) will follow with δ = 1
2 from

sup
s∈�0� tk+1−tk�

sup
z∈M

∫
M\B�z� hk�

p�s� z� y�dy ≤ 1
2 �(6.3)
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Indeed, as we know from the proof of Lemma 4.3, hypothesis (U) implies a
polynomial volume growth which, in turn, ensures stochastical completeness
of the manifold (see [6]), that is,∫

M
p�s� z� y�dy ≡ 1�

To get (6.3), we apply Corollary 4.5, which yields for any D > 1,

sup
s∈�0� tk+1−tk�

sup
z∈M

∫
M\B�z� hk�

p�s� z� y�dy ≤ const a� ν�D exp
(
− h2

k

2D�tk+1 − tk�
)

so that (3.9) will follow from

h2
k ≥H�tk+1 − tk��(6.4)

where H is a big enough constant which depends only on a� ν�D (we will
choose D > 1 later on)�

Similarly, hypothesis (3.4) will be implied by
∞∑
k=1

exp
(
− r2

k

2D�tk+1 − tk�
)
<∞�(6.5)

Of course, we also have to satisfy (3.6) and (3.7): they will follow from

lim
k→∞

Rk+1

Rk

= 1(6.6)

and

hk + rk = o�Rk� as k→∞�(6.7)

Now let us show how to choose the sequences so that all the conditions
(6.2), (6.4), (6.5), (6.6) and (6.7) hold. Assuming that 	tk
 has been chosen,
let us define 	Rk
, 	hk
 and 	rk
 to satisfy (6.2), (6.4) and (6.5), respectively.
Namely, let us take, for some λ > 1,

Rk =
√
Ftk

(
1

k logλ k

)1/n

�

rk =
√
G�tk+1 − tk� log k

and

hk =
√
H�tk+1 − tk��

where F is an arbitrarily large constant, H is as above and G > 2D so that
(6.5) holds.

Obviously, hk = o �rk� as k→∞ so we need to compare only Rk and rk to
ensure (6.7). We have(

rk
Rk

)2

= const
tk+1 − tk

tk
k2/n�log k�1+2λ/n�
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whence we see that (6.7) will follow from

tk+1 − tk
tk

= O
(
k−2/n log−ω k

)
(6.8)

provided

ω > 1+ 2λ
n
�(6.9)

The following sequence 	tk
 satisfies (6.8):

log tk =
k1−2/n

logω k
(6.10)

(note that n > 2 so that tk →∞ as k→∞). Since for this sequence

lim
k→∞

tk+1

tk
= 1�

then we have (6.6) as well.
We are left to find Rk as a function of tk� We have from (6.10), for large k,

log log tk > const n�ω log k

and

k = (
log tk logω k

)n/�n−2�
< const n�ω

(
log tk�log log tk�ω

)n/�n−2�
�

whence

Rk ≥
const n�ω� λ

√
Ftk

log1/�n−2� tk�log log tk�ω/�n−2�+λ/n �

If we take λ close enough to 1 and choose ω to be sufficiently close to
1+ 2λ/n, then ω/�n− 2� + λ/n can be made arbitrarily close to

1+ 2/n
n− 2

+ 1
n
= 2
n− 2

�

Since F is arbitrary, then by Corollary 3.2 the function

��t� = C
√
t

log1/�n−2� t�log log t��2+ε�/�n−2�

is the lower radius for Wx�t� for any C > 0 and ε > 0� ✷

The proof can be obviously modified to improve the function ��t� slightly, to

��t� = C
√
t

log1/�n−2� t�log log t�2/�n−2��log log log t��1+ε�/�n−2� �

To that end, one chooses the sequences as follows:

Rk =
√
Ftk

(
k−1 log−1 k�log log k�−λ)1/n



BROWNIAN MOTION ON A RIEMANNIAN MANIFOLD 103

and
tk+1 − tk

tk
= O

(
k−2/n log−�1+2/n� k�log log k�−ω)�

where λ > 1 and ω > �2λ�/n. The sequence tk satisfying this condition is
defined from

log tk = k1−2/n log−�1+2/n� k�log log k�−ω�
whence we get

Rk ≥
const n�ω� λ

√
Ftk

log1/�n−2� tk�log log tk�2/�n−2��log log log tk�ω/�n−2�+λ/n �

Finally, we notice that ω/�n− 2� + λ/n can be made arbitrarily close to
�2/n�/�n− 2� + 1/n = 1/�n− 2�� ✷

7. Proof of Theorem 1.3 (Upper radius
√

t log log t). We will apply
Corollary 2.6 to construct the upper function. A slightly modified argument
from the previous proof shows that for the function

h�t� =
√
Ht

with a large constant H =H�a� ν�� and for all x ∈M, t > 0 we have∫
M\B�x�h�t��

p�t� x� y�dy > 1
2 �

Let us take ��t� = √
αt log log t with arbitrary α > 2 and show that it is

the upper function. To that end, we choose ε > 0 to be so small that

α�1− ε�2 > 2

and take tk = �1+ε�k� Then hypothesis (2.9) of Corollary 2.6 is obviously true,
and we are left to verify (2.10).

Since h�t� < ε��t� for large enough t, then by Corollary 4.5 we have
∞∑
k=1

∫
M\B�x���tk�−h�tk��

p�tk� x� y�dy ≤
∞∑
k=1

∫
M\B�x� �1−ε���tk��

p�tk� x� y�dy

≤ const a� ν�D
∞∑
k=1

exp
(
−�1− ε�2�

2�tk�
2Dtk

)

= const a� ν�D
∞∑
k=1

exp
(
−�1− ε�

2α

2D
log log tk

)

= const a� ν�D
∞∑
k=1

�k log�1+ ε��−�1−ε�2α/�2D��

which is finite provided D > 1 is chosen close enough to 1 to ensure
�1− ε�2α/�2D� > 1. ✷
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8. Proof of Theorem 1.4 (Lower bound of the upper radius). Let us
set ��t� = √

2t log log t and prove that on a manifold of nonnegative Ricci
curvature the function �1 − ε���t� is not an upper radius for any ε > 0. Let
us fix a point x ∈M, numbers T > 1� α ∈ �0�1�� set tk = Tk, k = 1�2� � � � � and
introduce the events

Ak =
{
dist

(
Wx�tk+1��Wx�tk�

)
> α��tk+1 − tk�

}
�

Our purpose is to show that

∞∑
k=1

Px�Ak� = ∞�(8.1)

Indeed, suppose that we have (8.1) already. Since the events Ak are inde-
pendent, we may conclude by the Borel–Cantelli lemma that infinitely many
events of Ak occur with probability 1.

On the other hand, by Theorem 1.3 we have that, with probability 1 for
large k,

Wx�tk� ∈ B�x�β��tk���(8.2)

where β > 1� Therefore, there exist a.s. an infinite number of k’s such that Ak

and (8.2) occur simultaneously. For those k� we have

dist�Wx�tk+1�� x� ≥ dist�Wx�tk+1��Wx�tk�� − dist�Wx�t�� x�
≥ α��tk+1 − tk� − β��tk��

Thus, we are left to choose α, β and T so that (8.1) holds and

α��tk+1 − tk� − β��tk� ≥ �1− ε���tk+1��(8.3)

which would imply almost surely

Wx�tk+1� ∈M\B
(
x� �1− ε���tk+1�

)
for infinitely many k’s and, thus, the function �1−ε���tk+1� is no upper radius.

By Lemma 4.6 we have, for any z ∈M, t > 0, D ∈ �0�1� and R >
√
t,

Pz	dist�Wz�t�� z� ≥ R
 =
∫
M\B�z�R�

p�t� z� y�dy ≥ const n�D exp
(
− R2

2Dt

)
�

Since for large t we have α��t� > t� we may apply this inequality with R =
α��t�� We obtain that, for any k large enough and for T large enough,

Px�Ak� ≥ const n�D exp
(
−α

2�2�tk+1 − tk�
2D�tk+1 − tk�

)
= const n�D exp

(
−α

2

D
log log�tk+1 − tk�

)
≥ const n�D�α�T

kα2/D
�
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We see that for any α < 1 there exists D < 1 such that α2/D < 1 and,
hence, (8.1) holds.

Let us verify (8.3). We first note that, for all k ≥ 1,

��tk�
��tk+1�

≤ 1√
T

and

��tk+1 − tk�
��tk+1�

=
√
�1−T−1� log logTk+1�1−T−1�

log logTk+1
≥ 1− δ�T��

where δ�T� → 0 as T→∞.
Therefore, for sufficiently large T and for α close enough to 1,

α��tk+1 − tk� − β��tk� ≥
(
α�1− δ�T�� − βT−1/2)��tk+1�

≥ �1− ε���tk+1��
which was required. ✷

APPENDIX A

Proof of Lemma 2.5. Of course, if f�t� is monotone, then the statement
of the lemma is true for any ξ > 0� However, we do not know a priori that the
function, to which we apply the lemma, is monotone.

Let us take any numbers a� b such that 0 < a < b < ε and prove that
∞∑
k=1

∫ b

a
f�kξ�dξ <∞�(A.1)

which would then imply (2.8). A change of variable in the integral (A.1) reduces
it to

∞∑
k=1

1
k

∫ bk

ak
f�ζ�dζ�(A.2)

Let us consider the family of all intervals �ak� bk�, k = 1�2� � � � � They over-
lap for large k but it is possible to estimate from above the multiplicity of
overlapping which will provide an upper bound of (A.2) in terms of the inte-
gral ∫ ∞

0
f�t�dt�

To that end, let us enumerate in increasing order all numbers in the union
	ak
 ∪ 	bk
, k = 1�2� � � � � and denote them by 	αi
, i = 1�2� � � � � The sum
(A.1) is represented as

∞∑
i=1

wi

∫ αi+1

αi

f�ζ�dζ�

where wi is the sum of 1/k over all k’s such that

�αi� αi+1� ⊂ �ak� bk��
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which is equivalent to
αi+1

b
≤ k ≤ αi

a
�

Therefore, the weight wi admits the estimate

wi =
∑

αi+1/b≤k≤αi/a

1
k
≤ αi/a− αi+1/b+ 1

αi+1/b
<
b

a

αi
αi+1

+ b

αi+1
<

2b
a
�

and we have
∞∑
k=1

1
k

∫ bk

ak
f�ζ�dζ ≤ 2b

a

∞∑
i=1

∫ αi+1

αi

f�ζ�dζ ≤ 2b
a

∫ ∞
0
f�ζ�dζ <∞�

which was to be proved. ✷

APPENDIX B

Some elementary integral estimates.

Lemma B.1. Let w�r� be a positive increasing function on �0�+∞� such
that, for any r > 0,

w�2r�
w�r� ≤ A�(B.1)

Let ρ = √�1/3� logA and K = w�ρ��ρ+A/ρ�� Then, for any r ≥ ρ,∫ ∞
r
w�s� exp�−s2�ds ≤ A

w�r�
r

exp�−r2�(B.2)

and, for any positive r < ρ,∫ ∞
r
w�s� exp�−s2�ds ≤K exp�−r2��

In particular, for any r > 0,∫ ∞
r
w�s� exp�−s2�ds ≤

(
K+Aw�r�

r

)
exp�−r2��(B.3)

Proof. Let us consider a sequence rk = r2k, k = 0�1�2� � � � � and split the
integral (B.2) as follows:∫ ∞

r
w�s� exp�−s2�ds =

∞∑
k=0

∫ rk+1

rk

w�s� exp�−s2�ds

≤
∞∑
k=0

w�rk+1�
∫ rk+1

rk

exp�−s2�ds

≤
∞∑
k=0

w�rk+1�
∫ ∞
rk

exp�−s2�ds�
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It is easy to show that, for any r > 0,∫ ∞
r

exp�−s2�ds ≤ 1
2r

exp�−r2��

whence ∫ ∞
r
w�s� exp�−s2�ds ≤

∞∑
k=0

w�rk+1�
1

2rk
exp�−r2

k�

≤ A

2

∞∑
k=0

w�rk�
rk

exp�−r2
k��

Let us estimate the ratio of any two consecutive terms in the sum above:

w�rk+1�
rk+1

exp�−r2
k+1� �

w�rk�
rk

exp�−r2
k� ≤

A

2
exp�−3r2

k��

We see that if 3r2
k ≥ logA� then the kth term is larger than the next one by

at least a factor 2� Therefore, if 3r2 ≥ logA, which is equivalent to r ≥ ρ, then

∞∑
k=0

w�rk�
rk

exp�−r2
k� ≤

w�r�
r

exp�−r2�
(

1+ 1
2
+ 1

22
+ · · ·

)
≤ 2

w�r�
r

exp�−r2�

and ∫ ∞
r
w�s� exp�−s2�ds ≤ A

w�r�
r

exp�−r2��

For r < ρ we have∫ ∞
r
w�s� exp�−s2�ds =

∫ ρ

r
w�s� exp�−s2�ds+

∫ ∞
ρ
w�s� exp�−s2�ds

≤ w�ρ�
∫ ρ

r
exp�−s2�ds+Aw�ρ�

ρ
exp�−ρ2�

≤ w�ρ�ρ exp�−r2� +Aw�ρ�
ρ

exp�−r2�

=K exp�−r2�� ✷

Corollary B.2. For any N ≥ 0 and q > 0,∫ ∞
q
sN+1 exp�−s2�ds ≤ constN�1+ qN� exp�−q2��

APPENDIX C

Some useful implications. Here we describe the relationships between
such properties as �a� ν�-isoperimetric inequality, doubling volume property,
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lower bound on Ricci curvature and so on. Let us say that a manifold M
possesses a restricted doubling volume property if the following holds:

(D) For some A > 0 and ρ > 0� for any ball B�x�R� ⊂M of radius R < ρ,

V�x�R�
V�x�R/2� ≤ A�

We say that a manifold M possesses a restricted weak Poincaré inequality if
the following holds:

(P) For some b > 0 and ρ > 0� for any ball B�x�R� ⊂ M of radius R < ρ
and for any function f ∈ C∞�B�x�R��,∫

B�x�R�

∣∣∇f�y�∣∣2 dy ≥ b

R2

∫
B�x�R/2�

(
f�y� − f)2

dy�

where

f ≡ 1
V�x�R/2�

∫
B�x�R/2�

f�y�dy�

If ρ = ∞ in either of these properties, then we do not apply the adjective
“restricted” to it.

The following diagram shows connections between the conditions which
have been used in this paper:

Ricci ≥ −K2
�i��⇒ (D) and (P)

�vii�⇐⇒ Harnack inequality

⇓�ii�
weak bounded geometry

⇓�iii�
V�x�R�
V�x�r� ≥ c

(
R
r

)λ
∀ r < R < ρ

�vi�⇐� condition (D)
�v��⇒

V�x�R�
V�x�r� ≥ 1+ ψ(R

r

)
∀ r < R < ρ

⇓�iv�
V�x�R�
V�x�r� ≤ C

(
R
r

)N
∀ r < R < ρ

When departing from the Ricci curvature assumption, ρ can be taken to be
arbitrary but finite for K > 0� and ρ = ∞ for K = 0. The radius ρ is preserved
by every implication. In particular, if one of the properties holds with ρ = ∞,
then all its descendants also have ρ = ∞� For example, this is the case when
K = 0�

Let us mention also that a weak bounded geometry with ρ = ∞ is noth-
ing other than property (U) of Theorem 1.2, so that we have the following
implications:

Ricci ≥ 0 ⇒ (D) and (P) with ρ = ∞ ⇒ condition (U)�
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Implication (i) was proved in [2] (the case K = 0 was also considered in
[8]), implication (ii) was proved in [8], Theorem 1.4, and implication (iii) was
proved in [9], Proposition 5.2. Although the latter two references dealt with
the case ρ = ∞ only, the case ρ <∞ can be treated by the same arguments.

In implications (iv) and (vi), the constants C, c, N and λ are positive and
depend only on the constant A from (D). The function ψ from (v) is

ψ�s� = C−1
(
s− 1
s+ 3

)N
�

Although this function is not optimal, it is sufficient for our purposes to know
that ψ > 0.

Implications (iv)–(vi) are well known (see, e.g., [8], Theorem 1.1); neverthe-
less we present their proof here for convenience of the reader. The equivalence
(vii) is discussed in the next section.

Proof of (iv). Let k ≥ 0 be an integer such that

2k ≤ R

r
< 2k+1�(C.1)

Then by applying (D) at most k + 1 times to the consecutive concentric balls
of radii r�2r�4r� � � � we get

V�x�R�
V�x� r� ≤ Ak+1 ≤ A1+log2 �R/r� ≤ A

(
R

r

)log2 A

� ✷

Proof of (v). Let z be an arbitrary point on the sphere ∂B�x� �R+ r�/2�
(existence of z follows from noncompactness and completeness of the man-
ifold). Since the annulus B�x�R�\B�x� r� contains the ball B�z� �R− r�/2�
and B�x� r� ⊂ B�z� r+ �R+ r�/2� then, by (iv),

V�x� r� ≤ V

(
z� r+ R+ r

2

)
≤ C

(
R+ 3r
R− r

)N
V

(
z�
R− r

2

)
≤ C

(
R+ 3r
R− r

)N
�V�x�R� −V�x� r���

whence

V�x�R�
V�x� r� ≥ 1+C−1

(
R− r
R+ 3r

)N
� ✷

Proof of (vi). If R = 2r, then we have, by (v),

V�x�2r�
V�x� r� ≥ 1+ δ�

where δ = δ�A� > 0�
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Let k be as in (C.1). If k ≥ 1, then

V�x�R�
V�x� r� ≥ �1+ δ�

k ≥ �1+ δ�log2 �R/r�−1 = �1+ δ�−1
(
R

r

)λ
�

where λ = log2�1+ δ�� Finally, if k = 0, then

V�x�R�
V�x� r� ≥ 1 ≥ 2−λ

(
R

r

)λ
� ✷

APPENDIX D

A Harnack inequality. We say that a manifold possesses a restricted
parabolic Harnack inequality if the following holds:

(H) there are positive numbers ρ and C such that, for any x ∈ M� for
any R ∈ �0� ρ� and for any positive solution u�x� t� to the diffusion equation
∂u/∂t = 1

2�u defined in the cylinder B�x�R�×�0�R2�� the following inequality
holds:

sup
B�x�R�×�R2�2R2�

u ≤ C inf
B�x�R�×�3R2�4R2�

u�(D.1)

If ρ = ∞, then we refer to (H) as a parabolic Harnack inequality.
As was proved in [13] [and as was mentioned above as implication (vii)],

(H) is equivalent to the conjunction of (D) and (P). (Implications (D) & (P)⇒
(H)⇒ (D) were proved also in [8].) We have the following theorem:

Theorem D.1. Let (H) hold with ρ = ∞ on a complete noncompact mani-
fold M� Then the following hold:

(a) for any ε > 0 the function
√�2+ ε�t log log t is an upper radius for the

Brownian motion;
(b) for some sufficiently small ε > 0 the function

√
εt log log t is not an upper

radius;
(c) if for a point x ∈M condition (V) from Theorem 1.2 holds, then for any

C > 0 and ε > 0 the function

C
√
t

log1/�n−2� t�log log t��2+ε�/�n−2�

is a lower radius for Wx�t��

Proof. Indeed, as (H) implies condition (U) [via (P) and (D)] then Theorem
1.3 yields (a). The Harnack inequality implies also the lower bound of the
heat kernel (4.16) from the proof of Theorem 1.4, so that the proof may be
repeated again. The only difference from the case of Theorem 1.4 is that the
constant D is now only positive rather than close to 1, which yields the lower
estimate of the upper radius as

√
εt log log t rather than

√�2− ε�t log log t�
Finally, Theorem 1.2 is applicable and gives (c). ✷
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The Harnack inequality (H) with ρ = ∞ is true on a manifold of non-
negative Ricci curvature (see [12]). In this case Theorem 1.4 provides a better
estimate than (b). However, if the manifold M is quasiisometric to one with
nonnegative Ricci curvature, then Theorem 1.4 may not be applicable, whereas
Theorem D.1 works because the Harnack inequality (H) is stable under quasi-
isometry (see [13]).

Acknowledgment. The authors are obliged to A. Ancona for the refer-
ence to [5].
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