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PATH PROPERTIES OF SUPERPROCESSES WITH
A GENERAL BRANCHING MECHANISM

By Jean-Fran
ois Delmas

ENPC-CERMICS

We first consider a super Brownian motion X with a general branching
mechanism. Using the Brownian snake representation with subordination,
we get the Hausdorff dimension of suppXt, the topological support of Xt

and, more generally, the Hausdorff dimension of
⋃

t∈B suppXt. We also
provide estimations on the hitting probability of small balls for those ran-
dom measures. We then deduce that the support is totally disconnected
in high dimension. Eventually, considering a super α-stable process with a
general branching mechanism, we prove that in low dimension this random
measure is absolutely continuous with respect to the Lebesgue measure.

1. Introduction. Superprocesses �Xt� t ≥ 0� are measure valued branch-
ing processes whose distribution can be characterized by a pair �γ���, where
γ is the underlying Markov process, playing the role of the spatial motion,
and � is the branching mechanism function. We refer to [10, 11] for basic
facts about superprocesses and their construction as limits of branching par-
ticle systems. Some recent studies on super-Brownian motion [corresponding
to the case when γ is a Brownian motion in R

d and ��λ� = λ2] give the exact
Hausdorff measure of its support suppXt, at fixed time t > 0; see [20, 21], [8],
[25]; see also [7], Theorem 9.3.3.5 for the Hausdorff dimension of suppXt with
��λ� = λ1+ρ, ρ ∈ �0�1�. The proof relies on approximation of super-Brownian
motion by branching particle systems. Another way to study this superpro-
cess is to use the Brownian snake introduced by Le Gall [17, 18] which is a
path valued Markov process. In [3], Bertoin, Le Gall and Le Jan succeeded
through a subordination method in using the Brownian snake to represent
superprocesses with a rather general branching mechanism. Their construc-
tion applies in particular to the stable case ��λ� = λ1+ρ for ρ ∈ �0�1�. In the
present paper, we shall use this path representation to derive some properties
of the �γ��� superprocess when γ is a Brownian motion in R

d and � is of the
type considered in [3]. In particular, we give the Hausdorff dimension of the
closure of

⋃
t∈B suppXt, when B is a closed subset of �0�∞� (Theorem 2.1). We

also provide sufficient conditions for the a.s. absolute continuity of the mea-
sure Xt (Theorem 2.5), thus extending to a general branching mechanism a
well-known result for super-Brownian motion (see [7]). The result can be gen-
eralized to α-stable superprocesses, extending results of [15] and [7]. We then
use exit measures to give precise lower and upper bounds for hitting proba-
bilities of small balls (Theorem 2.3). As an application, we can prove that if
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the dimension is large enough, the support of Xt is totally disconnected (The-
orem 2.4). This extends a result of [26] concerning super-Brownian motion.

Let us now describe more precisely the contents of the following sections.
In Section 2, we recall the definition of Hausdorff dimension and upper box-
counting dimension. We introduce the special type of branching mechanism
function � that we will consider. We recall the definition of the �γ��� su-
perprocess X, where γ is a Brownian motion in R

d. The Laplace transform
of X is related to the solution of an integral equation (1). We then state the
main results of this paper. In particular, Theorem 2.1 provides upper and
lower bounds on the Hausdorff dimension of the closure of

⋃
t∈B suppXt. Un-

der suitable assumptions, the lower and upper bounds coincide and we get the
exact value of the dimension.

With the branching mechanism �, we can associate a subordinator S that
plays a key role in the subordination method. Section 3 is devoted to some
preliminary results on this subordinator. We give short proofs for the reader’s
convenience.

In Section 4, we first recall the subordination method of [3] based on the
Brownian snake. Precisely, we consider the path-valued process of [17] when
the underlying (Markov) spatial motion is a triple �ξt�Lt� �t� whose law can
be described as follows. First ξ is the residual lifetime process associated with
S	 ξt = inf
Sr − t� r ≥ 0� Sr > t
. Second, Lt is the right-continuous inverse
of S (equivalently it is the local time at 0 of ξ). Finally, �t = γLt

, where γ
is a Brownian motion in R

d independent of S. Using the Brownian snake
with spatial motion �ξ�L� ��, we can give an explicit formula for the �γ���-
superprocess. This formula is crucial for our investigation of path properties.

In Section 5, we prove Theorem 2.1. The proof of the lower bound on the
Hausdorff dimension uses a “Palm measure formula” for the exit measure
associated to the Brownian snake (Proposition 4.2), classical results from [13]
and technical results that are derived in the Appendix. The upper bound is
a bit more complex and really relies on the path properties of the Brownian
snake and its transition kernel. At this point, the Brownian snake approach
is used in its full strength.

Section 6 is devoted to our bounds on hitting probabilities of small balls
and the result about connected components of the support of super-Brownian
motion. Lower bounds on hitting probabilities are quite easy to prove from the
integral equation (1). The upper bounds use the special Markov property of
the Brownian snake and the connection between exit measures and solutions
of nonlinear partial differential equations (see [11, 12]; see also [18] for the
snake approach). The proof of the theorem on connected components then
follows from a technique of Perkins (see [22], page 1041).

Finally, in Section 7 we discuss the absolute continuity of the measure∫
µ�ds� Xs. Assume that

∫ ∫
µ�ds�µ�dt� �s − t�−q < ∞, where q ∈ �0�1�. Then

we prove that in the ρ-stable branching case (��λ� = λ1+ρ),
∫
µ�ds�Xs is

absolutely continuous if d < 2�q + 1/ρ�. If the underlying Brownian motion
is replaced by an α-stable symmetric Lévy process in R

d, α ∈ �0�2�, then the
measure

∫
µ�ds� Xs is absolutely continuous if d < α�q + 1/ρ�.
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2. Notation and results. First we introduce some notation. We denote
by �Mf��f� the space of all finite nonnegative measures on R

d, endowed
with the topology of weak convergence. We denote by ��Rp� the set of all
measurable functions defined on R

p taking values in R. With a slight abuse
of notation, we also denote by ��Rp� the Borel σ-field on R

p. For every mea-
sure ν ∈ Mf and every nonnegative function f ∈ ��Rd�, we shall use both
notations

∫
f�y�ν�dy� = �ν� f�. We also write ν�A� = �ν�1A� for A ∈ ��Rd�.

For A ∈ ��Rp�, let � l�A� be the closure of A. We recall briefly the defini-
tion of Hausdorff dimension and upper box-counting dimension (cf. [13]). Let
A ∈ ��Rp� bounded. Let Cε�A� denote the set of all coverings C = 
Bi� i ∈ I

of A with balls Bi of radius �Bi� ≤ ε. Then for every r > 0, we consider

Hr
ε�A� = inf

C∈Cε�A�
∑
i∈I

�Bi�r#

Clearly, Hr
ε�A� increases to Hr�A� ∈ �0�∞�, as ε decreases to 0+. The mapping

r �→ Hr�A� is decreasing. Moreover, we see that if Hr�A� < ∞, then Hr′ �A� =
0 for every r′ > r, and if Hr�A� > 0, then Hr′ �A� = ∞ for every r′ < r. The
critical value

dimA = sup
r > 0�Hr�A� = ∞
 = inf
r > 0�Hr�A� = 0
�
with the convention sup � = 0, is called the Hausdorff dimension of A. Then
consider Nε�A� the minimal number of balls of radius ε necessary to cover A.
Define the upper box-counting dimension of A by

dimA = lim sup
ε→0+

log Nε�A�
log 1/ε

#

Plainly, we have dimA ≥ dimA.
We consider the increasing function � defined on R

+ by

��λ� = 2bλ2 +
∫
�0�∞�

2hλ2

1 + 2hλ
'�dh��

where b ≥ 0 and ' is a Radon measure on �0�∞� such that
∫
�0�∞��1∧h�'�dh� <

∞. To avoid trivial cases, we assume either b > 0 or '��0�∞�� = ∞. Note that
��λ� ≤ cλ for λ ∈ �0�1�. The function � can be expressed in the usual form
for branching mechanism functions,

��λ� = 2bλ2 +
∫
�0�∞�

'′�du��e−uλ − 1 + uλ��

where '′�du� = �∫�0�∞� '�dh� exp�−u/2h��4h2�−1�du satisfies
∫
�0�∞��u ∧

u2�'′�du� < ∞. Notice that if we take b = 0 and '�dh� = c′h−1−ρ dh then we
get the stable case ��λ� = cλ1+ρ.

Let γ be a Brownian motion in R
d and �Ps� s ≥ 0� its transition kernel.

We then consider X 	= ��Xt� t ≥ 0�� �PX
ν � ν ∈ Mf�� the canonical realization

of the �γ���-superprocess defined on D 	= D��0�∞��Mf�, the set of all càdlàg
functions defined on �0�∞� with values in Mf. We refer to [9, 10, 12, 14] for
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its construction and general properties. We recall that the superprocess X is a
càdlàg strong Markov process with values in Mf characterized by X0 = ν P

X
ν -

a.s. and for every nonnegative bounded function f ∈ ��Rd�, t ≥ s ≥ 0,

E
X
ν �exp�−�Xt�f�� � σ�Xu� 0 ≤ u ≤ s�� = exp�−�Xs� v�t − s� ·����

where v is the unique nonnegative measurable solution of the integral equa-
tion

v�t� x� +
∫ t

0
ds Pt−s���v�s� ·����x� = Ptf�x�� t ≥ 0� x ∈ R

d#(1)

We define the constants ρ and ρ by

ρ = −1 + lim inf
λ→∞

log ��λ�
log λ

and ρ = −1 + lim sup
λ→∞

log ��λ�
log λ

#

Since
∫
�0�∞��1∧h�'�dh� < ∞, we easily get 0 ≤ ρ ≤ ρ ≤ 1. From the definition

of ρ, ρ, for every δ ∈ �0�1�, there exists λδ ∈ �0�∞� such that for every λ > λδ,

λ1+ρ−δ ≤ ��λ� ≤ λ1+ρ+δ#(2)

We will consider the following two assumptions:

(H1) We have 0 < ρ.
(H2) The function � is regularly varying at ∞ with index 1+ρ where ρ ∈ �0�1�;

that is to say,

lim
λ→∞

��tλ�
��λ� = t1+ρ for every t > 0#

Notice that (H2) implies (H1) and ρ = ρ = ρ. The stable case ��λ� = cλ1+ρ

satisfies (H2).
We can now give our first result about the Hausdorff dimension of the topo-

logical support of the measure Xt. Let supp ν denote the topological support
of a measure ν ∈ Mf. Set σX = inf
s > 0� Xs = 0
.

Theorem 2.1. Assume (H1). Then for every ν ∈ Mf, for every nonempty

compact set B ⊂ �0�∞�, we have P
X
ν -a.s. on 
B ⊂ �0� σX�
,(

2
ρ

+ 2 dimB

)
∧ d ≤ dim� l

( ⋃
t∈B

suppXt

)
≤
(

2
ρ

+ 2 dimB

)
∧ d#

Moreover, if (H2) holds, then P
X
ν -a.s. on 
B ⊂ �0� σX�
,

dim� l

( ⋃
t∈B

suppXt

)
=
(

2
ρ

+ 2 dimB

)
∧ d#

Let � = ⋃
ε>0 � l�⋃t≥ε suppXt� be the range of the superprocess X. We

deduce then the following corollary.
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Corollary 2.2. Assume (H1). Then a.s. we have(
2
ρ

+ 2
)

∧ d ≤ dim� ≤
(

2
ρ

+ 2
)

∧ d#

Moreover, if (H2) holds, then a.s. we have

dim� =
(

2
ρ

+ 2
)

∧ d#

In the special case ��λ� = λ2, Tribe [25] (Theorem 2.13) proved a stronger
form of Theorem 2.1. Precisely, Tribe showed that the last assertion of the
theorem holds simultaneously for all sets B outside a set of zero probability.
Our next result is about the hitting probabilities of small balls. We denote by
Bε�0� the ball centered at 0 with radius ε and by p the Brownian transition
density on R

d,

p�t� x� = 1
�2πt�d/2

exp −�x�2
2t

� �t� x� ∈ �0�∞� × R
d#

We say a positive function l, defined on �0�∞� is slowly varying at 0+, if for
every t > 0, limλ↓0 l�λt�/l�λ� = 1. Let δx be the Dirac mass at point x ∈ R

d.

Theorem 2.3. Assume (H2) and ρd > 2. There exists a positive function l1,
which is slowly varying at 0+, such that for every t > 0, ε > 0,

P
X
δx

�Xt�Bε�0�� > 0� ≤ t−d/2εd−2/ρl1�
√

t ∧ ε�#
Moreover if lim supλ→0+ λ−1−ρ��λ� < ∞, then for every M > 0, there exists a
positive increasing function l2, which is slowly varying at 0+, such that for
every M

√
t > ε > 0, we have

P
X
δx

�Xt�Bε�0�� > 0� ≥ 1
2

∧
[
εd−2/ρp

(
ρt

1 + ρ
� x

)
l2�ε�

]
#

In the stable case ��λ� = cλ1+ρ, the functions l1 and l2 can be replaced by
positive constants.

Our next result is about the connected components of Xt.

Theorem 2.4. Assume (H2) and d > 4/ρ. Let ν ∈ Mf, t > 0. Then P
X
ν -a.s.

the support of Xt is totally disconnected.

The last result deals with the absolute continuity of superprocesses in the
case where the underlying process is not only a Brownian motion but also a
symmetric α-stable process. We first introduce the α-stable superprocess.

Let γα be a symmetric α-stable process on R
d of index α ∈ �0�2� started at

x under Px. For every y ∈ R
d, for every t ≥ 0, we have

Ex exp�−i�y� γα
t − x�� = exp

(
−t
∫
�z�=1

��y� z��αχ�dz�
)
�
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where �·� ·� denotes the usual scalar product on R
d and χ is a finite symmetric

measure on the sphere 
z ∈ R
d� �z� = 1
. In order to avoid degenerate cases

we assume that

inf
�y�=1

∫
�z�=1

��y� z��αχ�dz� > 0#

In particular the transition density is continuous on �0�∞� × R
d (see [16],

Theorem 10.1). For α = 2 we consider γ2 = γ, the Brownian motion in R
d

started at x under Px. We consider Xα = �Xα
t � t ≥ 0� the canonical realization

of the �γα���-superprocess defined on D. We refer again to [9, 10, 12, 14] for
its construction and general properties.

Theorem 2.5. Assume (H1). Let α ∈ �0�2�. Let µ be a finite positive measure
with support in �0�∞� and q ∈ �0�1� such that∫ ∫

µ�dt�µ�ds��t − s�−q < ∞#

If �α/ρ�+αq > d, then for every ν ∈ Mf, P
X
ν -a.s. the random measure

∫
µ�dt�Xα

t

is absolutely continuous with respect to Lebesgue measure.

As a particular case, taking µ = δt for t > 0, and q = 0, we get that if
α/ρ > d, then for t > 0, P

X
ν -a.s. the measure Xα

t is absolutely continuous with
respect to Lebesgue measure.

Hypothesis (H1) will be in force from now on.

3. Preliminary estimates. Notice that the function defined on R
+ by

η�λ� = bλ+∫∞
0 �1−exp�−λh��'�dh� is the Laplace exponent of a subordinator.

By comparing the functions 2u/�1 + 2u� and 1 − exp �−u�, it is easy to obtain
the following bounds:

2
3λη�λ� ≤ ��λ� ≤ 2λη�λ�� λ ≥ 0#(3)

The constants ρ and ρ thus correspond to the lower index and upper index of
the subordinator associated to η (cf. [6]). We give an elementary result about η.

Lemma 3.1. If (H2) is satisfied and if ρ < 1, then the function η is regularly
varying at ∞ with index ρ.

We shall need the usual notation '̄�h� = '��h�∞��.

Proof. Assume (H2) and ρ < 1. The latter condition implies b = 0. Fu-
bini’s theorem gives

��λ� =
∫ ∞

0
2λ2�1 + 2λh�−2'̄�h�dh = 2λ2

∫ ∞

0
�h + 2λ�−2'̄�1/h�dh#

Thanks to Theorems 1.7.4 and 1.7.2 of [4], we deduce that the function '̄ is
regularly varying with index −ρ at 0+. Then Theorem 1.7.1′ of [4] implies
that the function η is regularly varying with index ρ at ∞. ✷
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We now give some simple results about the subordinator with Laplace ex-
ponent η. We refer to [2] for definitions and properties of subordinators. Let
S = �St� t ≥ 0� be a subordinator with Laplace exponent η. We denote by L =
�Lt� t ≥ 0� the right continuous inverse of S, that is Lt = inf
u ≥ 0� Su > t
.

Lemma 3.2. (i) For every δ > 0, there exists hδ > 0 such that for every
h ∈ �0� hδ�,

ELh ≤ hρ−δ#

Furthermore there exists a constant Cδ, such that for every h ≥ 0, ELh ≤
Cδ�h ∨ hρ−δ�.

(ii) The process L is locally Hölder with exponent α, for every α ∈ �0� ρ�.
(iii) For every α ∈ �0�1/ρ�, s > 0, a.s. there exists ε ∈ �0� s�, depending on

�St� 0 ≤ t < s� and α, such that for every u ∈ �s − ε� s�, we have

Ss− − Su ≤ �s − u�α#
(iv) For every δ > 0, there exists a sequence �Rn� n ≥ 1� of positive real

numbers, decreasing to zero, such that for every M ∈ �0�∞�, we have

lim
n→∞ P

[
inf
i≥n

R
−ρ�1+δ�
i LRi

> M
]

= 1#

(v) If (H2) holds, then for every �δ�M� ∈ �0�∞�2, we have

lim
r→0

P

[
inf

h∈�0� r�
h−ρ�1+δ�Lh > M

]
= 1#

Proof. (i) Using the links between S and L, we have for λ > 0,

η�λ�−1 =
∫ ∞

0
dt E exp�−λSt� = E

∫ ∞

0
dLh exp�−λh�

= λ
∫ ∞

0
dh exp�−λh�E�Lh�

≥ λ
∫ 2/λ

1/λ
dh exp�−2�E�L1/λ� = exp�−2�E�L1/λ�#

The first part of the lemma follows from (2) and (3). The second one is then
trivial.

(ii) The variable Lt+h − Lt is bounded from above in distribution by Lh.
By a standard argument for additive functionals, we have also E��Lh�p� ≤
p!�E�Lh��p. Thus for every t ≥ 0, δ > 0, if hδ is defined as in (i), and h ∈ �0� hδ�,
we have

E��Lt+h − Lt�p� ≤ E��Lh�p� ≤ p!�E�Lh��p ≤ p!hp�ρ−δ�#

From the classical Kolmogorov lemma, we obtain that L is locally Hölder with
exponent α, for any α ∈ �0� ρ�.

(iii) Let s > 0. The two processes

�Ss− − Su� 0 ≤ u < s�
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and

�S�s−u�−� 0 ≤ u < s�
have the same law. So it is sufficient to prove the analogous result for Vu =
S�s−u�−.

If ρ = 1, the result is a consequence of Proposition 8, page 84 of [2].
If ρ < 1, then b = 0, and we have

��λ� ≥ λ
∫ ∞

1/λ
2hλ�1 + 2hλ�−1'�dh� ≥ 2

3λ'̄�1/λ�#

Then the upper bound (2) implies that the integral
∫

0+ '̄�tα�dt is convergent
for every α ∈ �0�1/ρ�. Thanks to Theorem 9, page 85 of [2], we have for every
α ∈ �1�1/ρ� a.s.,

lim
u→s� u<s

Vu/�s − u�α = 0#

The desired result follows.
(iv) Fix δ ∈ �0�∞�. Note that (2) and (3) imply lim inf λ→∞ λ−ρ�1+δ/2�η�λ� = 0.

We can find a sequence �Rn� n ≥ 1� of positive reals decreasing to zero such
that for every n ≥ 1�

η�1/Rn� ≤ R
−ρ�1+δ/2�
n and

∑
n≥1

Rfδ/2
n < ∞#

In order to bound for every M ∈ �0�∞�,
P
[
LRn

< MR
ρ�1+δ�
n

] = P
[
R−1

n S
MR

ρ�1+δ�
n

> 1
]
�

we consider the Laplace transform of S,

E exp
[−R−1

n S
MR

ρ�1+δ�
n

] = exp
[−MR

ρ�1+δ�
n η�1/Rn�] ≥ exp

[−MR
ρδ/2
n

]
#

An easy calculation shows that

P
[
R−1

n S
MR

ρ�1+δ�
n

> 1
] ≤ �1 − 1/ e�−1[1 − E exp

[−R−1
n S

MR
ρ�1+δ�
n

]]

≤ �1 − 1/ e�−1MR
ρδ/2
n #

Since the series
∑

n≥1 R
ρδ/2
n converges, we get
∑
n≥1

P
[
LRn

< MR
ρ�1+δ�
n

]
< ∞#

The desired result then follows from the Borel–Cantelli lemma.
(v) If (H2) holds, we have ρ = ρ, and we deduce from the proof of (iii), that

for every m > 0,

lim
r→0

P

[
sup

u∈�0�r�
u−1/ρ�1+δ�Su < m

]
= 1#

The desired result follows since L is the inverse of S. ✷
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4. The subordination approach to superprocesses.

4.1. The Brownian snake. Our main goal in this section is to explain how
superprocesses with a general branching mechanism can be constructed using
the Brownian snake and a subordination method taken from [3]. We start from
a subordinator S = �St� t ≥ 0� as in Section 3. We denote by ξ the associated
residual lifetime process defined by ξt = inf
Ss − t�Ss > t
 and by L the right
continuous inverse of S, Lt = inf
s�Ss > t
. We also consider an independent
Brownian motion in R

d denoted by γ = �γt� t ≥ 0�. We shall be interested
in the process ξ̄t = �ξt�Lt� γLt

�, which is a Markov process with values in
E = R

+ × R
+ × R

d. Let P̄z be the law of ξ̄ started at z ∈ E. For simplicity we
write �t = γLt

and P̄x = P̄z when z = �0�0� x�.
We then introduce the Brownian snake with spatial motion ξ̄ (cf. [17]; our

construction is slightly different here because the first coordinate of ξ̄ is not a
continuous process). The Brownian snake is a Markov process taking values
in the set of all killed paths in E. By definition, a killed path in E is a càdlàg
mapping w	 �0� ζ� → E where ζ = ζw > 0 is called the lifetime of the path. By
convention we also agree that every point z ∈ E is a killed path with lifetime
0. The set � of all killed paths is a Polish space when equipped with the
metric

d�w�w′� 	= �ζ − ζ ′� + �w�0� − w′�0�� +
∫ ζ∧ζ ′

0
�du�w≤u�w

′
≤u� ∧ 1�du�

where w≤u denotes the restriction of w to �0� u�, and du is the Skorokhod
distance on the space of all càdlàg functions from �0� u� into E.

Let us fix z ∈ E and denote by �z the subset of � of all killed paths with
initial point w�0� = z (in particular z ∈ �z). Let w ∈ �z with lifetime ζ > 0. If
0 ≤ a < ζ and b ≥ a, we let Qa�b�w�dw′� be the unique probability measure
on �z such that:

1. ζ ′ = b, Qa�b�w�dw′�-a.s.
2. w′�t� = w�t�, ∀ t ∈ �0� a�, Qa�b�w�dw′�-a.s.
3. The law under Qa�b�w�dw′� of �w′�a + t��0 ≤ t < b − a� is the law of

�ξ̄�0 ≤ t < b − a� under P̄w�a�.

By convention we set Q0� b�z�dw′� for the law of �ξ̄�0 ≤ t < b� under P̄z.
Denote by θ

ζ
s�dadb� the joint distribution of �inf �0� s� Br�Bs� where B

is a one-dimensional reflecting Brownian motion in R
+ with initial value

B0 = ζ ≥ 0,

θ
ζ
s�dadb� = 2�ζ + b − 2a�√

2πs3
exp

(
−�ζ + b − 2a�2

2s

)
1
0<a<ζ∧b
dadb

+
√

2
πs

exp
(

−�ζ + b�2

2s

)
1
0<b
δ0�da�db#

We recall Proposition 5 of [3].
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Proposition 4.1. There exists a continuous strong Markov process in �z,
denoted by W = �Ws� s ≥ 0�, whose transition kernels are given by the formula

Qs�w�dw′� =
∫
�0�∞�2

θζ
s�dadb�Qa�b�w�dw′�#

If ζs denotes the lifetime of Ws, the process �ζs� s ≥ 0� is a reflecting Brownian
motion in R+.

Intuitively, the path Ws is erased from its tip when the lifetime ζs decreases,
and it is extended, independently of the past, when ζs increases, according to
the law of the underlying spatial motion ξ̄. It is easy to check that a.s. for every
s < s′, the two killed paths Ws and Ws′ coincide for t < m�s� s′� 	= inf r∈�s� s′ � ζr.
They also coincide at t = m�s� s′� if m�s� s′� < ζs ∧ ζs′ . In the sequel, we shall
refer to this property as the “snake property” of W.

Denote by �w the probability measure under which W starts at w, and by
� ∗

w the probability under which W starts at w and is killed when ζ reaches
zero.

Here, thanks to the properties of the process ξ̄ [and in particular assump-
tion (H1)], we can get stronger continuity properties for the process W. First
introduce an obvious notation for the coordinates of a path w ∈ � ,

w�t� = �ξt�w��Lt�w�� �t�w�� for 0 ≤ t < ζw#

We also set ŵ = limt↑ζw
�t�w� if the limit exists, ŵ = ∂ otherwise, where ∂ is a

cemetery point added to R
d. Fix w0 ∈ �z, such that the functions t �→ Lt�w0�

and t �→ �t�w0� are continuous on �0� ζw0
� and have a continuous extension on

�0� ζw0
�. By using the Hölder properties of the processes L (cf. Lemma 3.2) and

�, one can prove that �w0
-a.s. for every s ≥ 0, the functions t �→ Lt�Ws� and

t �→ �t�Ws�, which are a priori defined on �0� ζs�, are continuous and have a
continuous extension to �0� ζs� (cf. Lemma 10 and its proof in [3]; see also the
proof of Lemma 5.3 below). Furthermore, the mappings s �→ �Lt∧ζs

�Ws�� t ≥
0� and s �→ ��t∧ζs

�Ws�� t ≥ 0� are continuous with respect to the uniform
topology. The processes Lζs

�Ws� and Ŵs are continuous �w0
-a.s.

It is clear that the trivial path z ∈ �z is a regular recurrent point for W.
We denote by Nz the associated excursion measure (see [5]). The law under
Nz of �ζs� s ≥ 0� is the Itô measure of positive excursions of linear Brownian
motion. We assume that Nz is normalized so that

Nz

[
sup
s≥0

ζs > ε
]

= 1
2ε

#

We also set σ = inf
s > 0� ζs = 0
, which represents the duration of
the excursion. Then for any nonnegative measurable function G on �z, we
have

Nz

∫ σ

0
G�Ws�ds =

∫ ∞

0
ds Ēz�G��ξ̄t� 0 ≤ t < s���#(4)
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For simplicity we write Nx = Nz when z = �0�0� x�. The continuity properties
mentioned above under �w0

also hold under Nz. In particular, the two processes
�Lζs

�Ws�� s ≥ 0� and �Ŵs� s ≥ 0� are well defined and continuous under Nz.

Remark. We set � 	= 
�Lζs
�Ws�� Ŵs�� s ≥ 0
. Since Lζs

�Ws� and Ŵs are
continuous under �x, we deduce that for any open set @ ⊂ R

+ × R
d such that

�0� x� ∈ @, we have Nx�� ∩ @c #= �� < ∞.

4.2. Exit measures. Let D be an open subset of E with z ∈ D [or w0�0� ∈
D]. As in [3], we can define the exit local time from D, denoted by �LD

s � s ≥ 0�.
Nz-a.e. (or �w0

-a.s.), the exit local time LD is a continuous increasing process
given by the following approximation: for every s ≥ 0,

LD
s = lim

ε↓0

1
ε

∫ s

0
1
τD�Wu�<ζu<τD�Wu�+ε
 du�

where τD�w� = inf
r�w�r� #∈ D
 with the convention inf � = +∞. We then
define under the excursion measure Nz a random measure YD on R

d by the
following formula: for every bounded nonnegative function ϕ ∈ ��Rd�,

�YD�ϕ� =
∫ σ

0
ϕ�Ŵs�dLD

s #

The first moment of the random measure can be derived from the following
fact. By passing to the limit in (4) (see [18], Proposition 3.3 for details), we
have for every nonnegative measurable function G on �z

Nz

∫ σ

0
G�Ws�dLD

s = Ē
D
z �G��(5)

where P̄
D
z is the subprobability on �z defined as the law of ξ̄ stopped at time

τD under P̄z�· ∩ 
τD < ∞
�.
We apply this construction with D = Dt = R

+ ×�0� t�×R
d. For convenience,

we write τt�w� = τDt
�w�, Lt

s = L
Dt
s , Yt = YDt

and P̄
t
z = P̄

Dt

z . We also will write

P̄
t
x = P̄

t
z when z = �0�0� x�. When z #∈ Dt, we then take Lt

s = 0 for all s ≥ 0
and Yt = 0. Using (5), we get in particular the first moment for the process
�Yt� t ≥ 0�; for every bounded nonnegative function ϕ ∈ ��Rd�,

Nx��Yt�ϕ�� = Ptϕ�x�#

To get a measurable version of �Yt� t ≥ 0�, we take a measurable version of
�Lt

s� t ≥ 0� s ≥ 0�; for t such that z ∈ Dt,

Lt
s = lim inf

p→∞ Lt�2−p

s �

where for ε > 0, Lt� ε
s = ε−1

∫ s
0 1
τt�Wu�<ζu<τt�Wu�+ε
 du.
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Remark. As a simple consequence of (4), we have for t > 0,

Nx�Lt� ε
σ � = 1

ε
Ēx

[∫ ∞

0
1
τt<u<τt+ε
 du

]
= 1#

If µ is a finite Radon measure on �0�∞�, then µ�dt�-a.e. Nz-a.e. the function
s �→ Lt

s is increasing and continuous. Similar observations hold under �w0
.

We shall be interested in the random measure
∫
µ�ds�Ys. By arguing as in

[18], Theorem 4.1, we easily get a “Palm measure formula” for this random
measure.

Proposition 4.2. For every nonnegative measurable function F on R
d ×

Mf, for every t > 0 and z ∈ Dt, we have

Nz

[∫
Yt�dy�F�y�

∫ ∞

0
µ�ds� Ys�

]

=
∫

P̄
t
z�dw�Ẽ

[
F

(
ŵ�
∫
�w�du�dW�

∫ ∞

0
µ�ds� Ys�W�1
u<τs�w�


)]
�

where for every w ∈ �z, �w�ω��du�dW� is under P̃�dω� a Poisson measure on
R

+ × C�R+�� � with intensity

4 1�0� ζw��u�duNw�u��dW�#

4.3. The subordinate superprocess. We introduced the process Y because
its distribution under the excursion measure Nx is the canonical measure of
the �γ���-superprocess started at δx. More precisely, we have the following
result.

Proposition 4.3. Let ν ∈ Mf and let
∑

i∈I δWi be a Poisson measure on

C�R+�� � with intensity
∫
ν�dx�Nx�·�. The process

X0 = ν� Xt =∑
i∈I

Yt�Wi� for t > 0�

is a ���γ�-superprocess. Moreover, a.s. for every t > 0, the collection ��Ys�Wi��
s ≥ t�� i ∈ I� has only a finite number of nonzero terms.

The proposition is proved in [3], except for the last assertion. For this it is
enough to check that Nx�Yt #= 0� < ∞ for t > 0. We know from [3] that

Nx�1 − exp−n�Yt�1�� = vn�t� x�� t ≥ 0� x ∈ R
d

is the only nonnegative measurable solution of (1) with f = n. By a uniqueness
argument, we have vn�t� x� = vn�t�. Then (1) implies vn�0� = n, �d/dt�vn�t� =
−��vn�t��, from which we easily get

∫ n

vn�t�
��u�−1 du = t for t ≥ 0#
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By (2) and (H1), we have
∫∞

��u�−1du < ∞. Thus if v�t� = limn→∞ vn�t� =
Nx�Yt #= 0�, we get from the previous equation that v�t� < ∞ and more pre-
cisely ∫ ∞

v�t�
��u�−1du = t for t ≥ 0#(6)

Remark. We can use the continuity of the mapping t �→ v�t� to derive a
fact that will be useful later. For t > 0 fixed, observe that Nx-a.e.,{

sup
s≥0

Lζs
�Ws� > t

}
⊂ 
Yt #= 0
 ⊂

{
sup
s≥0

Lζs
�Ws� ≥ t

}
#

The second inclusion follows from the construction of Lt and the first one is
easily deduced from the special Markov property (cf. [3], Proposition 7). It
follows that

Nx

[
sup
s≥0

Lζs
�Ws� ≥ t

]
= Nx�Yt #= 0� = v�t��

and so

Nx

[
sup
s≥0

Lζs
�Ws� = t

]
= 0#

We shall also need the following result, which is a consequence of (6) and
Theorem 1.5.12 of [4]:

Corollary 4.4. Under (H2), the function v�t� = Nx�Yt #= 0� is regularly
varying at 0+ with index −1/ρ.

4.4. The support of the exit measure. In this section, we give a technical
result about the support of the exit measure Lt, which is crucial for the proof
of Theorem 2.1. Recall that we defined τt�Ws� = inf
r < ζs� Lr�Ws� ≥ t
.
However we know that Nz-a.e. (or �w0

-a.s.), for every s ≥ 0 the mapping r �→
Lr�Ws�, r ∈ �0� ζs� has a continuous extension to �0� ζs�. Thanks to this fact,
we slightly modify the previous definition of τt by taking τt�Ws� = ζs when
Lζs

�Ws� = t and Lr�Ws� < t for r < ζs. For t > 0, we introduce under Nx the
set

	t = 
s ∈ �0� σ�� ζs = τt�Ws�
#
Recall that supp ν denotes the closed topological support of a measure ν.

Lemma 4.5. Nx-a.e. for every t > 0, the set 	t is closed. Furthermore for
every fixed t > 0, Nx-a.e., we have suppdLt ⊂ 	t.

Proof. We prove the first part of the lemma. From the “snake property,”
it is easy to see that 
s� τt�Ws� < ζs − ε
 is open. Note also that the set

s� τt�Ws� ≤ ζs
 = 
s�Lζs

�Ws� ≥ t
 is closed since the function s �→ Lζs
�Ws� is

continuous. Thus Aε = 
s� ζs − ε ≤ τt�Ws� ≤ ζs
 is closed. We deduce the set
	t = ⋂n≥1 A1/n is closed.
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For the second part of the lemma, fix t > 0. By the definition of Lt� ε
s , we

have

suppdLt� ε ⊂ � l�
s� τt�Ws� < ζs < τt�Ws� + ε
� ⊂ 
s� ζs − ε ≤ τt�Ws� ≤ ζs
#
Since Lt

s = limε→0 Lt� ε
s , we deduce that suppLt ⊂ 	t Nx-a.e. ✷

5. Proof of Theorem 2.1. We prove Theorem 2.1 in three steps. In the
first one we reduce the proof to Proposition 5.1. The second and third steps
deal, respectively, with the proof of the lower bound and the proof of the upper
bound of Proposition 5.1.

5.1. Preliminary reduction. Let q ∈ �0�1� and µ a measure on R
+, such

that suppµ ⊂ �0�∞� and

0 <
∫ ∫

µ�dt� µ�ds��t − s�−q < ∞#(7)

Let B a compact subset of �0�∞�. We set σY = sups∈�0� σ� Lζs
�Ws� and 	B =⋃

t∈B 	t.

Proposition 5.1. Let x ∈ R
d. Nx-a.e., on 
suppµ ⊂ �0� σY�
, we have the

lower bound

dim supp
∫

µ�ds� Ys ≥
(

2
ρ

+ 2q
)

∧ d#

Nx-a.e., on 
B ⊂ �0� σY�
, we have the upper bound

dim
{
Ŵs� s ∈ 	B

} ≤
(

2
ρ

+ 2 dimB

)
∧ d#

Moreover if (H2) holds, then we have the stronger upper bound Nx-a.e. on

B ⊂ �0� σY�
,

dim
{
Ŵs� s ∈ 	B

} ≤
(

2
ρ

+ 2 dimB

)
∧ d#

We first show how Theorem 2.1 follows from Proposition 5.1. For every
q ∈ �0�dimB� (take q = 0 if dimB = 0), there exists a Radon measure µ,
supported on B, such that (7) holds (cf. Theorem 4.13 of [13]). We deduce
from Proposition 4.3 and the first part of Proposition 5.1 that P

X
ν -a.s. on 
B ⊂

�0� σX�
,

dim supp
∫

µ�ds� Xs ≥
(

2
ρ

+ 2q
)

∧ d#

Since supp
∫
µ�ds� Xs ⊂ � l�⋃t∈B suppXt� and since q can be chosen arbi-

trarily close to dimB, we get the lower bound of Theorem 2.1.
Let B′ be a countable subset of B such that every point of B is the limit

of a decreasing sequence of points of B′. The proof of the following lemma is
postponed until the end of this subsection.
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Lemma 5.2. We have Nx-a.e.,

� l

( ⋃
t∈B′

suppYt

)
⊂ {Ŵs� s ∈ 	B

}
#

Since the process X is càdlàg, and all points of B are limits of decreasing
sequences of points of B′, it is clear that on 
B ⊂ �0� σX�
,

� l

( ⋃
t∈B

suppXt

)
= � l

( ⋃
t∈B′

suppXt

)
#

It is then easy to deduce the upper bounds in Theorem 2.1 from the upper
bounds in Proposition 5.1, Proposition 4.3 and Lemma 5.2. ✷

Proof of Lemma 5.2. Using the properties of the Brownian snake (in par-
ticular the “snake property”), Nx-a.e. for every t>0, we have 
Ŵs� s ∈ 	t
 =

Ŵs� s ∈ �0� σ�� Lζs

�Ws� = t
. Thus, we have 
Ŵs� s∈	B
 = 
Ŵs� s ∈
�0� σ�� Lζs

�Ws� ∈ B
. Since the mappings s �→ Lζs
�Ws� and s �→ Ŵs are

continuous, we deduce that the set 
Ŵs� s ∈ �0� σ�� Lζs
�Ws� ∈ B
 is compact

and thus closed. Finally we deduce from Lemma 4.5 that Nx-a.e., for every
t ∈ B′,

suppYt = {Ŵs� s ∈ suppdLt
} ⊂ {Ŵs� s ∈ 	t

} ⊂ {Ŵs� s ∈ 	B

}
#

The desired result follows. ✷

5.2. The lower bound of Proposition 5.1. We introduce the set K = 
s ∈
suppµ� ∫ µ�dt��t − s�−q < ∞
. Notice that µ�Kc� = 0. In a first step we show
that for every κ ∈ �0� �2q + 2/ρ� ∧ d�, δ ∈ �0� κ/2�, s0 ∈ K,

Nx

[∫
Ys0

�dz� Fκ−2δ

(
z�
∫

µ�dt� Yt

)]
= 0�

where if θ > 0, Fθ is the measurable function on R
d × Mf defined by

Fθ�y� ν� = 1
lim supn→∞ ν�B2−n �y��2nθ>0
�

where Br�y� is the ball centered at y with radius r. By Proposition 4.2, we
have

Nx

[∫
Ys0

�dy�Fθ

(
y�
∫

µ�dt� Yt

)]

=
∫

P̄
s0
x �dw�Ẽ

[
Fθ

(
ŵ�
∫
�w�du�dW�

∫
µ�dt� 1
u<τt�w�
 Yt�W�

)]
#

(8)

In order to use the Borel–Cantelli lemma, we first bound∫ ∫
P̄

s0
x �dw�P̃�dω�1An

�w�ω��
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where

An 	=
{
�w�ω�� 2n�κ−2δ�

∫
�w�ω��du�dW�

∫
µ�dt� 1
u<τt�w�
 Yt�W��B2−n�ŵ��

≥ Cκ2−nδ

}

and Cκ = Cκ�w� is a finite positive constant that does not depend on n and ω
and depends on w only through �Sv�w�� 0 ≤ v < s0� (the choice of this constant
will be made precise later). Conditioning on 
0 = σ�Sv�w�� 0 ≤ v < s0� and
using the Markov inequality, we obtain

Ē
s0
x �Ẽ�1An

�� ≤ Ē
s0
x

[
Ē

s0
x

[
Ẽ

[
C−1

κ 2n�κ−δ�
∫
�w�du�dW�

∫
µ�dt�1
u<τt�w�


× Yt�W��B2−n�ŵ��
]∣∣∣∣
0

]]

= 2n�κ−δ�
Ē

s0
x

[
C−1

κ

[
Ē

s0
x

[∫
µ�dt� 4

∫ ζw

0
du1
u<τt�w�


× Nw�u��Yt�B2−n�y���y=ŵ

∣∣∣∣
0

]]]

= 4 2n�κ−δ�
Ē

s0
x

[
C−1

κ

[
Ē

s0
x

[∫
µ�dt�

∫ τs0
∧τt

0
du

× P̄
t
w�u��ŵ ∈ B2−n�y��y=ŵ

∣∣∣∣
0

]]]

= 4 2n�κ−δ�
Ē

s0
x

[
C−1

κ

∫
µ�dt�

∫
�0� s0∧t�

dSu′

× Ex�Pγu′ �γt−u′ ∈ B2−n�y��y=γs0
�
]
�

where γ is under Px a Brownian motion in R
d started at x. In the first equality

we used the form of the intensity of the Poisson measure �w. In the second
one, we applied (5) with D = Dt. In the third one, we made the formal change
of variable u = Su′ , using the specific properties of the process ξ, and in
particular the fact that � is constant over each interval �Su−� Su�. We have

Ex

[
Pγu′ �γt−u′ ∈ B2−n�y��y=γs0

] = g2�2−n� s0 + t − 2u′��

where g2�r� t� = P0��γt� ≤ r�. We prove in the Appendix (Lemma A.1) that
under the assumption s0 ∈ K, we can choose a finite constant Cκ depending
only on �Sv�w��0 ≤ v < s0� such that for r ∈ �0�1�,

∫
µ�dt�

∫
�0� s0∧t�

g2�r� s0 + t − 2u�dSu ≤ Cκr
κ#
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As a consequence, we have for every n ≥ 1,

Ē
s0
x

[
Ẽ�1An

�] ≤ 4 2−nδ#

Applying the Borel–Cantelli lemma to the sequence �An� n ≥ 1�, we get P̄
s0
x -

a.s., P̃-a.s.,

lim sup
n→∞

2n�κ−2δ�
∫
�w�du�dW�

∫
µ�dt� 1
u<τt�w�
 Yt�W��B2−n�ŵ�� = 0#

Hence by the definition of Fθ and (8), we get for every s0 ∈ K,

Nx

[∫
Ys0

�dy�Fκ−2δ

(
y�
∫

µ�dt� Yt

)]
= 0#

Since µ�Kc� = 0, integrating with respect to µ�ds0� gives Nx-a.e.,
∫

µ�ds�
∫

Ys�dy�Fκ−2δ

(
y�
∫

µ�dt� Yt

)
= 0#(9)

We deduce from Theorem 4.9 of [13] that for every κ ∈ �0� �2q + 2/ρ� ∧ d�,
δ ∈ �0� κ/2�, Nx-a.e. on 
∫ µ�dt� Yt #= 0
,

dim supp
∫

µ�ds�Ys ≥ κ − 2δ#

The lower bound of Proposition 5.1 follows. ✷

5.3. The upper bounds of Proposition 5.1. First, we give a technical result
about the Brownian snake.

Lemma 5.3. (i) Nx-a.e. the function s �→ Lζs
�Ws�, respectively, s �→ Ŵs =

�ζs
�Ws�, is locally Hölder with index ρ/2 − δ, respectively, ρ/4 − δ, for every

δ ∈ �0� ρ/4�.
(ii) The adapted increasing process �Mt� t > 0�, defined by

Mt 	= sup
s∈�0� t�

sup
u #=v� �u� v�∈�0� ζs�2

�Lu�Ws� − Lv�Ws��
�u − v�ρ�1−δ/2� �

is Nx-a.e. finite for every δ ∈ �0�1�.

Proof. (i) Recall that �x-a.s. the mapping s �→ �Lζs
�Ws�� Ŵs� is continu-

ous. Thanks to the Kolmogorov lemma it is sufficient to prove that for every
integer k ≥ 1 and δ ∈ �0� ρ�, N > 0, there exists a constant c′

N such that for
every 0 ≤ s, s′ ≤ N,

�x

[�Lζs
�Ws� − Lζs′ �Ws′ ��2k] ≤ c′

N�s − s′��ρ−δ�k�(10)

�x

[�Ŵs − Ŵs′ �2k] ≤ c′
N�s − s′��ρ−δ�k/2#(11)

First, we prove (11). Since �x-a.s. �m�s�s′��Ws� = �m�s�s′��Ws′ �, we have by sym-
metry,

�x

[�Ŵs − Ŵs′ �2k] ≤ 2#22k−1�x

[��ζs
�Ws� − �m�s�s′��Ws��2k

]
#
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Conditionally on ζ, the distribution of �ζs
�Ws� − �m�s�s′��Ws� is the same as

that of �ζs
− �m�s� s′� under P̄x. Thus we get

�x

[��ζs
�Ws� − �m�s�s′��Ws��2k

] = �x

[
Ēx

[��u − �v�2k
]
u=ζs�v=m�s�s′�

]
#

By scaling and using the same arguments as in the proof of Lemma 3.2, we
get

Ēx

[��u − �v�2k
] = E0

[�γ1�2k
]
Ē0�Lu − Lv�k ≤ E0

[�γ1�2k
]
k!
[
E�Lu−v�

]k
≤ c1

[�u − v� ∨ �u − v�ρ−δ
]k

�

by Lemma 3.2(i). From this inequality and standard bounds on the moments
of the increments of ζ, we easily get

�x

[�Ŵs − Ŵs′ �2k] ≤ c2
[�s − s′� ∨ �s − s′�ρ−δ

]k/2
�

where the constant c2 is independent of s and s′. Since s and s′ are bounded,
(11) follows. The proof of (10) is similar.

(ii) Thanks to Lemma 3.2(i), for every integer k ≥ 1 and 1/2 > δ > 0, A > 0,
T > 0, there exists a constant c1 such that for every �u� v� ∈ �0�A�2,

E
[�Lu − Lv�k

] ≤ c1�u − v�kρ�1−δ�#

Furthermore, there exists a constant c2, such that for every �s� t� ∈ �0�T�2,

�x

[
sup

r� q∈�s� t�
�ζr − ζq�kρ�1−δ�

]
≤ c2�s − t�kρ�1−δ�/2#

For convenience, we put Lu�Ws� = Lζs
�Ws� when u > ζs. Using the above

inequalities and the snake properties, we then bound for every integer k ≥
2ρ−1 and u ≥ v, �u� v� ∈ �0�A�2, �s� t� ∈ �0�T�2,

�x

[�Lu�Ws� − Lv�Ws� − Lu�Wt� + Lv�Wt��k
]

≤ �x

[
1m�s� t�≤v≤u��Lu�Ws� − Lv�Ws�� + �Lu�Wt� − Lv�Wt���k

]
+ �x

[
1v<m�s� t�≤u��Lu�Ws� − Lm�s�t��Ws�� + �Lu�Wt� − Lm�s�t��Wt���k

]

≤ c3�x

[
1m�s� t�≤v≤u

[�ζs ∧ u − ζs ∧ v + ζt ∧ u − ζt ∧ v�]kρ�1−δ�]

+ c3�x

[
1v<m�s� t�≤u

[�ζs ∧ u + ζt ∧ u − 2m�s� t��]kρ�1−δ�]

≤ c4�x

[
�u − v�kρ�1−δ� ∧ sup

r� q∈�s� t�
�ζr − ζq�kρ�1−δ�

]

≤ c5
[�u − v� ∧ �s − t�1/2]kρ�1−δ�

�

where the constant c5 is independent of u, v, s and t. For s� t fixed consider
the continuous random process Zs� t

u = Lu�Ws�−Lu�Wt�. Fix η ∈ �1/2�1�. The
previous inequality gives

�x

[�Zs�t
u − Zs�t

v �k] ≤ c5�u − v�kηρ�1−δ��t − s�k�1−η�ρ�1−δ�/2#
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The Kolmogorov lemma (Theorem 1.2.1 of [23]) implies that the process Zs� t

is locally Hölder with exponent θ0 = ηρ�1 − 3δ/2�, and, moreover, a close look
at the arguments of the proof shows that

�x

[(
sup

u #=v� �u� v�∈�0�A�2

�Zs� t
u − Zs� t

v �
�u − v�θ0

)k]
≤ c6�t − s�k�1−η�ρ�1−δ�/2�

where the constant c6 is independent of t� s. Now consider the norm on the
Banach space of all real functions f on �0�A� that are Hölder with exponent
θ0 and such that f�0� = 0, defined by

%f%θ0
	= sup

u #=v� �u� v�∈�0�A�2
�f�u� − f�v���u − v�−θ0 #

The above inequality can be written as

�x

[%L�Ws� − L�Wt�%k
θ0

] ≤ c6�t − s�k�1−η�ρ�1−δ�/2#

We can again use the Kolmogorov lemma to get �x-a.s.,

sup
s∈�0�T�

%L�Ws�%θ0
< ∞#

Note that �x-a.s. sups∈�0�T� ζs is finite, and so sups∈�0�T� ζs ≤ A if A is large
enough. The fact that Mt < ∞ follows from the last bound by taking η suffi-
ciently close to 1 and δ small enough. This completes the proof. ✷

Since we have proved the function s �→ Ŵs is Nx-a.e. locally Hölder with
index ρ/4 − δ, for any δ ∈ �0� ρ/4�, Proposition 2.2 from [13] implies that
Nx-a.e.,

dim
{
Ŵs� s ∈ 	B

} ≤ 4
ρ

dim	B#

We will now prove in three steps that for every �α�β� ∈ �0�∞�, δ′ ∈ �0�1/2�,
Nx-a.e.,

dim�	B ∩ �α�β�� ≤ 1
2�1 + ρdimB� + δ′#(12)

Moreover if (H2) is satisfied, then Nx-a.e.,

dim�	B ∩ �α�β�� ≤ 1
2�1 + ρ dimB� + δ′#(13)

This will be sufficient to prove the upper bounds of Proposition 5.1.

Proof of (12) and (13). In a first step we start from a covering of B by
open sets and construct an associated covering of 	B ∩�α�β�. In a second step,
Lemma 5.4 gives us an upper bound on the cardinality of this covering. In the
last step, we prove (12) and (13) by letting the maximal diameter of the open
sets in the covering of B tend to 0.

Let �α�β� ⊂ �0�∞�, with α < 1, and let δ > 0 small enough. We set θ =
ρ�1 + δ�/2.
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First step. Let i be an integer and ε > 0, h > εθ. We define the stopping
times,

Tε
i = inf

{
u ∈ �iε� �i + 1�ε�� u ∈ 	�h−εθ�h� ∩ �α�β + 1�}�

with the convention inf � = σ . If �t� is the unique integer k such that k ≤ t <
k + 1, we define

Nε�h� δ =
�β/ε�∑

i=�α/ε�
1
Tε

i<σ
#

The random variable Nε�h� δ represents an upper bound on the total number
of intervals of the form �iε� �i + 1�ε� which intersect 	�h−εθ� h� ∩ �α�β�. Let
ε0 ∈ �0� α/2�, and ��hn� rn�� n ≥ 1� a possibly finite sequence in �0�∞�×�0� εθ�
such that hn > rn > 0 for all n ≥ 1, and the family of open sets �hn − rn� hn�
covers the compact set B. It is clear that

	B ∩ �α�β� ⊂ ⋃
n≥1

	�hn−rn� hn� ∩ �α�β�#

We finally denote by @ the collection of all pairs �i� ε� ∈ N
∗ × �0� ε0� such that

there exists n ≥ 1 for which

ε = r1/θ
n and �iε� �i + 1�ε� ∩ 	�hn−rn� hn� ∩ �α�β� #= �#

The collection of balls ��iε� �i + 1�ε�� �i� ε� ∈ @� covers the set 	B ∩ �α�β�.
Moreover, for ε fixed of the form ε = r

1/θ
n ,

Card
{
i ∈ {�α/ε�� # # # � �β/ε�}� �i� ε� ∈ @

} ≤ Nε�hn� δ
#

Second step. We are mainly concerned by a control on the expectation of
Nε�h� δ. Recall the notation of Section 4.2, and observe that for ε ∈ �0� α/2�,

1 ≥ NxL
h�

√
ε

β+1

≥ 1√
ε

Nx

∫ β+1

α/2
1
τh�Wu�<ζu<τh�Wu�+√

ε
 du

≥ 1
2
√

ε

�β/ε�∑
i=�α/ε�

Nx

[
Tε

i < σ �
∫ �i+2�ε

iε
1
τh�Wu�<ζu<τh�Wu�+√

ε
 du

]

≥ 1
2
√

ε

�β/ε�∑
i=�α/ε�

Nx

[
Tε

i < σ �� ∗
W

Ti
ε

[∫ ε

0
1
τh�Wu�<ζu<τh�Wu�+√

ε
 du

]]
�

where we used the strong Markov property at time Ti
ε for the last inequality.

To go further, let us introduce some notation and state a technical lemma.
Recall the notation of Lemma 3.2 to define, for every real number u > 0 of the
form u = �4Rn�2,

Z1
u�y� 	= P̄0

[
inf
i≥n

R
−ρ�1+δ/2�
i LRi

> �y + 1�
]
#
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Note that the sequence �Rn� depends on δ. If (H2) holds, then consider

Z2
u�y� 	= P̄0

[
inf

v∈�0�√u/4�
v−ρ�1+δ/2�Lv > �y + 1�

]
#

We will use the same notation Zu�y�, for both functions Z1
u�y� and Z2

u�y�.
This function is defined for �u�y� ∈ F × R

+, where F = 
�4Rn�2�n ≥ 1
 in the
first case and F = �0�∞� in the second one. Clearly the function Z is positive
and bounded above by 1, and is decreasing in both variables u and y. Moreover
thanks to Lemma 3.2, we have for every y > 0, limu∈F� u→0+ Zu�y� = 1. Recall
that the process Mt was defined in Lemma 5.3. The proof of the following
lemma is postponed to the end of this section.

Lemma 5.4. There exists a universal constant C0, such that for every δ ∈
�0�1/2�, h > 0, ε ∈ F∩�0�1/2�, Nx-a.e. for every stopping time T taking values
in �	�h−εθ� h� ∩ �α�β�� ∪ 
σ
, we have

� ∗
WT

[∫ ε

0
1
τh�Wu�<ζu<τh�Wu�+√

ε
 du

]
≥ C0 ε1+δZε�MT�1T<σ � ∗

WT
�σ > ε�#

Using this lemma with T = Tε
i , we get for ε ∈ F ∩ �0�1/2�,

Nx

[
Tε

i < σ �� ∗
W

Ti
ε

[∫ ε

0
1
τh�Wu�<ζu<τh�Wu�+√

ε
 du

]]

≥ C0ε
1+δ

Nx

[
Tε

i < σ �Zε�MTε
i
� � ∗

WTε
i

�σ > ε�]

≥ C0ε
1+δ

Nx

[
Tε

i < σ � σ > �i + 2�ε�Zε�MTε
i
�]

≥ C0ε
1+δ

Nx

[
Tε

i < σ �Zε�MTε
i
�]− C0ε

1+δ
Nx

[
σ ∈ �iε� �i + 2�ε�]#

We then sum over i ∈ 
�α/ε�� # # # � �β/ε�
, and use the monotonicity of the
mapping y �→ Zε�y� to get

1 ≥ NxL
h�

√
ε

β+1 ≥ 1
2
√

ε
C0ε

1+δ
�β/ε�∑

i=�α/ε�
Nx�Tε

i < σ �Zε�Mβ+1��

− 1√
ε
C0ε

1+δ
Nx�σ > α/2��

≥ 2−1C0ε
1/2+δ

Nx�Zε�Mβ+1�Nε�h� δ� − 2C0ε
1/2+δ�απ�−1/2#

In the last bound we also used the definition of Nε�h� δ and the well-known
formula Nx�σ > a� = �2/πa�1/2. From the monotonicity of the mapping ε �→
Zε�y�, we get for ε0 ∈ F small enough and ε0 ≥ ε ∈ F,

Nx�Zε0
�Mβ+1�Nε�h� δ� ≤ 4C−1

0 ε−1/2−δ#
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Third step. Let κ be such that 2�κ − 1/2�/ρ > d1 where d1 = dimB if

(H2) is satisfied, d1 = dimB otherwise. Let δ > 0 be so small that �κ −
1/2 − δ�/θ ≥ d1 + δ with θ = ρ�1 + δ�/2. By the definition of upper box-
counting dimension, and Hausdorff dimension, for every integer p there exists
a sequence ��hp

n� r
p
n�� n ≥ 1�, where h

p
n > r

p
n > 0, such that the family of open

sets �hp
n − r

p
n� h

p
n� covers B and such that �rp

n�1/θ ∈ F ∩ �0�2−p ∧ α/2� for all
n ≥ 1 and

∑
n≥1

�rp
n�d1+δ ≤ 2−2p#

For each p consider the set @p associated to the sequence ��hp
n� r

p
n�� n ≥ 1�

as in the first step of the proof. For p big enough we deduce from the last
inequality of the second step that, if ε0�p� = sup F ∩ �0� �α/2� ∧ 2−p�,

Nx

[
Zε0�p��Mβ+1�

∑
�i�ε�∈@p

εκ

]
≤ ∑

n≥1

�rp
n�κ/θNx

[
Zε0�p��Mβ+1�N�rp

n �1/θ�h
p
n�δ

]

≤ 4C−1
0

∑
n≥1

�rp
n��κ−1/2−δ�/θ

≤ 4C−1
0 2−2p#

By the Borel–Cantelli lemma we get the existence of p′ such that for every
integer p ≥ p′,

Zε0�p��Mβ+1�
∑

�i�ε�∈@p

εκ ≤ 2−p#

We have limp→∞ ε0�p� = 0. Thanks to the properties of Z, we get

lim
p→∞ Zε0�p��Mβ+1� = 1#

We have thus proved that Nx-a.e.,

lim
p→∞

∑
�i� ε�∈@p

εκ = 0#

Since the collection ��iε� �i + 1�ε�� �i� ε� ∈ @p� covers 	B ∩ �α�β�, we obtain
that Nx-a.e.,

dim	B ∩ �α�β� ≤ κ#

Since this bound holds for every κ such that 2�κ− 1/2�/ρ > dimB [and 2�κ−
1/2�/ρ > dimB, if (H2) is satisfied], we obtain (12) and (13), which completes
the proof of Proposition 5.1. ✷

Proof of Lemma 5.4. Let δ ∈ �0�1/2�, h > 0, ε ∈ F ∩ �0�1/2�. We set θ =
ρ�1+δ�/2. Let T be a stopping time with values in �	�h−εθ� h�∩�α�β��∪
σ
. Note



PATH PROPERTIES OF SUPERPROCESSES 1121

that, on 
T < σ
, Lr�WT� < LζT
�WT� for every r ∈ �0� ζT�. We introduce the

following three sets, where m�s� s′� = inf r∈�s� s′ � ζr and bε 	= � 1
16ε

1+2δ�∧�ζT/2�2,

A′
ε 	=

{
m�T�T + bε� ∈ [ζT −

√
bε� ζT −

√
bε/2

]� m�T + bε�T + ε/2� ≥ ζT�

ζT+ε/2 ∈ �ζT + 3
√

ε/8� ζT + 5
√

ε/8�
}
�

Aε 	= A′
ε ∩ {∀s ∈ �T + ε/2�T + ε�� ζs ∈ �ζT + √

ε/4� ζT + 3
√

ε/4�}
and

Bε 	= {Lyε+
√

ε/4�WT+ε/2� − Lyε
�WT+ε/2� ≥ εθ�MT + 1�}�

where yε 	= inf
r > m�T�T + ε�� Lr�WT� > Lm�T�T+ε��WT�
. The lemma is
then a simple consequence of the following two results:

(a) Nx-a.e. on Aε ∩ Bε ∩ 
T < σ
, we have
∫ T+ε

T
1
τh�Ws�<ζs<τh�Ws�+

√
ε
 ds ≥ ε/2#

(b) There exists a universal constant C0 such that

� ∗
WT

�Aε ∩ Bε� ≥ 2C0ε
δ1T<σZε�MT�� ∗

WT
�σ > ε�# ✷

Proof of (a). The proof is based on the properties of the Brownian snake.
Let us first show that on Aε ∩ Bε ∩ 
T < σ
, for every s ∈ �T + ε/2�T + ε�,
τh�Ws� < ζs. Notice that we have yε ≤ ζT on 
T < σ
 ∩ 
m�T�T + ε� < ζT
 ⊂

T < σ
 ∩ Aε. On 
T < σ
 ∩ Aε we get m�T + ε/2�T + ε� > ζT + √

ε/4 ≥
yε + √

ε/4. Thus for every s ∈ �T+ ε/2�T+ ε�, the paths t �→ Lt�Ws� coincide
for t ∈ �0� yε + √

ε/4�. Thus we have for every s ∈ �T + ε/2�T + ε�,
Lyε+

√
ε/4�WT+ε/2� = Lyε+

√
ε/4�Ws� ≤ Lζs

�Ws�#
Furthermore, the paths t �→ Lt�WT� and t �→ Lt�WT+ε/2� coincide over
�0�m�T�T + ε/2��. Since m�T�T + ε/2� ≥ ζT −√bε, we get

Lyε
�WT+ε/2� ≥ Lm�T�T+ε/2��WT+ε/2�

= Lm�T�T+ε/2��WT� ≥ L
ζT−

√
bε

�WT�#

Using the definition of Mt (cf. Lemma 5.3), we see that

L
ζT−

√
bε

�WT� ≥ LζT
�WT� − MTb

ρ�1−δ/2�/2
ε > LζT

�WT� − MTεθ#

Then we get that on the event 
T < σ
 ∩ Aε, for every s ∈ �T + ε/2�T + ε�,
Lζs

�Ws� ≥ Lyε+
√

ε/4�WT+ε/2� − Lyε
�WT+ε/2� + Lyε

�WT+ε/2�
> Lyε+

√
ε/4�WT+ε/2� − Lyε

�WT+ε/2� + LζT
�WT� − MTεθ#
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It is then clear that on Aε∩Bε∩
T < σ
, we have for every s ∈ �T+ε/2�T+ε�,
Lζs

�Ws� > �MT + 1�εθ + LζT
�WT� − MTεθ = LζT

�WT� + εθ#

Since, on 
T < σ
, T ∈ 	�h−εθ� h�, we have LζT
�WT� ≥ h − εθ. It follows that

Lζs
�Ws� > h for s ∈ �T + ε/2�T + ε�. Thus we have also τh�Ws� < ζs for

s ∈ �T + ε/2�T + ε�.
Finally, let us prove that on 
T < σ
 ∩ Aε, for every s ∈ �T + ε/2�T + ε�,

τh�Ws� > ζs − √
ε. For every s ∈ �T�T + ε�, the paths t �→ Lt�Ws� coincide

over �0�m�T�T + ε��. The inequality

Lm�T�T+ε��Ws� = Lm�T�T+ε��WT� < LζT
�WT� ≤ h�

implies τh�Ws� > m�T�T + ε� for every s ∈ �T + ε/2�T + ε�. Recall that on

T < σ
 ∩ Aε, for every s ∈ �T + ε/2�T + ε�,

m�T�T + ε� ≥ ζT −
√

bε ≥ ζs −
√

bε − 3
√

ε/4 > ζs − √
ε#

Then we have for every s ∈ �T+ε/2�T+ε�, τh�Ws� > ζs−
√

ε. In a nutshell we
have obtained that Nx-a.e. on Aε ∩Bε ∩
T < σ
, for every s ∈ �T+ε/2�T+ε�,

τh�Ws� < ζs < τh�Ws� + √
ε#

This completes the proof of (a). ✷

Proof of (b). Let ε ∈ F ∩ �0�1/2�. By conditioning on

σ�Ws� 0 ≤ s ≤ T + ε/2�
and using a scaling argument, we get

� ∗
WT

�Aε� ≥ � ∗
WT

�A′
ε�P0�∀s ∈ �0�1/2�� �Bs� < 1/8��

where B is under Py a linear Brownian motion started at y ∈ R. We set
m̃�s� t� = inf r∈�s� t� Br. Using the Markov property at time bε for B, we get

� ∗
WT

�A′
ε� = PζT

[
m̃�0� bε� ∈ [ζT −

√
bε� ζT −

√
bε/2

]�
m̃�bε� ε/2� ≥ ζT� Bε/2 ∈ �ζT + 3

√
ε/8� ζT + 5

√
ε/8�

]

≥ P0

[
m̃�0� bε� ∈ �−

√
bε�−

√
bε/2��

√
bε/2 ≤ Bbε

≤
√

bε�

PBbε

[
m̃

(
0�

ε

2
− bε

)
≥ 0�Bε/2−bε

∈ �3√
ε/8�5

√
ε/8�

]]
#

Using standard properties of linear Brownian motion, we easily see that the
above expression is bounded below by a universal constant times

√
bε/ε. So

there exists a universal constant C0 such that

� ∗
WT

�Aε� > 8 C0

√
bε/ε#
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We finally get a lower bound on � ∗
WT

�Aε ∩ Bε�. We denote by 
T the σ-
field σ�Ws� s ≤ T� ∨ σ�ζs� s ≥ 0�. Recall that the two paths WT and WT+ε/2
coincide over �0�m�T�T + ε/2��. Conditionally on 
T, the distribution of((

ξm�T�T+ε/2�+u�WT+ε/2��Lm�T�T+ε/2�+u�WT+ε/2�
)
�

0 ≤ u < ζT+ε/2 − m�T�T + ε/2�
)

is the law of �ξu�Lu�, started at �ξm�T�T+ε/2��WT��Lm�T�T+ε/2��WT�� and killed
at time ζT+ε/2 − m�T�T + ε/2�. Notice

yε = inf
r > m�T�T + ε�� Lr�WT� > Lm�T�T+ε��WT�

is 
T-measurable by construction. Moreover on 
T < σ
 ∩ Aε, we have
yε = m�T�T + ε/2� + ξm�T�T+ε/2��WT�, as a consequence of the behavior
of the process ξ. Thus conditionally on 
T, on 
T < σ
 ∩ Aε� we obtain
that ��ξyε+u�WT+ε/2��Lyε+u�WT+ε/2��� 0 ≤ u < ζT+ε/2 − yε� is distributed as
�ξu�Lu�, started at �0�Lm�T�T+ε/2��WT�� and killed at time ζT+ε/2 −yε. Notice
also that on 
T < σ
 ∩ Aε, we have

yε + √
ε/4 ≤ ζT + √

ε/4 < ζT+ε/2#

Thus, conditionally on 
T, on 
T < σ
 ∩ Aε,

�Lyε+u�WT+ε/2� − Lyε
�WT+ε/2�� 0 ≤ u ≤ √

ε/4�
is distributed as �Lu� 0 ≤ u ≤ √

ε/4�, under P̄0. Hence we get

1T<σ � ∗
WT

�Aε ∩ Bε� = 1T<σ � ∗
WT

�Aε��
∗
WT

�Bε � 
T��
= 1T<σ � ∗

WT
�Aε� P̄0�L√

ε/4 > εθ�M + 1���M=MT
#

Since ε ∈ F, by the definition of Zε, we have

P̄0�L√
ε/4 > εθ�M + 1�� ≥ Zε�M�#

Then we have

1T<σ � ∗
WT

�Aε ∩ Bε� ≥ 1T<σ � ∗
WT

�Aε�Zε�MT�
≥ 1T<σ 8 C0

√
bε/ε Zε�MT�#

(14)

To conclude, note that the law of σ under � ∗
WT

is the law of ζ2
TN−2 where N

is a standard normal variable. Thus we have

� ∗
WT

�σ > ε� ≤ 1 ∧ �ζTε−1/2� ≤ 4ε−�1/2+δ�√bε#

Combine this with inequality (14) to complete the proof of (b). ✷

6. Hitting probability of small balls and proofs of Theorems 2.3
and 2.4. From now on we assume (H2) holds. In the next two sections, we
state and prove upper and lower bound for the hitting probability of small
balls for the process Yt (cf. [1] for ��λ� = λ2). Then we derive Theorem 2.3.
In Section 6.4, we prove Theorem 2.4.
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6.1. Upper bound for the hitting probability of small balls. The next propo-
sition gives an upper bound for the hitting probability of small balls.

Proposition 6.1. Assume ρd > 2. There exists a positive function l1, which
is slowly varying at 0+, such that for every t > 0, ε > 0,

Nx�Yt�Bε�0�� > 0� ≤ t−d/2εd−2/ρ l1�
√

t ∧ ε�#

Proof. We are following the proof of Proposition 8 from [19]. We first
consider the case 0 < 2ε <

√
t. We introduce the open set

@ 	= {�r� y� ∈ R
+ × R

d� r < t� �y� > 2ε
}

∪ 
�r� y� ∈ R
+ × R

d� r < t − ε2� �y� ≤ 2ε
#
Formula (5), with D = R

+ × @ implies that the measure YR
+×@ defined in

Section 4.2 is supported on 
0
 × ∂@. For convenience, let us denote by Ỹ@

its restriction to ∂@ ⊂ R
+ × R

d, that is, δ0 ⊗ Ỹ@ = YR
+×@. By the special

Markov property (cf. [3], Proposition 7), if N is the number of excursions of
the Brownian snake outside R

+ ×@ that reach R
+ ×
t
×Bε�0�, then we have

Nx�Yt�Bε�0�� > 0� ≤ Nx�N�

= Nx

[∫
Ỹ@�dr�dy�N�0�r�y�

[
� ∩ �
t
 × Bε�0�� #= �

]]
�

(15)

where the set � has been defined in Section 4.1. Since the measure Ỹ@ is
supported by ∂@, it is sufficient to bound the integrand for �r� y� ∈ ∂@:

(i) If r = t, �y� > ε, then � ∩ �
t
 × Bε�0�� = �, N�0� r� y�-a.e.
(ii) If r = t − ε2 and �y� ≤ 2ε, then using the function v defined in Sec-

tion 4.3, we get

N�0� r� y��� ∩ �
t
 × Bε�0�� #= �� ≤ N�0�0�y�
[

sup
s≥0

Lζs
> ε2

]
= v�ε2�#(16)

(iii) If t − ε2 < r < t and �y� = 2ε, then by time translation and symmetry
we get

N�0� r� y��� ∩ �
t
 ×Bε�0�� #= �� ≤ N�0�0� y��� ∩ �R+ ×Bε�0�� #= ��
≤ N�0�0� y′��� ∩ �R+ × ��−∞�0� × R

d−1�� #= ���

where y′ = �ε�0� # # # �0� ∈ R
d. Let u�y′� denote the right-hand side of the

previous formula. It can be deduced from the remark in Section 4.1 that the
function u is bounded on every compact set of �0�∞� × R

d−1. The arguments
of Propositions 6 to 8 from [3] and Propositions 4.3 to 5.3 from [18] can be
adapted to prove that u solves

1
2@u = ��u��
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on �0�∞� × R
d−1, with the boundary condition

lim
y1>0� y1→0

u�y� = ∞�

where we write y = �y1� # # # � yd�. Obviously, by space homogeneity, the func-
tion u depends only on y1. For simplicity we write u�y1� for u��y1� # # # � yd��.
Therefore u	 �0�∞� → R

+ solves

u′′�s� = 2��u�s��� s > 0 and lim
s→0

u�s� = ∞#

Using the fact that u is decreasing, we get for r > 1,

u′�r� = −
[
u′�1�2 + 4

∫ u�r�

u�1�
��h�dh

]1/2

#

Integrating over �0� s� and making the change of variable t = u�r�, we get for
s ∈ �0�1�,

∫ ∞

u�s�

[
u′�1�2 + 4

∫ t

u�1�
��h�dh

]−1/2

dt = s#

Notice that the integrand is regularly varying at ∞ with index −1 − ρ/2.
Thanks to Theorems 1.5.10 and 1.5.12 of [4], we deduce that u is regularly
varying at 0+ with index −2/ρ. Recall that

N�0� r� y�
[
� ∩ �
t
 × Bε�0�� #= �

] ≤ u�ε�#(17)

Recall that the function v is regularly varying at 0+ with index −1/ρ. Since
the functions u and v are positive, there exists a positive function, l′, which is
slowly varying at 0+ such that u�ε�+v�ε2� ≤ ε−2/ρl′�ε�. We can then substitute
(16) and (17) into inequality (15) to obtain

Nx�Yt�Bε�0�� > 0� ≤ ε−2/ρl′�ε�Nx��Ỹ@�1�0� t�×R
d��#

Then (5) gives

Nx

[(
Ỹ@�1�0� t�×R

d

)] = Px�T@ < t��
where T@ = inf
s > 0� �s� γs� #∈ @
 (recall that γs is a Brownian motion in
R

d started at x under Px). Then we easily get the existence of constants c1
depending only on d such that

Px�T@ < t� ≤ c1t
−d/2εd#

Thus we have

Nx�Yt�Bε�0�� > 0� ≤ c1t
−d/2εd−2/ρl′�ε�#

Now if 0 <
√

t < ε, we have the elementary upper bound

Nx�Yt�Bε�0�� > 0� ≤ v�t� ≤ t−d/2εd−2/ρ l′�√t�#
Taking l1 = �c1 + 1�l′ gives the desired inequality. ✷

Notice that in the stable case, a scaling argument shows that we can replace
l by a constant.
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6.2. Lower bound for the hitting probability of small balls. We assume
only in this section that

lim sup
λ→0+

λ−1−ρ��λ� < ∞#(18)

Proposition 6.2. Assume that ρd > 2. For every M > 0, there exists a
positive increasing function l2, which is slowly varying at 0+, such that for
every M

√
t > ε > 0, we have

Nx�Yt�Bε�0�� > 0� ≥ εd−2/ρp

(
ρt

1 + ρ
� x

)
l2�ε�#

Moreover, if lim supλ→∞ λ−1−ρ��λ� < ∞, we can replace l2 by a positive con-
stant.

Notice that all the assumptions on � are satisfied in the stable case.

Proof. Let A ≥ κ > 0. We have (cf. [3])

Nx�Yt�Bε�0�� > 0� ≥ vε�t� x� 	= Nx�1 − exp �−κε−2/ρYt�Bε�0�����
where the function vε is the only nonnegative solution of (1) with f =
κε−2/ρ1Bε�0�. As

vε�t� x� ≤ κε−2/ρPt1Bε�0��x��
we deduce from (1) and the monotonicity of �, that

vε�t� x� ≥ κε−2/ρPt1Bε�0��x� −
∫ t

0
du Pu

[
�
(
κε−2/ρPt−u1Bε�0�

)]�x�#(19)

We now bound the second term of the right-hand side, which we denote by It.
Thanks to (18) and [4] (Example 4, page 58), we know that the function lA
defined on �0�∞� by

lA�r� 	= sup
λ∈�0�Ar−2/ρ�

λ−1−ρ��λ�

is decreasing and slowly varying at 0+. Using the monotonicity of lA, it follows
that

It ≤ �κε−2/ρ�1+ρ
∫ t

0
duPu��Pt−u1Bε�0��1+ρ��x�lA�ε�

≤ κ1+ρε−2�1+1/ρ�t
∫ 1

0
du Pu��P1−u1Bε/

√
t�0��1+ρ��x/√t�lA�ε�#

Let λ ∈ �0�M�. We now give an upper bound on

∫ 1

0
du
∫

dzp�u� z − x�
[[∫

Bλ�0�
dyp�1 − u�y − z�

]1+ρ]
#
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We decompose the above integral in two terms by considering the integral du
on the sets 
u < 1/2
 (integral J1), 
u ≥ 1/2
 (integral J2). Using ρd > 2,
the integral J1 is bounded above by

∫ 1/2

0
du
∫

dzp�u� z − x��cλd�1+ρ ≤ c1λ
d+2�

where c1 depends only on M and d. Now by scaling we get

J2 ≤
∫ 1/2

0
du
∫

dz

[∫
Bλ�0�

dyp�u�y − z�
]1+ρ

≤ λd+2
∫ ∞

0
du
∫

dz

[∫
B1�0�

dy p�u�y − z�
]1+ρ

= c2λ
d+2#

We use ρd > 2 to get c2 < ∞. Combining those results together with λ = ε/
√

t,
we get that there exists a constant c′

M depending only on M and d such that

It ≤ c′
Mκ1+ρε−2�1+1/ρ�t1−�d+2�/2εd+2lA�ε�#(20)

On the other hand, there exists a constant cd depending only on d such that

Pt1Bε�0��x� ≥ cd

[
1 ∧ (�ε/√t�d exp�−�x�2/2t�)]#

Thus for M
√

t > ε > 0, we have

Pt1Bε�0��x� ≥ cdM
−dt−d/2εd exp�−�x�2/2t�#

Plugging the previous inequality and (20) into (19), we get

vε�t� x� ≥ κt−d/2εd−2/ρ[cdM
−d exp�−�x�2/2t� − c′

MκρlA�ε�]#
Since the constants A and κ are arbitrary, we can take A = �cdM

−dc′−1
M �1/ρ

and κ = A�exp�−�x�2/2t��1 + lA�ε��−1�1/ρ to get

Nx�Yt�Bε�0�� > 0� ≥ vε�t� x� ≥ cMεd−2/ρp�ρt/�1 + ρ�� x�l�ε��
where l�ε� = �1 + lA�ε��−1−1/ρ is increasing and slowly varying at 0+, and the
constant cM is independent of x, t and ε. Moreover, if lim supλ→∞ λ−1−ρ��λ� <
∞, then lA is bounded above by a positive constant independent of A, and we
can let l be a constant. ✷

6.3. Proof of Theorem 2.3. We deduce from Proposition 4.3 that for every
λ > 0,

P
X
δx

[
exp�−λXt�Bε�0���] = exp�−Nx�1 − exp −λYt�Bε�0����#

Letting λ → ∞, we get

P
X
δx

�Xt�Bε�0�� > 0� = 1 − exp�−Nx�Yt�Bε�0�� > 0��#
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Then Theorem 2.3 is a consequence of Proposition 6.1, Proposition 6.2 and the
inequality �1 ∧ u�/2 ≤ 1 − exp�−u� ≤ u.

6.4. Proof of Theorem 2.4. Before proving the theorem, we give a result
on the intersection of the support of two independent copies of Y. In the next
lemma, we consider the product measure Nx1

⊗ Nx2
on the space C�R+�� �2.

The canonical process on this space is denoted by �W1�W2�, and we write Y1,
respectively Y2, for the measure-valued process associated with W1, respec-
tively W2.

Lemma 6.3. Assume ρd > 4. Then for every t > 0, s > 0, we have Nx1
⊗Nx2

-
a.e.,

suppY1
t ∩ suppY2

s = �#

Proof. Fix t > 0 and s > 0, and let δ ∈ �0�1 ∧ √
t ∧ √

s�, y ∈ R
d. We

can cover the ball B1�y� with less than �4√
dδ−1�d balls �Bδ�yi�� i ∈ J� with

radius δ and centers yi belonging to y+δd−1/2
Z

d. Use Proposition 6.1 to write

Nx1
⊗ Nx2

�suppY1
t ∩ suppY2

s ∩ B1�y� #= ��
≤ ∑

i∈J

Nx1
�suppYt ∩ Bδ�yi� #= ��Nx2

�suppYs ∩ Bδ�yi� #= ��

≤ ∑
i∈J

t−d/2s−d/2�δd−2/ρ l�δ��2

≤ �ts�−d/2�4
√

d�dδd−4/ρ l�δ�2#

Since ρd > 4, let δ go to 0 to see that the left-hand side is 0. As this is true
for every y ∈ R

d, the desired result follows. ✷

Recall from Section 4.1 the definition of the set � .

Lemma 6.4. For ε > 0, t > 0 set

hε�t� = N0�� ∩ ��0� t� × Bε�0�c� #= ��#
Then for every ε > 0, limt↓0 hε�t� = 0.

Proof. We start by making the simple observation that N0-a.e. for every
s ≥ 0 such that Lζs

�Ws� = 0, we have ζs = 0, and thus Ŵs = 0. Indeed, if
there would exist s such that Lζs

�Ws� = 0 and ζs > 0, then the snake property
would yield a rational s′ “close” to s such that Lt�Ws′ � = 0 for t ∈ �0� θ�, for
some θ > 0. This is impossible, since under N0, conditionally on ζs′ , Ws′ is
distributed as ξ̄ started at �0�0�0� and killed at time ζs′ .

Then let �tn� be a sequence decreasing to 0, and let

An = {� ∩ ��0� tn� × Bε�0�c� #= �
}
#



PATH PROPERTIES OF SUPERPROCESSES 1129

Thanks to the remark in Section 4.1, we have N0�An� < ∞. We claim that
N0�
⋂

n≥1 An� = 0. In fact, on the event
⋂

n≥1 An #= �, the definition of � yields
a sequence �sn� in �0� σ� such that

Lζsn
�Wsn

� ≤ tn and Ŵsn
∈ Bε�0�c#

We can extract from the sequence �sn� a subsequence converging to s∞. By the
continuity of the mappings s �→ Lζs

�Ws� and s �→ Ŵs, we get that Lζs∞
�Ws∞� =

0 and Ŵs∞ ∈ Bε�0�c, which contradicts the beginning of the proof.
Since the function hε is monotone increasing and hε�tn� = N0�An�, the

statement of Lemma 6.4 follows from the fact that N0�
⋂

n≥1 An� = 0. ✷

Proof of Theorem 2.4. We adapt an argument of Perkins ([22], page
1041). Let us fix t > 0 and δ ∈ �0� t�. By combining the Markov property
of X at time t − δ and Proposition 4.3, we obtain that the distribution
of Xt under P

X
ν is the same as the law of

∑
i∈I Yδ�Wi�, where condition-

ally on Xt−δ,
∑

i∈I δWi is a Poisson measure on C�R+�� � with intensity∫
Xt−δ�dy�Ny�·�. With a slight abuse of notation, we may assume that the

point measure
∑

i∈I Yδ�Wi� is also defined under P
X
ν . It follows from Lemma

6.3 and properties of Poisson measures that a.s. for every i #= j,

suppYδ�Wi� ∩ suppYδ�Wj� = �#

For ε > 0, let Uε denote the event “suppXt is contained in a finite union of
disjoint compact sets with diameter less than ε.” It is easy to check that Uε is
measurable. Furthermore, by the previous observations, and denoting by yi

the common starting point of the paths Wi
s,

P
X
ν �Uε� ≥ P

X
ν �∀ i ∈ I� diam �suppYδ�Wi�� ≤ ε�

≥ P
X
ν �∀ i ∈ I� suppYδ�Wi� ⊂ Bε/2�yi��

= E
X
ν

[
exp −

∫
Xt−δ�dy�Ny�suppYδ ∩ Bε/2�y�c #= ��

]

= E
X
ν �exp −�Xt−δ�1�N0�suppYδ ∩ Bε/2�0�c #= ���

≥ E
X
ν �exp −hε/2�δ��Xt−δ�1��#

We can now let δ go to 0, using Lemma 6.4, to conclude that P
X
ν �Uε� = 1. Since

this holds for every ε > 0, we conclude that suppXt is totally disconnected
P

X
ν -a.s. ✷

7. Absolute continuity of the superprocess in the Brownian case
and in the symmetric α-stable case. In this section we prove Theorem 2.5.
In fact, it is enough to prove the theorem for a finite measure µ with support
in �m�m� ⊂ �0�∞�. The construction of the Brownian snake W associated
with the process ξ̄t = �ξt�Lt� γ

α
Lt

� is performed as in Section 4, following the
general results of [3] [see Section 4 and hypothesis (H) therein]. In fact only
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the spatial motion � has to be modified. However the processes t �→ �t�Ws�
and s �→ Ŵs are no longer continuous. The construction of the measure Lt

in Section 4.2 remains valid and we can still define the exit measure by the
formula

�Yt�ϕ� =
∫ σ

0
ϕ�Ŵs�dLt

s#

Proposition 4.2 also remains valid.
Let ν ∈ Mf. Let

∑
i∈I δWi be a Poisson measure on C�R+�� � with intensity∫

ν�dx�Nx�·�. The process

Xα
0 = ν� Xα

t =∑
i∈I

Yt�Wi� for t > 0�

is a �γα���-superprocess (see [3]). Moreover, a.s. the collection

��Ys�Wi�� s ≥ m�� i ∈ I�
has finitely many nonzero terms. Then Theorem 2.5 is a consequence of the
next proposition.

Proposition 7.1. Let µ a finite measure on �m�m� ⊂ �0�∞� and q ∈ �0�1�
such that ∫ ∫

µ�dt�µ�ds��t − s�−q < ∞#

If α/ρ + αq > d, then for every x ∈ R
d, Nx-a.e. the measure

∫
µ�dt�Yt is

absolutely continuous with respect to Lebesgue measure.

We shall now give a proof of this proposition. The arguments are very sim-
ilar to Section 5.2.

Proof of Proposition 7.1. Thanks to Theorem 7.15 from [24], it is suffi-
cient to prove that Nx-a.e.

∫
µ�dt�Yt�dy�-a.e.,

F

(
y�
∫

µ�dt� Yt

)
	= 1
lim infn→∞ 2nd

∫
µ�dt�Yt�B2−n �y��=∞
 = 0#

Let K = 
s ∈ suppµ� ∫ µ�dt��t − s�−q < ∞
. Notice that µ�Kc� = 0. Therefore
it is enough to verify that for s0 ∈ K,

Nx

[∫
Ys0

�dz� F

(
z�
∫

µ�dt� Yt

)]
= 0#(21)

Thanks to Proposition 4.2, we get

Nx

[∫
Ys0

�dy�F
(
y�
∫

µ�dt� Yt

)]

=
∫

P̄
s0
x �dw�Ẽ

[
F

(
ŵ�
∫
�w�du�dW�

∫
µ�dt� 1
u<τt�w�
 Yt�W�

)]
#

(22)
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Conditioning on 
0 = σ�Sv�w��0 ≤ v < s0�, we shall prove that P̄
s0
x -a.s.,

U = Ē
s0
x

[
Ẽ

[
lim inf
n→∞ 2nd

∫
�w�du�dW�

∫
µ�dt�1
u<τt�w�
Yt�W��B2−n�ŵ��

]∣∣∣∣
0

]

< ∞#

To this end, we use Fatou’s lemma to get

U ≤ lim inf
n→∞ 2nd

Ē
s0
x

[
Ẽ

[∫
�w�du�dW�

∫
µ�dt�1
u<τt�w�


× Yt�W��B2−n�ŵ��
]∣∣∣∣
0

]

= lim inf
n→∞ 2nd

Ē
s0
x

[∫
µ�dt�4

∫ ζw

0
du 1
u<τt�w�
Nw�u��Yt�B2−n�y���y=ŵ

∣∣∣∣
0

]

= 4 lim inf
n→∞ 2nd

Ē
s0
x

[∫
µ�dt�

∫ Ss0−∧St−

0
du P̄

t
w�u��ŵ ∈ B2−n�y��y=ŵ

∣∣∣∣
0

]

= 4 lim inf
n→∞ 2nd

∫
µ�dt�

∫
�0� s0∧t�

dSu′ Ex

[
Pγα

u′

[
γα
t−u′ ∈ B2−n�y�]

y=γα
s0

]
#

We used the formula for the intensity of �w in the first equality, then (5) in
the second one and finally the change of variables u = Su′ in the last one. We
have

Ex

[
Pγα

u′

[
γα
t−u′ ∈ B2−n�y�]

y=γα
s0

]
= gα�2−n� s0 + t − 2u′��

where gα�r� t� = P0��γα
t � ≤ r�. Since s0 ∈ K and α/ρ + αq > d, we can apply

Lemma A.1 with κ = d, and we get U ≤ 4Cκ < ∞ P
s0
x -a.s. Formula (22) then

gives (21), which completes the proof of the proposition. ✷

APPENDIX

Let γα be a symmetric α-stable process in R
d as in Section 2. Let the function

gα be defined on R
+ × �0�∞� by

gα�r� t� = P0��γα
t � ≤ r� = P0��γα

1 � ≤ rt−1/α�#
Since the law of the random variable γα

1 has a continuous density with respect
to Lebesgue measure on R

d, there exists a constant cα, such that gα�r� t� ≤
cα�1 ∧ rdt−d/α� on �r� t� ∈ R

+ × �0�∞�. Hence we have also gα�r� t� ≤ cαr
θt−θ/α

for every θ ∈ �0� d�. Let µ be a nonzero finite measure with support in �m�m� ⊂
�0�∞�. Let s0 ∈ suppµ, and q ∈ �0�1� such that

∫
µ�dt� �s0 − t�−q < ∞#

Let S be a subordinator as in Section 3.
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Lemma A.1. Let κ ∈ �0� d�, such that κ < α�q+1/ρ�. Then P̄
s0
x �dw�-a.s. there

exists a finite constant Cκ depending on w only through �Sv�w��0 ≤ v < s0�,
such that for every r ≤ 1,

∫
µ�dt�

∫
�0� s0∧t�

gα�r� s0 + t − 2u�dSu ≤ Cκr
κ#

Proof. Let κ ∈ �0� d�, such that κ < α�q + 1/ρ�. Let δ ∈ �0�1� small
enough such that κ < α�q + 1/ρ − δ� and κ #= α�1/ρ − δ�. Recall the upper
bound gα�r� t� ≤ cαr

κt−κ/α. The lemma will be proved as soon as we can verify
that P̄

s0
x -a.s.,

∫
µ�dt�

∫
�0�s0∧t�

�s0 + t − 2u�−κ/α dSu < ∞#(23)

By Lemma 3.2(iii), we can find P̄
s0
x -a.s. a (random) constant ε ∈ �0�m/2�, such

that for every u ∈ �s0 − ε� s0�,
Ss0− − Su ≤ �s0 − u�1/ρ−δ #

In order to bound the left-hand side of (23), we first observe that
∫

µ�dt�
∫ �s0−ε�∧t

0
�s0 + t − 2u�−κ/α dSu ≤ �µ�1�ε−κ/αSm#

Consider the case u ∈ ��s0 − ε� ∧ t� s0 ∧ t�. If t #= s0 or q = 0, an integration
by parts gives

∫
��s0−ε�∧t� s0∧t�

�s0 + t − 2u�−κ/α dSu

= [S�s0∧t�− − S��s0−ε�∧t�
]�s0 + t − 2��s0 − ε� ∧ t��−κ/α

+ 2κ
α

∫ s0∧t

�s0−ε�∧t
�s0 + t − 2u�−1−κ/α�S�s0∧t�− − Su�du#

Now for u ∈ ��s0 − ε� ∧ t� s0 ∧ t�, we have

S�s0∧t�− − Su ≤ Ss0− − Su ≤ �s0 − u�1/ρ−δ#

Thus the integral
∫ s0∧t
�s0−ε�∧t�s0 + t−2u�−1−κ/α�S�s0∧t�− −Su�du is bounded above

by
∫ s0∧t

�s0−ε�∧t
�s0 + t − 2u�−1−κ/α+1/ρ−δ du

≤
{
C�s0 − t�−κ/α+1/ρ−δ� if κ > α/ρ − αδ�

C� if κ < α/ρ − αδ�

where the constant C is independent of t ∈ �m�m�. Notice that µ�
s0
� > 0
implies q = 0. Thus by combining the previous estimates, we see that the
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left-hand side of (23) is bounded above by

2�µ�1�ε−κ/αSm +




2κ
α

C
∫

µ�dt� �s0 − t�−κ/α+1/ρ−δ� if κ > α/ρ − αδ�

2κ
α

C�µ�1�� if κ < α/ρ − αδ#

This quantity is finite by the assumption
∫
µ�dt� �s0 − t�−q < ∞ and the choice

of δ. The lemma follows. ✷
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