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SUB-BERNOULLI FUNCTIONS, MOMENT INEQUALITIES AND
STRONG LAWS FOR NONNEGATIVE AND SYMMETRIZED

U-STATISTICS1

By Cun-Hui Zhang

Rutgers University

This paper concerns moment and tail probability inequalities and the
strong law of large numbers for U-statistics with nonnegative or sym-
metrized kernels and their multisample and decoupled versions. Sub-
Bernoulli functions are used to obtain the moment and tail probability
inequalities, which are then used to obtain necessary and sufficient con-
ditions for the almost sure convergence to zero of normalized U-statistics
with nonnegative or completely symmetrized kernels, without further regu-
larity conditions on the kernel or the distribution of the population, for nor-
malizing constants satisfying a simple condition. Moments of U-statistics
are bounded from above and below by that of maxima of certain kernels,
up to scaling constants. The multisample and decoupled versions of these
results are also considered.

1. Introduction. This paper concerns moment and tail probability in-
equalities and the strong law of large numbers (SLLN) for U-statistics with
nonnegative or symmetrized kernels and their multisample and decoupled
versions.

1.1. Overview. Let �X�Xn�n ≥ 1� be a sequences of iid random variables
with a common distribution F. For real Borel functions h�x1� � � � � xk�, the U-
statistics with kernel h are defined by S�k�n /

(
n
k

)
with

�1�1� S�k�n = ∑
�i1�����ik�∈�k�n

h�Xi1
� � � � �Xik

��

where �k�n = ��i1� � � � � ik�
 1 ≤ i1 < i2 < · · · < ik ≤ n�.
Our investigation is motivated by two problems. The first one is the order

of E��S�k�n �: given a nondecreasing nonnegative function � satisfying certain
regularity conditions [e.g., ��x� = xm], find functionals µn�F�h��� such that

�1�2� C′k��µn�F�h��� ≤ E�
(
S�k�n

) ≤ C′′k��µn�F�h��� ∀n ≥ 1�

where C′k�� and C′′k�� are universal constants. The second problem is the
SLLN: given a sequence of normalizing constants �bn� satisfying certain reg-
ularity conditions (e.g., bn = n1/p for some 0 < p < 2), find necessary and
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sufficient conditions (nasc) on F and h for

�1�3� S�k�n /bkn = b−kn
∑

i1<i2<···<ik≤n
h�Xi1

� � � � �Xik
� → 0 a.s.

We find that the concept of sub-Bernoulli function, defined in (1.10) for
k = 2 in a special case and formally defined in Section 2.1, is very useful in
our investigation of the preceding two problems and some additional prob-
lems. Basically, a nonnegative Borel function φ�x1� � � � � xk� is a sub-Bernoulli
function of �X1� � � � �Xk� with parameter �θ1� � � � � θk� if its conditional expec-
tations, given subsets of the X’s, are no greater than the corresponding con-
ditional expectations of a product of independent Bernoulli variables with the
same parameters. We connect sub-Bernoulli functions to nonnegative kernels
h ≥ 0 through some normalizing kernels ψn = ψn�x1� � � � � xk�, positive Borel
functions given in Section 3.1 for general k and in (1.9) and (1.11) for k = 2,
such that φn�x1� � � � � xk� = h/ψn are sub-Bernoulli functions with parame-
ters �k/n� � � � � k/n�. It will be shown in Theorem 3.4 in Section 3.2 that, for
all h ≥ 0, nondecreasing nonnegative functions g�·� and integers m ≥ 1 and
n ≥ k,

�1�4� Eg
(
ξ�k�n

)(S�k�n
ξ
�k�
n

)m
≤ Eg

(
ξ�k�n

)
E

(
k+Nk

k

)m
�

where ξ
�k�
n = max�i1�����ik�∈�k�n ψn�Xi1

� � � � �Xik
� and Nk is a Poisson variable

with ENk = k. It will also be shown in Theorem 3.4 that for n ≥ k�

�1�5� P
{
ξ�k�n > t

} ≤ CkP
{
S�k�n > t/2

}
�

for some universal Ck. These inequalities provide crucial elements in our so-
lutions to (1.2) and (1.3). Moment inequalities for sub-Bernoulli functions also
imply an extension of the Bernstein inequality from k = 1 to general k, Corol-
lary 2.4 in Section 2.3, for decoupled symmetrized bounded kernels. The sym-
metrized, multisample and/or decoupled versions of the strong law and mo-
ment inequalities are also given. Some basic inequalities for sub-Bernoulli
functions are provided for general independent (not necessarily identically
distributed) variables.

The paper is organized as follows. In the rest of this section, we discuss
in detail the case k = 2� after giving our notation. In Section 2, we describe
sub-Bernoulli functions and some basic inequalities. In Section 3, we consider
inequalities of type (1.4) and (1.5). In Section 4, we provide the SLLN. Section 5
contains examples about moment conditions for SLLN.

1.2. Notation. Let �X�l��X�l�
n � n ≥ 1� be independent sequences of iid ran-

dom variables from possibly different distributions. The multisample version
of (1.1) is defined by

�1�6� S̃n =
n1∑
i1=1

· · ·
nk∑
ik=1

h
(
X
�1�
i1
� � � � �X

�k�
ik

)
�
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where n = �n1� � � � � nk� gives the sample sizes. The normalized sums
S̃n/

∏k
l=1nl are the k-sampleU-statistics with the kernel h. For n1= · · ·=nk=n,

�1�7� S̃
�k�
n = ∑

�i1�����ik�∈kn
h
(
X
�1�
i1
� � � � �X

�k�
ik

)
�

where kn = ��i1� � � � � ik�
 1 ≤ il ≤ n�1 ≤ l ≤ k�. When �X�X�1�� � � � �X�k�� are
identically distributed, S̃�k�n becomes the decoupled version S

�k�
n in (1.1). Let

f�x�y� be a real Borel function with f2�x�y� = h�x�y�, and �ε� εn� ε�l�n � n ≥
1� l ≥ 1� be iid Rademacher variables independent of �Xn�X

�l�
n � n ≥ 1� l ≥ 1�,

P�ε = 1� = P�ε = −1� = 1/2. Define

�1�8� T�k�n = ∑
i∈�k�n

εif�Xi�� T̃
�k�
n = ∑

i∈kn
ε̃if�X̃i��

They are the symmetrized versions of (1.1) and (1.7). Here and in the sequel,
Xi = �Xi1

� � � � �Xik
�, X̃i = �X�1�

i1
� � � � �X

�k�
ik
�, εi =

∏k
l=1 εil and ε̃i =

∏k
l=1 ε̃

�l�
il

for
i = �i1� � � � � ik�.

In addition to the variables introduced above, we shall use the following
notation throughout. Let �Yn�Y

�l�
n � n ≥ 1� l ≥ 1� be independent variables,

�θn� θ�l�n � n ≥ 1� l ≥ 1� be constants in �0�1�, and �δn� δ�l�n � n ≥ 1� l ≥ 1� be
independent Bernoulli ones with P�δ�l�n = 1� = θ

�l�
n and P�δn = 1� = θn.

For i = �i1� � � � � ik�, set yi = �yi1
� � � � � yik�, Yi = �Yi1

� � � � �Yik
� and Ỹi =

�Y�1�i1
� � � � �Y

�k�
ik
�. Set θi = �θi1

� � � � � θik� and θ̃i = �θ�1�i1
� � � � � θ

�k�
ik
�. Set δi =

∏k
l=1 δil

and δ̃i =
∏k
l=1 δ

�l�
il

, in the same manner as εi and ε̃i in (1.8). Let Nn�θ be a
binomial variable with parameters �n� θ� and Nλ be a Poisson variable with
ENλ = λ. Also, for all real �ai�,

∏
i∈A ai = 1 if A = �.

The distributions of X�l�, l ≥ 1, are not assumed to be identical, to cover
the multi sample case. The variables �Yi�Y

�l�
i � are not assumed to have the

same distribution (neither between different i nor between different l), to
be used to describe basic inequalities for sub-Bernoulli functions. The condi-
tional expectations and moments of sub-Bernoulli functions are dominated by
those of products of �δi� δ�l�i �, with nonidentical �θi� θ�l�i � in general (between

different l as well as different i). The Rademacher variables �ε� εn� ε�l�n � n ≥
1� l ≥ 1� are assumed to be independent of �Xn�X

�l�
n �Yn�Y

�l�
n � δn� δ

�l�
n �

n ≥ 1� l ≥ 1� throughout. Also, x1 ∨ · · · ∨ xm = max�x1� � � � � xm�, x1 ∧ · · · ∧
xm = min�x1� � � � � xm�.

1.3. Case k = 2. Let us discuss k = 2 in more detail. Let h�x�y� =
h�y�x� ≥ 0. For θ > 0 and n ≥ 1, define

c1�y� θ� = sup
{
c > 0
 E

(
h�X�y�

h�X�y� ∨ c
)
≥ θ

}
� sup � = 0�

c0�θ� = sup
{
c > 0
 E

(
h�X1�X2�

h�X1�X2� ∨ c1�X1� θ� ∨ c1�X2� θ� ∨ c
)
≥ θ2

}
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and

�1�9� ψ�x�y� θ� = h�x�y� ∨ c1�x� θ� ∨ c1�y� θ� ∨ c0�θ��
It can be easily seen (also cf. Lemma 3.1) that for φ = h�X1�X2�/ψ�X1�X2� θ��
�1�10� 0 ≤ φ ≤ 1� E�φ �Xj� ≤ E�δ1δ2 � δj�� j = 1�2� Eφ ≤ E�δ1δ2��
if δi are iid Bernoulli variables with mean θ. In other words, the conditional
expectations of φ in (1.10) are dominated by their δ1δ2 versions. In this sense,
we call φ a sub-Bernoulli function of �X1�X2�.

The function c1�y�1/n� as in (1.9) is the same as mn�y� = sup�m

nE�h�X�y� ∧ m� ≥ m�, a quantity whose essence has been used to ap-
proximate the center of the distribution of a sum of iid nonnegative ran-
dom variables [each distribution in this case is h�X�y�]. In fact, Lemma 2.3
of Klass and Zhang (1994) shows that P�Sn�y� ≥ c�y�1/n�/3� ≥ 0�2 and
P�Sn�y� ≤ 3c�y�1/n�� ≥ 0�3 with Sn�y� =

∑n
i=1 h�Xi�y�. In this paper,

�1�11�
ξ
�2�
n = max

1≤i<j≤n
ψ�Xi�Xj�2/n�

= max
{

max
i<j≤n

h�Xi�Xj��max
i≤n

c1�Xi�2/n�� c0�2/n�
}

are used to approximate the center and moments of (1.1) for k = 2. The maxi-
mum of h�Xi�Xj� represents the extreme term; the maximum of c1�Xi�2/n�
represents the extreme term of

∑n
j=1 h�Xi�Xj� in the sum over i; while

c0�2/n� represents the overall center of the double sum. For more discussions,
see Klass and Nowicki (1997).

It will be shown in Theorems 3.2 and 3.4 that (1.4) and its two-sample
version

�1�12� E
(
S̃
�2�
n /ξ̃

�2�
n

)m
g
(
ξ̃
�2�
n

) ≤ Eg
(
ξ̃
�2�
n

){
E�1+N1�m

}2
�

and their extensions to general k, hold for all nondecreasing nonnegative func-
tions g and m ≥ 1, where ξ̃

�2�
n = max�i� j�∈2

n
ψ̃�X�1�

i �X
�2�
j �1/n� with ψ̃ being

the �X�1��X�2��-version of ψ (cf. Section 3.1). These theorems also assert that
(1.5) and its two-sample version

�1�13� P
{
ξ̃
�2�
n > t

} ≤ 24P
{
S̃
�2�
n ≥ t/2

}
�

and their extensions to general k, hold for all positive t. Let � be a function
satisfying

�1�14� ��x� ↑ in x���x� ≥ 0���cx� ≤Mcα��x�� c ≥ c∗ ≥ 1� x ≥ 0

for some α > 0. This includes ��x� = xα. It follows from (1.12) and (1.13) that

�1�15� C′M�αE��ξ̃ �2�n � ≤ E��S̃ �2�n � ≤ C′′M�αE��ξ̃ �2�n ��
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with C′M�α = 1/�24M�2Vc∗�α� and C′′M�α = M�cα∗ + �E�1 +N1�m�2�, where

m − 1 < α ≤ m. The upper bound above follows from (1.12) as ��S̃ �2�n � ≤ M

max��S̃ �2�n /ξ̃
�2�
n �α�1���ξ̃ �2�n � and cα ≤ cm for c ≥ 1. Inequality (1.15) for general

k and its one-sample version [based on (1.4) and (1.5)] are given in Corollar-
ies 3.3 and 3.5. Via different methods, Klass and Nowicki (1997) obtained
(1.15) in the independent but non-iid case, using functions hij�x�y� ≥ 0 in
place of a fixed h�x�y�. Their results involved the construction of different
constants.

Let bn = n1/p. Sufficient moment conditions for the SLLN (1.3) were given
by Hoeffding (1961), Serfling (1980), Sen (1974), Teicher (1992) and Giné and
Zinn (1992). By the Kolmogorov and Marcinkiewicz–Zygmund strong laws,
(1.3) holds for k = 1 if and only if Eh�X� = 0 for p ≤ 1 and E�h�X��p < ∞.
However, the case k ≥ 2 is quite different. Giné and Zinn (1992) gave an
example to exhibit that the condition E�X�p < ∞ is not necessary for (1.3)
when h�x�y� = xy. In Example 5.2 below, (1.3) holds for bn = nk/p and some
symmetric h but E�h�X1� � � � �Xk��p1+ε = ∞ for all ε > 0, where 0 < p < 2
and p1 = p/�k − p�k − 1�/2� < p. For the special case h�x�y� = xy and
EX = 0 whenever E�X� <∞, Cuzick, Giné and Zinn (1995) obtained nasc for
the SLLN (1.3) under certain regularity conditions on the distribution of X
(e.g., X symmetric, P��X� > x� regularly varying), and Zhang (1996) obtained
nasc without regularity conditions on X. Some extensions of these results for
k > 2 are also available in these papers. The SLLN in this paper give nasc for
(1.3) for general nonnegative kernels and its symmetrized and/or multisample
versions.

Theorem 1.1. Let S
�2�
n and S̃

�2�
n be as in (1.1) and (1.7) and c1�·� θ� and c0�θ�

be as in (1.9). Suppose h�x�y� = h�y�x� ≥ 0, �X�X�1��X�2�� are identically
distributed, and supn≥1 n

−2b2
n

∑∞
m=n m/b

2
m <∞. Then the SLLN (1.3) holds iff

T
�2�
n /bn → 0 a.s., iff ξ

�2�
n /b2

n → 0 a.s., iff S̃
�2�
n /b2

n → 0 a.s., iff T̃
�2�
n /bn → 0 a.s.,

iff ξ̃
�2�
n /b2

n → 0 a.s., iff the following three conditions hold:

�1�16� c0�1/n�/b2
n → 0�

�1�17�
∞∑
n=1

P
{
c1�X�1/n� > b2

n

}
<∞�

�1�18�
∞∑
n=1

nP
{
h�X1�X2� > b2

n ≥ c1�X1�1/n� ∨ c1�X2�1/n�
}
<∞�

Remark. Condition (1.18) can be replaced by

�1�19�
∞∑
n=1

nP
{
h�X1�X2� > b2

n ∨ c1�X1�1/n� ∨ c1�X2�1/n�
}
<∞�

The proof of Theorem 1.1 and its extensions for general k and multisample
versions are given in Section 4.
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2. Sub-Bernoulli functions. In the following three subsections, we shall
(1) define sub-Bernoulli functions and describe the motivation, (2) provide
upper bounds for conditional expectations of products and moments of sums
of sub-Bernoulli functions and (3) provide some exponential inequalities.

2.1. Sub-Bernoulli functions. A random variable φ
(
Y1� � � � �Yk

)
is called

a sub-Bernoulli function of a random vector
(
Y1� � � � �Yk

)
with parameter

�θ1� � � � � θk� if 0 ≤ φ ≤ 1 and for all A ⊆ �1� � � � � k��
�2�1� E

[
φ�Y1� � � � �Yk�

∣∣Yl� l ∈ Ac
] ≤ ∏

l∈A
θl�

From this definition, sub-Bernoulli functions are nonnegative functions of
�Y1� � � � �Yk� whose conditional expectations given subsets of �Y1� � � � �Yk� are
uniformly bounded from above by the products of the θ’s in the complementary
subsets of �θ1� � � � � θk�.

Consider the case of k = 1. By definition φi = φi�Yi� are sub-Bernoulli
functions of Yi iff 0 ≤ φi ≤ 1 and Eφi ≤ θi. Such variables φi are dominated
in moments by Bernoulli variables δi with Eδi = θi in the sense that Eφm

i ≤
Eδmi = θi for all m ≥ 1. Although this does not imply stochastic dominance
(i.e., P�φi > t� ≤ P�δi > t� may not hold for all t), it is strong enough to
assure

�2�2�
E

( n∑
i=1

φi

)m
= ∑
�i1�����im�∈mn

E
m∏
j=1

φij

≤∑
mn

E
m∏
j=1

δij = E

( n∑
i=1

δi

)m

for all integers m ≥ 1. Thus, as far as moments of sums are concerned,
Bernoulli variables are the optimal ones among all sub-Bernoulli variables.

We shall show below that products of independent Bernoulli variables are
optimal for general k among all sub-Bernoulli functions.

2.2. Expectations of products and moments of sums.

Proposition 2.1. Suppose φi
(
Ỹi

)
and φi� s

(
Ỹi

)
, 1 ≤ s ≤ m, are sub-

Bernoulli functions of Ỹi = �Y�1�i1
� � � � �Y

�k�
ik
� with parameters θ̃i = �θ�1�i1

� � � � �

θ
�k�
ik
� for i = �i1� � � � � ik� ∈ k∞. Then, for all is = �i1�s� � � � � ik�s� ∈ k∞, 1 ≤ s ≤m,

and A ⊆ 2
∞,

�2�3� E

[ m∏
s=1

φis�Ỹis�
∣∣∣∣�̃Ac

]
≤

m∏
s=1

∏
l∈As

θ
�l�
il� s
= E

[ m∏
s=1

k∏
l=1

δ
�l�
il� s

∣∣∣∣δ̃∗ = 1
]
�

where �̃A = σ�Y�l�i � �l� i� ∈ A�, As = �l ≤ k
 il� s �= il� t ∀s < t ≤ m� �l� il� s� ∈
A�, Ac = 2

∞ \A, and δ̃∗ = ∏�δ�l�il� s 
 �l� il� s� �∈ A�. Moreover, for all s ⊆ k∞,
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1 ≤ s ≤m,

�2�4� E
m∏
s=1

( ∑
i∈s

φi� s�Ỹi�
)
≤ E

m∏
s=1

( ∑
i∈s

k∏
l=1

δ
�l�
il

)
�

Consequently, for n =
∏k
l=1 

1
nl

with n = �n1� � � � � nk�,

�2�5� E

( ∑
i∈n

φi�Ỹi�
)m

≤
k∏
l=1

E

( nl∑
i=1

δ
�l�
i

)m
�

Remark. Since �Y�l�i � are independent (between different l as well as dif-
ferent i), the indeces i are allowed to have ties.

Proof. Set φi = φi�Ỹi�. By (2.1),

E
[
φis

∣∣Ỹit � s < t ≤m� �̃Ac

] = E
[
φis

∣∣Y�l�il� s � l �∈ As

] ≤ ∏
l∈As

θ
�l�
il� s
�

Repeated applications of this inequality for s = 1� � � � �m give the inequality
in (2.3). The identity in (2.3) follows from

P
{
δ̃is = 1

∣∣δ̃it = 1� s < t ≤m� δ̃∗ = 1
}

= P
{
δ̃is = 1

∣∣δ�l�il� s = 1� l �∈ As

} = ∏
l∈As

θ
�l�
il� s
�

Finally, similarly to (2.2), (2.4) is proved by first writing the product of sums
as sum of products and then applying (2.3) with A = 2

∞ (trivial �̃Ac ) to each
(product) term in the sum to allow substitution of φi� s by δ̃i. ✷

For the single sequence �Yn�, we have the following analogous result.

Proposition 2.2. Suppose φi�Yi� and φi� s�Yi�, 1 ≤ s ≤ m, are sub-

Bernoulli functions of Yi with parameters θi for i = �i1� � � � � ik� ∈ �k�∞ . Then,

for all is = �i1� s� � � � � ik� s� ∈ �k�∞ , 1 ≤ s ≤m and A ⊆ 1
∞,

�2�6� E

[ m∏
s=1

φis�Yis�
∣∣∣∣�Ac

]
≤

m∏
s=1

∏
l∈As

θil� s = E

[ m∏
s=1

k∏
l=1

δil� s

∣∣∣∣δ∗ = 1
]
�

where As = �l ≤ k
 il� s �= ij� t ∀s < t ≤ m and 1 ≤ j ≤ k� il� s ∈ A�, �A =
σ�Yi� i ∈ A�, Ac = 1

∞ \ A, and δ∗ = ∏�δil� s 
 il� s �∈ A�. Moreover, for all

s ⊆ 
�k�
∞ , 1 ≤ s ≤m,

�2�7� E
m∏
s=1

( ∑
i∈s

φi� s�Yi�
)
≤ E

m∏
s=1

( ∑
i∈s

k∏
l=1

δil

)
�
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Consequently, with Tn =
∑n

i=1 δi,

�2�8� E

( ∑
i∈�k�n

φi�Yi�
)m

≤ E

(
Tn

k

)m
�

Remark. The symmetrized versions of (2.5) and (2.8) can be easily pro-
duced using the Khintchine inequality.

Remark. For all nondecreasing nonnegative g,

ENn�θg�Nn�θ� ≤ mθEg�Nn�θ + 1�
and

ENλg�Nλ� = λEg�Nλ + 1��
These and Corollary 2.1 of Gleser (1975) imply

ETm
n ≤ ENm

n� θ̄n
≤ ENm

λn
� E

(
Tn

j

)m
≤ E

(
Nn� θ̄n

j

)m
≤ E

(
Nλn

j

)m
�

where θ̄n = λn/n =
∑n

i=1 θi/n and Tn is as in (2.8). Thus, the Tn in (2.8) and
the sums on the right-hand side of (2.5) can be replaced by Poisson variables.

The proof of Proposition 2.2 is omitted as it is nearly identical to the proof
of Proposition 2.1

2.3. Exponential inequalities. There are several ways of obtaining expo-
nential inequalities for the tail probabilities of U-statistics from moment in-
equalities. Here we shall only present one for symmetrized and decoupled
U-statistics.

Proposition 2.3. Let 0 < θ ≤ 1. Suppose φi�Ỹi� = f2
i �Ỹi� are sub-

Bernoulli functions of Ỹi with a common parameter �θ� � � � � θ� for all i =
�i1� � � � � ik� ∈ kn. Then,

�2�9� E exp
(
t

∣∣∣∣
∑

i∈kn

ε̃ifi�Ỹi�
nk/2

∣∣∣∣
1/k)

≤ 2E exp
(
t2Nn�θ/�2n�

)
�

where Nn�θ is binomial �n� θ�. Consequently,

�2�10� P

{∣∣∣∣
∑

i∈kn

ε̃ifi�Ỹi�
nk/2

∣∣∣∣
1/k

≥ t

}
≤ 2 exp

( −t2/2
θ+ t/�2√n�

)
�

Corollary 2.4. Suppose �fi�Ỹi��∞ ≤ c and Ef2
i �Ỹi� ≤ σ2 for all i =

�i1� � � � � ik� ∈ kn. Then

�2�11� P

{∣∣∣∣
∑

i∈kn

ε̃ifi�Ỹi�
nk/2

∣∣∣∣
1/k

≥ t

}
≤ 2 exp

( −t2/2
σ2/k + tc/�2σ �k−1�/k√n�

)
�
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For k = 1, (2.11) becomes the Bernstein inequality. For iid �Xn� and com-
pletely degenerate kernels f with �f�∞ ≤ c and Ef2 ≤ σ2, Arcones and Giné
[(1993), page 1501] obtained the inequality

P

{∣∣∣∣
∑

i∈kn

f�Xi�
nk/2

∣∣∣∣
1/k

≥ t

}
≤ c′′k exp

( −c′kt2

σ2/k + �tc/√n�2/�k+1�

)

and its symmetrized and/or decoupled versions with implicitly specified uni-
versal constants c′k and c′′k. Their inequalities give smaller upper bounds for
σ �k+1�/k√n/�ct� = o�1� than (2.11) although the breakdown point t = σ �k+1�/k√
n/c is the same. For related exponential inequalities for the Rademacher

chaos, we refer to Ledoux and Talagrand (1991).

Proof of Proposition 2.3. Set T̃n =
∑

i∈kn ε̃ifi�Ỹi� and S̃n =
∑

i∈kn
f2

i �Ỹi�. Let Z be a N�0�1� variable independent of Nn�θ. By the Khintchine
inequality and (2.5) of Proposition 2.1,

E�T̃n�2m ≤
(
EZ2m)kE(

S̃n

)m ≤ (
EZ2mENm

n�θ

)k
�

By the Jensen inequality E�T̃n�2m/k ≤ E
(
Z
√
Nn�θ

)2m. Since e�x� ≤ ex+e−x, the
left-hand side of (2.9) is bounded by

E

{
2

∞∑
m=0

�λ�T̃n�1/k�2m
�2m�!

}
≤ 2

∞∑
m=0

λ2m

�2m�!E
(
Z
√
Nn�θ

)2m

= 2E exp
(
λZ

√
Nn�θ

) = 2E exp
(
t2Nn�θ/�2n�

)
�

with λ = t/
√
n. Thus, (2.9) holds.

The proof of (2.10) from (2.9) is nearly identical to the proof of the Bernstein
inequality in Chow and Teicher [(1988), page 111]. By (2.9) and the Markov
inequality,

�2�12� P

{∣∣∣∣
∑

i∈kn

ε̃ifi�Ỹi�
nk/2

∣∣∣∣
1/k

≥ t

}
≤ 2 exp�−λt�

(
1+ θ{exp�λ2/�2n�� − 1

})n

for all λ > 0. Take λ = t/�θ + t/�2√n��. Since λ2/�2n� < 2 and ex − 1 ≤
x/�1− x/2� for 0 ≤ x < 2,

θ
{
exp�λ2/�2n�� − 1

} ≤ θλ2/�2n�
1− λ2/�4n� ≤

θλ2/�2n�
1− λ/�2√n� =

tλ

2n
�

Thus, the right-hand side of (2.12) is bounded by 2 exp�−tλ��1+ tλ/�2n��n ≤
2 exp�−tλ/2� and the proof is complete. ✷

Proof of Corollary 2.4. Let θ = σ2/c2 ≤ 1 and φi = φi�Ỹi� = θk−1c−2 ·
f2

i �Ỹi�. Then φi are sub-Bernoulli functions of Ỹi with parameter �θ� � � � � θ�,
as the φi version of (2.1) holds for j > 0 due to �φi�∞ ≤ θk−1 ≤ θk−j and for



STRONG LAWS FOR U-STATISTICS 441

j = 0 due to Eφi ≤ θk. Set λ = �√θc�1/k/√θ. It follows from (2.10) that the
left-hand side of (2.11) is bounded by

P

{∣∣∣∣ θ
k/2

√
θc

∑
i∈kn

ε̃ifi�Ỹi�
nk/2

∣∣∣∣
1/k

≥ t

λ

}
≤ 2 exp

( −t2/2
λ2θ+ λt/�2√n�

)
�

Hence, (2.11) holds as λ2θ = �θc2�1/k = σ2/k and λ = σ1/k/
√
θ = c/σ �k−1�/k. ✷

3. Moments of maxima and sums. In this section we provide moment
and tail probability inequalities for maxima and sums of products [e.g., (1.4),
(1.5), (1.12) and (1.13)]. We shall provide the normalizing kernels in Sec-
tion 3.1, the inequalities in the iid and multisample cases in Section 3.1 and in-
equalities for independent not identically distributed variables in Section 3.3.
Section 3.4 contains the proofs of Theorems 3.2 and 3.4 in Section 3.2.

We shall use the following notation to shorten expressions: 3k = �1� � � � � k�,
a�j� = �a1� � � � � aj�, and for all a�k� and A ⊆ 3k with size �A� = j, �al
 l ∈ A� =
�al1� � � � � alj� with l1 < � � � lj being the ordered labels in A.

3.1. Construction of normalizing kernels. Let h�y�k�� be a nonnegative
Borel function and Y�k� = �Y1� � � � �Yk� be a random vector with joint dis-
tribution FY�k� . Given θ�k� = �θ1� � � � � θk�, we shall find a normalizing kernel
ψ�y�k�� such that φ�y�k�� = h�y�k��/ψ�y�k�� is a sub-Bernoulli function of Y�k�
with parameter θ�k�. In addition, the normalizing kernels should be small
enough to be used in the proof of inequalities in both directions such as (1.4)
and (1.5).

We shall classify the 2k inequalities of (2.1) according to �A�, the size of A,
and consider those with �A� = k − j, j = k� � � � �0. The normalizing kernel is
defined by

�3�1� ψ�y�k�� = ψ�y�k�� θ�k�� h�FY�k� � = max
0≤j≤k

hj�y�k�� = h0�y�k���

�3�2� hj�y�k�� = hj+1�y�k�� ∨
{

max
�A�=k−j�A⊆3k

cj�A�yl
 l �∈ A�
}
�

j = k − 1� � � � �0, hk�y�k�� = h�y�k�� = c
k���y�k��, and for A ⊆ 3k and �A� =

k− j�

�3�3�

cj�A
(
yl
 l ∈ Ac

)
= cj�A

(
yl
 l ∈ Ac� θ�k�� h�FY�k�

)

= inf
{
c ≥ 0
 E

[
h�Y�k��

hj+1�Y�k�� ∨ c

∣∣∣∣Yl = yl� l ∈ Ac

]
≤ ∏

l∈A
θl

}
�
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Note that c0 does not depend on y�k�. Define φj�A�y�k�� = φj�A�y�k�� θ�k�� h�
FY�k� � by

�3�4� φj�A�y�k�� =
h�y�k��

hj+1�y�k�� ∨ cj�A�yl
 l �∈ A�
�

Lemma 3.1. Let θ�k�, h and FY�k� be as in (3.1)–(3.4). For all fixed �yl
 l �∈
A�, the function φj�A�y�k�� in (3.4) is a sub-Bernoulli function of �Yl
 l ∈ A�
with the parameter �θl
 l ∈ A�, and E�φj�A�Y�k�� �Yl� l �∈ A� = ∏

l∈A θl for
cj�A�Yl
 l �∈ A� > 0. In particular, φ�y�k�� = h/ψ = φ0�3k

�y�k�� is a sub-
Bernoulli function of Y�k� with the parameter θ�k�.

Proof. It immediately follows from (2.1), (3.2) and (3.3) that φj�A�y�k��
is conditionally sub-Bernoulli. Its mean is given by (3.3) as the conditional
expectation on the right-hand side is continuous in c for c > 0. ✷

3.2. Moment inequalities in the iid and multisample cases. We shall pro-
vide moment inequalities involving maxima and sums, extended (1.4) and (1.5)
with iid �Xi� and their multisample versions with independent iid sequences
�X�l�

i �, l ≥ 1.
Let h�x1� � � � � xk� be a fixed kernel. For n ⊆ 

�k�
n and ̃n ⊆ ⊗k

l=1
1
nl

define

�3�5� Sn
= ∑

i∈n
h�Xi�� S̃̃n

= ∑
i∈̃n

h�X̃i��

Let θ�k� = �θ1� � � � � θk� and θ be fixed parameters. Let FX̃ be the joint distri-
bution of X̃ = �X�1�� � � � �X�k�� and FX�k� be the joint distribution of X�k� =
�X1� � � � �Xk�. Define

�3�6� ξn� θ = max
i∈n

ψ
(
Xi� �θ� � � � � θ�� h�FX�k�

)
� ξ�k�n = ξ


�k�
n � k/n

�

�3�7� ξ̃̃n� θ�k� = max
i∈̃n

ψ
(
X̃i� θ�k�� h�FX̃

)

and

�3�8� ξ̃n = ξ̃⊗k
l=1

1
nl
� �1/n1�����1/nk�� ξ̃

�k�
n = ξ̃kn� �1/n�����1/n��

where ψ�·� is given by (3.1).

Theorem 3.2. Let g be an nondecreasing nonnegative function. Then, for
all ̃n ⊆ ⊗k

l=1
1
nl

and integers m ≥ 1,

�3�9� E
(
S̃̃n

/ξ̃̃n� θ�k�
)m
g
(
ξ̃̃n� θ�k�

) ≤ Eg
(
ξ̃̃n� θ�k�

) k∏
l=1

E
(
1+Nnl� θl

)m
�
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Furthermore, for all n = �n1� � � � � nk� and real numbers t > 0 and 0 < ε < 1,

�3�10� P
{
ξ̃n > t

} ≤ P
{
S̃n > εt

}( 3k − 2k

�1− ε�2 + 2k
)
�

As in (1.15), we have the following corollary.

Corollary 3.3. Let � be a function satisfying (1.14) for some α ≤m. Then,

�M�2Vc∗�α�−1E��ξ̃n�
��3k − 2k�/4+ 2k� ≤ E��S̃n� ≤M

(
cα∗ +

{
E�1+N1�m

}k)
E��ξ̃n��

Theorem 3.4. Let g be an nondecreasing nonnegative function. Then, for

all n ⊆ 
�k�
n and integers m ≥ 1,

�3�11� E
(
Sn

/ξn� θ
)m
g
(
ξn� θ

) ≤ Eg
(
ξn� θ

)
E

(
k+Nn�θ

k

)m
�

Furthermore, there exists a function Ck�ε such that for all n ≥ k and real
numbers t > 0 and 0 < ε < 1,

�3�12� P
{
ξ�k�n > t

} ≤ Ck�εP
{
S�k�n > εt

}
�

For n ≥ k�k+ 1�, (1.13) holds with

Ck�ε =
k∑

j=0

(
k+ 1
j

){
1+

E
(Nk+1−j

k−j
)2 − 1

�1− ε�2
}
�

Remark. If n is a multiplier of k!, (3.12) holds for

Ck�ε =
k∑

j=0

(
k

j

){
1+

E
(Nk−j
k−j

)2 − 1

�1− ε�2
}
�

Corollary 3.5. Let � be a function satisfying (1.14) for some α ≤m. Then,

E��ξ�k�n �
M�2Vc∗�αCk�1/2

≤ E��S�k�n � ≤ME�
(
ξ�k�n

){
cα∗ +E

(
k+Nk

k

)m}
�

Theorems 3.2 and 3.4 are proved in Section 3.4.

3.3. General independent variables. In this section, we consider the ex-
pectations of the product of a maximum and several sums for independent
variables �Yi�Y

�l�
i � i ≥ 1� l ≥ 1�, which may have different distributions.

Proposition 3.6. Suppose ψi�Ỹi� are measurable functions of Ỹi and

φi� s�Ỹi� are sub-Bernoulli ones with parameters θ̃i for i ∈ k∞. Let k� s =
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⊗k
l=1I

�l�
s for some I

�l�
s ⊆ 31

∞. Then, for all nondecreasing nonnegative functions
g�·�,  ⊆ k∞ and m ≥ 1�

�3�13� Eg�ξ̃�
m∏
s=1

( ∑
i∈k� s

φi� s�Ỹi�
)
≤ Eg

(
ξ̃

) k∏
l=1

E
m∏
s=1

{
1+Tl� s

}
�

where ξ̃ = maxi∈ ψi�Ỹi� and Tl� s =
∑n

i∈I�l�s
δ
�l�
i .

Proposition 3.7. Suppose ψi�Yi� are measurable functions of Yi and

φi� s�Yi� are sub-Bernoulli ones with parameters θi for i ∈ 
�k�
∞ . Let �k� s� =

�I⊗ks � ∩ �k�∞ for some Is ⊆ 31
∞. Then, for all nondecreasing nonnegative func-

tions g�·�,  ⊆ 
�k�
∞ and m ≥ 1,

�3�14� Eg�ξ�
m∏
s=1

( ∑
i∈�k� s�

φi� s�Yi�
)
≤ Eg

(
ξ

)
E

m∏
s=1

(
k+Ts

k

)
�

where ξ = maxi∈ ψi�Yi� and Ts =
∑

i∈Is δi.

Remark. For general n ⊆ �i ∈ kn
 ij �= il ∀ j �= l�, we may apply
Proposition 3.7 to φi�Yi� =

∑
�i′�=�i�φi′ �Yi′ �/k! and ψi�Yi� = max�ψi′ �Yi′ �
 i′ ∈

n� �i′� = �i��, where �i� = �i1� � � � � ik� is regarded as a set.

Proof of Proposition 3.6. Set ψi = ψi�Ỹi� and φi� s = φi� s�Ỹi�. Before
providing the full proof of (3.13), we shall first take a look at the case where
k = 1 and m = 2. Let �ψn�φn�, n ≥ 1, be independent random vectors with
0 ≤ φn ≤ 1 and Eφn = θn. Let i∗ be the index at which maxi≤n g�ψi� is
reached. We have

�3�15�

E

(
max
i≤n

g�ψi�
)( n1∑

j1=1

φj1

)( n2∑
j1=1

φj2

)

≤ Eg�ψi∗ �φ2
i∗ +

n1∑
j1=1

Eg�ψi∗�φi∗φj1
I�j1 �=i∗�

+
n2∑
j2=1

Eg�ψi∗ �φi∗φj2
I�j2 �=i∗�

+
n1∑
j1=1

n2∑
j1=1

Eg�ψi∗�φj1
φj2

I�j1 �=i∗� j2 �=i∗��

Since g�·� is nondecreasing and nonnegative,

�3�16�
Eg�ψi∗ �φj1

φj2
I�j1 �=i∗� j2 �=i∗� ≤ E

{
max

i�=j1� i�=j2� i≤n
g�ψi�

}
Eφj1

φj2

≤ Eg�ψi∗ �Eδj1
δj2

�
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Similarly, Eg�ψi∗�φi∗φjI�j �=i∗� ≤ Eg�ψi∗�Eδj and Eg�ψi∗ �φ2
i∗ ≤ Eg�ψi∗ � as

0 ≤ φj ≤ 1. Inserting these inequalities into (3.15), we obtain

�3�17�
Eg�ψi∗ �

( n1∑
j1=1

φj1

)( n2∑
j1=1

φj2

)

≤ Eg�ψi∗�
(
1+ETn1

+ETn2
+ETn1

Tn2

)
≤ Eg�ψi∗�E

(
1+Tn1

)(
1+Tn2

)
�

where Tn =
∑n

i=1 δi. This is (3.13) for k = 1 and m = 2.
To proof (3.13) with general k and m, we shall compare the indices is =

�i1� s� � � � � ik� s�, 1 ≤ s ≤ m, with i∗ = �i∗1� � � � � i∗k� in products of the form
g�ψi∗ �

∏m
s=1 φis� s, where i∗ ∈  is the index at which the maximum ξ̃ is

reached. Let 3 = ��l� s�
 1 ≤ l ≤ k�1 ≤ s ≤ m�. Given A ⊆ 3 and �i1� � � � � im�,
define iA = �il� s
 �l� s� ∈ A� as an �A�-dimensional vector of positive integers.

Set ̃A = ⊗�l� s�∈AI�l�s , which is the space of combined labels in A. Define

πA = πA�i1� � � � im� i∗� = I
{
il� s = i∗l ⇔ �l� s� ∈ A}

�

which indicate different patterns of match between i1� � � � im and i∗. This facil-
itates the calculation of sums involving different patterns of match between
i3 and i∗. Since

∑
A∈3 πA = 1, we have, as in (3.15),

�3�18�
Eg�ξ�

m∏
s=1

( ∑
is∈s

φis� s

)
= ∑

A⊆3

∑
i3∈̃3

Eg�ψi∗ �
{ m∏
s=1

φis� s

}
πAc�i3� i∗�

= ∑
A⊆3

∑
iA∈̃A

Eg�ψi∗ �
m∏
s=1

φi′s� s�

where �i1� � � � im� = i3 and i′s = �i′1� s� � � � � i′k� s� with i′l� s = il� s for �l� s� ∈ A and
i′l� s = i∗l for �l� s� �∈ A, given i∗ and iA. Given A and iA, let io = �io1� � � � � iok�
be the index at which the maximum of ψi is reached over the set ̃�A� iA� =
��i1� � � � � ik� ∈ 
 il �= il� k ∀�l� k� ∈ A�, and i′′s = �i′′1� s� � � � � i′′k� s� with i′′l� s = il� s
for �l� s� ∈ A and i′′l� s = iol for �l� s� �∈ A. Note that ̃�A� iA� is the space of
combined indices which do not involve the specified iA. We have

Eg�ψi∗�
m∏
s=1

φi′s� s ≤ Eg�ψio�
m∏
s=1

φi′′s � s�

Let �̃ �A� iA� be the σ-field generated by �Y�l�i 
 �l� i� �= �l� il� s� ∀�l� s� ∈ A�.
Since io is �̃ �A� iA� measurable, for all i = �i1� � � � � ik� ∈ ̃�A� iA��

E

[
g�ψio�

m∏
s=1

φi′′s � s

∣∣∣∣�̃ �A� iA�
]
= g�ψio�E

[ m∏
s=1

φi′′′s � s

∣∣∣∣Y�l�i′′′l� s � �l� s� �∈ A
]
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on the event
{
io = i

}
, where i′′′s = �i′′′1� s� � � � � i

′′′
k� s� with i′′′l� s = il� s for �l� s� ∈ A

and i′′′l� s = il for �l� s� �∈ A. Since φi� s are sub-Bernoulli functions of Ỹi, by (2.3),

E

[ m∏
s=1

φi′′′s � s

∣∣∣∣Y�l�i′′′l� s � �l� s� �∈ A
]
≤ E

∏
�l� s�∈A

δ
�l�
il� s
�

Thus, for the given A and iA� we have as in (3.16),

Eg�ψi∗ �
m∏
s=1

φi′s� s ≤ Eg�ψio�E
∏

�l� s�∈A
δ
�l�
il� s
≤ Eg�ψi∗�E

∏
�l� s�∈A

δ
�l�
il� s
�

Inserting this into (3.18), we find as in (3.17),

�3�19�

Eg�ξ�
m∏
s=1

( ∑
is∈s

φis� s

)
≤ ∑

A⊆3

∑
iA∈A

Eg�ψi∗ �E
∏

�l� s�∈A
δ
�l�
il� s

≤ Eg�ψi∗ �E
∑
A⊆3

∏
�l� s�∈A

Tl� s

= Eg�ξ�E
k∏
l=1

m∏
s=1

(
1+Tl� s

)
�

Hence (3.13) holds for general k and m. ✷

Proof of Proposition 3.7. Let i∗ ∈  be the location of the maximum ξ.
Similarly to the proof of Proposition 3.6, we find via Proposition 2.2 that

Eg
(
ξ

) m∏
s=1

( ∑
i∈�k� s�

φi� s

)
≤ ∑

A⊆3
Eg

(
ξ

)
E

m∏
s=1

( ∑
i∈�js� s�

δi

)

= Eg
(
ξ

)
E

∑
A⊆3

m∏
s=1

(
Ts

js

)
�

where js = #�l
 �l� s� ∈ A�. Since there are
(
k
j

)
subsets of �1� � � � � k� of size

k− j,

∑
A⊆3

m∏
s=1

(
Ts

js

)
=

m∏
s=1

k∑
j=0

(
k

k− j
)(

Ts

k− j
)
=

m∏
s=1

(
k+Ts

k

)
�

This completes the proof. ✷

3.4. Proofs of Theorems 3.2 and 3.4. We shall use Propositions 3.6 and 3.7
to prove (3.9) and (3.11). The Cantelli inequality below is applied to sums of
sub-Bernoulli variables in Lemma 3.1 in the proof of (3.10) and (3.12).

Lemma 3.8 (Cantelli inequality). Let W be a random variable with EW =
µ and Var�W� = σ2. Then P�W ≥ ε� ≥ �µ− ε�2/�σ2 + �µ− ε�2� for all ε < µ.
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Proof of Theorem 3.2. Let φ̃i = h�X̃i�/ψ�X̃i� θ�k�� h�FX̃�. By Lem-
ma 3.1, φ̃i are sub-Bernoulli variables with parameter θ�k�. By (3.5) and (3.7),
S̃̃n

/ξ̃̃n� θ�k� ≤
∑

i∈̃n φ̃i, so that (3.9) follows directly from Proposition 3.6.
Let us prove (3.10). Let n = �n1� � � � � nk� and A ⊆ 3k be fixed with �A� =

k− j. Define

�3�20� ξ̃n� j�A = max
{
cj�A

(
X
�l�
il

 l �∈ A)
 il ∈ 1

nl
∀ l ∈ Ac

}
�

where cj�A�y�j�� = cj�A�y�j�� �1/n1� � � � �1/nk�� h�FX̃� as in (3.3). Let �i∗l 
 l ∈
Ac� be the index at which the maximum in (3.20) is reached. Define

�3�21� �n� j�A =
∑

i∈∗n�A
φj�A

(
X̃i

)

with φj�A�y�k�� = φj�A�y�k�� �1/n1� � � � �1/nk�� h�FX̃� as in (3.4), where

∗n�A =
{�i1� � � � � ik�
 il ∈ 1

nl
∀ l ∈ A� il = i∗l ∀ l ∈ Ac

}
�

By Lemma 3.1, E��n� j�A�ξ̃n� j�A� = 1 for ξ̃n� j�A > 0, and by Lemma 3.1 and
(2.5),

E
[
�2

n� j�A

∣∣ξ̃n� j�A
] ≤ ∏

l∈A
EN2

nl�1/nl
≤ (

EN2
1

)k−j = 2k−j�

Thus, by Lemma 3.8 with W = �n� j�A�

P
{
�n� j�A > ε

∣∣ξ̃n� j�A
} ≥ �1− ε�2

�2k−j − 1� + �1− ε�2

on the set �ξ̃n� j�A > 0�. Since S̃n/ξ̃n� j�A ≥ �n� j�A by (3.4), this implies

P
{
ξ̃n� j�A > t

} ≤ �2k−j − 1� + �1− ε�2
�1− ε�2 P

{
S̃n > εt

}
�

Since ξ̃n is the maximum of ξ̃n� j�A over all A ⊆ 3k and there are
(
k
j

)
of these

with �A� = k− j,

P
{
ξ̃n > t

} ≤ P
{
S̃n > εt

} k∑
j=0

(
k

j

)�2k−j − 1� + �1− ε�2
�1− ε�2 �

This completes the proof. ✷

Proof of Theorem 3.4. Let φi = h�Xi�/ψ�Xi� �θ� � � � � θ�� h�FX�k� �. By
Lemma 3.1, φi are sub-Bernoulli variables. By (3.5) and (3.6), Sn

/ξn� θ ≤∑
i∈n φi, so that (3.11) follows directly from Proposition 3.7.
We shall only prove (3.12) for n ≥ k�k + 1� with the explicit Ck�ε. The

proof of (3.10) can be used to prove (3.12) if ξ�k�n can be decoupled. Let us
divide �1� � � � � n� into k+ 1 blocks Bl as evenly as possible. Let A ⊆ 3k with
�A� = k− j and j blocks, say B1� � � � �Bj, be fixed. Let ξ∗j�A be the maximum
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of cj�A�Xi� over i ∈ �j�n ∩ �⋃j
l=1 Bl�⊗j, reached at �i∗1� � � � � i∗j�, and �∗j�A be the

sum as in (3.21), with fixed first j components of i = �i1� � � � � ik�, il = i∗l � l ≤ j,
over �ij+1� � � � � ik� ∈ �k−j�n ∩ �⋃k+1

l=j+1 Bl�⊗�k−j�. Then, by Lemma 3.8 and (2.8)

P
{
�∗j�A > ε

∣∣ξ∗j�A} ≤ �µ∗j − ε�2
v∗j + �µ∗j − ε�2

�

where µ∗j = �k/n�k−j
( nj
k−j

)
and v∗j ≤ E

(Nλ∗
j

k−j
)2
− �µ∗j�2, with nj being the size

of
⋃k+1
l=j+1 Bl and λ∗j = nj�k/n�. Consider the smallest possible µ∗j with n =

s�k+1�+j and nj = s�k+1−j�, �Bl� = s+1 for l ≤ j, for some s. In this case,
�k/n��nj/�k − j�� ≥ 1 by algebra for s ≥ k − j, which holds as n ≥ k�k + 1�.
Thus, µ∗j ≥ �k/n�k−j�nj/�k − j��k−j ≥ 1. In the case of largest possible λ∗j,
with nj = �s+1��k+1−j� and n = s�k+1�+�k+1−j� and then the smallest
possible s = k, n ≥ k�k + 1�, we have λ∗j = nj�k/n� ≤ k + 1 − j. Therefore,

1+v∗j ≤ E
(Nk+1−j

k−j
)2 = 1+vj, say. As in the proof of Theorem 3.4, by Lemma 3.8,

P
{
ξ∗j�A > t

} ≤
{

1+ vj

�1− ε�2
}
P
{
S�k�n > εt

}
�

Now, ξ�k�n is the maximum of ξ∗j�A over totally
(
k+1
j

)
ways to select these j

blocks and then over j = 0� � � � � k, so that

P
{
ξ�k�n > t

} ≤ P
{
S�k�n > εt

} k∑
j=0

(
k+ 1
j

){
1+ vj

�1− ε�2
}
�

The proof is complete. ✷

4. SLLN. Let f�x1� � � � � xk� be a real Borel function. Let f2�x1� � � � � xk� =
h�x1� � � � � xk�. In this section we give nasc for the SLLN (1.3), its multisample
version

�4�1� S̃
�k�
n /bkn → 0 a.s.

and their symmetrized versions

�4�2� T�k�n /bk/2n → 0 a.s.�

�4�3� T̃
�k�
n /bk/2n → 0 a.s.�

where S̃
�k�
n is given by (1.7), and T

�k�
n and T̃

�k�
n are given by (1.8). We shall

assume throughout this section that

�4�4� sup
n≥1

bkn
nk

∞∑
m=n

mk−1

bkm
<∞�

We shall also assume that the function f is permutation invariant, f�xi1
� � � � �

xik� = f�x1� � � � � xk� for all �i1� � � � � ik� ∈ �k�k .



STRONG LAWS FOR U-STATISTICS 449

Theorem 4.1. Let S̃
�k�
n be given by (1.7) and ξ̃

�k�
n by (3.8). Let εi > 0, 1 ≤

i ≤ 3. Let nj be a sequence of positive integers such that 1 < γ1 ≤ nj+1/nj ≤
γ2 < ∞, j ≥ 1. Then (4.1) and (4.3) are equivalent to each other and to each
and all of the following statements:

�4�5� ξ̃
�k�
n /bkn → 0 a�s��

�4�6�
∞∑
j=1

P
{
S̃
�k�
nj > ε1b

k
nj

}
<∞�

�4�7�
∞∑
j=1

P
{
T̃
�k�
nj > ε2b

k/2
nj

}
<∞�

�4�8�
∞∑
j=1

P
{
ξ̃
�k�
nj > ε3b

k
nj

}
<∞�

Remark. These are the multisample versions of the SLLN, since X�1�� � � � �
X�k� are allowed to have different distributions.

Theorem 4.2. Let S̃
�k�
n be given by (1.1) and ξ

�k�
n by (3.6). Let εi > 0 and nj

be as in Theorem 4.1. Suppose �X�X�1�� � � � �X�k�� are iid random variables.
Then, (1.3), (4.2) and (4.6) (and other statements in Theorem 4.1) are equivalent
to each other and to each and all of the following statements:

�4�9� ξ�k�n /bkn → 0 a�s��

�4�10�
∞∑
j=1

P
{
S�k�nj > ε1b

k
nj

}
<∞�

�4�11�
∞∑
j=1

P
{
T�k�nj > ε2b

k/2
nj

}
<∞�

�4�12�
∞∑
j=1

P
{
ξ�k�nj > ε3b

k
nj

}
<∞�

We state Lemma 3.5 and Proposition 4.2 of Zhang (1996) here as it is applied
in some crucial parts in the proofs.

Lemma 4.3. Let ηj be nonnegative random variables and Aj be events.
Then

∞∑
j=j0

ηjIAj
≤ IAj0

∞∑
i=j0

ηi +
∞∑

j=j0

IAc
jAj+1

∞∑
i=j+1

ηi�
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For disjoint sets of positive integers A1� � � � �Al, define the sum of “cross-
block” terms

S
�k�
A1⊗···⊗Al

= ∑
i∈�k�∞

h�Xi�I
{
i ∈ A1 ⊗ · · · ⊗Al

}
�

where A1 ⊗ · · · ⊗Al is the set of vectors �i1� � � � � ik� such that �i1� � � � � ik� ⊆⋃l
j=1 Aj and �i1� � � � � ik� ∩Aj �= � for all 1 ≤ j ≤ l. For example, S�k�A /

(�A�
k

)
is

the U-statistic based on the set of variables �Xi� i ∈ A�, where �A� is the size
of the set A.

Proposition 4.4. Let Aj, 0 ≤ j ≤ l, be disjoint sets of positive integers and
ai be real numbers indexed by vectors i = �i1� � � � � ik�. Then

∑
i∈

aiI
{
i ∈ �A1 ⊗ · · · ⊗Al� ∪ �A0 ⊗A1 ⊗ · · · ⊗Al�

}

=
l∑

j=0

�−1�l−j ∑
0<m1<···<mj≤l

∑
i∈

aiI
{�i1� � � � � ik� ⊆ A0 ∪Am1

∪ · · · ∪Amj

}

for all sets  of finitely many vectors. In particular,

S
�k�
A1⊗···⊗Ak

=
k∑

j=0

�−1�k−j ∑
0<m1<···<mj≤k

S
�k�
A0∪Am1

∪···∪Amj
�

Note that
(∏k

l=1 �Al�
)−1

S
�k�
A1⊗···⊗Ak

are multisample U-statistics.

Proof of Theorem 4.1. We shall prove �4�7� ⇒ �4�6� ⇒ �4�8� ⇒ �4�3� ⇒
�4�7�, �4�8� ⇒ �4�1� ⇒ �4�6� and �4�8� ⇒ �4�5� ⇒ �4�8�. We use M to denote an
arbitrary positive constant. We may choose any value of εi (large or small),
since (4.1) has nothing to do with the scaling.

(i) �4�7� ⇒ �4�6�. By Lemma 3.8 with W = �T̃�k�nj �2/S̃�k�nj given S̃
�k�
nj and the

Khintchine inequality,

P

{(
T̃
�k�
nj

)2

S̃
�k�
nj

≥ 1/2
∣∣∣∣S̃�k�nj

}
≥ 1/4

4+ 1/4
�

See the proof of (3.10) and Giné and Zinn [(1994), page 122] for details.
(ii) �4�6� ⇒ �4�8�. See (3.10) in Theorem 3.2.

(iii) �4�8� ⇒ �4�3�. This part is very close to the proof of Theorems 2.2
(sufficiency) and 3.1 in Zhang (1996). Let ε3 = 1 and ε > 0. By the Doob
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inequality for the reverse martingale T̃�k�n /nk, n ≥ nj, conditionally on ξ̃
�k�
nj ,

P

{
max

nj≤n<nj+1

(
T̃
�k�
n

)2

bkn
> ε2� ξ̃knj+1

��1/nj�����1/nj� ≤ bknj

}

≤ max
nj≤n<nj+1

(
n2k

ε2bkn

)
E max

nj≤n<nj+1

(
T̃
�k�
n

nk

)2

I
{
ξ̃
�k�
nj+1 ≤ bknj

}

≤ 4
(
n2k
j+1

ε2bknj

)
E

(
T̃
�k�
nj

nkj

)2

I
{
ξ̃
�k�
nj ≤ bknj

}

≤ 4γ2k
2

ε2bknj
E
(
T̃
�k�
nj

)2
I
{
ξ̃
�k�
nj ≤ bknj

}

= 4γ2k
2 nkj

ε2bknj
Eh�X̃1�I

{
ξ̃
�k�
nj ≤ bknj

}
�

where X̃1 = �X�1�
1 � � � � �X

�k�
1 �. Thus,

∞∑
j=1

P

{
max

nj≤n<nj+1

(
T̃
�k�
n

)2
/bkn > ε2

}

≤∑
j

P
{
ξ̃nj+1

� �1/nj�����1/nj� > bknj
}+M∑

j

nkj

bknj
Eh�X̃1�I

{
ξ̃
�k�
nj ≤ bknj

}
�

By (4.8), the first sum on the right is finite. By (4.4) and Lemma 4.3,

∑
j

nkj

bknj
Eh�X̃1�I

{
ξ̃
�k�
nj ≤ bknj

}

≤M+M∑
j

nkj+1

bknj+1

Eh�X̃1�I
{
ξ̃
�k�
nj > bknj� ξ̃

�k�
nj+1 ≤ bknj+1

}
�

It follows from (4.8) and (3.9) of Theorem 3.2 (with ξ̃n� θ�k� = ξ̃
�k�
nj and g�t� =

I�t > bknj�) that the right-hand side above is bounded by

M+M∑
j

E
S̃
�k�
nj

bknj+1

I
{
ξ̃
�k�
nj > bknj� ξ̃

�k�
nj+1 ≤ bknj+1

}

≤M+M∑
j

E
S̃
�k�
nj

ξ̃
�k�
nj

I
{
ξ̃
�k�
nj > bknj

}

≤M+M∑
j

P
{
ξ̃
�k�
nj > bknj

}
<∞�

(iv) �4�3� ⇒ �4�7�. This is a consequence of Proposition 4.4 and the Borel–
Cantelli lemma. For details, see Step 3 of the proof of Theorem 4.1 of Zhang
(1996), page 1608.
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(v) �4�8� ⇒ �4�1�. The proof is simpler than (iii).
(vi) �4�1� ⇒ �4�6�. See (iv).

(vii) �4�8� ⇒ �4�5� ⇒ �4�8�. The Borel–Cantelli lemma. ✷

Proof of Theorem 4.2. By Proposition 4.4, �1�3� ⇒ �4�6�, as in (iv) of the
proof of Theorem 4.1. Since h�x1� � � � � xk� ≥ 0, �4�6� ⇒ �4�10� by de la Peña and
Montgomery-Smith (1995). The proofs of �4�10� ⇒ �4�12� ⇒ �4�2� ⇒ �4�11� ⇒
�4�10�, �4�12� ⇒ �1�3�, and �4�12� ⇒ �4�9� ⇒ �4�12�, are identical to those of
�4�6� ⇒ �4�8� ⇒ �4�3� ⇒ �4�7� ⇒ �4�6�, �4�8� ⇒ �4�1� and �4�8� ⇒ �4�5� ⇒
�4�8�, respectively. ✷

Proof of Theorem 1.1. (i) �4�12� ⇒ �1�16�–(1.18). Let 2j ≤ mj < 2j+1 be

the index at which P�ξ�k�n > bkn� reaches its maximum over 2j ≤ n < 2j+1.
Taking nj =m2j in (4.12) with ε3 = 1 and then nj =m2j+1, we find

�4�13�
∞∑
n=1

n−1P
{
ξ�k�n > bkn

}
<∞�

For k = 2 and b2
n ≥ c0�2/n�, h�X1�X2� > b2

n ∨ c1�X1�2/n� ∨ c1�X2�2/n� and
(1.9) imply φn�X1�X2� = 1, with φn�x�y� = h�x�y�/ψ�x�y�2/n�, so that the
left-hand side of (1.18) is bounded by
∞∑
n=2

nEφn�X1�X2�I
{
ξ�2�n > b2

n

}

=
∞∑
n=2

2
n− 1

E
∑

i∈�2�n
φn�Xi�I

{
ξ�2�n > b2

n

} ≤ ∞∑
n=2

2E
(2+N2

2

)
n− 1

P
{
ξ�2�n > b2

n

}
<∞�

The inequality above is a consequence of Proposition 3.7, with g�x� = I�x >
b2
n�. Also, (1.16) follows from ξ

�2�
n /b2

n → 0 a.s. and (1.17) follows from (4.13), as
(4.13) implies

∑
n n

−1P�max1≤i≤n c1�Xi�2/n� > b2
n� <∞.

(ii) (1.16)–�1�18� ⇒ �4�12�� By the Borel–Cantelli lemma (1.16)–�1�18� ⇒
�4�13�. We obtain �4�13� ⇒ �4�12� by taking mj to be the index of the minimum
in the block 2j ≤ n < 2j+1 in the proof of �4�12� ⇒ �4�13� in (i).

5. Examples. For 0 < p < 2, Giné and Zinn (1992) proved that E�f�X1�

� � � �Xk��p < ∞ is sufficient for (4.2) with
√
bn = n1/p. Here we give an ex-

ample to show that the pth moment condition is in some sense far away
from necessary. By the equivalence of (4.1) and (4.3) and the Kolmogorov and
Marcinkiewicz–Zygmund strong laws, we have the following example.

Example 5.1. Let �Y�l��Y�l�n � n ≥ 1� be independent sequences of iid ran-
dom variables. Suppose E�Y�l��pl <∞, 0 < pl ≤ 2, 1 ≤ l ≤ k, p1+· · ·+pk < 2k.
Then n−k/p

∏k
l=1�

∑n
i=1 ε̃

�l�
i Y

�l�
i � → 0 a.s., where k/p = 1/p1 + · · · + 1/pk.

Example 5.2. Take 0 < p < 2 and set p1 = p/�k−p�k−1�/2� < p. Define
f�x1� � � � � xk� =

∑
i∈�k�k x

2/p1
i1

xi2
· · ·xik , the permutation symmetrized version of
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the kernel x2/p1
1 x2 · · ·xk. Let X be a nonnegative variable with EX2 <∞ but

EX2+ε = ∞ for all ε > 0. Then n−k/p
∑

i∈�k�n εi1
εi2
· · · εikf�Xi1

� � � � �Xik
� → 0

a.s., while E�f�X1� � � � �Xk��p1+ε = ∞ for all ε > 0.

Proof. It is clear that E�f�X1� � � � �Xk��p1+ε = ∞ for all ε > 0. By the
equivalence of (4.2) and (4.3), it suffices to show n−k/p

∑
i∈�k�n εi1

εi2
· · · εikf�X

�1�
i1
�

� � � �X
�k�
ik
� → 0 a.s., which is a consequence of Example 5.1 with Y�1� =

�X�1��2/p1 , Y�l� =X�l� for 2 ≤ l ≤ k and p2 = · · · = pk = 2.
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