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THE MAXIMUM OF THE PERIODOGRAM OF A
NON-GAUSSIAN SEQUENCE1

BY RICHARD A. DAVIS AND THOMAS MIKOSCH

Colorado State University and University of Groningen

It is a well-known fact that the periodogram ordinates of an iid
mean-zero Gaussian sequence at the Fourier frequencies constitute an iid
exponential vector, hence the maximum of these periodogram ordinates
has a limiting Gumbel distribution. We show for a non-Gaussian iid
mean-zero, finite variance sequence that this statement remains valid. We
also prove that the point process constructed from the periodogram ordi-
nates converges to a Poisson process. This implies the joint weak conver-
gence of the upper order statistics of the periodogram ordinates. These
results are in agreement with the empirically observed phenomenon that
various functionals of the periodogram ordinates of an iid finite variance
sequence have very much the same asymptotic behavior as the same
functionals applied to an iid exponential sample.

Ž .1. Introduction. Let Z , be a sequence of iid random variablest t � �

with EZ � 0 and EZ2 � �, where Z � Z . We assume for convenience thatd 1
EZ2 � 1. Let

2n
�1 � �I � � n exp �i�t A , � � 0, � ,Ž . Ž .Ýn , A t

t�1

denote the periodogram of any sequence of random variables A . We aret
interested in the limit distribution of

M Z � max I � , � � 2� j�n,Ž . Ž .n n , Z i j
i�1, . . . , q

� 4where q � q � max j: 0 � � � � , that is, q � n�2.n j
Ž . Ž Ž ..If the Z are iid N 0, 1 , I � is a sequence of iid standardt n, Z i i�1, . . . , q

exponential random variables, and the extreme value theory for these peri-
odogram ordinates is contained in the well-known theory for extremes of an
iid exponential sequence. In particular,

1.1 M Z � ln q � Y ,Ž . Ž .n n d

where � denotes convergence in distribution and Y has the standardd
Ž . � �x 4Gumbel distribution � x � exp �e , x � �.
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A key to the surprising ‘‘almost iid’’ behavior of the periodogram ordinates
of an iid sequence is the representation

I � � C 2 � � S2 �Ž . Ž . Ž .n , Z n , Z n , Z

2 2n n
�1�2 �1�2� n cos �t Z � n sin �t Z .Ž . Ž .Ý Ýt tž / ž /

t�1 t�1

Ž . ŽŽ Ž . Ž ...For an iid mean-zero, finite variance sequence Z , C � , S �t n i n i i�1, . . . , q
constitutes a sequence of mean-zero, uncorrelated random variables with
variance 0.5. In the Gaussian case, this argument gives an iid standard

Ž Ž ..exponential sample I � . In the non-Gaussian case, the peri-n, Z i i�1, . . . , q
Ž .odogram ordinates I � are neither independent nor uncorrelated, al-n, Z i

Ž .though their autocovariances are O 1�n , whatever the Fourier frequencies.
However, many of their properties are very similar to an iid sequence. For
example, an application of the Lindeberg�Feller central limit theorem yields

Ž Ž ..that every vector I � is asymptotically iid standard exponentialn, Z j i�1, . . . , ki

whatever the choice of the k distinct Fourier frequencies � . This limit resultji
Ž Ž ..remains valid if one considers a finite vector I � at fixed fre-n, Z i i�1, . . . , k

Ž . � �quencies � � 0, � , i � 1, . . . , k; compare, for example, 2 .i
The asymptotic independence property of the periodogram ordinates
Ž . � �I � has some more surprising consequences. For example, 8, 9 showsn, Z i

Ž .that the empirical distribution function based on the I � has then, Z i
Glivenko�Cantelli property with exponential limit, that is,

q1
�xsup I I � � e � 0.Ž .Ž .Ý Ž�� , x � n , Z i Pqx i�1

Assuming certain smoothness conditions on the characteristic function of Z,
� �which in particular imply the existence of a density of Z, 3 extends this

result from convergence in probability to a.s. convergence. A further indica-
tion of the asymptotic independence of the periodogram ordinates at the
Fourier frequencies is given by the validity of resampling methods in the
frequency domain. Bootstrap resampling techniques based on the empirical

Ž . Ž .distribution function of the I � or tapered versions of them haven, Z i
� � � �recently been proposed by various authors; see 7 , 4 .

Ž .The asymptotic independence of the I � is also the basis for a series ofn, Z i
results on the maximum of the periodogram. One important application, for
example, is the construction of large sample tests for detection of a jump in
the spectral distribution function of a time series. In this setting, the process
under the null hypothesis is assumed to be a linear process,

�

1.2 X � � Z , t � �,Ž . Ýt j t�j
j���

� 4while under the alternative hypothesis, X is the sum of a linear processt
� Ž . Ž .and a random sinusoid, that is, X � Ý � Z � a cos �t � b sin �t ,t j��� j t�j

where a, b and � are unknown parameters. Hannan and coauthors proved



R. A. DAVIS AND T. MIKOSCH524

various results about the a.s. order of magnitude of the maximum of the
Ž . Ž .periodogram ordinates I � of the X-sequences satisfying 1.2 . Undern, X

� �conditions on the smoothness of the characteristic function of Z, 1 proves
that

1 I �Ž .n , X
1.3 lim max � 1 a.s.,Ž .

ln n f �n�� � � Ž .�� 0, � X

Ž . Ž .where f � � 2� is the spectral density of the X-sequence. If one specifiesX
Ž .X � Z, then f � 1, and 1.3 is the analogue to the corresponding a.s. limitX

result for the maxima of an iid standard exponential sample. Refinements of
� �this result were obtained by Turkman and Walker 17 in the case of an iid

� �Gaussian sequence. Hannan and Mackisack 10 proved a law of the iterated
Ž .logarithm for the estimate of the frequency � which maximizes f � .0 X

Ž Ž . .As mentioned before, the distributional limit of M Z � ln q is then
Gumbel distribution �, provided the Z are iid Gaussian. The limit distribu-t

Ž Ž . .tion of M Z � ln q for a non-Gaussian iid sequence seems an openn
� �problem. In 18 , page 122, it is mentioned that ‘‘It seems reasonable to

Ž .expect 1.1 to hold provided that moments of Z up to some sufficiently hight
order exist . . . , but no proof is known and the problem of constructing one is

Ž .undoubtedly extremely difficult.’’ In this paper we show that 1.1 indeed
holds for an iid Z-sequence having finite sth moment for some s � 2. The
main tool for proving this result for a non-Gaussian sequence is a very
powerful Gaussian approximation technique for sums of independent random

� �vectors due to Einmahl 5 . See Lemma 3.2 below.
Ž .We also extend 1.1 to weak convergence of the point processes based on

Ž Ž ..the points � , I � . The limiting point process is Poisson, thus yieldingi n, Z i
the same result as for an iid exponential sample. In turn, point process
convergence yields the joint limit distribution of the upper order statistics of

Ž Ž ..the sample of the periodogram ordinates I � . By a standardn, Z i i�1, . . . , q
approach, the results for the periodogram of an iid Z-sequence can be shown

Ž . Ž .to hold for a linear X-process, provided one replaces I � with I � �n, Z i n, X i
Ž .f � .X i
Our main results are formulated in Section 2. In Section 3 some technical

results are collected. Finally, the proofs of the main results are given in
Section 4.

2. Main results. We commence with the distributional limit of the
Ž Ž .. Ž .sequence of maxima M Z , where Z is an iid mean-zero, unit variancen t

sequence.

� � sTHEOREM 2.1. If E Z � � for some s � 2, then

M Z � ln q � Y ,Ž .n d

Ž . � � 44where Y has the standard Gumbel distribution � x � exp �exp �x , x � �.
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REMARK 2.2. The main ingredient for the proof of this and the following
� �results is Lemma 3.2 proved in 5 . It yields the necessary joint Gaussian

approximation to the sine and cosine transforms of the Z-sequence at differ-
ent frequencies in a suitable domain of the distribution. This approximation
turns out to be a very powerful tool for approximating the joint distribution of

Ž .a finite number of periodogram ordinates I � by iid exponential randomn, Z i
Žvariables. An alternative approach but in the context of a.s. convergence of

. � �the maximum of the periodogram was suggested in various papers 1, 3, 10 .
The authors of these papers preferred asymptotic expansions for the joint
distribution of vectors of periodogram ordinates which yield a uniform ap-
proximation to the whole distribution. The price one has to pay for the
uniformity are moment restrictions and conditions on the smoothness of the
characteristic function of Z, which are not easy to verify and imply the
existence of a density of Z.

REMARK 2.3. The same arguments as used for the proof of Theorem 2.1
give the joint limit distribution of the maxima of the cosine and sine trans-
form of Z , . . . , Z evaluated at the Fourier frequencies. The limit distribution1 n
is the product distribution of standard Gumble’s and the centering and
normalizing constants are chosen in the same way as if the cosine and sine
transformed data were iid mean-zero Gaussian with variance 0.5.

Ž .REMARK 2.4. The limit distribution of max I � for an iid Gauss-���0, � � n, Z
� �ian sequence is considered in 16 . The normalizing and centering constants

in this limit result are slightly different from those needed for the conver-
Ž Ž ..gence of M Z . This shows that adjustments are necessary if one replacesn

the maximum of the periodogram ordinates at the Fourier frequencies by the
maximum at a continuum of frequencies.

REMARK 2.5. Theorem 2.1 can be proved under weaker moment assump-
2 � � � 2Ž � �. Ž .tions. For example, it remains valid under EZ ln Z h Z � � where h x

is the k times iterated logarithm for any k � 1. We conjecture that the
2 � � �condition EZ ln Z � � is sufficient for Theorem 2.1 to hold. At the end of

the proofs of Lemma 3.4 and Theorem 2.1, we indicate the necessary changes
required in the proof under the weaker moment conditions.

Ž . Ž .Now let X be a linear process 1.2 with coefficients � satisfyingt j
�

1�2� � � � � �2.1 � j � � and f � � 0 for all � � 0, � .Ž . Ž .Ý j X
j���

Ž � � .Under this assumption it is known that see 18 , Theorem 3

I �Ž .n , X
max � I � � 0,Ž .n , Z Pf �� � Ž .�� 0, � X

Ž . Ž . � �where f � � 2� is the spectral density of the X-sequence. In 18 it is alsoX
Ž . � � � � �1�4�� Ž .proved that 2.1 can be relaxed to Ý � j � � for some � � � 	 �j��� j
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� � 4�	0 if E Z � � for some 	 � 0. From Walker’s result, we immediately
obtain the following corollary.

Ž . Ž . 2COROLLARY 2.6. Let X be the linear process 1.2 where EZ � 0, EZ �t
� � s Ž . Ž .1, E Z � � for some s � 2 and � obeys 2.1 . Thenj

max I � �f � � ln q � Y ,Ž . Ž .n , X j X j d
j�1, . . . , q

where Y has the standard Gumbel distribution �.

REMARK 2.7. Corollary 2.6 remains valid for the self-normalized peri-
odogram, that is,

I � �f �Ž . Ž .n , X j X j
2.2 max � ln q ,Ž . �1 qq Ý I � �f �j�1, . . . , q Ž . Ž .i�1 n , X i X i

provided EZ4 � �. Indeed, under the given assumptions, it follows from
� �Theorem 10.3.1 of 2 that

q q
�1 �1 �1�2q I � �f � � q I � � O n .Ž . Ž . Ž . Ž .Ý Ýn , X i X i n , Z i p

i�1 i�1

Since
q n

�1 �1 2 �1 �1�2q I � � n Z � O n � 1 � O n ,Ž . Ž . Ž .Ý Ýn , Z i t p p
i�1 t�1

we have
q

�1 �1�2q I � �f � � 1 � O n .Ž . Ž . Ž .Ý n , X i X i p
i�1

Also from Corollary 2.6,

max I � �f � � o n1�4 ,Ž . Ž . Ž .n , X j X j p
j�1, . . . , q

so that

I � �f �Ž . Ž .n , X j X j
max � max I � �f � � o 1 ,Ž . Ž . Ž .n , X j X j p�1 qq Ý I � �f �j�1, . . . , q j�1, . . . , qŽ . Ž .i�1 n , X i X i

Ž .from which 2.2 is easily deduced.
Theorem 2.1 can be extended to cover convergence for the sequence of point

Ž Ž ..processes based on the points � , I � . Specifically, define the sequencej n, Z j
� � Ž �of point processes 
 on the space E � 0, � � ��, � byn

q

2.3 
 � � 	 � ,Ž . Ž . Ž .Ýn Ž� , I Ž� .� ln q .j n , Z j
j�1

Ž .where 	 � is the point measure which assigns unit mass to a set containingx
Ž .x and 0 otherwise. Let MM E be the set of Radon point measures on the setp

� � � �E endowed with the vague topology. See 11 and 15 for further details and
Ž .properties of MM E and the vague topology.p
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Ž .THEOREM 2.8. For the sequence of point processes 
 defined in 2.3 , wen
have


 � 
 ,n d

�1 �xŽ .where 
 is a Poisson process on E with intensity measure � e dt � dx
Ž .and � denotes convergence in distribution on the space MM E relative tod p

the vague topology.

Ž Ž .REMARK 2.9. If one replaces in the definition of 
 the points � , I �n j n, Z j
. Ž . Ž .� ln q by � , E � ln q , where E is an iid standard exponential se-j j j

quence, then the conclusion of Theorem 2.8 remains valid; compare, for
� �example, 15 . Moreover, the same arguments as given for the replacement of

Ž . Ž . Ž . Ž .the I � in M Z with the I � �f � also apply here, that is, then, Z j n n, X j X j
conclusion of the theorem remains valid for the point process based on the

Ž Ž . Ž . .points � , I � �f � � ln q provided that the conditions of Corollaryj n, X j X j
2.6 are met.

One of the great advantages of the point process approach to extreme value
theory is that the relation 
 � 
 immediately yields the joint weak conver-n d
gence of a finite vector of upper order statistics in a sample. To be precise, we

Ž .introduce for every n the ordered version of the sample I � , i � 1, . . . , q,n, Z i

I 	 ��� 	 I .n , Žq . n , Ž1.

Ž .Note that in particular, M Z � I . Let x � ��� � x be any real num-n n, Ž1. k 1
Ž� � Ž ..bers, and write N � 
 0, � � x , � for the number of exceedances of xi n i i

Ž .by I � � ln q, j � 1, . . . , q. Thenn, Z j

I � ln q 	 x , . . . , I � ln q 	 x� 4n , Ž1. 1 n , Žk . k

� 4� N � 0, N 	 1, . . . , N 	 k � 1 .1 2 k

Thus the joint limit distribution of the vector of the k upper order statistics of
Ž .the periodogram ordinates I � can be derived from Theorem 2.8. Then, Z j

following is an immediate consequence of this fact combined with standard
� �arguments from extreme value theory; see, for example, 12 , Section 5.6, or

� �14 .

COROLLARY 2.10. Under the assumptions of Theorem 2.8, for any real
numbers x � ��� � x ,k 1

P I � ln q 	 x , . . . , I � ln q 	 x � P Y Ž1. 	 x , . . . , Y Žk . 	 x ,Ž . Ž .n , Ž1. 1 n , Žk . k 1 k

Ž Ž1. Žk .. � Ž . Ž .4where Y , . . . , Y has density exp �exp �x � x � ��� �x .k 1 k

Additional limiting results for the spacings and related quantities may be
Ž � � .obtained directly from this corollary. For example see 6 , Corollary 4.2.1 ,

I � I � i�1E ,Ž . Ž .n , Ž i. n , Ž i�1. d i i�1, . . . , ki�1, . . . , k

k d

I � kI � E ,Ý Ýn , Ž i. n , Žk�1. d i
i�1 i�1
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Ž .where E is an iid standard exponential sequence. More generally, everyi
asymptotic result which only depends on the distribution of a finite number of
upper order statistics of an exponential sample remains valid if one replaces
these order statistics by the corresponding I .n, Ž i.

We conclude with an a.s. convergence result which generalizes a theorem
� � Ž .in 1 in which 2.4 below was proved under the existence of a sixth moment

of Z and certain smoothness conditions on the characteristic function of Z. In
particular these conditions imply that Z has a density; see Remark 2.2.

Ž . Ž .PROPOSITION 2.11. Let X be the linear process 1.2 with noise satisfyingt
2 � � s � 2EZ � 0, EZ � 1 and E Z � � for some s � 2 and Ý � � �. Alsoj��� j

Ž . � �assume that f � � 0 on 0, � . ThenX

1 I �Ž .n , X
2.4 lim max � 1 a.s.Ž .

ln n f �n�� � � Ž .�� 0, � X

3. Tools. We start with a well-known result which we recall here for
convenience.

Ž .LEMMA 3.1 Bonferroni inequality . Let A , . . . , A be events from a �-field1 n
Ž .FF and , FF, P be a probability space. Then for every integer k � 1,

2k 2 k�1
j�1 j�13.1 �1 S 	 P A 
 ��� 
 A 	 �1 S ,Ž . Ž . Ž . Ž .Ý Ýj 1 n j

j�1 j�1

where
S � P A � ��� � A .Ž .Ýj i i1 j

1	i � ��� �i 	n1 j

� �The statement and the notation of Lemma 3.2 below are taken from 5 .
Ž .The lemma is Einmahl’s Corollary 1 b , page 31, in combination with the

Remark on page 32.

LEMMA 3.2. Let � , . . . , � be independent random vectors with mean zero1 n
and values in � d. Assume that the moment generating function of � , i �i
1, . . . , n, exists in a neighborhood of the origin and that

cov � � ��� �� � B I ,Ž .1 n n d

where B � 0 and I denotes the d-dimensional identity matrix. Let 
 ben d k
Ž 2 Ž ..independent N 0, � cov � random vectors, k � 1, . . . , n, independent ofk

Ž . 2 Ž � � �� , and � � 0, 1 . Let � � � � 
 , k � 1, . . . , n, and write p for thek k k k n
�1�2 n � Ž .density of B Ý � . Choose � � 0, 0.5 such thatn k�1 k

n
3� � � �3.2 � E � exp � � 	 B ,Ž . Ž .Ý k k n

k�1

� � dwhere x denotes the Euclidean norm in � . Let
n

3�3�2 � � � �3.3 � � � � � B E � exp � � .Ž . Ž . Ž .Ýn n n k k
k�1
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If

� � 1�2 2 2 �23.4 x 	 c �B , � � �c � ln � and B � c � ,Ž . 1 n 2 n n n 3

where c , c , and c are constants depending only on d, then1 2 3

3� � � � �23.5 p x � � x exp T x with T x 	 c � x � 1 ,Ž . Ž . Ž . Ž . Ž . Ž .Ž .n Ž1�� . I n n 4 nd

where � is the density of a d-dimensional centered Gaussian vector withC
covariance matrix C and c is a constant only depending on d.4

� � sLEMMA 3.3. Assume E Z � � for some s � 2 and for n � 1 define the
Žn.Ž .array of random variables Z byt t�1, . . . , n

Žn.
1� s 1� s3.6 Z � Z � Z I � EZI .Ž . t t t � � Z � 	 n 4 � � Z � 	 n 4t

Then

max I � � max I � � o 1 a.s.,Ž . Ž . Ž .n , Z j n , Z j
j�1, . . . , q j�1, . . . , q

Žn. Žn.Ž .where I � is the periodogram based on Z , . . . , Z .n, Z 1 n

n Ž . Ž . Ž .PROOF. Since Ý exp i� t � 0, it follows that I � � I � , where˜t�1 j n, Z j n, Z j

˜ 1� sZ � Z � EZI .t t � � Z � 	 n 4

� � � 1� sBy the Borel�Cantelli lemma, Ý Z I is bounded with probability 1t�1 t � � Z � � t 4t

and consists of only a finite number of nonzero terms. Thus, there exists a
Ž .positive integer N � such that

n
˜� �Z � ZÝ t t

t�1

Ž .N �n �

� � � � � �1� s 1� s 1� s� Z I 	 Z I � Z I .Ý Ý Ýt � � Z � � n 4 t � � Z � � t 4 t � � Z � � t 4t t t
t�1 t�1 t�1

3.7Ž .

� Ž . � � s � � s4 Ž .It follows that for n � max N � , Z , . . . , Z the left-hand side of 3.71 N Ž� .
˜is zero. Consequently, the periodograms for the Z and Z sequences have to be

identical a.s. for all n sufficiently large, which proves the result. �

For d � 1, define

3.8 v t � cos � t , sin � t , . . . , cos � t , sin � t �,Ž . Ž . Ž . Ž . Ž . Ž .Ž .d i i i i1 1 d d

where � , . . . , � are any distinct Fourier frequencies. For ease of notationi i1 d

we suppress the dependence of v on the particular frequencies.d
The following approximation is crucial for the proof of Theorem 2.1.

LEMMA 3.4. Fix d � 1 and let p be the density function of˜n
n

1�2 �1�22 n Z � � N v t ,Ž .Ž .Ý t n t d
t�1
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Ž . Ž . Ž .where N is a sequence of iid N 0, 1 random variables, independent of Z ,t t
2 2 �2 c 26Ž . Ž .and � � var Z s . If n ln n 	 s 	 1 with c � 1�2 � 1 � � �s for ar-n n n 6

bitrarily small � � 0, then the relation

p x � � 2 x 1 � o 1Ž . Ž . Ž .Ž .˜n Ž1�� . In 2 d

� � 3 Ž Ž c6 1�2�1� s..holds uniformly for x � o min n , n .d

Ž . Ž .PROOF. We apply Lemma 3.2 to Z v 1 , . . . , Z v n . Notice that EZ � 01 d n d
and

cov Z v 1 � ��� �Z v n � B I ,Ž . Ž .Ž .1 d n d n 2 d

Ž .where B � var Z q � q. Choose for some fixed constant c � 0n 5

� � c n�1� s�d1�2 .˜ 5

Then
n

3� � � �� E Z v t exp � Z v tŽ . Ž .� 4˜ ˜Ý t d t d
t�1

33�2 1�2� � � �	 d � nE Z exp � Z d� 4˜ ˜
31�1� s � �	 dc n E Z exp 2cŽ .5 5

1�� � s � � 2��	 8dc exp 2c n E Z ,Ž .5 5

Ž . � � 2�� Ž .where � � 0, 1 is chosen such that E Z � �. Hence 3.2 is satisfied with
� � � for sufficiently small c . Next choose˜ 5

n
3�3�2˜ � � � �� � B E Z v t exp � Z v tŽ . Ž .˜Ž .Ýn n t d t d

t�1

33�2 �3�2 1�2� � � �	 d B nE Z exp � Z d .Ž .˜n

Notice that
2���3�2 1�Ž1�� .� s �c6˜ � �3.9 � 	 const B n E Z 	 const n ,Ž . n n

Ž .where � is chosen as above and c � 1�2 � 1 � � �s � 0. Next we consider6
Ž .condition 3.4 . We can choose x according to the restriction

� � 1�2 1�2�1� s3.10 x 	 c �B � const n .Ž . ˜1 n

Ž . Ž . 2 2By 3.4 and 3.9 we can choose � � � according ton

1 � � 2 � const lnn n�2 c6 ,Ž .n

and B also satisfiesn

B � c ��2 .˜n 3

Ž .An application of 3.5 yields
3˜� � � �2p x � � x exp T x with T x 	 c � x � 1 .Ž . Ž . Ž . Ž . Ž .˜ Ž .n Ž1�� . I n n 4 nn 2 d

Ž . Ž .But by 3.9 and 3.10 ,

˜ 3� �� x � 1 � o 1Ž .Ž .n
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� � 3 Ž Ž c6 1�2�1� s..uniformly for x � o min n , n for arbitrarily small � � 0; that is,
� Ž . �the remainder term T x converges to zero, uniformly for the x considered.n

Finally, we want to indicate the changes in the proof of Lemma 3.4 if one
2 � � � 2Ž � �.assumes that EZ ln Z h Z � �, where h is the k times iterated loga-

rithm. First one has to truncate the random variables Z at the levelt
˜' 'Ž Ž ..a � n � ln n h n . Then choose � � 1�a , which implies that � 	˜n n n

Ž 3�2 3Ž ..const 1� ln nh n . Straightforward calculation shows that the statement
'� � Ž Ž ..of the lemma remains valid for x � o n h n . �

4. Proofs of the main results.

PROOF OF THEOREM 2.1. In view of Lemma 3.3, it suffices to prove the
Ž . Ž .statement with I � replaced by I � defined in Lemma 3.3. We firstn, Z n, Z

2 �c6consider the periodogram based on Z � � N , where � � n and c ist n t n 6

Žgiven in the statement of the lemma. In particular, we show that M Z �n
.� N � ln q � Y, where Y is standard Gumbel.n d

Ž .By virtue of the Bonferroni inequalities 3.1 and the identity
� exp �jxŽ .j�xexp �e � �1 ,Ž . Ž .Ý j!j�0

it suffices to show that

P I � � x � ln q , . . . , I � � x � ln qŽ . Ž .Ž .n , Z�� N i n , Z�� N in 1 n d

d2� exp �x � ln q 1 � � 1 � o 1Ž . Ž .Ž .Ž .Ž .Ž .n
4.1Ž .

� q�dexp �dx 1 � o 1 ,Ž . Ž .Ž .
for every fixed d � 1 and uniformly over all d-tuples 1 	 i � ��� � i 	 q as1 d

Ž .n � �. Notice that the left-hand side of 4.1 is equal to the probability of the
event

n
1�2 �1�2 Žd .2 n Z � � N v t � A ,Ž .Ž .Ý t n t d n½ 5

t�1

Ž . Ž .where v t is defined in 3.8 , andd

AŽd . � x , y , . . . , x , y �: x 2 � y2 � 2 x � ln q , i � 1, . . . , d ,Ž . Ž .� 4n 1 1 d d i i

Ž .1�2whose distance to the origin is not less than 2 x � ln q . Since

d2
2� x dx � exp �x � ln q 1 � � ,Ž . Ž . Ž .Ž .Ž .H Ž1�� . I nn dŽd .An

and � 2 ln q � 0 by the choice of � 2, we conclude from Lemma 3.4, whichn n
does not depend on the choice of the d distinct frequencies in the definition of

Ž . Ž .v t , that 4.1 holds and henced

4.2 M Z � � N � ln q � Y .Ž . Ž .n n d
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To complete the proof of the theorem we need to transfer the convergence
Ž .in 4.2 onto the Z . To this end, write Z � Z � � N � � N so thatt t t n t n t

M Z � � N � M ZŽ .Ž .n n n
4.3Ž .

1�2 1�2	 M � N � 4M Z � � N M � N .Ž . Ž .Ž .n n n n n n

Ž .Since M N is the maximum of iid exponential random variables, it followsn
that

M � N � O � ln nŽ . Ž .n n p n

Ž .and, moreover, from 4.2 ,

M Z � � N � O ln n .Ž .Ž .n n p

2 �c6 Ž .These two relations together with � � n imply that the bound in 4.3 isn
Ž .o 1 , from which we conclude thatp

M Z � ln q � Y ,Ž .n d

as claimed.
Finally, we want to indicate the changes in the proof which are necessary

2 � � � 2Ž � �.under the assumption EZ ln Z h Z � � where h is the k times iterated
2 �4 �2Ž .logarithm. Choose � � ln nh n and use the remarks at the end of then

proof of Lemma 3.4. �

PROOF OF THEOREM 2.8. We first establish convergence in distribution for
the point process corresponding to the periodogram based on the Z � � Nt n t
for � 2 � n�c 6. Letn

q
�
 � � 	 � .Ž . Ž .Ýn Ž� , I Ž� .� ln q .2j n , Z�� N jn

j�1

ŽSince the limit point process 
 is simple, it suffices to show that see Theorem
� �.4.7 of 11

b � a
� �x �y� �4.4 E
 a, b � x , y � E
 a, b � x , y � e � eŽ . Ž Ž Ž .Ž ŽŽ . Ž .n �

for all 0 	 a � b 	 � and x � y, and for all k � 1,
� � � �P 
 a , b � R � 0, . . . , 
 a , b � R � 0Ž ŽŽ . Ž .Ž .n 1 1 1 n k k k

4.5Ž .
� �� P 
 a , b � R � 0, . . . , 
 a , b � R � 0 ,Ž ŽŽ . Ž .Ž .1 1 1 k k k

where 0 	 a � b � ��� � b 	 � and R , . . . , R are bounded Borel sets,1 1 k 1 k
Ž �each consisting of a finite union of intervals on ��, � .

Ž .To prove 4.4 , note that

�E
 a, b � x , y � P x � ln q � I � 	 y � ln q ,Ž Ž Ž .Ž . Ž .Ýn n , Z�� N jn
Ž �� � a , bj
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Ž .which by 4.1 ,

b � a nŽ . �1 �x �y� q e � eŽ .
2�

b � aŽ . �x �y� e � e .Ž .
�

Ž . � Ž �4 Ž . Ž .Now turning to 4.5 , set n � � i: � � a , b � n b � a � 2� . Thenj i j j j j
Ž .the complement of the event in 4.5 is the union of m � n � ��� �n events,1 k

that is,
� � � �1 � P 
 a , b � R � 0, . . . , 
 a , b � R � 0Ž ŽŽ . Ž .Ž .n 1 1 1 n k k k

k

� P I � � ln q � R .Ž .� 4� � n , Z�� N i jnž /j�1 Ž �� � a , bi j j

4.6Ž .

� 4For any choice of d distinct integers i , . . . , i � 1, . . . , q and integers1 d
� 4 Ž .j , . . . , j � 1, . . . , k we have from 4.1 that1 d

d d
�d4.7 P I � � ln q � R � q � R 1 � o 1 ,Ž . Ž . Ž .Ž .� 4 Ž .� Łn , Z�� N i j jn r r rž / r�1r�1

Ž � �xwhere � is the measure on ��, � given by e dx and the relation is
uniform over all distinct d-tuples i , . . . , i . Using an elementary counting1 d

Ž .argument and 4.7 , the sum of the probabilities of all collections of d distinct
Ž .sets from the m that comprise the union in 4.6 is given by

n n1 k �u u �u u1 1 k kS � ��� q � R ��� q � R 1 � o 1Ž . Ž . Ž .Ž .Ýd 1 ku už / ž /1 kŽ .u , . . . , u1 k
u � ��� �u �d1 k

1
� Ý du !u ! ��� u !�1 2 kŽ .u , . . . , u1 k

u � ��� �u �d1 k

u u1 k� b � a � R ��� b � a � R 1 � o 1Ž . Ž . Ž . Ž . Ž .Ž .Ž . Ž .1 1 1 k k k

d�1 �d� d! � b � a � R � ��� � b � a � R .Ž . Ž . Ž . Ž . Ž .Ž .1 1 1 k k k

It follows that
2 s 2 s

j�1 j�1 �1 �j�1 S � �1 j! �Ž . Ž . Ž .Ý Ýj
j�1 j�1

j
� b �a � R ����� b �a � R as n��Ž . Ž . Ž . Ž .Ž .1 1 1 k k k

k
�1� 1 � exp � b � a � � R ,Ž . Ž .Ý j j j½ 5

j�1

Ž . Ž . Ž .as s � � which, by the Bonferroni inequality 3.1 and 4.6 , proves 4.5 .
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It remains to transfer the convergence of the 
� onto 
. First define then
point process

q


 � � 	 � .Ž . Ž .Ýn Ž� , I Ž� .� ln q .j n , Z j
j�1

Ž � �.It then suffices to show that see Theorem 4.2 of 11
�4.8 
 � 
 � 0Ž . n n P

and
4.9 
 � 
 � 0Ž . n n P

or, equivalently, that for any continuous function f on E with compact
support,

�
 f � 
 f � 0 and 
 f � 
 f � 0,Ž . Ž . Ž . Ž .n n P n n P

Ž .where the notation 
 f is shorthand for H f d
. Suppose the compact support
� � � .of f is contained in the set 0, � � K � � , � for some � � 0 and K � �.0 0

Ž . � � Ž . Ž . � � � �Since f is uniformly continuous, � � � sup f t, x � f t, y ; t � 0, 1 , x
� 4 � � Ž .� y 	 � � 0 as � � 0. On the set A � max I � �n j�1, . . . , q n, Z�� N jn
Ž . � 4I � 	 � , we have for � � � ,n, Z j 0

f � , I � � ln q � f � , I � � ln qŽ . Ž .Ž .Ž .j n , Z�� N j j n , Z jn

� � , if I � � ln q � K ,Ž . Ž .n , Z�� N jn	 ½ 0, if I � � ln q 	 K .Ž .n , Z�� N jn

4.10Ž .

Ž c . Ž .Also, P A � 0 which follows from the argument used to show that 4.3 isn
Ž .o 1 . Now, for any 	 � 0, choose � sufficiently small that � � � . Then, byp 0

� c� � Ž . Ž . � 4intersecting the event 
 f � 
 f � 	 with A and A , respectively,n n n n
Ž . Ž .and using 4.10 and 4.4 , we obtain

�� �lim sup P 
 f � 
 f � 	Ž . Ž .Ž .n n
n��

� c� �	 lim sup P � � 
 0, 1 � K , � � 	 � P AŽ . . Ž .Ž .Ž .Ž .n n
n��

� � �	 lim sup E
 0, 1 � K , � � � �	. Ž .Ž .n
n��

	 e�K� � �	 .Ž .
Ž . Ž .Since � � � 0 as � � 0, 4.8 follows.

Ž . Ž .The proof of 4.9 is essentially identical to the argument given for 4.8
with the conclusion of Lemma 3.3 playing the key role. �

Ž . � �PROOF OF PROPOSITION 2.11. The lim sup part of 2.4 is proved in 1
under a second moment second condition. Under this condition, they also
proved that

1 I �Ž .n , X
4.11 lim max � I � � 0 a.s.Ž . Ž .n , Zln n f �n�� � � Ž .�� 0, � X
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� � Ž .The lim inf part is similar to the proof in 1 , pages 395 and 396. By 4.11 , it
suffices to show the result for the Z-sequence. Instead of applying the
asymptotic expansion in the beginning of their proof, one can use arguments
similar to the ones for the proof of Theorem 2.1. Utilizing Lemma 3.4 for

Ž .I � , one obtains the same asymptotic order of the probabilities inn, Z�� N jn
Ž . Ž . � � Ž .2.9 and 2.10 of 1 for the periodogram of the Z � � N -sequence. Thenn

� �one can proceed in the same way as on pages 395 and 396 in 1 in order to
2 �c6prove the lim inf part for I . Now, choosing � � n as before,n, Z�� N nn

max I � � max I � � 0 a.s.Ž . Ž .n , Z�� N j n , Z jnj�1, . . . , q j�1, . . . , q

s� �and, under the condition E Z � �, one may replace the Z with Z ; seet t
Lemma 3.3. �
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