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A STOCHASTIC WAVE EQUATION IN TWO SPACE DIMENSION:
SMOOTHNESS OF THE LAW

By ANNIE MILLET! AND MARTA SANZ-SOLE2

Université Paris 6 and Universitat de Barcelona

We prove the existence and uniqueness, for any time, of a real-valued
process solving a nonlinear stochastic wave equation driven by a Gaussian
noise white in time and correlated in the two-dimensional space variable.
We prove that the solution is regular in the sense of the Malliavin calculus.
We also give a decay condition on the covariance function of the noise under
which the solution has Holder continuous trajectories and show that, under
an additional ellipticity assumption, the law of the solution at any strictly
positive time has a smooth density.

0. Introduction. In this paper we study the stochastic wave equation
with two-dimensional spatial variable

2
<;? - A)u(t, x) = o(u(t, x))F(dt, dx) + b(u(t, x)),

0.1 u(0, x) = uy(x),
(;—L:(O, x) = vg(x).

We are interested in solutions which are real-valued stochastic processes
and want to establish sufficient conditions ensuring the existence and smooth-
ness of density for the law of the solution u(#, x) for fixed ¢ > 0, x € R?. It is
well known (see, for instance, [13]) that, unlike for the one-dimensional spatial
variable studied in [3] our requirements on the process u exclude F(¢, x) from
being a time—space white noise (see [1] for a different approach). This is be-
cause the fundamental solution of the wave equation becomes less smooth as
the dimension increases. In [8] the noise F'(¢, x) is assumed to be a generalized
Gaussian field with covariance

(0.2) E(F(t, x)F (s, y)) = 8(t = ) (|x = y]),

where 6 denotes the Dirac delta function and f: R, — R, is bounded. In
their recent paper [4], Dalang and Frangos have weakened the conditions
on the covariance function. The noise F(¢, x) denotes a martingale measure
defined by an extension of a generalized centered Gaussian field (F(¢); ¢ €
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(R, x #?)) with covariance functional J defined by
03)  Je)= [ dt [ du [ dyeltof (v =D ).

They assume that f is continuous on ]0, oo[, satisfies for °rf(r)dr < oo for some
ro > 0 and, in addition, that the functional J: Z(R, x R?) x Z(R, x R?) —
R is positive definite. These properties assure the existence of a Gaussian
process F(t, x) satisfying (0.2). Using Walsh’s theory on stochastic integration
with respect to martingale measures developed in [13], these authors give a
rigorous formulation of equation (0.1) as an evolution equation. Their main
concern has been to state results on the existence and uniqueness of solution
of equation (0.1). In [8] this has been done for b = 0 under two different type
of assumptions:

(D) |o(¥)] = C(ly| + 1) log(Jy| +2)*, 0 < a < 1, and o locally Lipschitz.
(2) o Lipschitz and bounded.
The approach of [4] allows considering unbounded functions f, such as
f(r) =r° 0 < a < 2. The main result claims that, assuming o and b
Lipschitz, the condition

(0.4) G(ry) := /ro rf(r) ln<%) dr < 4oo for some ry >0
0

yields the existence of a unique jointly measurable, L2?-continuous real-
valued process {u(t, x);t € [0, t,], x € R%} solution to (0.1) up to time ¢,
where ¢, is some positive and finite real number depending on f. If the
coefficient o(-) is a constant function, then (0.4) also provides a necessary
condition for the existence and uniqueness of the solution and, in this
case, t; = oo. Finally, a decay assumption on G(ry) as r, — 0 provides
a Holder continuous version of the solution. Some related work in the
case of a d-dimensional spatial variable, for any d > 1, a constant o(-)
and b = 0, has been developed independently in [6]. Their formulation
uses stochastic equations in infinite dimensions and the main tool is the
Fourier transform.

In Section 1 of this paper we improve Dalang’s and Frangos’s local
result, showing that (0.4) is a sufficient condition for the existence and
uniqueness of a solution u(¢, x) to (0.1), for any ¢ > 0, x € R2. We also
prove a sharper result for the Hoélder continuity of u(-, -) under condition
(1.19) on f, which is slightly weaker than the integrability hypothesis
made in [4]. The cornerstone for avoiding locality is given by Lemma Al,
which gives precise lower and upper bounds of the integral

¢ 1 1
(0.5) d d dy —— —¥)——, t>0.
fs, ax ], VTR ]

If o is bounded away from zero, the condition (0.4) turns out to be nec-
essary. Sections 2 and 3 are devoted to the proof of the existence and
smoothness of the density of the law of u(t, x), ¢t > 0, x € R?, using the
Malliavin calculus. Our framework is as follows.
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Let & denote the inner product space of measurable functions ¢: R2 —
R such that

foo @ [, dvle@If(x = yDle()] < oo,

endowed with the inner product

(@)= [ da [ dye(x)f(lx = ¥ ().

and let »# denote the completion of &. Set #; = L%([0, T']; #); notice that
# and #7 need not be spaces of functions. The space #7 is a real Hilbert
separable space isomorphic to the reproducing kernel Hilbert space of the
centered Gaussian noise (F(¢); ¢ € Z([0, T]xR?)), which can be identified
with a Gaussian process (W(h), h € #7) as follows. Let (e;; j > 0) C & be
a CONS of #; then (W;(t) = [, /g €;(x)F(ds, dx); j > 0) is a sequence
of independent standard Brownian motions such that

T
F(p) = Z[O (¢(s,%),e;),, dWi(s), ¢ € 2([0,T] x R?).
Jj=0

For h € #, set

T
W(h) =X [ (h(s). e,)r W i(s).
Jj=0
Therefore, we can use the framework of the Malliavin Calculus described
in [10] (see also [9] and [14]). The smoothness of the density requires non-
degeneracy conditions for the coefficient o and for the integral (0.5). Using
again Lemma A1, the latter can be formulated in terms of an integrability
condition on the function f (see (3.1)). The assumption on o could possibly
be relaxed using a Taylor expansion.

The Appendix contains technical results used in the paper. We usually
denote all constants by C, independently of their values. We only make
their dependence explicit if it is either important or enlightening for the
argument.

1. The solution to the wave equation. Let F (¢, x) be a centered Gauss-

ian noise in R, x R? with covariance given by (0.2). As shown in [4], such a
noise can be defined on Z(R, x R?) and then extended to bounded measurable
subsets of R, x R? to become a martingale measure

M,(A) = F([0,¢] x A),

t>0, A e Z(R?) (see [13]) for the filtration .7, defined by

F, = o(F([0,s] x A);0 < s <t, A e BR2)).

We assume that the function f: ]0, +oo[— R_ is continuous and satisfies

(1.1) [ " () dr < 400,
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for some r;, > 0. In addition we suppose that the functional J(-, -) defined by
(0.3) is nonnegative definite. Consider the stochastic wave equation defined in

(0.1). We assume that (du/dt)(0, x) is a measure with density vy(x) and solve
(0.1) in terms of an evolution equation as follows. Let

1 _
(1.2) S(t, ) = 5 (& = |x*) 1y
and consider

u(t.x) = [ St.x = ooy + 5 ( [, St x = st dy)

—i—/ot/RZS(t—s,x—y)
x [o(u(s, y))F(ds, dy) + b(u(s, y)) dsdy].

(1.3)

The stochastic integral in (1.3) is defined with respect to the .#,-martingale
measure M, (see [13]).

Our first purpose is to establish the existence and uniqueness of a solution
to (1.3). A local existence result (¢ € [0, £,] for some £, > 0) has been proved by
Dalang and Frangos in [4], Theorem 2 when u, = v, = 0. A natural way to give
a rigorous meaning to (0.1) is by means of its weak formulation, as follows. Let
¢ be a ¢2 function with compact support included in [0, T'] x R%. Multiplying
the first equation in (0.1) by ¢ and integrating by parts on [0, T'] x R? yields

&Zgo

fOT /Rz (W - A@)(t, x)u(t, x)dtdx

(1.4) n /R (‘;—‘f(o, x)ug(x) — (0, x)vo(x)> dx

T
- f / o(t, x)[o(u(t, x)) F(dt, dx) + b(u(t, x)) dt dx].
0o JR?
This leads to the following notion.

DEFINITION 1.1. A stochastic process {u(t, x), (¢, x) € R, xR?} is said to be
a weak solution of (0.1) if it is measurable, adapted to {F; , t > 0} and satisfies
(1.4) for any €2 function ¢ with compact support included in [0, T] x R?, for
some T > 0.

We prove in this section (see Theorem 1.2) that (1.3) has a unique solution
u and give sufficient conditions on f for the trajectories of u to be Holder
continuous. Then, it is easy to check that this is also a weak solution. Indeed,
for any t e R,, x € R?, set

X(e2) = [ S(tx =)o) dy+ 5 [ Stx =) uo() )
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and let ¢ be a ¢2 function with compact support included in [0, T] x R2. Then

[ /Rz<,9t2 _A¢)(t x)X(t, x)dtdx

(1.5)
~I—/ < (0, x) uy(x) — @(0, x)vo(x)) dx = 0.

In fact, it is well known (see, for instance, [15]) that X (¢, x) is solution of the
wave equation

?2X
9tz

with initial condition X(0, x) = uy(x), (9/9t)X(0,x) = vo(x), x € R% An
integration by parts yields

/OT /RZ <ZZT;D - A‘»D)(t, x)X(t,x)dtdx

_/ /R( o —AX)(t x)o(t, x)dt dx

+ |:qo(0 x) (o x) - ‘7"’(0 %) X(0, x)j|

— —AX =0,

which proves (1.5). We also have

/ -/R?(z?tQ _A¢)(t *)
x [/O /RZS(t—s,x—y)

x {o(u(s, y)) F(ds, dy) + b(u(s, y))ds dy}:| dtdx

(1.6)

= /OT /RZ o(s, y){cr(u(s, y)) F(ds, dy) + b(u(s, y))ds dy}.

Indeed, by a stochastic Fubini theorem (see, e.g., [13], Theorem 2.6), the left-
hand side of (1.6) equals

/OT -/R2 </ST [\x—y\<t—s S(t—s,x— y)<i727g20 - A¢>(t7 x) dt dx)
x|o(u(s, y)) F(ds, dy) + b(u(s, y)) ds dy).

Since S(-, -) is the Green function of the wave equation, that means

2
ﬁS—AS_S
ot2
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where 8 is the Dirac delta distribution at (0, 0) it follows that
T 0’)ng
[, 8Csx=(%% - 20)t.0)drdx = o(s. ).
s x—y|<t—s

This proves (1.6). The identities (1.5) and (1.6) show that the solution of (1.3)
is also a solution in the sense given in Definition 1.1. The next theorem shows
the existence and uniqueness of a solution for (1.3). Note that, unlike [4], we
obtain a global result.

THEOREM 1.2. Let uy: R? — R be of class €' and bounded, vy: R> — R
such that |vy| + |Vug| € L(R?), for some q, €]2, <], and o,b: R — R be
globally Lipschitz functions. We assume that the function f associated with
the noise F satisfies

ro ]_
1.7 1 - s
(1.7) /0 rf(r) n(r> < 400
for some ry > 0. Then equation (1.3) has a unique solution. Moreover, for any
T>0,pell, o)
(1.8) sup sup E(Ju(t, x)|?) < +oo.

xeR2 0<t<T
PrOOF. Consider the Picard iteration scheme

u0(t, x) = /R S(t, x — y)vo(y) dy

J
(1.9) * E(/Rg S, x - y)uo(y)dy>,

(e, x) = u’(t, x) + /t/ S(t—s,x—y)
0 JR?
x [a(u" (s, ¥))F(ds, dy) + b(u"(s, y))dsdy], n>0.
We at first prove that given ¢t > 0, 2 < p < oo,
(1.10) sup sup sup E(|u”(s, x)|?) < C < 400,

n>0 xecR? 0<s<t
where C is a constant depending on p, £, the L%-norm of |vy| and |Vu,|, the
supremum norm of u, and the Lipschitz constants of o and b. Indeed, let
1/go+1/q =1 and set y — x = s¢. Then Hélder’s inequality yields

[ S =

(1.11) = !
) T 27

[, (6=l oy o)y

1/q
= Cllvollg, </.§|<1 s27U(1 — |¢[2)"9/2 dg) < Clwglly, s /1.

If go = +00, | [ge S(5, & — ¥) vo(¥) dy| = [Vl
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We have |(d/ds)([ge S(s, x — y)ug(y)dy)| < C(A; + Ay), with

A= < Clluglle

Jy (= 1) (e + 56) di

and
Ay 50— 162 gl + 5) d .
l€]<1 as
Then, as before,

Ap=s [  (1—|€) 2| Vug(x + )| dé

[£]<1
(1.12) =/ Wuo(y)‘(sz Cx— y|2)—1/2 dy
lx—y|<s
< C||Vugll,,s® 7/,

for finite q,. If gy = 400, the right-hand side of (1.12) is replaced by ||V, s-

Therefore, (1.11) and (1.12) yield sup, g> supg-,, |u°(s, x)| < C for some pos-
itive constant C depending only on ¢, the supremum norm of u, and the L%-
norm of vy, Vu,. Let n > 0. Then

E(|u”+1(t, x)|p) < C(l + A;(t, x)+ Bg(t, x)),
where

)

t

[ [, 8 = 5. x— y)a("(s, y)F(ds. dy)
t p

B(t, x) = E<'/O /R S(t— s, x — y)b(u"(s, y)) ds dy >

Let J(s) and u, be defined by (A.1) and (A.2), respectively. Then, Burkholder’s

inequality and Holder’s inequality applied to integrals with respect to the
measure S(¢ —s,x — y)f(|ly — ¥')S({t — s, x — y') dsdy dy’ yield

ATt %) = E(

A, ) < CE(l [ ds [ ay [ dy st sx - ne@ sy -y
p/2
1.1 <ol ) S =55 -y )

< C(u,) A1 /(:(1 + sup sup E(|u"(r, x)|p)) J(t —s)ds.

xeR? 0<r=<s

Let v, be defined by (A.3). Holder’s inequality applied to integrals with respect
to the measure S(¢ — s, x — y) dsdy implies

(1.14) B (t,x) < C(v,)P" /Ot(l + sup sup E(|u"(r, x)|p)) ds.

xeR? 0<r=<s
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We prove in the Appendix (see Remark A2) that assumption (1.7) implies
supg<;<7 |J(t)| < Cp, for any T > 0, for some finite constant Cp depending
only on T. Thus, (1.13) and (1.14) show (1.10), by Gronwall’s lemma. Using
the Lipschitz property of o and b, a similar computation implies for 0 < ¢ < T,
n>1,

sup sup E(|u"t!(s, x) — u"(s, x)|P)
xeR? 0=<s=<t

¢
< C'{(p,T)(pﬂ)_1 + (vT)p_l} / suRp; 0sup E(lu"(r,x)— u"(r, x)|P) ds.
xe =<r=<s

Moreover, (1.9) and (1.10) yield
sup sup E(|u'(s, x) — u’(s, x)|?) < C.

xeR? 0<s<t

Therefore, the sequence {u"(¢, x), n > 0} converges in L? uniformly in x € R?,
0<t¢t<T. Set u(t,x) = LP —lim u(t, x). It is easy to see that u(¢, x)
satisfies (1.3), (1.8) and

(1.15) lim sup sup E(|u"(s, x) — u(s, x)|?) =0,

N30 xecR2? 0<s<t

n—00

which proves the existence of a solution. The existence of a jointly measurable
version of u continuous in L? has been proved in [4] in the case uy = vy =0,
but it can be easily extended to our setting. Uniqueness is checked by standard
arguments. O

REMARK 1.3. Let u,, vg: R2 — R be as in Theorem 1.2. Let o, b: R — R
be such that

|6(x)| < C1(1+ |x]), lo(x)] > Cy >0, Vx € R.

Assume that there exists a measurable process (u(t, x);¢ € [0, T], x € R?)
solution of (1.3) [hence for which the stochastic integral in (1.3) is defined]
and such that sup,.g: supy_;-r E(Ju(¢, x)|?) < oo; then (1.7) holds. Indeed, if
u® is defined as in the proof of Theorem 1.2, sup, g2 supy.,.r u’(¢, x) < oo.
The growth assumption on b and (A.3) imply that if o

)

SUp, gz SUPo<;<7 A(%, x) < oo. The isometry property of the stochastic integral
and the lower estimate on ¢ imply

A(t, x) zC%/Ot ds/Rz dyfRz dzS(t—s,x— )f(ly — 2)S(t — s, x — 2)

A(t, x) = E(I/Ot /R S(t— s, x — y)o(u(s, y)) F(ds, dy)

= C%/"’“ta

with u, defined by (A.2). Thus, (1.7) is a consequence of the lower bound of u,
proved in Lemma A1(b).
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We conclude this section by analyzing the path regularity of u(¢, x). The
next result, which is crucial in Section 3, extends and improves similar esti-
mates proved by Dalang and Frangos [4] when o =1, uq = v, = 0.

PROPOSITION 1.4. Suppose that there exists B € (0, 1) and ry > 0 such that
(1.16) / " PR Ay dr < oo
0

Let uy: R? — Rbe of class ¢1 and bounded, with 8/2(1 + B)-Holder continuous
partial derivatives, vy: R? — R be such that |vy| + |Vuy| € L%(R?) for some
qo €]4, +0], o, b: R — R be globally Lipschitz functions. Then for any compact
set K C R% forevery T >0, pe[2,0),0<t <t<T,x,x cK,0<7y<
B/2(1+ B),

(1.17) E(lu(t, x) —u(t, x)|P) < Clt — ¢|'P,

(1.18) E(Ju(t, x) — u(¢, x')|?) < Clx — x/|"P.

Therefore, the trajectories of u are y-Holder continuous in (t, x) € [0, T] x K

for y € [0, B/2(1+ B)[.

REMARK 1.5. (i) The integrability condition (1.16) implies (1.7). Hence the
assumptions on f, u, and v, are stronger than in Theorem 1.2.

(i1)) The proof of the Proposition shows that (1.17) and (1.18) hold if one
replaces (1.16) by the following weaker technical assumption: There exists
B €(0,1), ry > 0 such that for 0 < ¢ < r,

i

(1.19) f rf(r)ln(l + f) dr < Ct.
0 r

This will be used in the next section.

PROOF OF PROPOSITION 1.4. We at first prove (1.17). For 0 < ¢ <t < T
with t — ¢ < %, x € K, we write

4
(1.20) Elu(t,x)—u(t,x)]” <CY R;,

i=1
with

Ry =|[ (S(t,x—y) =S, x — y)vo(y) dy
R2?

p

2

p

R, — !%(fm S(s, x — ) uO(y)dy>S=t _ %(/RZ S(s, x — y)uy(y) dy>s=t’

R; = E!/Ot fRZ S(t—s,x— y)o(u(s, y))F(ds, dy)

p

>

[ [ S~ 5.x = yytuts. y)F(ds. dy)
0 JR2
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R, = E‘/Ot /R S(t — s, x — y)b(u(s, y))dsdy

p

_ /t/ S(t' — s, x— y)b(u(s, y))dsdy
0 Jre

We have R, < C(RY} + RY,), where

Ry=|[  (S(t,x=y) =St x—y))wo(y)dyl,
lx—y| <t/

R12 =

[ SEx= () dy).

t'<|x—y|<t

Let g be the conjugate exponent of ¢,. Since ¢y > 4, 1 < q < % and for
0<t <t=<T,using (A.22), we have

1

1
R <C + ( - )d
H /|z|<t’|00(x ) \/t’z R )
1 1 qd2>1/q

< Clol -
90 |z|<t’ \/t,Z _ |2|2 \/t2 _ |Z|2

~1/2
< Clllg, It —¢'[M97Y

2(1
< Cllvgllg, It — ¢/ [PIEHA),

because B8/2(1+ B) < 1/4 < 1/q — 1/2. Furthermore,

1/q
pdp
Ry < C||U0||q0</ m)

2 —
< Cllvglly, 1% — ¢*1M9712 < Clugll, |t — ¢'|F/EAHE)
and hence
(1.21) Ry < Cllul2 |t — ¢/|P(B/2(14R))

An obvious change of variables implies R, < C(R}, + R%, + RL,), where

R =| [ (ol 50)ms = - o+ 58 )

61 1 — [
Ry = /g|<1 J1-€P |§|2< uo(x +¢€) — uo(x + t/f))
1 N
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Clearly,

1
Bar = /\§|<1 WIVUO(x +18) = Vuo(x + £'6)| |¢] dé

1+8/(2(1+8
<1 /1 — €2
<C|t- t’|B/(2(1+B))_

Moreover, using the estimate (1.12) we obtain

Ry + Rys < C|t — 1.
Thus,
(1.23) R, < C|t — t/|10(ﬁ/2(1+l3))_

Clearly, R3 < C(R3; + R33 + R33), where

p

R EI t S F(ds, d
5= B|[ [, SC=sx—y) o y) F(ds.dy)| .

Ry =E

/t,/ (St —s,x—y)—S(t—s,x—y))
0 Jjx—y|<t'—s

|P
x o(u(s, y))F(ds, dy): :

p

.
Ry =E|[ [ S(t —s,x — y)o(u(s, y))F(ds, dy)| .
0 J¢—s<|x—y|<t—s

Burkholder’s and Hélder’s inequalities, (1.8) and the property supy_,.7 J(s) =
Cr < oo (see Remark A2) yield

Roy = CE(|[ ds [ dy [ 'St 5. = ») ol 30) Fly = ¥')

P/2>

x o(u(s, y) S(t—s,x—y')
(1.24)
< C(Mtt,)pﬂ(l + sup sup E}u(s, x)}p>

xeR? 0<s<t

< c</tt J(s) ds)p/z

< C(t—t)r2.
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For ¢t > 0, h > 0 set
t d d dy'|S S h
= S ! S, — s+ h,
Mt fo /|y|<s Y)W [S(s, ¥) = S( )]
< f(ly = ¥'N[S(s, ¥) = S(s + k. )],
~ ¢ / /
fun=[ ds| dy dy' S(s + by )F (ly = Y)S(s + b, ¥').
0 s<|y|<s+h s<|y'|<s+h
Given a < B, (1.16) yields that [, rf(r)In(1 +¢/r)dr < Ct® for t < r. Hence,
Lemma A5 yields that for y € [0, B/2(1+B)[,0<t<ry, 0<h <1/2,
Mg+ g < Ch*.
Burkholder’s and Hélder’s inequalities imply

Ry < C(:th',tﬂt’)p/2

Rg3 < C(/:Lt',t—t’)p/27
and hence for y € [0, B/2(1 + B)[, |t — | < 1/2,
(1.25) Ry <C(t—t P2+t —t|P") < Clt —t'|P.

Finally, R, < CZ§=1 R,; where R,; is the analogue of R3;, j = 1,2, 3,
with the coefficient o replaced by b and the integrator F(ds, dy) replaced by
dsdy. Holder’s inequality implies

Ry <C(v,—v,)? <C(t — t’)2p,
Ry < C(vy,1p)?,
Ry < C(y,1p)?,

where, for any ¢, & > 0, v, has been defined in (A.3) and
t
von=[ ds [ dv(SG9) = SGs+h ),

t
By g = /0 ds v/s<|y\<s+h dy S(s + h, ).

An explicit integration yields v, j, + 7, , < Ch'/2. Consequently,
(1.26) R, <C(t—1t)P2.

The inequalities (1.21)—(1.26) yield (1.17). We now prove (1.18). For ¢ > 0,

x,x € K with |[x — x| < %, let

4
Elu(t,x) —u(t, )|’ <CY U,

i=1
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with
Uy = | [ (8( 5= 9) = 862 = y)ea() b
P
Uy = |2 [ (8.5 = ) = St = um)ay |

p

2

Uy = E' [ (8= 55— ) = St~ 5.5 — y)ou(s, y)F(ds, dy)

p

U, = E'/(:/RZ(S(t—s,x — ) = S(t — s, &' — y)) b(u(s, y)) ds dy

Then, U, < C(UY, + U7, + UY,) where, for £ = x' — x,

>

1 1
U = — vo(x + 2)dz
H /\z|<t, Iz§|<t<\/t2 "2 JE e §|2> olx+2)

vo(x + 2)
U, = ———dz ,
2 /\ZI<t<|z—§| NP
Uiz = /‘ L tz-%) dzl.

a—gl<t<le| /12 — |z — &2
Clearly U5 and U5 are analogous. Let 1/q, + 1/g = 1; Hélder’s inequality

implies

dz 1/q
Uy < Clluglly, ( /le,§| W> .

We have

d £ d
/ 2 2'2 2= 277/ 2 . g z = Clel™"%.
ol <t<|z—&| (12 —|2|2)4 (t-leh+ (22 — p?)e

Thus, the choice of q yields
(1.27) Uy < C||vollq0|x/ _ x|B/2(1+/3)_
Analogously,

1 1 qd )1/(1
— V4 .
Vii—[z2 -]z &P

Let { € R, be such that 8/2(1+ B) < {/2q < 1/q—1/2. Notice that q € (1, 4/3)
and { < 2 — q. Therefore the inequality (A.23) of Lemma A4 yields

U, < cnvonqo(/

z—&|<|z|<t

(1.28) Uy < Cllugllg, % — x|F24),
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Let y —x =tz (y — x' = tz). Then Uy, < C(Uy; + Ugy), with

U 1 J ( ) d |
= —_— | — + t — U x’ + tz zZl ,
21 /\z|<1 NisSIEE (&t (wo(x + t2) ol )) I
1 p
U = E— =+ t — ! + tz dZ .
22 /\z|<1 \/1 P (uo(x 2) —up(x ))

The Holder continuity of Vu, yields Uy, < C|x — x/|P(B/2048)  Clearly, Ugy <
Clx — «'|?. Thus

(1.29) U, < Clx — x/|PB2A+E)
Set Uy < CY?_, Us;, where

t—|x—x'|/2
Usy=E S(t—s,x—y)—S(t—s,x —
31 /0 /\‘xfyktfs,\x’fyktfs( ( 5% y) ( 5% y))

p

x a(u(s, y)) F(ds, dy)

2

p

Uy, = E

t
[ S(t —s,x' — y) o(uls, y)) F(ds, dy)
0 J|x'—y|<t—s,|x—y|>t—s

>

p
Uy = E

¢
/ / S(t — s, x — y)o(u(s, y)) F(ds, dy)
0 J]x—y|<t—s, |x'—y|>t—s

Clearly Usy = Ugg. For any ¢ > 0, ¢ € R?, set

¢
M, .= [0 dsf|2|<s"27§‘>s d2/|z/|<s,|zu§|>s dz'S(s,z) f(|lz—2'|) S(s, 2'),
t

= d d d 4 S , _S , 2 — S
Neg /\§|/2 s/|.2|<8,|2—§|<8 Z/\Z’|<S,|2/—§|<S ZI (5 2) (s, 2 §)|f(|2 Z|)

x |S(s, 2') = S(s, 2 — &)|.
Burkholder’s, Holder’s inequality and (1.8) imply
Us<C(MPZ_, +NPZ_).

t,x'—x t,x'—x

Lemma A.5 yields that for 0 <y < 8/2(1+ ), [§| <1/2, M, ;+ N, < C|€?.
Hence

(1.30) Us; <Clx' —x|"? for |x' — x| < %

Finally, we study U,. It is decomposed as Uj into Z‘j’»:l U, j, where Uy ; is
defined as U; ; with b instead of o and dsdy instead of the noise F(ds, dy).
Again U, 3 = U, 3 and by Hélder’s inequality and an explicit integration,

| pt | P
U4,2§C|/ dsf dyS(t—s,x—y)|
|70 |x—y|<t—s, |x'—y|>t—s |

< Clx — x'|P/?.

(1.31)
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Using (A.24) in Lemma A4, similar computations imply

i—(lx—x"/2)
Uy, <C f ds f
’ 0 lx—y|<t—s, |x'—y|<t—s

p
(1.32) |S(t—s,x—y)—S(t—s,x —y)| dy)

< C|x' — x|P/2.

Inequalities (1.27)—(1.32) show (1.18) and conclude the proof of the propo-
sition. O

2. Regularity of the solution. This section is devoted to establishing
that the solution of (1.3), for fixed ¢ > 0, x € R?, belongs to the space D> =
MNneN Npe(, OO)DN ' P of the Malliavin calculus developed in the framework that
has been described in the introduction. We recall that the Sobolev spaces DV: ?
are defined by means of iterations of the Malliavin derivative operator D (see
[10], Section 1.1) and that, for a random variable X and a positive integer N,
DV X defines, whenever it exists, a random variable with values in JfT®N . For
h e #rset D, X = (DX, h) 4,. Since #7 = L%([0, T]; ), for r € [0, T, DX (r)
defines an element in »#’, which will be denoted by D, ,X. Then, clearly, for
any h € #7,

T
thzf0 (D, .X,h(r)), dr.

We will also use the following notation: for r; € [0,T], ¢; € #,i=1,..., N,
set

N _ N
Doy pp)otrnox X =D r) o X 918 ® @) -

For N = 1 we write D, , X = (D, X, ¢),, r € [0,T], ¢ € #. By conven-
tion, D% ? = LP(Q). The regularity result of this section is proved using an
induction argument described in the following lemma.

LEMMA 2.1 (Lemma 3.2 [11]). Let {X,: n > 1} be a sequence of random
variables in DYN-?, N € N, p € [2, o). Assume there exists X € DN~L? such
that {DN-1X,,n > 1} converges to DN1X in L?(Q, %T®(N_l)) as n — oo
and moreover, the sequence {DN X,,n > 1} is bounded in LP((; %T®N). Then
X eDV:r,

THEOREM 2.2. Let o,b be of class € with bounded derivatives of any
order k > 1 and assume that vy, u, and f satisfy the hypotheses of Theorem 1.2.
Then, for any T > 0, t € [0, T], x € R?, the solution u(t, x) of (1.3) belongs to
D*°. Furthermore, given p € [1, oo, there exists a constant C ,(T) depending
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on p and T such that,for 0 <s<t<T,

[

2
dr
%

(2.1) sup sup E( D, ,u(r, x)

s<7<t xeR2

p
) < C (Tl

with u, defined in (A.2).

PrOOF. Consider the sequence of Picard’s approximations {u"(¢, x),n >
0}, t > 0, x € R?, defined by (1.9). For any integer N > 1, set

(Hy): for any t € [0, T], x € R%, p €[2, 0):

G) {u™(t,x),n >0} c DV P,

(i1) SUPycr? SUPp<s<¢ ||DN71(un(S’ x) - u(s, x))”p BN-1)y — 0 as n — oo;

Lo
(ifi) $Up,-oSUP cr? SUPo<s<¢ [IDVu" (s, %)l r(y ey = Cy < 0.

We prove by induction that the assumptions of the theorem imply that
(H y) holds for every N > 1. Then Lemma 2.1 concludes the proof. Let N =1,
t > 0, x € R? be fixed. Since u°(¢, x) is deterministic, u°(¢, x) € D*? and
Du’(t, x) = 0. Assume u/(t,x) € D¥P, for any j=0,1,...,n, n > 0. By the
rules of Malliavin’s calculus the right-hand side of (1.9) belongs to D ” and,
in addition, for any ¢ € J#,

Dr,<pu”+1(t, x) = (S(t —r,x —*x)o(u"(r, %)), 90)%
+ /rt /RZ S(t—s,x—y)D, ,u"(s,y)
x [0/ (w"(s, y)) F(ds, dy) + b (u"(s, y)) dsdy]

if r € [0,¢] and D, ,u"*!(¢, x) = 0 if r > ¢. In the proof of Theorem 1.2 [see
(1.15)], we have shown that for p € [2, oo,

lim sup sup E(|u"(s, x) — u(s, x)|?) = 0.

%0 xeR? 0<s<t
Next we prove

(2.2) sup sup sup | Du"(s, x)||Lp(Q;%) =C, < 0,

n>0 xeR? 0<s<t

for some constant C; . Then (H;) will be established. For fixed ¢t € R and
x € R?, consider the decomposition

3
(2.3) ||Du"+1(t, x)“lljp(ﬂ;%) <C,> T7, n>0,
i=1
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where

Til = H S(t — X = *) a_(un(" *))H]’ip(Q;WT)’

¢ 1P
Ty = ”/ / S(t—s,x— y)a'(u"(s, y))Du"(s, y)F(ds, dy)l ,
0 'R? | Lr(; )
T = H/ / S(t—s,x— y)b'(u"(s, y)) Du"(s, y) dsdy“
/0 /R? I Le(0; )

Let w, be defined by (A.2); Holder’s inequality and (1.10) imply
t
T = E(I/O drfRz dszz dz S(t —r, x — 2)o(u"(r, 2))f(]z — 2])

(2.4) x o(u"(r,2))St—r,x—2)

P/2>

< C(u)"(1+sup sup Elu’(s, x)|") = C(u,)"'2,

xeR 0<s<t

Fix t € [0, T'] and consider the continuous #;-valued .7, -martingale

Y. = /7/ S(t —8,x — y)a'/(un(s, y)) Du"(s, y)F(dS, dy), Te[0,T].
0 /R2

Denote by (Y'), the unique .7, -predictable, increasing process such that (Y), =
0 and ||YT||(2% —(Y), is areal Z,-martingale. Using the It6 formula, one easily
checks that

(¥), = T 1008 (E — - x = ) (" )Py ()%
Jj=0

where {e;, j > 0} is a CONS of #;. Therefore, Burkholder’s inequality for
Hilbert-valued martingales (see, e.g., [7], page 212) and Parseval’s identity

yield
p
)

> [Cds [ dy [ /S5 x - 9@ s, 9D, u (s, )

Jj=0
P/2>

/(;t /Rz S(t -8, X — y)a-/(un(s’ y)) Dun(s, y)F(dS, dy)

Tg:E(

§CPE<

(2.5) x f(ly = ¥)SE—s,x—y)a'(W"(s, y)D,,u"(s, y')

| " ds [ dy [ dys(t—s x—y)'@ (s, y)f(ly- )
0 R? R?

o,

1—7/2)

X S(t — S X— y/)(Du”(s, y)7 Dun(s’ y/))%a/(u”(s, y/))
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Apply Schwarz’s inequality to the scalar product in -#7, then Hoélder’s and
Schwarz’s inequalities. The right-hand side of (2.5) is bounded by

t
(2.6) Cp||(r’||fo,uf/2_1/0 J(t —s)sup sup E(|Du"(r, x)|},) ds.

xeR2 0<7<s
Let v, be defined by (A.3); Holder’s inequality yields
)

t
1y < WIRE(| [ ds [, dv S - s.x - DD,

2.7
t
= CI|&vf ™" [ sup sup E(|Du"(r, y)|5,) ds.
yeR2 0<7<s

Therefore, (2.3), (2.4), (2.6), (2.7), (A.3) and (A.6) yield

n+1 p
fgfg osgggt”Du (s, x)”LP(Q, Hy)

9 t
<C(pn? +/ sup sup [ Du"(r, )|, q 5 )
0 xeR? O<r<s o

This estimate, together with (A.6) and Gronwall’s lemma, show (2.2). Further-
more, similar computations yield, for every ¢ € [0, T'], n > 0,

sup sup ||D u"**(s, x) — Du""(s, x)Hip(Q'J/)
xeR? 0<s<t o

2
< C{Mf/ sup sup Hu”“(s, x) —u"(s, x)Hzp(m
xeR? 0<s<t

2y-1 [
+ui?? /0 J(t —s)sup sup [Du"*(7, x) - Du"(r, x)nip(ﬂ;%ﬂds

xeR2 0<7<s

t
p-1 n+1 _ n P
wot [ sup sup D15, ) = Do gy 5]
By Lemma Al (see Remark A2) and (A.3) this can be bounded by

C|: sup sup ||u"+1(8, x) —u"(s, x)”ip(ﬂ)
xeR? 0<s<t

+ t sup sup |Duw"*'(7,x) — Du'(r, x)||£pm;%) ds].

0 xeR2? 0<7<s

Hence,

Nim, o oi‘i‘;hDu (s,2) = Duls, %) 10, 4y = O
and
(2.8) sup sup || Du(s, )| Lr(a;) < +00.

xeR? 0<s<t
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The derivative Du(¢, x) satisfies the following equation: for any ¢ € 7,

D, ju(t,x)=(S(t—r,x —x)o(u(r, *)), go)dy + /Ot fRz S(t—s,x— )

x D, yu(s, y)[o (u(s, ) F(ds. dy) + b (u(s. y)) ds dy).
if r €[0,¢t] and D, ,u(t,x) =0ifr > ¢t Let 0 <s <¢ < T and set # , =
L?([s, t], #). Notice that %, , C #7 and # ¢ = H#7. Since D, ,u(r, x) =0 for
rels,t], 7 < sand x € R, computations similar to the previous ones yield,
for any 7 € [s, ], p > 2,

(2.9)

2)—-1
(uf/%w“’” [T~ rysup sup E(1Du(p, )%, ) dr

xeR? s=<p=r
w0zt [ sup sup E(IDutp. 05, dr )
S xeR? s=p=r

Then, using (2.8) and Gronwall’s lemma, we obtain (2.1).
In order to deal with the Malliavin derivatives of any order, we intro-

duce some notation. Let N € N, fix a set Ay = {&; = (r;,¢;) € R, x
H,i =1,...,N} and set \/;r; = max(ry,...,ry), ¢ = (ag,...,ay), &¢; =
(ey, ..., ;_1, a;.1, ay). Denote by &, the set of partitions of Ay consisting of

m disjoint subsets p;,..., p,,, m =1,..., N and let | p;| denote the cardinal
of p;. Let X be any random variable belonging to DV:2, N > 1, g a real ¢V
function with bounded derivatives up to order N. Leibniz’s rule for Malliavin’s
derivatives yields

DY (g(X))=T.(g X):= Z > e g™(X) H Dirlx,
m=1%,
with some positive coefficients ¢,,, m =1,..., N, ¢; = 1. Let
A8, X)=T.(g X)-g(X)DYX.
From (1.9), using induction on n > 0, it is easy to check
{u(¢,x),n >0} C DV'? foranyt>0,xcR?, NeN

and
N

DYum(t, x) = Y (Ts (o, u™(ry, %)) S(t =1y, x — %), @;)
i=1
+/t.r./RzS(t—s,x—y)
x [A (o, u™(s, y)) F(ds, dy) + A, (b, u"(s, y)) dsdy]
+/t. ./RzS(t—s,x—y)DiVu"(s,y)

x [/ (w"(s, ¥)) F(ds, dy) + b'(u"(s, y)) dsdy].

(2.10)
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Assume now (Hy) holds for 1 < N < M, M > 1. We want to check (H ;).
The preceding argument shows condition (i). For the proof of (ii), we notice
that DMuy(t, x) satisfies an evolution equation as (2.10) with u"*! and u"
replaced by u and N by M. The terms in this equation containing I';. and A,
involve Malliavin’s derivatives of u up to the order M — 1. For these terms we
use the induction hypothesis. For the remaining ones we use the technique
based on inequalities developed in the first part of the proof and we conclude
by Gronwall’s inequality applied to ¢(¢) := sup,.g> Supg-s<; E[| DM (u"(s, x) —
u(s, x))||ip (0 2My° Finally, we prove (H s ;)(iii). The induction assumption

(Hy)Gii), 1 < N < M, yields, for some positive constant C, g = o, b,

sup sup Ssup sup HF&i(a, u(a
n>0 i=1,..,M+1 xcR? 0<s<t

i))HIij(Q;%’?M) <G,

sup sup sup | A u(s, x)|? oy < C.
nz%)) xeRP; 0§sI§)t|| a(g’ ( ’ )“LP(QZT@M) -

Thus, using the same method as for the proof of (2.2) and the preceding esti-
mates, we obtain

sup sup | DYy (s, x)|

p
M+1
xeR? 0<s<t LP(Q;”VT@( " ))

t
<cf1 | pM+1,,n-1 P '
- C( T Jo S S DT g pnen, 48
We conclude by Gronwall’s lemma. O
3. Existence and regularity of the density of the solution. Fix¢ > 0

and pairwise distinct points x4, ..., x; of R%. Let u denote the solution of (1.3)
and set

u(t, x) = (u(t, x1), ..., u(t, xq)).

In this section we give sufficient conditions for the existence and smoothness
of the density of the law of u(¢, x), using the classical approach provided by
the Malliavin calculus. The main result is the following theorem.

THEOREM 3.1. Assume that:
(i) There exist a; > ag > 0 such that 2(1 + ag)(a; — ag) < ag < a; < 2,
positive constants C; and Cy such that for t € [0, T,

t
(3.1) Cyt™ < / yf(y)ln(l n f) dy < Cyt®,
0 y

(i) ug: R? — R is of class €', bounded, with ay/2(1 + ay)-Holder contin-
uous partial derivatives, vy: R?2 — R and there exists q, € |4, +o0] such that
[vg| + [Vazo| € LI (R2).

(iii) o and b are €*° with bounded derivatives of any order i > 1.
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(iv) There exists a > 0 such that
|U(u(t, x]))| >a forany j=1,...,d.

Then the law of the random vector u(t, x) has a €°° density with respect to the
Lebesgue measure on R?.

REMARKS. (i) Let f(x) =x7%, 0 < a < 2. Then (3.1) holds with a; = ay =
2 —a.

(i1)) Using a localization procedure developed in [2], we can prove a ver-
sion of Theorem 3.1 without assuming (iv). In this case, we conclude that the
law of u(t, x) has a smooth density p on {o # 0}?, that is, p € €*°({o #
0}4;R) and for any ¢ € ¢(R%, R) with compact support included in {o # 0}¢,

Ele(u(t, x)] = [ra p(¥)e(y) dy.
Let TI'(t,x) denote the Malliavin covariance matrix ({Du(t, x;),
Du(t, x;)) »; 1 <1, j <d). According to Theorem 2.2, we only need to check

(detT(t,x) e () LP(Q),
1<p<oo
(see, e.g., [9], Corollary 2.1.2). We recall that, given ¢ € #, the Malliavin

derivative D, ,u(¢, x) satisfies the equation

D, u(t, x;)=(S(t—r, x; — %)o(u(r, %)), <p)% + /rt /RZ S(t—s,x,— )

x D, u(s, y)[o'(u(s, y))F(ds, dy) +b'(u(s, y)) ds dy]
forr <t¢, D, u(t,x;)=0,ifr>¢t,1=1,...,d, [see (2.9)].

PRrROOF OF THEOREM 3.1. The proof consists of checking that, for any p > 2,
there exists y(p) > 0 and for any 0 < & < gy(p), if P.(v) = P(v'T(¢, x)v < &),
(3.2) sup P.(v) < CeP.

veR9, |v|=1
(see, e.g., [9], Lemma 2.3.1). We have, for any &, 8 > 0 with t — &% > 0,
2

¢
vT(t,g)v:f dr| > v;D, u(t, x;)
0

1<i<d

H

d ¢
> 3 vivj/t . dr(D, u(t, x;), D, ,u(t, x))) -
i, j=1 ¢

Set
(Dr,*u(t’ xi)’ Dr,*u(t’ x]))/
=(S(t —r,x; — %)o(u(r, %)), S(t —r, x; — =)o (u(r, *))),,
+ U, r,x;, x).
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The triangle inequality yields P,.(v) < Pl(v) + P?(v), where

Pl(v) = P(il: ;U /tt

s J=1 -

dr(S(t —r, x; — x)a(u(r, %)),

)

S(t—r,x; —%)o(u(-,*))), < 23),

P2(v) = (Z ULUJ/ drU(t,r, xi,xj)za>.

i, j=1 &

First we study P%(v). By Chebyshev’s inequality, for any ¢ € [1, 00), since

lv] <1,
)

To simplify the notation, let #(¢, §) = #;_,s ;, that is, for functions ¢, ¢ € #7,
set

P2(v) < Ce™1 i E<

i, j=1

drU(t,r,x;, x;)

t—gb

t
(@ W)y 00)= [, drle(r). w(r))r.
Then, the definition of U(%, r, x;, x ;) and the fact that D, ,u(s,y) =0ifs <r
yield
d 5
(3.3) P?(U) <Ce? Z Z Tk(i> .])>
i, j=1 k=1

where

Toii. ) = E(|[St = 2 — 0)ou ),
|

)

/t;s /R2 S(t—s,x;—y)Du(s, y)o'(u(s, y))F(ds, dy)>

H (e, 8)

)

|
T2(i7 .]) =E I S(t — X~ *)O-(u(7 *))7
|

/tt ) /Rz S(t—s,x;—y)Du(s, y)b'(u(s, y))ds dy>

H(e, d)

(i, )= B(|([, [, 8- 5.5 ) Duts, 90’ uts, ) F(ds. ),
t g
[y 8= 5.%,= ) Duts. )’ u(s. ) Pids. ) |').
t—gb %,sl
| ] pt
7yi )= B(|( [ [, 8= 5.3-) Duts. y)o(u(s. y) P(ds. dy).

)

/tt_ss -/RZ S(t R A y) Du(s’ y)b/(u(s, y)) ds dy>

e
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. . t
Ts(i, j) = E<‘</ / S(t—s, x; —y) Du(s, y)b'(u(s, y))dsdy,
t—ed JR2?

/:_ -/R S(t —s, 2;—y) Du(s, y)b'(u(s, y)) ds dy>% iq)

Schwarz’s inequality implies, for i, j=1,...,d,
T.(,J) < T11(i)1/2T12(j)1/2,
where

T1(i) = E(|S(t =, x; = D)o (u( =) |7, 5):

| pt
Tia(J) = E(“ [ [, 8 =s.%;= ) Duls, y)o'(u(s. y)) F(ds. dy)

2q
H (&, 6)> ‘

Holder’s inequality applied to the measure u,s defined in (A.2) yields

t
Ti() < (we) [ dr [ dz [ dZS(t—r.x—2)f(|z~2])
x S(t—r,x; — 2)E(lo(u(r, 2))a(u(r, 2))|).
Schwarz’s inequality and the property (1.8) imply
(3.4) T.1(i) < Culs.

Let (e, £ > 0) be a CONS of #(e,5). We apply the Hilbert-valued version

of Burkholder’s inequality to the stochastic integral f;sﬁ Jre S(t — s, x i
) Du(s, y)o'(u(s, y))F(ds, dy) and then Holder’s inequality. We obtain

T15(j) < CE(

¢
Z/t L ds /R? dy /RZ dy'S(t —s,x; — y)D, u(s, y)o'(u(s, y))
k>0""7¢

)

x f(ly—y')o'(u(s, y')) D, u(s, y)S(t—s,x;—y")

/:,85 ds /Rz dy /RZ dy'S(t —s, x;— )’ (u(s, Y)f (|y = ¥')

:CE(

|9
X 0-/(u(sa y/))S(t =S8 X y’)(Du(s, y)a Du(s, y,));/(s, 5)i )

t
SCM;’{lft_gé ds fm dy /RZ dy S(t—s,x;—y)
x f(ly—y'1)S(t—s,x;— )

x E(|(Du(s, y), Du(s, y/))%(s’ 5)‘(]).
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The inequality (2.1) in Theorem 2.2 implies
(3.5) sup sup E(|Dus, y)”l(s 5)) Cul;.

t—ed<s<t yeR

Hence, Schwarz’s inequality yields

(3.6) T15(J) = C,Uvga,
and therefore,
(3.7) T.(i, j) < Cu’?>.

The structure of the term T'5(i, j) is similar to that of T';(i, j), the stochastic
integral being replaced by a Lebesgue integral. Thus,

Ty(i, j) < Tn(i)mTzz(J')l/Z’
with

T = E(

Again Holder’s inequality and (3.5) imply

f:_ fR S(t—s,x; — y) Du(s, y)b'(u(s, y)) ds dy

2q
H (&, 3)> ‘

(3.8) Tao(j) < Cv2d sup sup E(|Du(s, y) HX(E ) < CVAuY,,

t—ed<s<t yeR

where v, is defined by (A.3). Therefore, (3.4) and (3.8) imply

(3.9) Ty(i, j) < Cviud,.
Schwarz’s inequality and (3.6) yield
(3.10) T3, j) < (T2 T12()"* < Cul.

Furthermore, Schwarz’s inequality implies T,(i, j) < (T12(i)T9(7))"2, so
that (3.6) and (3.8) yield

(3.11) Ty(i, j) < Cul W,
Finally,
(3.12) Ts(i, j) < (Toa(i)Tea(/))"* < Cv2ul,.

The inequalities (3.3), (3.7), (3.9)—(3.12), (A.3), (A.5) and (3.1) yield
Pi(v) < Cs_q[ s9/2 +vhul ]
(3.13) < Ca—q[8<3q/z>s<az+1> 4 8qa<3+a2>]
< O 1+(35/2)(ax )],

We now study P(v). In order to use assumption (iv), set

Py(v) = Pi'(v) + P*(0) + P (v),
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with

d

2

Pl (v) = P<X:1 Vi o(u(t, x;)S(t — -, x; — *)H#(g’ 5 < 48),
J:

t
;U /t,gs dr /RZ dz /RZ dz o(u(t, x;))S(E —r, x; — 2)

.0)
t

|
lv:v - / — . — s
IULUJ/t—sE alr/R2 dz/R2 dz'S(t—r,x;—2)S(t—r,x;—2)

e

12 _ d
P (v) = P( >
=1,

i, j=1i#]

x f(lz = 2)o(u(t, x;))S(t —r,x; — 2')

2

i, j=1

PB(v) = P<
x f(lz = 2|)[o(u(r, 2)) o(u(r, 2))
— o(u(t, x;))o(u(t, x,))]

Assumptions (i) and (iv) and (A.5) imply that, for every j=1,...,d,

|o(u(t, x;))S(t - - x,; — *)Hi,w > %, > Cia2ed@tD),

Thus, since Z‘Ji-zl v%- =1, for £ small enough
(3.14) P'(v)=0 if8(1+a;)<1.

Set my = inf{|x; — x,|;i # j} and my = sup{|x; — x;|;i # j}; then 48° < m,,
|z —x;| < &, |2 — x| < & for i # jimply m;/2 < |2’ — 2| < 3my/2, so that
f(J]z — 2|) is bounded by some constant C depending on m and M. Hence for
g € [1, oo[, (1.8) and Chebyshev’s inequality imply

P2(v) < Ce™? sup (1+ E(Ju(t, xi)|2q))
1<i<d

&0 2 q
(3.15) y < < dz ) d,,)
/(; f|z|<r \/r2 — |z|2
< Cs_q+35q.

Finally, Chebyshev’s inequality implies that, for q € [1, oo[,
PP(v)<Ce? sup E(|I;]9),
e

1<i, j<

with
I;= t;ﬁ dr/RZ dz/RZ d2[o(u(r, 2)) o(u(r, 2)) — o(u(t, x;))o(u(t, x ;)]

xS(t—r,x;—2)f(lz—2[)S(t—r,x; —2).
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By Remark 1.5(ii), the conclusion of Proposition 1.4 is satisfied with B = ag;
thus Holder’s inequality and the moment estimates (1.8), (1.17) and (1.18)
yield, for y €]0, as/2(1 + ay)[,

PB(v) < Cepul e

< Cgilo(tazty)-1]

(3.16)

Choose §, v > 0 satisfying the following conditions:

Qg 36
2(1+ay)” 2
6(1+aq) <1, d(l4+as+vy)>1.

0<y< (14+ay) >1, 36 >1,

It is easy to check that such a choice is possible, due to the constraints on
a1, ay given in hypothesis (i). Then (3.13)—(3.16) show the estimate (3.2) and
conclude the proof. O

APPENDIX

In this section we show several technical results which are needed in the
proofs of this paper. First we introduce some notation. For s > 0, set

1 1
Al J(s) = — dx d
(A1) =] =D N W

and for ¢ > 0, let

t
pe=[ ds| dx | dyf(lx—y|)S(s, x)S(s,y)
(A.2) /0 /R /R

1 /0 " J(s)ds.

~ on2
Finally, set

1 dx t2
A3 = — d —_ =, t>0.
( ) Ve 27T-/0 S/\‘xks \/32 — |x|2 2 -

Our first purpose is to study sufficient conditions on f ensuring supg.,.p J(s)
< Cp, for some positive and finite constant depending on 7. This property
plays an essential role in the proof of existence and uniqueness of solution
for (1.3). We are also interested in establishing lower and upper bounds for u,
in order to prove the existence and smoothness of density for the law of the
solution to (1.3).

LEMMA Al.  Fix T > 0. There exist positive constants C{(T), Co(T) de-
pending only on T, such that:
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(a) For every 0 <s<T,
S S
CI(T)/ rf(r)ln(l + -) dr < J(s)
0 r

(A4) 5
< (32(:/")/0 rf(r)1n<1 + ;) dr.

(b) Forall 0 <t <T,

CI(T),:/O”3 r(r) ln(l + ;) dr < p,
(A5) . t
< C2(T)t/0 rf(r)ln(l + ;> dr.

REMARK A2. Condition (1.7) is equivalent to fOZt rf(r)In(1+¢/r)dr < oo,
for any t > 0. Then (A.4) implies

(A.6) J(@)<Cp and pu,<Crpt,0<t<T.
PrROOF OF LEMMA Al. Let K be a compact subset of R*, n > 1, and f, g

real functions defined on K. The notation f(s) x g(s), Vs € K, means that
there exist positive constants ¢ and C depending on K such that

cg(s) < f(s) <Cg(s) Vse K.
Let z = x — y and consider the change of variables
x = (ucos 6y, usin 6,),

z = (vcos(6+ 6,), vsin(6 + 6y)).

Then
(A.7) J(s) = Cme(s),
with
s udu 2u arccos(v/(2u)) do
)= | ——— vf (v)dv .
#(s) /Om 0 /) /0 V82 —u? —v2+2uvcosf
Let r = cos 6; then since 1 < /I + r < +/2 for r € [0, 1], we obtain
arccos(v/(2u)) do
/ = A(u, v)
0 /82 —u2 — v2 + 2uvcos 0
with
1 d
A(u,v) = / 4 .
2 /(1 —r)(s2 — u2 — v2 + 2uvr)
Let
2 1\212 2 2
N e ) T S VR
8uv 4uv
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then (b/a)(1+c¢) =1 and

1 d
Awvy=[ —
v/2u) /a2 — b2(r + c)?
1 /1 dr
=7 —— = Ay(u,v) + Ay(u, v),
b /(b/a><v/<2u>+c> V1=r2 (1, v) + Ay(u, v)
where
1 ! dr 1 dr
A u,v)= — 1 - —+1 - .
i) b[ 00160 oy T3 e ) ]

1 0 dr
As(u,v)=+1 < )
2(1:0) = 1w/ 2uyre<0) /(b/a)(v/(2u)+c) Vi-r?

Clearly, (1 -r*)"12 < (1 —-r)Y2,¥r €[0,1) and (1 —r?)"Y2 < (1 + r)"1/2,
Vr e (-1, 0]. Consequently,

1 b/ v
Ay(u,v) = ¢ |:1{v/(2u)+c>0}\/ 1= (5 + C) + 1v/<2u)+c<0}

1 bl v
A2(u, U) = Z]‘{D/(Qu)+c<0}[1 —\/1+ E(ﬂ +C> ]

Substituting a, b, ¢ by their respective values and using the equality (b/a)(1+
c¢) = 1, one easily obtains

Ai(u,v) < A (u, v) + Ap(u, v),

with
2u —v 12
Ap(u,v) = (u(sz —(u— 0)2)) 1{82—(u+v)2+20220}’
1

App(u,v) = ﬁl{sz—(u+v)2+202<0}

and
1 |s? = (u+v)*+ 20

(A.8) AQ(u7 v) < \/ﬁ 52 _ (u — v)z 1{82—(u+v)2+2uz<0}'

We study the contribution of Ay;(u, v), Aiy(u, v) and Ag(u, v) to the integral
¢(s) defined by (A.7).

CONTRIBUTION OF A;5(u,v). Set

s d 2u
o126 = [[ oo [ o @) An(, v)dv.

Fubini’s theorem yields

2s s 1/2
1/2 u
¢1,2(5) Zfo dv o'/ f(v)/fvzHZU(m) du.
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The function u €] — s, +00[— u/(s + u) increases. Thus

1 202 2 _ 1/2
/ dvvl/zf(v)/ ( V22 +s2—v ) du
Varirst-v A/S — U\ s+ /202 + 82 — v

(A.9) < ¢19(s) < 7/ dv vl/Zf(v)/ 1

V2ul¥sZ—v 4/S— U

du

= «/5/0 dvv2f(v)(s+v - V202 + 32)1/2 dy.
For v € [0, 25], s? + 202 < (s 4 v)?, so that s + v + /202 + s2 =< s + v, and for
all v € [0, 2s),
v(2s —v) _u(@2s—v)
stu+v202+s? s+tu
Since sup,.(2s — v)/(s+v) = 2, (A.9) and (A.10) imply

(A.10) s+v—\/202+32=

2s
(A.11) P1(8) < 2/0 of (v) do.

The first inequality in (A.9) provides a lower bound of ¢5(s). Indeed, fix v > 0
and set

V202 + 52 —v
GU(S)I 5 SZO
s++202+82—v

A simple computation shows that (3/ds)G,(s) > 0 if and only if s > v/2.
Hence for s € [v/2, T], G,(s) = G,(vv/2) = +/2 — 1. These inequalities, (A.9)
and (A.10), imply

015(5) >/ duv vl/zf(v)/%g p— U<GU(S)>1/2du

S—Uu
N1
(A.12) > CT/O vf(y)( 5 ”) dv

> Cp /38 * of (v) dv.

CONTRIBUTION OF Ay(u,v). Set

udu 2u
Po(s) = / v f(v) Ay(u, v) dv.
(A.8) implies
1/2du 2u 12 |82—(u+v)2+202|
ea(s) = [ G [0 ) g it

Fubini’s theorem 1mp11es

du.

1/2 2_ 2 _ 9,2
oo(5) = / avo @ [ ( zfuz) s TR
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The functions

(u +v)? — 8% — 202
s2 — (u — v)?

()= —~— and yy(u)=

are increasing on [0, s] for 0 < v < 2u; hence on [0, s], ¥1(w)y(w) < y1(s)Py(s)
= %, which implies

2s -
0o(s) < Cf VY2F(v)(s + v — V202 + s2) P dv.
0
Since supy-,<9s(2s — v)/(s + v) = 2, (A.10) implies
2s
(A.13) 0 < @y(s) < c/ of (v) dv.
0
CONTRIBUTION OF A;;(u,v). Set
udu
en(o)= [ / of (v)Apy (u, v) dv
Fubini’s theorem implies
2s
en(s)= [ dvof(v)
0

V202 +s2—v u(zu _ U) 1/2
< (<s2 (2 (u v>2>> du.

(A.14)

If se[0,T] and 0 < v < 2s, then v/2v%2 + s?2 — v < s and the function u
u/(s+u) and u — (2u —v)/(s+ u — v) increase on [v/2, s[. Hence, in this
interval, 0 < u(2u —v)/((s+u)(s+u —v)) <1/2, while (s —u)(s—u+v) =
(s +v/2 —u)? — v?/4 > 0. Therefore,

2s
¢11(8) < C/o vf (v)By(v)dv,

where

V202452 —v du
1= :
2 V(s—u)(s—u+v)
Assume first that s < v < 2s, and set z =s+ v/2 — u; then

dz

ZORY T - o)
with
$(s) = s+ /57— v?/4

s+3v/2 — V202 + 82 + ((s + 3v/2 — V202 + 32)2 — v2/4)1/2'
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If v < 2s, then s + 3v/2 — V202 + s2 > v/2. Thus, for v/2 < s < v, ¢(s) <
v(1++/3/2)/(v/2) = 2 + +/3. This implies that

2s 2s
(A.15) / vf (0)By(v) dv < C/ vf (v) dv.
Suppose now that 0 < v < s. Then B;(v) = B11(v) + B;5(v), with
s/2 du
By (v) = ,
0= ety
V202 +sZ—v du
Bi,(v) =f

5/2 JE—uw)(s—u+v)

Clearly, B;;(v) < (s —v)/(s(s +2v))¥? < 1. The change of variable z = s +
v/2 — u and a computation similar to that of B;(v) when s < v < 2v yield

(s+v)/2 dz s
By(v) = /s+3v/2—m m = ln(dl; )>,

with

(A.16) W(s) = (s + v+ Vs +2s0)h1(s) "

and

2 9\ 1/2
(A.17) tjfl(s)zs—i—?’z_v— 2v2+s2+<<s+3§—\/202+82> —UZ) .

For v < s, it is easy to see that s + 3v/2 — +/2v2 + s2 > v/2, which implies
Y (s) < C(s+ v)/v. Therefore,

S S S S
(A.18) /O vf (0)By(v) dv < c[/o of (v) dv +]0 vf(v)ln(l n ;> dv].
The inequalities (A.15) and (A.18) yield
2s
(A.19) o11(s) < c/ vf(v)1n<1 n f) dv.
0 Y

Thus, the inequalities (A.11), (A.13) and (A.19) imply the upper bound in (A.4).
We now prove the lower bound of J(s) in (A.4). Let 0 < v < s; the function
ur> u2u —v)/(s+u)(s+u — v) is increasing on [s/2, V202 + s2 — v]. Hence
(A.14) yields

‘ Nor e u(2u—v) \"?
e11(8) = /0 dv vf (v) /8/2 du ((s +u)s+u-— v)>

1 1/2
(4.20) x <(s —u)(s—u+ v))

> /Osvf(v)\/g<%>l/2312(v)dv.
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Let 0 < a < 1/5; since the function v — (s —v)/(3s — 2v) is decreasing on
[0, s], from (A.20) it follows that

()= C [ of (0)Biy(v) do,

where C = (2(1 — a)/3(3 — 2a))'/2. For s > v, {/;(s) defined in (A.17) satisfies
P1(s) < 2(s + 3v/2 — V202 + s%) < 3v, which implies (s) > %(1 + s/v) and
Bi5(v) > In[3(1 + s/v)]. Therefore

(A.21) en)=C[" vf(v)ln(l ; f) do.
0 1%

The inequalities (A.12) and (A.21) yield
J(s) = C(e11(s) + ¢11(s))

> c[/o vf(v)ln(l + S) dv + /033/2 vf(v)dv]

> C/OS vf(v)ln(l + S) do.

The proof of the upper bound in (A.5) is a consequence of (A.4) and Fubini’s
theorem. For the lower bound, we first apply Fubini’s theorem and do an
explicit computation of the integral in the s variable. We obtain

/Ot ds /O rf(r)1n<1 + ;) dr = /Ot rf(RI(r)dr,

with I(r) = (r+¢)In(r+¢)—2rIn(2r)— (¢t —r)— (¢ —r)Inr. It is easy to check
that, for any r € [0, ¢/3], I(r) > Ctln(1 + t/r), for some positive constant C;
this proves the lower bound in (A.5). O

LEMMA A3. ForanyO<t <t<T,1<p<4/3,
1

Joel
|Z\<t’|\/t/2 — 2|2 \/t2 — 2|2

| P
i dz < C|t—t|'7P2,

(A.22)

for some positive constant depending on p and T.

Proor. Ifl1<p<4/3,1-p/2>0,and 1 —3p/2 > —1; hence

1 1
e

\/t’2 — |2)2 V2 — |z
it xdx P
=C/0 / (2% — p2)3i2 pdp

t t
/p-1 pdp
=Cle—¢| /tx"<f0 m)‘ix

p
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e | CxP(a? - %) 9P
,

=+ x\P
< C|t— t/|p71v/(.) <t/ +2x) (t/+2x)fp/2+1x73p/2+1 dx

<C|t— t/|p—1T1—p/2|t _ t/|—3p/2+2

< Clt —t|'7P2, O

p

! 1 dz < C|x|*/2,

LEMMA A4. ForT>0,xcR? 1<p<2,(<2—p,0<s<T,
(A.23) —

ﬁzfx|<|z|<s \/32 — |z|2 \/SZ — |Z - DC|2
1 1

(A.24) dz [ dr< - ) < C|x|'2,
|z—x|<|z|<s /m/z Jr2 =22 JrZ—|z—«x]? 1=l

where C is a positive constant depending on p and T.

PrOOF. Let J(s, x) be the left-hand side of (A.23) and set x = (|x| cos 6,
|x| sin 6y) and z = (pcos(6 + 6,), psin(@ + 6y)). Then |z — x| < |z| < s if and
only if |x| < 2p and cos 0 > |x|/(2p). Hence, for |x| > 2s, J(s, x) = 0, while for
|x| < 2s,

J(s,x)=2

arccos(|x|/(2p))
p / do
|x[/2 0

1 1 P
Vs2—p2  Js2—p?+2p|x[cos b — [x]Z]

Let A € (0, 1) be such that (p/2)(1+A) <1 and Ap > {. Then

X

J c arccos(\xl/(Zs))d s p|x|/\p/2(2p cos 6 — |x|)/\P/2 dp
(5, %) < / 6/ 2¢0s0) (52 — p2)P/? (2 _ p2 2\\p/2
[l/(2c0s0) (52 — p2)P'%(s2 — p2 + 2p|x| cos 6 — |x|2)
arccos(|x|/(2s)) s d
< C|x|)\p/28)\p/2/ dO/ pap
0 |x]/(2cos 0) (82 — p2)P/2(1+1)

< C|x|*P2 < C|x|“"2.

This completes the proof of (A.23). We now check (A.24). Let K(s, x) denote
the left-hand side of (A.24). Then a similar change of variables as that of the
first part of the proof yields

s arccos(|x|/(2p))
K(s,x) =2 pdp/ do
|x|/2 0

= 1 }
x/ — dr
pLyr2 —p2  /r%2 —p2+ 2p|x|cos O — |x|?
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Since [(r?+ar+b)"V2dr =In(a +2r +2Vr2 +ar +b),

K(s,x)=2 pdp
|[/2

[ (ST BT,
0 (s+ /82 — p2 + 2p|x|cos 6 — [x[2)p

Since 2p cos 6 > |x|, we have

s+ /52 — p?
<
s+ /82— p? + 2p|x|cos 6 — |x|?

Hence,

do<Clx|V2. O

s arccos(|x|/(2p)) (2 0 — 1/2
K(s,x)§C|x|1/2/ pdp[ ( p COS |x|)
|x]/2 0 p

The following lemma is used in the proof of Proposition 1.4. Let us first
recall some notation used in the proof of this proposition. For ¢ > 0, &~ > 0 and
¢ € R?, we have set

Mo = /0 " ds /|y\<s . dz[S(s, y) = S(s + 1, y)]
x f(ly — z])[S(s, 2) — S(s + h, 2)],

t
pen=[ ds| dy dzS(s+h, y)f(ly - 2)S(s + b, 2),
’ 0 s<|y|<s+h s<|z|<s+h
t
M, = /0 ds /|y\<s,|y7g|>s dy /|z|<s,|zf§|>s dz S(s, y)f(|y — 21)S(s, 2),
t

N,, = d d dz|S(s, y) — S(s, y —
Le /\sw S/|y\<s,\y—§\<s y/\z|<s,|z—§|<s 2|S(s, ) = S(s, y = 9
x f(ly — 2)|S(s, 2) — S(s, z — &)|.

LEMMA A5.  Suppose that there exist b €]0, 1[, C > 0 and ty > 0 such that
for 0 <t < ¢,

£ t
(A.25) / rf(r)ln(l + -> dr < Ctb.
0 r

Then, for any fixed T > 0, a < b/(1+ b), there exists C > 0 such that for every
t<T,hvI|¢ <3,

(A.26) Mg p+ ﬂt, < Ch®,
(A.27) Nt’§+Mt’§§C|§|a.
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ProOOF. Using Lemma 4 in [4], we have

- 2
Mo =2 dydlen(prﬂ)
’ lzl<lyl<t |51 yI? — 2]

Let y = (pcos 6y, psin 6,), y — z = (rcos(0 + 6;), rsin(6 + 6,)). Then

t 2p 21 arccos(r/2p) 1 2ht + h2
<2 d d do dog—In{1+ —F——).
M n < fop pfo rf(r) l"/o ofo P n< +r(2pcos0—r)>

Set v = cos 6 — r/2p in the last integral; given 0 < vy < 1, we deduce that
My p < C(Mtl,h + :“?,h)’ where (using the convention ff o(x)dx=0if A > B),

hY t 1-r/(2p) Ch dv
1 _
M p = fo rf(rydr /r/z dp/o ln<1 " 2prv> VI=(r/2p) +v)?

2t t 1-r/(2p) Ch dv
2 _ In{1 .
e n fh rf(r)dr /r/2 dpfo n( " 2p"v> V1—(r/(2p) +v)?

Since for ve]0, $(1 —r/(2p))[, v1—(r/(2p) +v)? = C/1—1r/(2p) and for

v €ll(1 = r/(2p)), 1 — (r/(2p))[, In(1/v) < In(4p/(2p —r)), we have, using
(A.25),

Y t
pl, < C/O rf(r)drfr/2 dp
Y 1 (1-r/(2p))/2
X |:ln(Ch )/ dv + ¢ / ’ 1n<1> dv
pr ) Jrien) V1—0v2  \/1—71/(2p) 0 v
1-r/(2p)
+1n< 4p )/ p dv }
2p—r ) Ja-r/@pn/2 /1 - (r/(2p) + V)
hY t Ch? 1 4p
A.28 -
(A.28) SC[O rf(r)dr/r/2[1n< . )+ln(p)+ln<2p—r>i|
1/2
r
1-— —
) ( 2p> @
hY y
< c/ rf(r)|:ln<h7> + 1} dr
0

hY Y
< cfo rf(r)ln(l n hT) dr < Ch™.

Fix0 <6 <1— v and set

2.1 2t t
wen= [ rfydr [ dp L ponem
hY r/2

A —
0 2prv \/1_(r/(2p)+v)2
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2t t
2,2
M = fh rf(r)dr / o P Lo <oz

1-r/(2p) Ch dv
X /6 ln<1 + 5 ) s
h prv \/1—(r/(2p)+v)2

2t t
2,3
Mt = /h rf(r)dr f Ap Lio=(p-r)(20))

<[ e ln(1+ Ch ) av
0 2prv) /1= (r/(2p)+v)?

2t t
2,4
Hon = fh rf(r)dr / AP Linoz(p-r)/(20))

1-r/(2p) Ch dv
Lo (% 2r0) |
1/2-r/(2p) 2prv/ J1—(r/(2p) +v)?
2t r
2,5
th= /m rf(r)dr /r/z dp Linss(p-r)/(20)}

1-r/(Zp) ( Ch ) dv
x/ In(1+ .
0 2prv ) /1~ (r/(2p) +v)?

Then u? , = Y7, ,u,?;l Fix B €]0, 1[; since In(1 + x) < Cx” for x > 0, we have

9.1 ot t he
p2l < c/ rf(r)dr/ dp hﬁpfﬁfﬁf v F du
’ hY r/(1-2ho)At 0

2
(A.29) < Chﬁ+8(lfﬁ)ﬂ/ﬁf trf(r) dr
hY

< Chﬁ(1_7)+5(1_5),

r/(1-2h%)At 1/2-r/(2p)
/ dp hBr_Bp_Bf v Pdv
0

2t 2101 /(1-2h°)
(A.30) <C / rf(r)<rﬁhﬁhy /
hY 0

2t
urn < C [ rf(rydr

r

ulk du> dr

< ChP-7+02—p) /Zt rI*20-B) £(r) dr = CRP-7+82-F)
hy
and

9.4 2t r/(1=2h°)At
TS C[ rf(r)dr/ hPr=Rp=Pdp
’ hY r

(A.31) o
< ChB—vB+6(1—B)/ r2 B f(rydr = C hB-YB+3(1-B)
hY
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Furthermore, since In(1 + x) < x for x > 0,
t p1-8 /l—r/(2p) dv
N DR

pii=c [ rfrar |

(A.32)

dp
J(1—2h%) At rp
2t t
1-6—vy e
<Ch /h rf(r)ln(r)dr
< Chl%,

Finally, Fubini’s theorem implies that, given 0 < &’ < ¢ < 1, % < B <1,

2t 1/2 r/(1-2h%)At
M?’,fgc/ rf(r)dr/ dv/ 1n<1+ Ch) dp
’ h 0 r/(2(1-v)) 2prv/) /1 —(r/(2p) + v)2

ot 1/2
< C/h rzf(r)drfo 1n<1+ %) dv

2t he 1/2
(A.33) < C/ r?f(r) dr[/ ln<1 L ) dv + hﬁr‘%/ v P dv}
hY 0 he

2y

2r
< C/Zt rf(r)[hs{lne) + ln<%) + 1} + hB‘V(ZB‘l)} dr

< C[hg/ + th(ZBI)].

Inequalities (A.28)—(A.33) imply that given « < 1 fixed, choosing 8 ~ 1 and
g ~1and 6 ~ 0, one has

o p < C[h“/b + ha(l—v)].

Choose y = a/(b+ ); then p, , < Che®/®+); given a < b/(b+ 1), it suffices
to choose « close enough to 1 to conclude for 0 < h < T,

(A.34) e p < ChY.

We now prove a similar estimation for i, ;. Clearly, using Fubini’s theorem
we have

1 ¢ 1
h, 5, = — ds dvdz ——
For 2772/0 /fs<|z\<\y|<s+h Y TG hE P
S
JG 1R |oP

1
) d d - I h’ b b
2772//|y\—h<|z|<|y\<t+h ydzf(ly = 2DI(h. 5. 2)

xf(ly—=z

where

I ) /(|z|+h)A(t+h) du
P fyon JuE = [yPJu? =22
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Computations in [4] [proof of Lemma 3, estimation of E(Y%)] yield

1 ChY?
I(h.z.y) < —1In 1+—>,
(h2.9) = 53 ( EEE
so that
1 ChY?
a5, <C dydz f(ly — z —ln(1+—).
bR //\y|fh<\z\<\y|<t+h (7 =2Dp; ly|2 — |22

The change of variables y = (pcos 6, psin 6,), y — z = (r cos(6 + 6;), r sin(6 +
6y)) implies

t+h 2p
pon=C[ o dp [ rf(rydr

Ch1/2
g (1Yo
r/(2p)=cos 0<(r/(2p)+h(2p—h)/(2pr))AL r(2pcos 6 —r)

Fubini’s theorem and the change of variable v = cos § — r/(2p) show that,
given 0 <y <1, fi; p, < C([L}’h + /l?’h), where

hY t+h (h/r)(2p—h)/(2p))A(L-r/(2p)) Ch/2
ol = d d In( 1
At b /O rf(r) rfr/z pfo n( + e
dv

SN R e

2(t+h) t+h (h/r)((2p—h)/(2p))A(1—r/(2p)) C hl/2
~2
“t!h_/m rf(r)dr/r/Q dp/o ln(1+ = )

8 dv
VI=(+r/2p)?*

with the convention ff e(x)dx =0if A > B. For y > %, computations similar
to that of Mtl, p yield

hY ¢ Chl/2 ALY A(1-1/(2p)) dv
il <C d dpl ( ) —
Hen = /0 rf(r) r/r/Z pon pr /0 J1-v—-7/(2p)

o /Om oy dr /t/z dp[_ln p+ ln<2p4f r) (1 - r/(zp)> 1/2]

< C/Ohy rf(r)dr /:/2 dp[\/l —r/(2p) — \/(1 —r/(2p) — h1*7)+]

Ch1/2 hY
x1n< - >+/O rf(r)dr

Chl/2 Rl
pr >\/1 — r/(2p)i|

hY t
(A35) <C / rf(r)dr|:1+ / dp1n<
0 r/2
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hY 1/2
< C/ rf(r) dr|:1 + nlY ln(ﬂ) + A sup p/? ln(1>:|
0 r O<p<t P

< hyb+h17y(hyb+hb(yA1/2)) < hyb + hlnyrb/Z_
Furthermore, for » > hY > h (since y < 1), (h/r)(2p — h/(2p)) <1 — (r/(2p))
if and only if p > (r + h)/2. Moreover, if r > h” and p > r/(1 — 2h'~7), then
(h/r)((2p — B)/(2p)) < k17 <1/2— 1/(2p), so that for v < (h/r)((2p — h)/(20)),
(1—(v+r/(2p))*)"Y? < C. Therefore a2 , <C Y7, ,zli’;L, where

2(t+h) (r+h)/2 1-r/(2p) C hl/z d
2] :/ rf(r)dr/ dp/ 1n<1 + ) - 7
’ B "2 0 prv ) /1—(v+r/(2p))?

2(t-+h) r/(1-2h17) (h/r)((2p—R)/(2p)) Chl/2
in=[  rftrydr| dp | 1n<1 + )
; (r+h)/2 0 prv

» dv
N TR

93 2(t+h) t+h (R/T)((2p—h)/(2p)) Chl/2
Rl = / rf(r) dr/ dp/ In{1+ ) dv.
By r/(1-2h1-7) 0 pru

For " <r<2p<r+h,0<1-r/(2p) < h'"7. Hence, since h!™" < hl/2727,

2(t+h) Rt ChY2\ ((r+h)/2 \/2
~2,1 P
< rf(r)dr dvln<l+ ) —_——d 5
i =, o | 20 ) Lo T o=

2(t+h) hl=r 1/2=-2yN\ /
<c [ rrryar | ln<Ch ) rh e g,
(A.36) hY 0 v 1-v

2(t+
Y

h)
< Ch'2 /h rf(r)(r + h)Y2RYY (In(RY2-2Y) + In(h? 1) + 1) dr

o firm(2)]

If h? <rand r+ h < 2p, then 0 < (h/r)((2p — h)/(2p)) < h/r < h'~7, hence
~ 2(¢+h) Chl/2
s [ eyar )

r2v
/-r/(l—Zhl’y) V2p
X

hl=Y

dvln<1+

- —— d )
0 S —r "
2(t+h) B 1/2-2y
A3 <[ rfrydr | ln(Ch ) - " dv
hY 0 1% — U

2(t+h)
< cfm rzf(r)[hl—7 In(h'/227) + hl‘“/{ln<%) + 1” dr

conrem(2)]
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Finally,

2.3 2(¢+h) +h hl=Y 1/2-2y 1
i gc/ rf(r)dr/ P dp[o ln(h )—i—ln(;) dv

2(t+h) +h
(A38) <C / rf(r)dr / hlv[ln(1> + 1} dp
r/(1-2R1-7) h

< Ch1—7|:1n<z> + 1].

Inequalities (A.35)~(A.38) yield for 1 <y <1,0<h <1, >0,
fipp < C(R® + RI77H02 4 p1lov=2) < (R 4 B172).

Fixa €[0,b/(1+ b)[ and let e > 0besuchthat ¢ < (1 -056)/2A(1—a(1+b)/d).
Then y=(1-¢)/(1+b) >3 L and

(A.39) fien < Ch®.

Inequalities (A.34) and (A.39) conclude the proof of (A.26). We now check
(A.27). Set h = |£[; then

M, <2 —z
e //|y\—h<|z|<|y\<t+h Flly =z

5 </-(z+h)/\t ds )dy 5
B VEDPYE 2P '

Estimations similar to those proved for i, ; imply that for 0 < A < % and
ae[0,b/(1+0b)

(A.40) M, . < ClE".

Similarly, the computations of E(Z?) in the proof of Lemma 3 in [4] imply
N, < C(Nt,g + Nt,§)>

with
Ni=[[ dvdzfly=zb[ [86:.9)=SG.y-9)
% |S(s, 2) — S(s, z — £)| ds,
Ni=[f dvdsfy=aD[ |89 SG.y-6)
X |S(s,2— &) — S(s, Z)|ds,
where

Dy={(y.2):ly—¢& <yl <t |z— & <zl <t},
Dy={(y.2)ly—¢&l <yl <t lz| <|z— ¢l <t}



STOCHASTIC WAVE EQUATION ON THE PLANE 843

By Lemma 4 in [4],

1 |z|2—|z—§|2)
N1 <C —z —ln<1+— dydz
Le=Cl [ =2y E—1e )%
Clel

1
<C fly—z —ln(1+—)dydz.
[P =2 (14
Therefore as for u, ,, for 0 <a <b/(1+0b) and [¢| < T,

N}, <cClg-.
Set
2,1 2,2
N?’g :Nt,§ +Nt,§’
with

t
NZl = dydz -z dsS(s, y)|S(s, z — &) — S(s, 2)| ds,
be= L Ly @Ay =2 [ dsS(s )|S(s 2 - ) - S5, 2)

t
2,2 B 3 3
N _//ng{|y\<\z—§\} =1y ZD/\z—f\iS(S’ $) =Sy =)

x S(s,z— &)ds.
As for N} ¢» Lemma 4 in [4] yields

1 |z — & — |z|?
N*l<c f(ly - z —ln<1+— dydz
be f/Dgn{\z—§\<\y|} ( D |y] |y|2 = |z — &2

1 |z — & — |22
<C £(ly - 2| —ln<1+— dydz
//Dsﬂ{\szk\yl} )Iyl |y — |22

= Clgl*.
The same arguments imply N ? 52 < CJ&|®. Consequently,
(A.41) N, < C|¢|“.

Inequalities (A.40) and (A.41) imply (A.27) and complete the proof of the
lemma. O

Acknowledgments. This work was partially written while the first au-
thor was visiting the Centre de Recerca Matematica in Barcelona. The authors
thank Robert Dalang for stimulating discussions and the anonymous referee
for valuable remarks, which improved the presentation of this paper.

REFERENCES

[1] ALBEVERIO, S., HABA, A. and RUSSO, F. (1996). Trivial solutions for a non-linear two space
dimensional wave equation perturbed by a space-time white noise. Stochastics Stochas-
tics Rep. 56 127-160.

[2] BALLY, V. and PARDOUX, E. (1998). Malliavin calculus for white noise driven parabolic
SPDEs. Potential Anal. 9 27-64.



844

[3]
[4]
[5]
[6]

[7]
[8]

[9]
[10]
[11]
[12]
[13]
[14]

[15]

A. MILLET AND M. SANZ-SOLE

CARMONA, R. and NUALART, D. (1988). Random nonlinear wave equations: smoothness of
the solutions. Probab. Theory Related Fields 79 469-508.

DALANG, R. and FRANGOS, N. (1998). The stochastic wave equation in two spatial dimensions.
Ann. Probab. 26 187-212.

DuUNFORD, N. and SCHWARZ, J. T. (1988). Linear Operators I: General Theory. Wiley, New
York.

KARCZEWSKA, A. and ZABCZYK, J. (1997). A note on stochastic wave equations. Preprint 574,
Polish Academy of Sciences.

METIVIER, M. (1982). Semimartingales. de Gruyter, Berlin.

MUELLER, C. (1997). Long time existence for the wave equation with a noise term. Ann.
Probab. 25 133-151.

NUALART, D. (1995). Malliavin Calculus and Related Topics. Springer, New York.

NUALART, D. (1998). Analysis on the Wiener space and anticipating calculus. Ecole d’Eté
de Probabilités de Saint-Flour XXV. Lecture Notes in Math. 1690 863-901. Springer,
Berlin.

ROVIRA, C. and SANZ-SOLE, M. (1996). The law of the solution to a nonlinear hyperbolic
SPDE. J. Theoret. Probab. 9 863-901.

STROOCK, D. W. (1993). Probability Theory: An Analytic View. Cambridge Univ. Press.

WALSH, J. B. (1986). An introduction to stochastic partial differential equations. Ecole d’Eté
de probabilités de Saint-Flour XIV. Lecture Notes in Math. 1180 266—-437. Springer,
Berlin.

WATANABE, S. (1984). Lectures on stochastic differential equations and Malliavin calculus.
Tata Inst. Fund. Res. Springer, Berlin.

WiLcox, C. H. (1991). The Cauchy problem for the wave equation with distributional data:
an elementary approach. Amer. Math. Monthly 98 401-410.

LABORATOIRE DE PROBABILITES FACULTAT DE MATEMATIQUES
UNIVERSITE PARIS VI UNIVERSITAT DE BARCELONA
4, PLACE JUSSIEU GRAN ViIa, 585

75252 PARIS CEDEX 05 08007 BARCELONA

FRANCE SPAIN

AND

E-MAIL: sanz@cerber.mat.ub.es

MobpaL’X
UNIVERSITE PARIS X
E-MAIL: amil@ccr.jussieu.fr



