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EXISTENCE OF HYDRODYNAMICS FOR THE TOTALLY
ASYMMETRIC SIMPLE K-EXCLUSION PROCESS

BY TIMO SEPPALAINEN¨ ¨
Iowa State University

In a totally asymmetric simple K-exclusion process, particles take
nearest-neighbor steps to the right on the lattice Z, under the constraint
that each site contain at most K particles. We prove that such processes
satisfy hydrodynamic limits under Euler scaling, and that the limit of the
empirical particle profile is the entropy solution of a scalar conservation
law with a concave flux function. Our technique requires no knowledge of
the invariant measures of the process, which is essential because the
equilibria of asymmetric K-exclusion are unknown. But we cannot calcu-
late the flux function precisely. The proof proceeds via a coupling with a
growth model on the two-dimensional lattice. In addition to the basic
K-exclusion with constant exponential jump rates, we treat the site-
disordered case where each site has its own jump rate, randomly chosen
but frozen for all time. The hydrodynamic limit under site disorder is new

Ž .even for the simple exclusion process the case K � 1 . Our proof makes
no use of the Markov property, so at the end of the paper we indicate how
to treat the case with arbitrary waiting times.

1. Introduction. The family of simple K-exclusion processes naturally
Ž .interpolates between the simple exclusion process SEP and the zero-range

Ž .process ZRP . In K-exclusion the particles interact through the K-exclusion
rule that stipulates that each site contain at most K particles. The case
K � 1 is the SEP. The ZRP has no such restriction, so it can be thought of as
the case K � �.

The SEP and ZRP are among the most fruitful models for studies of
hydrodynamic behavior of interacting particle systems. By contrast, the
K-exclusion processes have been harder to work with. The difficulty posed by

�the symmetric K-exclusion is that it violates the gradient condition see II.2.4
Ž .�in Spohn 1991 . On the positive side, there are reversible product measures

Ž .that can be easily identified. With Varadhan’s 1993 nongradient techniques,
the diffusive hydrodynamic limit for symmetric K-exclusion can be proved, as

Ž .was demonstrated by Kipnis, Landim and Olla 1994 .
In this paper we address the hydrodynamics of totally asymmetric K-

exclusion. In the asymmetric case, invariant measures are unknown, and
even the belief that there is a spatially ergodic equilibrium for each density
remains unproved. We prove the existence of a hydrodynamic limit for the
empirical particle density and a qualitative characterization of the limiting
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macroscopic density. As expected, it is the unique entropy solution of a scalar
conservation law with a concave flux function. However, without knowledge
of the equilibria, or without some other new idea, we cannot explicitly express

Ž .the flux f � as a function of density �. We can bound f with the explicitlyK K
known flux functions of the cases K � 1 and K � �.

We also prove the hydrodynamic limit for the site-disordered totally asym-
metric K-exclusion. Now the jump rates of the sites are i.i.d. random vari-
ables, picked once and fixed for the duration of the dynamics. This situation
goes by the term ‘‘quenched disorder.’’ This result is new even for the case

Ž .K � 1, the totally asymmetric simple exclusion process TASEP . The case
K � �, a ZRP with site disorder, is more accessible because it has product-form
equilibria that can be written down explicitly. The hydrodynamics of the
site-disordered asymmetric ZRP, or equivalently, the particle-disordered SEP,

Ž .have been studied by Benjamini, Ferrari and Landim 1996 , and Seppalainen¨ ¨
Ž .and Krug 1998 .

The theorems are stated and proved in the continuous-time setting. With-
out essential changes, the same proofs work for the discrete-time K-exclusion
process where the entire configuration is updated simultaneously at each
time step. One just replaces exponential waiting times with geometric ones
and Poisson point processes of jump times with i.i.d. processes of points on
the positive integers. The approach also extends to non-Markovian processes,
but here new proofs are needed part of the way. The non-Markovian K-exclu-
sion operates with i.i.d. waiting times that have an arbitrary common distri-

Ž .bution on 0, � .
The key to our proof is a coupling of a process with an arbitrary initial

configuration with a family of processes with simple initial configurations.
This coupling gives a variational equation that relates the general process to
the simple ones. The hydrodynamics of the simple processes can be handled

Ž .by Kingman’s 1968 subadditive ergodic theorem. To achieve this, the simple
process is recast as a growth model on the planar lattice. This growth model

�in turn is formulated in terms of ‘‘vertex greedy lattice paths’’ Cox, Gandolfi,
Ž .�Griffin and Kesten 1993 that satisfy certain constraints on the admissible

steps of the path.
Along the way we obtain a result of interest for the growth model, namely

the Legendre duality of the macroscopic shape and the macroscopic velocity.
The macroscopic shape is a function defined on a reference line, which in our
model is the y-axis, and the macroscopic velocity is a function of the local

Ž .slope. See Section 2 in Krug and Spohn 1991 .
Another process closely related to the K-exclusion is the marching soldiers

Žmodel. The increments of the marching soldiers model can be transformed
.into a K-exclusion . As a corollary of our proofs, we obtain a hydrodynamic

limit for totally asymmetric marching soldiers as well.
The strength of our approach is that it gives sharp results with minimal

assumptions. For example, for the hydrodynamic limits we need no extra
assumptions on the initial distributions of the processes, only the mini-
mal assumption that a macroscopic profile exists. Furthermore, we get not
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only weak laws of large numbers, but also strong laws. The disadvantage is
that the technique relies on the existence of a special structure, namely, the
coupling with simple processes mentioned above. Other applications of re-
lated ideas to hydrodynamic limits, asymptotic shapes, and large deviations

Ž . Žappear in Aldous and Diaconis 1995 , Seppalainen 1996, 1997a, b, 1998a, b,¨ ¨
. Ž .c and Seppalainen and Krug 1998 .¨ ¨

Further relevant literature. For general accounts of particle systems and
their construction with Poisson point processes of jump times we refer the

Ž . Ž . Ž .reader to Durrett 1988 , Griffeath 1979 and Liggett 1985 . The equilibria
Ž .of the zero-range process were characterized by Andjel 1982 .

For hydrodynamical limits there are lectures by De Masi and Presutti
Ž . Ž . Ž1991 , the monograph of Spohn 1991 and review papers by Ferrari 1994,

.1996 , together with their references. For ZRP and SEP, the results that
Ž .correspond to our theorems were proved by Rezakhanlou 1991 . The ap-

proach of his paper was extended to some inhomogeneous models by Landim
Ž . Ž .1996 and Covert and Rezakhanlou 1997 .

Organization of the paper. The reader who wants a quick look at the
Ž .central ideas of the paper should set � j � 1 everywhere, read Section 2 up

to Theorem 1, Section 4, Section 5 up to Corollary 5.1, and Section 6. The key
Ž .to the proof of the hydrodynamic limit is equation 6.5 in Section 6, to which

Ž . � Ž .�one applies assumption 2.4 in the form 6.3 and Corollary 5.1.
The results for K-exclusion and the marching soldiers model, without

disorder, are stated and discussed in Section 2. In this setting we prove both
a weak law and a strong law for the empirical particle density. A weak law
for disordered K-exclusion is stated in Section 3.

The coupling that is central to the proof is developed in Section 4. The
growth model is defined and its scaling limit proved in Section 5. The law of
large numbers for the interface of the growth model drives the hydrodynamic
limits, through the coupling explained in Section 4.

In Section 6 the weak laws stated in Sections 2 and 3 are proved. The
passage from weak law to strong law goes through a Borel�Cantelli argu-
ment. Section 7 is devoted to a summable upper tail probability estimate for
the passage times of the growth model. Armed with this estimate, Section 8
proves the strong laws stated in Section 2. Section 9 develops some bounds
for the limiting shape of the growth model and for the flux function of the
conservation law of the particle density.

Section 10 treats the non-Markovian case. We outline the proof of the weak
law of the hydrodynamic limit. With additional assumptions on the waiting
times, the strong law proof generalizes as well.

� 4Notational remarks. N is the set 1, 2, 3, . . . of natural numbers, while
� 4 Ž .Z � 0, 1, 2, 3, . . . . A nonnegative random variable Y is Exp � -distributed�
Ž . �� t � � � 4if P Y � t � e for all t � 0, x � max n � Z: n � x for x � R. I andA

� 4I A denote the indicator random variable of the event A.
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2. Totally asymmetric simple K-exclusion. The process we study has
the following informal description. Sites on the lattice Z are occupied by
indistinguishable particles. Each site contains at most K particles. K is a
positive integer constant whose value is arbitrary, but fixed. Each site i � Z
has an independent rate 1 Poisson point process DD on the time line 0 � t � �.i
The epochs of the Poisson processes are potential jump times. At each epoch
of DD , this event takes place: if there is at least one particle at i and at mosti
K � 1 particles at i � 1, one particle from site i jumps to site i � 1. In other
words, jumps are executed as long as there is a particle to jump and as long
as the K-exclusion rule is not violated. All jumps proceed to the right, hence
the modifier ‘‘totally asymmetric’’ in the name of the process. The modi-
fier ‘‘simple’’ refers to the restriction that only nearest-neighbor jumps are
allowed.

Ž Ž . .The state of the process is a configuration � � � i : i � Z of occupation
Ž . � 4numbers, where � i � 0, 1, . . . , K specifies the number of particles at site i.

� 4ZThe compact state space of the process is X � 0, 1, . . . , K . The dynamics
can be conveniently represented by the generator L of the process that acts
on cylinder functions f on X:

i , i�12.1 Lf � � I f � � f � ,Ž . Ž . Ž .Ž .Ý �� Ž i.	1, � Ž i�1.� K�14
i�Z

where � i, i�1 is the configuration that results from the jump of a single
particle from site i to site i � 1,


� i � 1, j � 1,Ž .
i , i�1 �� i � 1 � 1, j � i � 1,Ž .� j �Ž . �� j , j � i , i � 1.Ž .

We shall construct the process through a graphical representation, so the
generator is of interest only as a precise statement of the dynamics. The

Ž . Ž Ž . .process is denoted by � t � � i, t : i � Z where t 	 0 is the time variable.
We are interested in the scaling behavior of the particle density of the

process. By suitably scaling space and time we expect to find a deterministic
evolution around which the actual particle density fluctuates. Think of an
asymmetric random walk. Its position has a nonrandom limit if space shrinks
by a factor n, time speeds up by the same factor n and then n goes to infinity.
This suggests the scaling for nontrivial behavior in the totally asymmetric
K-exclusion. As we shall prove, under this scaling the particle density con-

Ž .verges to a nonrandom density function u x, t that is determined by the
initial density, by a conservation law, and by the entropy criterion for picking
the relevant solution from the many possible weak solutions.

To make this precise, suppose we have a sequence of K-exclusion processes
Ž .� � , n � 1, 2, 3, . . . . The empirical particle density of the process is then

random Radon measure on R defined by
1

2.2 � t � � i , t 	 ,Ž . Ž . Ž .Ýn n i � nn i�Z
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where 	 is a unit mass at the point x � R. To clarify, the integral of anx
Ž . Želement 
 � C R the space of continuous, compactly supported functions0

. Ž .on R against the measure � t is given byn

1
� t , 
 � � i , t 
 i�n .Ž . Ž . Ž .Ýn nn i�Z

Radon measures are topologized weakly by such functions: � � � in then
Ž . Ž . Ž .space of Radon measures on R if � 
 � � 
 for all 
 � C R .n 0

Notice that � already incorporates the space scaling that shrinks then
lattice distance to 1�n. In the theorem below, this space scaling is comple-

Ž . Ž .mented by the time scaling that requires us to look at � nt instead of � t .n n
The final ingredient is the assumption that the initial distribution of the
process has a well-defined macroscopic density. Let u be a measurable0
function on R such that

2.3 0 � u x � K .Ž . Ž .0

Write P for the probability measure on the probability space of the processn
Ž .� � .n

For all 
 � C R and � � 0,Ž .0

2.4Ž .
lim P � 0, 
 � 
 x u x dx 	 � � 0.Ž . Ž . Ž .Hn n 0ž /n�� R

This assumption says that the random measure � satisfies a weak law ofn
large numbers at time t � 0, and the limit is a deterministic measure

Ž .u x dx. The theorem is that such a law of large numbers continues to hold0
at later times. In addition, we prove a strong law under this assumption:

Ž Ž . .The random initial configurations � i, 0 : i � Z , n � N,n
are all defined on a common probability space, and for all

2.5Ž . Ž . Ž . Ž . Ž .
 �C R , lim � 0, 
 � H 
 x u x dx almost0 n�� n R 0
surely.

We need a brief discussion about entropy solutions before stating the
Ž .theorem. Let g x be a nonincreasing, nonnegative convex function on RK

that satisfies

2.6 g x � 0 for x 	 1 and g x � �Kx for x � �1.Ž . Ž . Ž .K K

Given u as above, pick a function U that satisfies0 0

2.7 U b � U a � u x dx for all a � b.Ž . Ž . Ž . Ž .H0 0 0
Ž �a , b

Then for x � R and t � 0 define
x � y

2.8 U x , t � sup U y � t g .Ž . Ž . Ž .0 K½ 5ž /ty�R

� �The supremum is in fact attained at some y � x � t, x � t . For each fixed
Ž .t � 0, U �, t is nondecreasing and Lipschitz continuous with Lipschitz con-
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Ž . . Ž .stant K. All this follows from 2.3 , 2.6 and 2.7 , because by convexity gK
� �has slope in �K, 0 . Let



2.9 u x , t � U x , t .Ž . Ž . Ž .


 x
Ž .Define the flux function f as the Legendre conjugate of the negative of g :K K

2.10 f � � inf � x � g x , 0 � � � K .� 4Ž . Ž . Ž .K K
x

Ž .Then U x, t is the unique viscosity solution of the Hamilton�Jacobi equation

2.11 U � f U � 0, U x , 0 � U x ,Ž . Ž . Ž . Ž .t K x 0

Ž .while u x, t is the unique entropy solution of the scalar conservation law

2.12 u � f u � 0, u x , 0 � u x .Ž . Ž . Ž . Ž .xt K 0

Ž .Equation 2.8 is well-known in the literature on partial differential equa-
tions. The names of Hopf, Lax and Oleinik are attached to it in various
combinations by different authors. Here are some of the relevant references:

Ž . Ž . Ž . Ž . Ž .Bardi and Evans 1984 , Evans 1984 , Hopf 1965 , Lax 1957 , Lions 1982 ,
Ž .and Lions, Souganidis and Vasquez 1987 .´
Ž .In our proof we use only formula 2.8 and nothing else about the partial

differential equations. In fact, the centerpiece of our proof is a microscopic
Ž . �Ž . �version of 2.8 4.9 in Section 4 that emerges from the graphical construc-

tion of the K-exclusion.

THEOREM 1. For each positive integer K, there exists a nonnegative convex
Ž . Ž .function g that satisfies 2.6 , and such that this holds: Let u x, t be definedK

Ž . Ž . Ž .by 2.7 � 2.9 . Under assumption 2.4 , for each t � 0 the random measure
Ž . Ž . Ž .� nt converges in probability to u x, t dx. Precisely, for all 
 � C R andn 0

� � 0,

2.13 lim P � nt , 
 � 
 x u x , t dx 	 � � 0.Ž . Ž . Ž . Ž .Hn nž /n�� R

Ž . Ž .Under assumption 2.5 we can construct the processes � � on a commonn
Ž . Ž .probability space so that the strong law holds: � nt � u x, t dx almostn

surely as n � �, for all t � 0.

Properties of f . Only in the case K � 1, the totally asymmetric simpleK
Ž . Ž . Ž .exclusion process TASEP , has f been computed: f � � � 1 � � . ThisK 1

Ž .was first done by Rost 1981 , for a special class of initial profiles.
Presently we can prove that, if the initial distribution of the process is

� Ž .�spatially ergodic with expectation E � i, 0 � �, then

1 t
2.14 f � � lim P � i , s 	 1, � i � 1, s � K � 1 ds.Ž . Ž . Ž . Ž .Ž .HK tt�� 0

Ž . � �See Section 9. The scenario one expects is that for each density � � 0, K
there is a unique spatially ergodic equilibrium measure � with expectation�
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� Ž .� Ž .� � 0 � �. From this and 2.14 , it would follow that�

2.15 f � � � � i 	 1, � i � 1 � K � 1 .Ž . Ž . Ž . Ž .Ž .K �

Partial results on the existence and uniqueness of equilibria appear in the
Ž .unpublished manuscript of Ekhaus and Gray 1994 .

Here are some general properties of f . Convexity of g and definitionK K
Ž . � �2.10 imply that f is concave. On 0, K�2 f is nondecreasing and onK K
� �K�2, K nonincreasing. We have symmetry

� �2.16 f � � f K � � for � � 0, KŽ . Ž . Ž .K K

and monotonic dependence on K :

� �2.17 f � � f � for � � 0, K .Ž . Ž . Ž .K K�1

Monotonicity, symmetry and the explicitly known f give a lower bound,1


� 1 � � , 0 � � � 1�2,Ž .�1�4, 1�2 � � � K � 1�2,2.18 f � 	Ž . Ž .K � K � � 1 � K � � , K � 1�2 � � � K .Ž . Ž .Ž .
An upper bound is obtained by comparison with the zero-range process,

�� 1 � � , 0 � � � K�2,Ž .
2.19 f � �Ž . Ž .K ½ K � � � 1 � K � � , K�2 � � � K .Ž . Ž .

The function g is more fundamental to our approach than the flux f ,K K
Ž .which is derived from g by 2.10 after the proof is complete. In Section 5 weK

define g as the asymptotic shape of a growth model that is closely associ-K
ated with the K-exclusion process. Properties of both g and f are derivedK K
in Section 9.

The marching soldiers model. As a corollary of our proof, we also get a
hydrodynamic limit for a totally asymmetric marching soldiers model. The

Ž .rules for this process are these: For each integer i � Z there is a soldier � i
Ž .whose location at time t is � i, t � Z. Neighboring soldiers are not allowed

to be too far apart, so there are constants L , L � Z such that1 2 �

2.20 � L � � i � 1, t � � i , t � L for all i � Z and t 	 0.Ž . Ž . Ž .1 2

Ž .Subject to condition 2.20 , the soldiers march forward at exponential rate 1,
independently of each other. We state and prove a theorem that corresponds
to the strong law part of Theorem 1. Suppose V is a function on R that0
satisfies

2.21 � L x � y � V x � V y � L x � y for all y � x .Ž . Ž . Ž . Ž . Ž .1 0 0 2

We make this assumption:

Ž Ž . .A sequence of random initial configurations � i, 0 : i � Z ,n
n � N, is defined on a probability space, and for all y � R,2.22Ž .

Ž . Ž� � . Ž .lim 1�n � ny , 0 � V y almost surely.n�� n 0
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Ž . Ž .THEOREM 2. Under assumption 2.22 we can construct the processes � �n
on a common probability space so that the strong law continues to hold:

1
� �lim � nx , nt � V x , t a.s.Ž .Ž .nnn��

Ž .for all t � 0 and x � R. The limit V x, t satisfies

2.23 V x , t � inf V y � L x � y � t g y � x �t .Ž . Ž . Ž . Ž . Ž .Ž .� 40 1 L �L1 2y�R

The function g is the same as the one appearing in Theorem 1. By theL �L1 2

remarks preceding Theorem 1, Theorem 2 implies that the motion of the
Žsoldiers’ front is governed by the differential equation 
 V�
 t � f L �L �L 11 2

. Ž .
 V�
 x , where f is the function defined by 2.10 .L �L1 2 � Ž . Ž . � Ž .If we consider just a single process � � � � � for all n , then 2.22n
Ž . Ž . Ž .implies that V y � � y for some �L � � � L . Equation 2.23 gives V x, t0 1 2
Ž .� � x � tf L � � . We see that from an initial slope �, each soldier hasL �L 11 2

the same well-defined asymptotic speed,

1
2.24 lim � i , t � V 0, 1 � f L � � a.s.Ž . Ž . Ž . Ž .L �L 11 2tt��

Ž .for any fixed i. By 2.18 , the asymptotic speed is nonzero if �L � � � L .1 2

The M�M�1�K queueing picture. There is a natural queueing interpreta-
tion for K-exclusion. The sites represent a sequence of servers, and the
particles are customers moving through the system. Servers serve at rate 1,
and the queues at the servers have capacity K and FIFO discipline. The

Ž .ordering of customers is preserved by this convention: The queue of � i
customers at server i is represented by an ordered stack, with the oldest
customer at the bottom and currently in service and with the most recently
arrived customer at the top. When a jump from site i occurs, the bottom

Ž .customer of queue i leaves his service was completed at server i , and he
becomes the top customer of queue i � 1. In Section 4 we introduce another
particle system where the customers are fixed in space and the servers jump
past the customers. To keep the two processes separate we shall call the

Ž .K-exclusion � � the customer process.

3. Disordered K-exclusion. The disordered process operates as the one
described in Section 2, except for this difference: the rate of jumping from site

Ž .i is now a number � i , instead of a uniform rate 1 for all sites. Let
Ž Ž . .� � � i : i � Z denote the sequence of jump rates. Once � is picked, the

Ž .generator 2.1 becomes
� i , i�13.1 L f � � � i I f � � f � .Ž . Ž . Ž . Ž .Ž .Ý �� Ž i.	1, � Ž i�1.� K�14

i�Z

Ž .We assume that a � � i � 1 for all i � Z, where a � 0 is a fixed0 0
� �Zconstant. Thus � is an element of the space AA � a , 1 . We want random0



HYDRODYNAMICS FOR K-EXCLUSION 369

jump rates, so we assume that we have a probability measure Q on AA under
Ž . Ž .which the � i ’s are i.i.d. random variables. The marginal distribution of � 0

� �on a , 1 is arbitrary.0
The idea of quenched disorder is that � , though random, is picked once

and fixed for the duration of the dynamics. So, in the setting of a sequence of
Ž .processes � � described in Section 2, we assume that a choice of � � AA isn

Ž .made at the outset, and then each process � � operates under these samen
Ž . �rates, so that jumps from site i always occur at rate � i . Write P for then

Ž .probability measure of the nth process � � with rates � . We only prove an
weak law here, and the assumption is the same as for Theorem 1.

For all 
 � C R and � � 0,Ž .0

3.2Ž .
�lim P � 0, 
 � 
 x u x dx 	 � � 0.Ž . Ž . Ž .Hn n 0ž /n�� R

Ž Q� Ž .�1 �.�1 � � Ž .Let a � E � 0 � a , 1 . Property 2.6 of the basic setting now1 0
becomes

3.3 g y � 0 for y 	 a and g y � �Ky for y � �a .Ž . Ž . Ž .K 1 K 1

THEOREM 3. Fix a positive integer K and an i.i.d. distribution Q for
Ž Ž ..� � � i . Then there exists a nonnegative convex function g that dependsK

Ž . Ž .on Q and has property 3.3 , and a subset AA 
 AA such that Q AA � 1 and0 0
such that the following statement holds for g and all � � AA : if assumptionK 0
Ž . Ž . Ž . Ž .3.2 is satisfied and u x, t is defined by 2.7 � 2.9 , then for each t � 0,

Ž .
 � C R , and � � 0:0

�3.4 lim P � nt , 
 � 
 x u x , t dx 	 � � 0.Ž . Ž . Ž . Ž .Hn nž /n�� R

We emphasize that the good set AA of disorder variables � does not0
Ž .depend on the initial distributions of the processes � � . The way this set isn

constructed can be seen from Proposition 5.2 below.
Ž .Notice also this: Even though assumption 3.2 is stated in terms of the

measures P � , the disorder variable � really has nothing to do with then
initial distribution of the process. The rates � are fixed, and then the process
is constructed on the product probability space of the initial distribution and

� 4 Ž .of the Poisson processes DD of the graphical construction see Section 4 .i
It is of course possible to look at the process simultaneously under many or

all � ’s and to pick initial distributions that depend on � . Then Theorem 3
Ž . Ž .says that 3.4 holds for each � in AA for which assumption 3.2 is valid.0

Ž Ž ..The assumption that � i are i.i.d. as opposed to merely ergodic is used
only in the proof of Lemma 5.4, to obtain a probability estimate good enough
for the Borel�Cantelli lemma. Consequently, any mixing assumption on
Ž Ž ..� i strong enough to give a summable bound in Lemma 5.4 is good enough
for our proof of Theorem 3. The existence of g , and thereby the existence ofK

Ž . Ž Ž .. Ž .f through 2.10 , requires only ergodicity for � i . See Proposition 5.1.K
Ž Ž .. Ž .Ergodicity of � i is sufficient for K-monotonicity 2.17 of f . We proveK
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Ž . Ž Ž .. Ž .symmetry 2.16 under reversibility of � i Lemma 9.1 , which we have in
Ž .the i.i.d case. A recent result of Goldstein and Speer 1998 suggests that

symmetry may hold much more generally.
If the initial distribution of the process is spatially ergodic with expecta-

� Ž .� Ž .tion E � i, 0 � �, then 2.14 takes the form
1 t �3.5 f � � � 0 lim P � 0, s 	 1, � 1, s � K � 1 ds,Ž . Ž . Ž . Ž . Ž .Ž .HK tt�� 0

for any � � AA . The reader may find it somewhat surprising that the right-0
Ž .hand side of 3.5 should converge to something independent of � . We can

check the reasonableness of this contention by comparing with a site-
disordered zero-range process for which explicit calculations are possible. If

Ž .we take K � � in the generator 3.1 , we get a zero-range process with
� � Ž Ž . .product-form equilibria � . Under � the variables � i : i � Z are mutually� �

independent with geometric marginals
k�3.6 � � i � k � 1 � v�� i v�� i , k � 0, 1, 2, 3, . . . .Ž . Ž . Ž . Ž .Ž . Ž . Ž .�

Ž .Here v � 0, a is the average jump rate, common to all sites, and deter-0
Q� Ž Ž . .� �mined by the density � through the equation � � E v� � 0 � v . See

Ž . Ž . �Benjamini, Ferrari and Landim 1996 or Seppalainen and Krug 1998 . If¨ ¨
� Ž .the zero-range process is started with � , then the right-hand side of 3.5�

Ž . � Ž Ž . .becomes � 0 � � 0 	 1 � v, as expected.�

In case the reader wonders about the necessity to assume a � 0: if we0
allowed rates arbitrarily close to zero, the particle profile would not move on
the hydrodynamic scale. See the last paragraph of Section 6.

4. The coupling. We begin by constructing the disordered K-exclusion
Ž Ž ..process. Pick and fix the rates � � � i . The reader only interested in the

Ž .basic case without disorder should set � i � 1 throughout this section. As
hinted in the remark about the queueing interpretation in Section 2, we do

� �the construction and prove the theorems through the corresponding server
Ž .process z � .

Ž . Ž Ž . . Ž .This process z t � z i, t : i � Z satisfies the following rules: 1 Its state
Ž Ž . . Zis an ordered, labeled particle configuration z � z i : i � Z � Z with

Ž . Ž . Ž . Ž .z i � z i � 1 � z i � K for all i � Z. 2 The dynamics is determined by a
� 4 � .collection DD of mutually independent Poisson processes on 0, � , where DDi i
Ž . Ž .has rate � i . At the epochs of DD , z i attempts to jump one step to the left,i

and the jump is executed unless it threatens to violate the inequalities
Ž . Ž . Ž . Ž .z i 	 z i � 1 and z i 	 z i � 1 � K.

Ž .It is clear that if we construct a process z � with these two properties,
then the disordered K-exclusion of Section 3 can be constructed by defining
4.1 � i , t � z i , t � z i � 1, t .Ž . Ž . Ž . Ž .

Ž . Ž .In other words, particle server z i jumps precisely when a K-exclusion
Ž .particle customer jumps from site i to i � 1. All our remaining work will be

Ž .in terms of the server process z � , and the results for the customer process
Ž .follow from 4.1 .
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Ž .Construction of the server process z � . This goes by standard arguments.
Ž Ž . . Ž .Assume given an initial configuration z i, 0 : i � Z that satisfies rule 1

Ž .above. The bound � i � 1 on the rates assures that the following assump-
tions are valid for almost every realization of the Poisson point processes:

Ž . � 44.2a The DD are such that there are no simultaneous jump attempts.i
Ž .4.2b Each DD has only finitely many epochs in any bounded time interval.i

Given any t � 0, there are arbitrarily faraway indices i � 0 � i1 0 1
Ž .4.2c such that neither DD nor DD has any epochs in the time intervali i0 1� �0, t .1

Ž . Ž . � �Then z i and z i do not attempt to jump during 0, t , and the evolution0 1 1
� Ž . Ž .4of the servers z i � 1 , . . . , z i � 1 is isolated from the rest of the process0 1

up to time t . There are only finitely many jump attempts in � DD �1 i � i� i i0 1� � Ž .0, t , so they can be ordered, and then the evolution of z i, t , for i � i � i1 0 1
and 0 � t � t , can be computed by considering the jump attempts in their1

Ž . Ž .temporal order and applying rule 2 . This completes the construction of z � .
Ž Ž .. Ž Ž ..With � � � i and the initial z i, 0 fixed, the process is defined on the

� 4probability space of the DD .i
This construction can be used in a standard way to produce couplings that

preserve order. Proof of the following lemma is left to the reader.

� 4LEMMA 4.1. Pick a realization DD of the Poisson processes that satisfiesi
Ž . Ž . Ž . Ž Ž . . Ž . Ž Ž .properties 4.2a � 4.2c . Suppose w t � w i, t : i � Z and y t � y i, t :

.i � Z are server processes constructed exactly as described above, from initial
Ž Ž . . Ž Ž . .configurations w i, 0 : i � Z and y i, 0 : i � Z , and so that for each i,

Ž . Ž .server particles w i and y i read their jump attempts from DD . Then ifi
Ž . Ž . Ž . Ž .initially w i, 0 � y i, 0 for all i � Z, the same ordering w i, t � y i, t

holds for all later times t 	 0 and for all i � Z.

lŽ .Write w � for the server process with this special initial configuration:

l , j 	 0,l4.3 w j, 0 �Ž . Ž . ½ l � Kj, j � 0.

These processes occupy a special role in our development, hence the distinct
� lŽ . 4notation. From the full collection w � : l � Z , we actually construct only the

� zŽ i, 0.Ž . 4 Ž Ž . .subcollection w � : i � Z for a given initial configuration z i, 0 : i � Z
Ž . Ž Ž .. � 4of the z � -process. Once the rates � � � i and a realization DD of thei

zŽ i, 0.Ž .Poisson event times have been chosen, we construct the processes w � so
zŽ i, 0.Ž .that particle w j reads its jump attempts from the Poisson process DD .i� j

In particular,

4.4 the jump rate of particle w zŽ i , 0. j is � i � j .Ž . Ž . Ž .

Ž . � z Ž i, 0.Ž .4Now z � and w � are coupled, that is, constructed on the same proba-
bility space. We have the following crucial lemma.
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� 4 Ž . Ž .LEMMA 4.2. Assume that DD satisfies assumptions 4.2a � 4.2c . Then thei
following equality holds for all k � Z and t 	 0:

4.5 z k , t � sup w zŽ i , 0. k � i , t .Ž . Ž . Ž .
i�Z

Ž .PROOF. Choosing i and i for t as in 4.2c , it suffices to prove induc-0 1 1
Ž . � �tively that 4.5 holds after each epoch of � DD � 0, t , for i � k � i .i � k � i k 1 0 10 1

Ž .Notice that all the particles involved in 4.5 for a particular k read their
Ž .jump commands from DD , so the validity of 4.5 for k cannot change atk

epochs of DD for j � k.j
Ž .Equation 4.5 certainly holds at time t � 0; the supremum is realized by

Ž . Ž . Ž .i � k, by any i � k such that z i, 0 � z k, 0 � i � k K and by any i � k
Ž . Ž . Ž .such that z i, 0 � z k, 0 . Also, 4.5 holds for k � i and k � i for all0 1

� �t � 0, t because none of the particles involved even attempts to jump1
during this time interval.

Now suppose � is an epoch of the Poisson process DD for some i � k � i ,k 0 1
Ž . � .and assume by induction that 4.5 holds for all i � k � i and t � 0, � .0 1

Three cases need to be considered.

� Ž . � zŽ i, 0.Ž .CASE 1 z k jumps at time � . We must show that if w k � i, � �
Ž . zŽ i, 0.Ž . Ž .� z k, � � , then w k � i also jumps at time � . Since z k can execute

Ž . Ž . Ž .its jump, we must have z k � 1, � � � z k, � � � 1 and z k � 1, � � �
Ž .z k, � � � K � 1. By the induction assumption,

w zŽ i , 0. k � i � 1, � � � z k � 1, � � � z k , � � � 1Ž . Ž . Ž .
� w zŽ i , 0. k � i , � � � 1Ž .

and

w zŽ i , 0. k � i � 1, � � � z k � 1, � � � z k , � � � K � 1Ž . Ž . Ž .
� w zŽ i , 0. k � i , � � � K � 1,Ž .

zŽ i, 0.Ž .so that w k � i can also jump at time � . Since this argument applies to
zŽ i, 0.Ž . Ž . Ž .any i such that w k � i, � � � z k, � � , 4.5 continues to hold for k

at time � .

� Ž . Ž . Ž .�CASE 2 z k does not jump at time � because z k � 1, � � � z k, � � .
Ž . zŽ i, 0.ŽBy induction there exists an i such that z k � 1, � � � w k � i � 1,

.� � , and consequently, again by induction,

z k , � � � z k � 1, � � � w zŽ i , 0. k � i � 1, � �Ž . Ž . Ž .
� w zŽ i , 0. k � i , � � � z k , � � ,Ž . Ž .

zŽ i, 0.Ž . Ž .from which we conclude that w k � i, � � � z k, � � and that
zŽ i, 0.Ž . zŽ i, 0.Ž .w k � i cannot jump at time � because it is blocked by w k � i � 1 .

Ž . zŽ i, 0.Ž . Ž .Thus z k, � � w k � i, � , and 4.5 continues to hold for k at time � .
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� Ž . Ž . Ž .CASE 3 z k does not jump at time � because z k � 1, � � � z k, � � �
�K . This case is in principle like the previous one, and we leave the details

to the reader. �

Ž . z Ž j, 0.Ž . Ž .An application of Lemma 4.1 to w k, t � w k � j, t and y k, t �
zŽ i, 0.Ž . Ž . Ž .w k � i, t � z j, 0 � z i, 0 gives the next lemma.

LEMMA 4.3. For i � j, all k, and all t 	 0,
zŽ i , 0. zŽ j , 0.w k � i , t 	 w k � j, t � z j, 0 � z i , 0 .Ž . Ž . Ž . Ž .

zŽ i, 0.Ž .The evolution of the processes w � comes from two sources: the initial
Ž Ž . .configuration z i, 0 : i � Z that determines the initial configurations

Ž zŽ i, 0.Ž . . zŽ i, 0.Ž . zŽ i, 0.Ž .w j, 0 : j � Z , and the increments w j, t � w j, 0 that come
from the Poisson processes. To explicitly separate these, define the nonnega-

zŽ i, 0.Ž .tive, increasing processes � � by

4.6 � zŽ i , 0. j, t � z i , 0 � w zŽ i , 0. j, t , j � Z, t 	 0.Ž . Ž . Ž . Ž .
We regard � zŽ i, 0. as the position of an interface that moves to the right on the

zŽ i, 0.Ž .plane. At time t, � j, t is the distance at level j from the y-axis to the
zŽ i, 0.Ž . Ž .interface. Once the servers w j have been assigned rates as in 4.4 , the

dynamics of � zŽ i, 0. is determined by the rules of the server process w zŽ i, 0..
Initially

4.7 � zŽ i , 0. j, 0 � 0 for j 	 0 and � zŽ i , 0. j, 0 � �Kj for j � 0.Ž . Ž . Ž .
zŽ i, 0.Ž . Ž .Then � j jumps one step to the right at rate � i � j , under the

restrictions

4.8 � zŽ i , 0. j, t � � zŽ i , 0. j � 1, t � � zŽ i , 0. j, t � K .Ž . Ž . Ž . Ž .
Ž . zŽ i, 0.Ž . zŽ i, 0.Ž .By 4.6 the process � � registers only increments of the w � -pro-

cess and not absolute location. In particular, the distribution of the process
zŽ i, 0.Ž . Ž .� � does not depend on the actual location z i, 0 in the initial z-config-

uration, and this distribution depends on the index i only by a translation of
� Ž . �the rates � . Consequently, in the basic case without disorder � j � 1 , the

� zŽ i, 0.Ž . 4processes � � : i � Z are identically distributed.
Ž .With these interface processes, we rewrite 4.5 as

4.9 z k , t � sup z i , 0 � � zŽ i , 0. k � i , t .� 4Ž . Ž . Ž . Ž .
i�Z

This equation is the basis for all our results. In the next section we develop
an alternative definition for the process � to prove its scaling limit. As the

Ž .final point of this section we state one lemma about 4.9 for future use.

LEMMA 4.4. Suppose there are j � k � j such that1 2

� zŽ j1 , 0. k � j , t � 0 and � zŽ j2 , 0. k � j , t � �K k � j .Ž . Ž . Ž .1 2 2

Then
z k , t � max z i , 0 � � zŽ i , 0. k � i , t .� 4Ž . Ž . Ž .

j �i�j1 2
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PROOF. For i � j ,1

z i , 0 � � zŽ i , 0. k � i , t � z i , 0Ž . Ž . Ž .
� z j , 0Ž .1

� z j , 0 � � zŽ j1 , 0. k � j , t ,Ž . Ž .1 1
and consequently

z k , t � sup z i , 0 � � zŽ i , 0. k � i , t .� 4Ž . Ž . Ž .
i : i	j1

We leave the other half to the reader. �

5. The growth model. In this section we study the planar growth model
encountered at the end of the previous section. We develop a ‘‘last-passage’’

Ž .formulation for it as opposed to ‘‘first-passage’’ percolation to apply the
subadditive ergodic theorem. After Proposition 5.1 we define the function gK
that appears in Theorems 1�3. The reader who wishes to consider only the

Ž .basic case of Section 2, without disorder, should set � j � 1 throughout this
section.

For each K there is a notion of a K-admissible path. A K-admissible path
2 � 4on the lattice Z is a finite sequence r � � , � , . . . , � of sites or points of1 2 m

Z2 that satisfy this constraint: There are three admissible kinds of steps in
the path. For each i � 1, . . . , m � 1,
5.1 � � � � 1, 0 , 0, 1 , or K , �1 .Ž . Ž . Ž . Ž .i�1 i

Geometrically speaking, a K-admissible path can take steps up, steps right,
and chess knight-type steps K lattice increments to the right and one down.
ŽIn the case K � 2 this is exactly a knight’s move in chess. For K � 1 it is
actually a bishop’s move diagonally southeast, while for K 	 3 it is a

.‘‘stretched’’ knight’s move. The empty path with m � 0 is also deemed
K-admissible.

Let LL denote the set of integer sites that can be reached from the pointK
Ž .1, 0 along K-admissible paths. Quite obviously

5.2 LL � k , l � N � Z: l 	 � k � 1 �K .� 4Ž . Ž . Ž .K

This set is a wedge bounded by the positive y-axis and a lattice equivalent of
the line with slope �1�K. All K-admissible paths started inside LL remainK
inside LL .K

Ž Ž .Next we introduce the passage times of sites and paths. Let � � � i, j :
Ž . 2 . 2i, j � Z be an assignment of nonnegative numbers to the sites of Z . To

Ž Ž .the points of the lattice y-axis, attach the quenched rate variables � � � j :
. Ž . Ž . Ž .�1 Ž .j � Z . The passage time of site i, j is then � i, j � � j � i, j . The

� .Z 2
configuration � is an element of the space SS � 0, � , while the sequence �

� �Zis an element of the space AA � a , 1 as defined in Section 3. Elements of0
the product space � � SS � AA are indexed by Z2 in the obvious way:
Ž .Ž . Ž Ž . Ž .. Ž . Ž . 2� , � i, j � � i, j , � j . Define translation operators � k, l , k, l � Z ,
on � by
5.3 � k , l � , � i , j � � i � k , j � l , � j � l .Ž . Ž . Ž . Ž . Ž . Ž .Ž .
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Ž Ž ..Let � be the probability measure on SS under which the � i, j are i.i.d.
Ž .Exp 1 -distributed, and let Q be the i.i.d. measure on AA as denoted in Sec-

tion 3. The probability measure we put on � is � � � � Q, the product
measure under which � and � are mutually independent. Expectation under
� is denoted by �. When � is fixed, �� � � � 	 is the conditional distribu-�

� Ž . Ž Ž ..tion on �. Under � , the passage time � i, j is Exp � j -distributed. This is
Ž . Ž .quenched disorder, where the � j ’s are fixed but the � i, j ’s remain random.

However, at this stage we regard both � and � random.
� 4The passage time of a path r � � , � , . . . , � is simply the sum of the1 2 m

passage times of the sites along the path
m

5.4 T r � � � .Ž . Ž . Ž .Ý i
i�1

Ž . Ž .For any two integer points u , v and u , v on the plane such that1 1 2 2
Ž . Ž . ŽŽ . Ž ..u , v � u , v � LL , let RR u , v , u , v denote the collection of K-2 2 1 1 K K 1 1 2 2

� 4 Ž .admissible paths r � � , � , . . . , � such that � � u � 1, v and � �1 2 m 1 1 1 m
Ž . Ž .u , v , and m of course may vary. Our convention is � � u � 1, v2 2 1 1 1

Ž . ŽŽ . Ž ..instead of � � u , v so that elements of RR u , v , u , v and1 1 1 K 1 1 2 2
ŽŽ . Ž .. ŽŽ . Ž ..RR u , v , u , v can be joined to form an element of RR u , v , u , vK 2 2 3 3 K 1 1 3 3

Ž . Ž . Ž .without repeating the point u , v The basic case is u , v � 0, 0 , in2 2 1 1
Ž . Ž . Ž .which case paths start at 1, 0 . The passage time from u , v to u , v is1 1 2 2

defined by

5.5 T u , v , u , v � max T r : r � RR u , v , u , v .� 4Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .K 1 1 2 2 K 1 1 2 2

Ž . ŽŽ . Ž ..Abbreviate T u, v � T 0, 0 , u, v .K K
The growth model is a randomly growing subset of LL , defined by pro-K

Ž . Ž . Ž .claiming that point i, j joins the growing cluster at time T i, j . So, if B tK
denotes the cluster at time t, the rule is

5.6 B t � i , j � LL : T i , j � t .� 4Ž . Ž . Ž . Ž .K K

Ž .A random process � marks the location of the interface of B t , in the sense
that

5.7 B t � i , j � LL : i � � j, t .� 4Ž . Ž . Ž . Ž .K

So the interface moves to the right, in the increasing x-direction. For j � Z
Ž .and t 	 0, � j, t denotes the distance from point j on the y-axis to the

interface on the right-hand side of this axis. In terms of the passage times,

5.8 � j, t � min i : i � 1, j � LL , T i � 1, j � t .� 4Ž . Ž . Ž . Ž .K K

Ž . Ž .Initially � j, 0 � 0 for j 	 0 and � j, 0 � �Kj for j � 0.
At this point the reader should observe Lemma 5.1.

Ž .LEMMA 5.1. Fix K and the rates � . The distribution of the process � �
� zŽ0, 0.Ž . Ž .under � is equal to the distribution of the process � � defined by 4.6 ,

Ž Ž . .for any random or deterministic initial configuration z i, 0 : i � Z .
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Indeed, the whole point of the definition of K-admissible paths is that the
Ž . zŽ0, 0.Ž .evolution of the surface � � replicates the evolution of � � that comes

from the server process. We prove Lemma 5.1 in a more general setting in
� Ž .�Section 10 see the proof following 10.36 , so we will not waste space on it

Ž .here. But this should convince the reader: according to 5.8 and the definition
Ž . Ž .of K-admissible paths, � j, t increases from i to i � 1 at rate � j provided

� j, t � i ,Ž .
� j � 1, t 	 i � 1Ž .

and
� j � 1, t 	 i � K � 1.Ž .
Ž .On the other hand, by 4.6 and the definition of the server dynamics,

zŽ0, 0.Ž . zŽ0, 0.Ž .� j, t increases from i to i � 1 precisely when w j, t jumps from
Ž . Ž . Ž .z 0, 0 � i to z 0, 0 � i � 1, and this happens at rate � j provided

w zŽ0 , 0. j, t � z 0, 0 � i ,Ž . Ž .
w zŽ0 , 0. j � 1, t � z 0, 0 � i � 1Ž . Ž .

and
w zŽ0 , 0. j � 1, t � z 0, 0 � K � i � 1,Ž . Ž .

or, equivalently, provided

� zŽ0 , 0. j, t � i ,Ž .
� zŽ0 , 0. j � 1, t 	 i � 1Ž .

and
� zŽ0 , 0. j � 1, t 	 i � K � 1.Ž .

Ž .Thus both the initial condition and the infinitesimal rates for � � and
zŽ0, 0.Ž .� � are the same.
Let

UU � x , y � R2 : x � 0, y � �x�K� 4Ž .K

be the continuum analogue of the lattice LL .K

Ž .PROPOSITION 5.1. There exists a finite, concave function � x, y definedK
Ž .on UU and a subset � 
 � such that � � � 1, andK 0 0

1
� � � �5.9 lim T nx , ny � � x , yŽ . Ž .Ž .K Knn��

Ž . Ž .holds for all x, y � UU and all � , � � � . Furthermore, � can be ex-K 0 K
tended to a continuous function on the closure UU .K

Ž . Ž . Ž . Ž .PROOF. Fix first a lattice point k, l � LL . The limit 5.9 for x, y � k, lK
will come from the subadditive ergodic theorem, so the first task is the
moment bound
5.10 � T nk , nl � CnŽ . Ž .K

for some constant C, for all n.
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Begin by observing that

5.11 T i , j � T i , jŽ . Ž . Ž .K 1

Ž .for any i, j � LL . This is because a K-admissible path can be turned into aK
Ž . Ž .1-admissible path by replacing each K, �1 -step by K � 1 1, 0 -steps and

Ž .one 1, �1 -step. This transformation cannot decrease the passage time of the
path because no sites are removed.

Ž . Ž . 2 Ž .To bound T i, j for i, j � LL , define a bijection p: LL � N by p i, j �1 1 1
Ž . Ž . Ž .i, i � j . A 1-admissible path from 1, 0 to i, j in LL becomes under p a1

2 Ž . Ž .path in N that connects 1, 1 to i, i � j and takes steps up, to the right
and diagonally northeast. A northeast step can be replaced by a step up

Ž .followed by a step right, so this image path is contained in a path from 1, 1
Ž . Ž .to i, i � j that takes steps only up and to the right. Define i.i.d. Exp 1

Ž . Ž . 2 Ž . Ž �1Ž .. Ž �1passage times v i, j for sites i, j � N by v i, j � � p i, j . p is the
. Ž . 2inverse mapping. For i, j � N , let

5.12 V i , j � max v s, t ,Ž . Ž . Ž .Ý
r � Ž .s , t �r �

Ž . Ž .where the maximum is over up-right paths r � from 1, 1 to i, j . In other
�Ž . Ž .4 Ž . Ž . Ž . Ž .words, if r � � s , t , . . . , s , t , then s , t � 1, 1 , s , t � i, j and1 1 m m 1 1 m m

Ž . Ž . Ž . Ž .for l � 1, . . . , m � 1, s , t � s , t � 1, 0 or 0, 1 . The steps we tookl�1 l�1 l l
Ž . Ž . Ž .�1 Ž .to construct the passage times V i, j , and the bound � i, j � � j � i, j �

�1 Ž .a � i, j imply that0

5.13 T i , j � a�1V i , i � j .Ž . Ž . Ž .1 0

Ž .The advantage gained is that V i, j is easy to bound. We insert a lemma.

Ž . 1�2Ž .LEMMA 5.2. We have the stochastic dominance V i, j � S i � j , where
1�2Ž . Ž .S m denotes a sum of m i.i.d. Exp 1�2 random variables.

PROOF. We appeal to a well-known M�M�1 queueing interpretation of
Ž . � Ž .�V i, j see Section 2 in Glynn and Whitt 1991 . Imagine j M�M�1 servers

in series, each with service rate 1, unlimited waiting space, and FIFO
queueing discipline. At time 0, i customers are in queue at server 1, while
servers 2, . . . , j have empty queues. Each customer moves through the entire
series of j servers, joining the queue at server l � 1 as soon as service with

Ž .server l is completed. Let v k, l denote the service time of customer k �
Ž .1, . . . , i at server l � 1, . . . , j. Then one can show inductively that V i, j

Ž .defined by 5.12 is the time when customer i leaves server j.
Next assume that, instead of queueing up at server 1 at time 0, customers

Ž .1, . . . , i arrive at server 1 in a Poisson 1�2 process, and that furthermore, at
Ž .time 0 the queues at servers 1, . . . , j are not empty, but are i.i.d. Geom 1�2 -

distributed. The system starts in equilibrium and consequently stays in
� Ž . �equilibrium. See Kelly 1979 for more on this. The waiting times an

Ž .individual customer experiences at the successive queues are i.i.d. Exp 1�2 -
1�2Ž .distributed. Thus the time for customer i to leave server j is S i � j ,
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1�2Ž .because S i is the time when customer i arrives in queue 1 in the
Ž . 1�2Ž .Poisson 1�2 arrival process, and S j is the time it takes customer i to

get through j queues.
Compared to the original system, customer i is slowed down. This is made

Ž .precise by a coupling argument. The upshot is that V i, j is stochastically
1�2Ž .dominated by S i � j . �

Ž .REMARK 5.1. The process V i, j has been studied by several authors.
Ž . Ž .Glynn and Whitt 1991 derive a moment bound for V i, j with an elegant

associativity argument. The limit

1 2 2' '� � � �5.14 lim V nx , ny � x � y a.s. for x , y � RŽ . Ž .Ž . Ž . �nn��

Ž .was first obtained by Rost 1981 .
We return to the proof of Proposition 5.1. Lemma 5.2 implies that

5.15 � V i , j � 2 i � jŽ . Ž . Ž .
Ž . Ž . Ž .which, through 5.11 and 5.13 , gives 5.10 .

ŽŽ . Ž ..Now define X � �T mk, ml , nk, nl for 0 � m � n. We leave it tom , n K
Ž .the reader to verify that X satisfies the assumptions of a suitablem , n

Ž .subadditive ergodic theorem, such as that in Chapter 6 of Durrett 1991 . The
Ž . Ž .conclusion is that for all k, l � LL , there is a finite number � k, l suchK K

Ž . Ž . Ž .that 5.9 holds �-a.s. for x, y � k, l .
Ž .Next we extend the limit and the definition of � , first to rational x, y ,K

Ž . Ž .and then to all x, y . First check that we have homogeneity: � mk, ml �K
Ž . Ž . 2m� k, l for m � N. This implies that for x, y � UU � Q , we can unam-K K

biguously define

1
5.16 � x , y � � mx , myŽ . Ž . Ž .K Km

Ž .for any m � N that satisfies mx, my � LL . Keep such an m fixed, and forK
Ž .arbitrary n, let k be such that km � n � k � 1 m. Then

� � � �T kmx , kmy � T nx , ny � T k � 1 mx , k � 1 my ,Ž . Ž . Ž .Ž . Ž .K K K

Ž . Ž .and by letting n, k � �, we get the limit 5.9 a.s. for rational x, y � UU .K
Check that we have superadditivity

5.17 � x � x , y � y 	 � x , y � � x , y ,Ž . Ž . Ž . Ž .K 1 2 1 2 K 1 1 K 2 2

homogeneity

5.18 � sx , sy � s� x , yŽ . Ž . Ž .K 1 1 K 1 1

and, consequently, concavity

� � x � 1 � � x , � y � 1 � � yŽ . Ž .Ž .K 1 2 1 25.19Ž .
	 �� x , y � 1 � � � x , y ,Ž . Ž . Ž .K 1 1 K 2 2
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Ž . Ž . Ž .for rational x , y , x , y � UU , s � 0 and � � 0, 1 . Quite obviously also,1 1 2 2 K
Ž . Ž . 2 Ž . Ž . Ž .if x, y , x�, y� � UU � Q are such that x�, y� � x, y and x�, y� �K

Ž .x, y � UU , thenK

5.20 � x , y � � x�, y� .Ž . Ž . Ž .K K

We need a continuity result which will be given in Lemma 5.3.

Ž . 2LEMMA 5.3. For x, y � UU � Q ,K

5.21 lim � x�, y � � x , y .Ž . Ž . Ž .K K
Q�x ��x

Ž .PROOF. If y � 0, the statement follows from homogeneity 5.18 . Suppose
Ž . Ž . Ž .y � 0 and x� � x. Then because x, y � x, xy�x� � UU , we have by 5.20K

Ž .and 5.18 that

� x�, y 	 � x , y 	 � x , yx�x� � x�x� � x�, y .Ž . Ž . Ž . Ž . Ž .K K K K

The result follows by letting x� � x.
ŽFor y � 0, the result follows by the same principle. Take x� � x� y �

. Ž . Ž . Ž .x�K � y � x��K and y� � yx��x �. Then x, y � x�, y� � UU , so thatK

� x , y 	 � x� , y� � x��x � � x�, y ,Ž . Ž . Ž . Ž .K K K

Ž .and again we may let x� � x which also sends x��x � � 1. This proves 5.21 .
�

We return to the proof of Proposition 5.1. Define the set � in the0
Ž .statement of the proposition as that subset of � on which the limit 5.9 holds

Ž . Ž . Ž .for all rational x, y � UU . Extend � x, y to all x, y � UU by the formulaK K K

25.22 � x , y � inf � x�, y� : x�, y� � x , y � UU � Q .Ž . Ž . Ž . Ž . Ž .� 4K K K

Ž . Ž .On the right-hand side are the values � x�, y� for rational x�, y� alreadyK
Ž . Ž . Ž . Ž . 2 Ž .defined by 5.9 . By 5.20 and 5.21 , for x, y � UU � Q , 5.22 is a validK

Ž .identity, so it is a sensible extension of � . Superadditivity 5.17 andK
Ž . Ž .homogeneity 5.18 can be proved again, this time for all x, y � UU . FromK

this follows concavity. A finite, concave function is continuous on an open,
� Ž . � Ž .convex set Rockafellar 1970 , Theorem 10.1 . Consequently, � x, y isK

Ž .continuous on UU . Continuity at boundary points x, y � UU � UU requiresK K K
separate arguments in the style of Lemma 5.3, and we leave them to the
reader.

Ž . Ž .The final point is the validity of the limit 5.9 for all x, y � UU and allK
Ž .� , � � � . This follows from the continuity of � , by approximating a0 K

Ž� � � �. Ž� � � �. Ž .general lattice point nx , ny by nx� , ny� with rational x�, y� . The
proof of Proposition 5.1 is complete. �

Ž .Since � x, y is strictly increasing in x and y, the following equationK
defines uniquely a finite, convex, continuous, nonincreasing function gK
on R:

g y � inf x � 0: x , y � UU , � x , y 	 1 , y � R.� 4Ž . Ž . Ž .K K K
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Ž . Ž .By applying the strong law to the passage times � 1, j , j 	 0, and � �Kj, j ,
j � �1, we get

5.23 � 0, y 	 y�a and � Ky, �y 	 y�a for y 	 0.Ž . Ž . Ž .K 1 K 1

Ž . Ž .This implies 2.6 and 3.3 .

� Ž . �REMARK 5.2. In the basic case without disorder � j � 1 , we can obtain
the exact boundary values

5.24 � 0, y � � Ky, �y � y for y 	 0.Ž . Ž . Ž .K K

This is proved in Section 9 by comparison with the K � 1 case; see the
remarks after Lemma 9.1.

Proposition 5.1 has the following consequence.

Ž . Ž .COROLLARY 5.1. The interface process � � defined by 5.8 satisfies a
strong law of large numbers: for any y � R and t � 0,

1
� �5.25 lim � ny , nt � tg y�t , �-a.s.Ž . Ž .Ž . Knn��

PROOF. The proof has two parts. We do the limsup part and leave the
liminf part to the reader. Let � � 0. By strict monotonicity we can pick 	 � 0
so that

� tg y�t � � , y 	 � tg y�t , y � 	 	 t � 	 .Ž . Ž .Ž . Ž .K K K K

Ž Ž . .The last inequality is actually an equality if tg y�t , y is not a boundaryK
Ž .point of UU . Let x � tg y�t � � . Almost surely the inequalityK K

� � � �T nx , ny 	 n� x , y � n	�2 	 n t � 	�2Ž . Ž .Ž .K K

Ž .holds eventually, and this implies by 5.8 that

� � � �� ny , nt � nx � ntg y�t � n� .Ž .Ž . K

Since � � 0 was arbitrary,

1
� �lim sup � ny , nt � tg y�t , �-a.s. �Ž .Ž . Knn��

Next we deduce a one-sided exponential bound valid for both the basic
setting and the disordered setting. It is needed for Theorem 3 and for the
strong law part of Theorem 1. Up to now, this section has required only

Ž Ž ..ergodicity of � j , but this lemma requires a mixing assumption. So for
Ž .convenience we take � j i.i.d. as assumed in Section 3.

Ž .LEMMA 5.4. Fix x, y � UU and � � 0. For some constant C � 0,K

� � � � �C n5.26 � T nx , ny � n� x , y � n� � eŽ . Ž .Ž .Ž .K K

for large enough n.
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�1 � Ž� � � �.� Ž .PROOF. Suppose first that y � 0. Since n � T nx , ny � � x, y ,K K
we may pick a number M such that

� � � �5.27 � T Mx , My 	 M � x , y � ��2 .Ž . Ž .Ž . Ž .K K

Let

� � � � � � � �� � T l Mx , l My , l � 1 Mx , l � 1 My ,Ž . Ž .Ž . Ž .Ž .l K5.28Ž .
l � 0, 1, 2, . . . .

� 4Consider the mutual dependencies of the passage times � under thel
Ž .measure �. By definition 5.5 and the definition of K-admissibility, � isl

computed from

� � � �� i , j : l Mx � 1 � i � l � 1 Mx ,� Ž . Ž .
� � � � � � � �l My � Mx �K � j � l � 1 My � Mx �K .4Ž .

Ž Ž .. Ž .The variables � i, j induce no dependencies between the � ’s, and the � j ’sl
force only a finite range dependence on the � ’s. Thus there is a number Rl

� 4such that � : j 	 0 are i.i.d. random variables, for any l 	 0.l� jR
� � L R�1 Ž� � � �. Ž .Let L � n�MR . Then Ý � � T nx , ny . Abbreviate � � � x, yl�0 l K K

and let � � 0. We apply standard large deviations reasoning,

1
� � � �log � T nx , ny � n � � �Ž .Ž .Ž .Kn

LR�11
� log � � � n � � �Ž .Ý lž /n l�0

5.29Ž .

LR�11
� log exp � n � � � � exp �� � .Ž .Ž . Ý l½ 5ž /n l�0

To the expectation, apply first Holder’s inequality and then independence,¨

LR�1

� exp �� �Ý l½ 5ž /
l�0

R�1 L�1

� � exp �� �Ł Ý l� jR½ 5ž /l�0 j�0

L�1

� � exp ��R �Ý jR½ 5ž /j�0

L� 4� � exp ��R� .Ž .0
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� Ž Ž ..Note to the reader: The above step is where more than ergodicity of � i is
� Ž .needed. Substitute this back into the last line of 5.29 :

1
� � � �log � T nx , ny � n � � �Ž .Ž .Ž .Kn

L
� � � � � � log � exp ��R�Ž . Ž .Ž .0n

1 �
� � � � � � 1 � log � exp ��R�Ž . Ž .Ž .0ž /MR 4�

� H � .Ž .
The last inequality is valid for large enough n. It remains to show that
Ž . Ž . Ž .H � � 0 for some � � 0. Since H 0 � 0, it suffices to show that H� 0 � 0.

1 � � � exp ��R�Ž .Ž .0 0
H� � � � � � � 1 � ,Ž . ž /M 4� � exp ��R�Ž .Ž .0

from which

1 �
H� 0 � � � � � 1 � � � .Ž . Ž .0ž /M 4�

Ž . Ž .This is less than 0, for by 5.27 and 5.28 ,

� � � �� � � � T Mx , My 	 M � � ��2 .Ž . Ž .Ž .0 K

Ž .This proves 5.26 for y � 0. The argument for y � 0 is the same.
Ž .For y � 0, choose by continuity x� � x and y � 0 such that � x�, y 	K

Ž . Ž� � . Ž� � � �.� x, 0 � ��2. Since nx , 0 � nx� , ny � LL for large n, we haveK K
Ž� � � �. Ž� � .T nx� , ny � T nx , 0 . By the case already proved,K K

� �� T nx , 0 � n � x , 0 � �Ž .Ž . Ž .Ž .K K

� � � �� � T nx� , ny � n � x�, y � ��2Ž .Ž . Ž .Ž .K K

� e�C n . �
The reader not interested in the disordered setting can move on to Sec-

tion 6. For the disordered model, we need to think about the quenched
Ž . �setting. Proposition 5.1 implies that the limit 5.9 holds in � -probability, for

Q-almost every � . However, our proof of the hydrodynamic limit needs a
stronger version where the quenched variable � is translated simultaneously

Ž .as the limit is taken. Write � k for translations on the space AA: for
Ž Ž .. � Ž . �Ž . Ž .� � � i , � k � i � � i � k .

PROPOSITION 5.2. There exists a subset AA 
 AA such that this holds:0
Ž . Ž .Q AA � 1, and for all � � AA , b � R, x, y � UU and � � 0,0 0 K

� Ž� nb �.� �1 � � � �5.30 lim � n T nx , ny � � x , y 	 � � 0.Ž . Ž .Ž .Ž .K K
n��
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PROOF. Start by observing this:

� Ž� nb �.� � � � �the � -distribution of T nx , nyŽ .K

� � � � � � �� the � -distribution of T nx , ny �� 0, nbŽ . Ž .K5.31Ž .
� � � � � � � � �� the � -distribution of T nx , ny �� na , nbŽ . Ž .K

Ž Ž ..for any a � R. The second equality follows because the variables � i, j are
Ž . �i.i.d. Exp 1 under any � , so they can be translated arbitrarily with no effect

Ž .on the distribution. Recall from 5.3 that only the second index l of the joint
Ž .translation � k, l affects � .

Ž . Ž� � � �. Ž � �.Fix b � R and x, y � UU . Since T nx , ny �� 0, nb �K K d
Ž� � � �. � �T nx , ny under � � denotes equality in distribution , Lemma 5.4K d

implies that for all � � 0,

�
�1 � � � � � �5.32 � n T nx , ny �� 0, nb � � x , y � � � �.Ž . Ž .Ž . Ž .Ž .Ý K K

n�1

Consequently, by the Borel�Cantelli lemma,

1
� � � � � �lim inf T nx , ny �� 0, nb 	 � x , y �-a.s.,Ž .Ž . Ž .K Knn��

� Ž .and hence also � -a.s., for Q-a.e. � . By 5.31 , for Q-a.e. � ,

� Ž� nb �.� �1 � � � �5.33 lim � n T nx , ny � � x , y � � � 0.Ž . Ž .Ž .Ž .K K
n��

At this point we have an exceptional Q-null set of � ’s that depends on b,
Ž . Ž .x, y and � . To get a single null set simultaneously valid for all b, x, y and
� requires an approximation step and use of the continuity of � as in theK
proof of Proposition 5.1. We leave this to the reader.

Ž . Ž .Equation 5.33 is one half of the goal 5.30 . To get the remaining half,
Ž .define the event � 
 � as the set of � , � for which both of these state-1

ments hold:

1
� � � �5.34 lim T 0, 0 , nx , ny � � x , y for all x , y � UUŽ . Ž . Ž . Ž .Ž .Ž .K K Knn��

and

1
� � � �lim T nu , nv , 0, 0 � � �u, �vŽ . Ž .Ž .Ž .K Kn5.35 n��Ž .

for all u , v � �UU .Ž . K

Ž . Ž .Statement 5.34 is of course just Proposition 5.1, and 5.35 is the same thing
Ž .with a change in lattice direction. So � � � 1. Define the ‘‘good’’ subset1

� Ž . Ž .BB 
 AA as the set of � such that � � � 1. Then Q BB � 1. We shall1
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Ž .demonstrate that there always is a number a, depending on b, x, y and � ,
such that

� �1 � � � � � � � �lim � n T nx , ny �� na , nbŽ . Ž .Ž K
n��5.36Ž .

	 � x , y � � � 0Ž . .K

for � � BB. This step is carried out in several cases according to the values of
Ž . Ž .b and x, y . Then we are done, for another application of 5.31 shows that

Ž . Ž . Ž .5.36 and 5.33 together give 5.30 .

Ž .CASE I b, y � 0 or b, y � 0 . Set a � bx�y � 0. By superadditivity,

� � � � � � � �T 0, 0 , nx , ny �� na , nbŽ . Ž . Ž .Ž .K

� � � � � � � � � � � �� T na , nb , na � nx , nb � nyŽ . Ž .Ž .K

� � � � � � � �� T 0, 0 , na � nx , nb � nyŽ . Ž .Ž .K

5.37Ž .

� � � �� T 0, 0 , na , nb ,Ž . Ž .Ž .K

from which

1
� � � � � � � �lim sup T 0, 0 , nx , ny �� na , nbŽ . Ž . Ž .Ž .Knn��

� � a � x , b � y � � a, bŽ . Ž .K K5.38Ž .
� 1 � b�y � x , y � b�y � x , yŽ . Ž . Ž . Ž .K K

� � x , yŽ .K

Ž .on the event � . The second-last step used homogeneity 5.18 . It follows that1
Ž .5.36 holds for all � � BB in Case I.

For the next case we need an intermediate lemma.

LEMMA 5.5. For x � 0 and b � R,

5.39 lim � a � x , b � � a, b � � x , 0 .Ž . Ž . Ž . Ž .K K K
a��

Ž .PROOF. Superadditivity says that the liminf of the left-hand side of 5.39
is at least as large as the right-hand side. The nontrivial direction is the
opposite inequality. The case b � 0 follows from homogeneity. Suppose b � 0.
Set

x a � xŽ .
x� � � 0, x .Ž .

a � x � Kb
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Ž . Ž Ž ..Check from a picture that x, 0 � x�, bx�� a � x � UU . From this we getK
the first inequality below, and then we use homogeneity.

bx�
� x , 0 	 � x�,Ž .K ž /a � x

x�
� � a � x , bŽ .Ka � x

x � x� ab
� � a � x , b � 1 � � a,Ž .K Kž / ž /a a � x

x � x�
	 � a � x , b � � a, b � � a, bŽ . Ž . Ž .K K Kž /a

because � a, ab� a � x � � a, b for a, b , x � 0Ž . Ž .Ž .K K

	 � a � x , b � � a, b � O a�1 ,Ž . Ž . Ž .K K

Ž �1 . Ž .because x � x� � O a and because the moment bound 5.10 implies that
Ž . Ž . Ž .� a, b � O a for a fixed b. This proves 5.39 for b � 0. We leave theK

similar argument for b � 0 to the reader. �

We return to the proof of Proposition 5.2.

Ž .CASE II y � 0 . Pick a large enough so that

5.40 � a � x , b � � a, b � � x , 0 � ��2.Ž . Ž . Ž . Ž .K K K

Ž .Repeat the reasoning of Case I down to the second line of 5.38 with y � 0.
Ž .Then 5.40 gives

1
� � � � � �lim sup T 0, 0 , nx , 0 �� na , nb � � x , 0 � ��2Ž . Ž .Ž . Ž .Ž .K Knn��

Ž .everywhere on the event � . Again 5.36 holds for all � � BB.1

Ž .CASE III b � 0 � y 	 �b or b � 0 � y � �b . If y � �b we can di-
Ž .rectly apply 5.35 to

1
� � � � � � � �lim T 0, 0 , nx , ny �� �nx , nbŽ . Ž . Ž .Ž .Knn��

1
� � � � � � � � � � � �� lim T �nx , �ny , nx � �nx , ny � �nyŽ . Ž .Ž .Knn��

1
� � � �� lim T �nx , �ny , 0, 0 .Ž .Ž .Ž .Knn��

The point of the last equality is simply that, due to the continuity of � , theK
Ž� � � � � � � �. Ž .difference between nx � �nx , ny � �ny and 0, 0 is not felt in the

limit.
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Ž . Ž .Otherwise set a � bx�y � 0, and we have a, b , a � x, b � y � �UU . ByK
superadditivity,

� � � � � � � �T 0, 0 , nx , ny �� na , nbŽ . Ž . Ž .Ž .K

� � � � � � � � � � � �� T na , nb , na � nx , nb � nyŽ . Ž .Ž .K

� � � �� T na , nb , 0, 0Ž .Ž .Ž .K

5.41Ž .

� � � � � � � �� T na � nx , nb � ny , 0, 0 ,Ž .Ž .Ž .K

Ž .from which by 5.35 ,

1
� � � � � � � �lim sup T 0, 0 , nx , ny �� na , nbŽ . Ž . Ž .Ž .Knn��

� � �a, �b � � �a � x , �b � yŽ . Ž .K K
5.42Ž .

b b
� � � x , y � � � 1 � x , yŽ . Ž .K Kž / ž /y y

� � x , yŽ .K

� � � �on the event � . The assumption y � b was needed for the homogeneity1
Ž .step, so that �b�y � 1 � 0. 5.36 holds for all � � BB also in this case.

Ž . � 4CASE IV b � 0 and �b � y . Pick a finite partition x , x , . . . , x of the0 1 m
Ž .interval 0, x such that

x � Kb � x � ��� � x � x � K b � y � x .Ž .0 1 m�1 m

Ž � �. Ž� � � �The point here is that any K-admissible path from 1, nb to nx , nb �
� �. Ž . � � � �ny must cross the x-axis at one of the sites i, 0 for nx � i � nx . By0 m

� � � 4uniform continuity of � on the compact set Kb, x � �b , we may furtherK
choose the above partition fine enough to have

5.43 � x , �b � � x , �b � ��2 for all j.Ž . Ž . Ž .K j K j�1

Ž . Ž . Ž .Here and below, interpret � x , �b as � Kb, �b because � x , �b isK 0 K K 0
not defined for x � Kb. Now we can estimate0

� � � � � �T 0, 0 , nx , ny �� 0, nbŽ . Ž . Ž .Ž .K

� � � � � � � �� T 0, nb , nx , nb � nyŽ . Ž .Ž .K

� � � �� max T 0, nb , nx , 0Ž . Ž .½ Ž .K j�1
0�j�m�1

5.44Ž .

� � � � � � � ��T nx , 0 , nx , nb � ny .Ž .Ž . 5Ž .K j

Ž .By superadditivity of � and 5.43 ,K

� x , y � � 	 � x , �b � � x � x , b � y � �Ž . Ž . Ž .K K j K j

	 � x , �b � � x � x , b � y � ��2.Ž . Ž .K j�1 K j

5.45Ž .
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Ž . Ž .Combining 5.44 and 5.45 allows us to write

� � � � � � �� T nx , ny �� 0, nb 	 n� x , y � n�� 4Ž .Ž . Ž .K K

m�1
� � � � �� � T 0, nb , nx , 0 	 n� x , �b � n��4Ž . Ž .Ž .½ 5Ý Ž .K j�1 K j�1

j�0

� � � � � � � � ��� T nx , 0 , nx , nb � nyŽ .Ž .½ Ž .K j

	 n� x � x , b � y � n��4Ž . 5K j

m�1
� � � � � � �� � T 0, 0 , nx , � nb �� 0, nbŽ . Ž .Ž .½Ý Ž .K j�1

j�0

	 n� x , �b � n��4Ž . 5K j�1

� � � � � � � � ��� T 0, 0 , nx � nx , nb � nyŽ . Ž .½ Ž .K j

	 n� x � x , b � y � n��4 .Ž . 5K j

In the last step we do a trivial translation in the first probability inside the
brackets, and a translation that utilizes the horizontal translation-invariance

Ž Ž ..of � i, j in the second probability. The last sum tends to 0 as n � �,
Ž .because Case III takes care of the first probability, and assumption 5.34 of

the second.

Ž .CASE V b � 0 and �b � y . This is the only remaining case. Perform a
partition argument similar to the one for Case IV and appeal to earlier cases.

�

6. Proof of the weak laws. In this section we prove Theorem 3. Simul-
Ž . Ž .taneously we obtain statement 2.13 of Theorem 1 under assumption 2.4 .

� Ž . �This is just the special case � i � 1 of Theorem 3. Fix a configuration
Ž Ž . .� � AA , the set defined by Proposition 5.2. Let � i, 0 : i � Z be the given0 n

Ž .random initial configurations that satisfy 3.2 . To define initial configura-
tions for the corresponding server processes, set

z 0, 0 � 0,Ž .n

i

z i , 0 � � j, 0 for i � 0, andŽ . Ž .Ýn n
j�16.1Ž .

0

z i , 0 � � � j, 0 for i � 0.Ž . Ž .Ýn n
j�i�1

Ž .Let z � denote the server process constructed from initial configurationn
Ž Ž . .z i, 0 : i � Z according to the description of Section 4, and denote itsn

� Ž . Ž .probability measure by P . Then define the K-exclusion � � by 4.1 .n n
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Ž �The empirical measure of an interval a, b for a � b is given by

1 j
�� t , a, b � � j, t IŽ .Ž .Ž Ýn n Ž a , b � ž /n nj�Z

� �nb1
� � j, tŽ .Ý nn � �j� na �1

6.2Ž .

1 1
� � � �� z nb , t � z na , t .Ž . Ž .n nn n

Ž . Ž . Ž .Pick U that satisfies 2.7 and U 0 � 0. Then assumption 3.2 together0 0
Ž . Ž .with 6.1 and 6.2 implies that, for all y � R and � � 0,

� �1 � �6.3 lim P n z ny , 0 � U y 	 � � 0.Ž . Ž .Ž .Ž .n n 0
n��

Ž .Note that behind this claim is the fact that the limit measure u x dx of0
Ž . Ž Ž �. Ž . Ž .� 0, dx has no atoms, so that � 0, a, b converges to U b � U a for alln n 0 0

Ž �intervals a, b .
Ž . Ž . Ž . Ž . Ž .Define U x, t by 2.8 . By 6.2 and the definition 2.9 of u x, t , we shall

have proved Theorem 3 if we show that, for all x � R, t � 0, and � � 0,
� �1 � �6.4 lim P n z nx , nt � U x , t 	 � � 0.Ž . Ž .Ž .Ž .n n

n��

Ž . Ž . Ž .Fix x, t . The starting point is the coupling 4.5 and 4.9 that now reads

� � znŽ i , 0. � �z nx , nt � sup w nx � i , ntŽ . Ž .n
i�Z

znŽ i , 0. � �� sup z i , 0 � � nx � i , nt .Ž .� 4Ž .n
i�Z

6.5Ž .

An important point to keep straight is that, by the same reasoning that
justified Lemma 5.1, we have this equality in distribution:

dz Ž� nb � , 0. � � Ž� nb �.�n6.6 � � under P � � � under � .Ž . Ž . Ž .n

The first task is to restrict the range of indices i that need to be considered in
Ž .6.5 . For r � r , define1 2

znŽ i , 0. � �6.7 � r , r � max z i , 0 � � nx � i , nt .Ž . Ž . Ž .� 4Ž .n 1 2 n
� � � �nr �i� nr1 2

LEMMA 6.1. For any � � AA and r � x � t � x � t � r , there exists a1 2
constant C � 0 such that

� � � �C n6.8 P z nx , nt � � r , r � eŽ . Ž .Ž .Ž .n n n 1 2

for all n.

PROOF. By Lemma 4.4 it suffices to show that
� znŽ� nr1 � , 0. � � � � �C nP � nx � nr , nt � 0 � eŽ .Ž .n 1
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and

� znŽ� nr2 � , 0. � � � � � � � � �C nP � nx � nr , nt � K nr � nx � e .Ž . Ž .Ž .n 2 2

Ž .By 6.6 , this will follow from showing that, for any b � R and y � t,

� Ž� nb �.� � � �C n6.9 � � ny , nt � 0 � eŽ . Ž .Ž .
and

� Ž� nb �.� � � � � �C n6.10 � � � ny , nt � K ny � e .Ž . Ž .Ž .
Ž . Ž .We show 6.9 and leave the argument for 6.10 to the reader. By definitions

Ž . Ž . Ž .5.5 and 5.8 , and because � j � 1 always,

� � � � � � � �� ny , nt �� 0, nb � 0 � T 1, ny �� 0, nb � ntŽ . Ž . Ž . Ž .K

� � � �nb � ny
�1� � j � 1, j � ntŽ . Ž .Ý

� �j� nb

� � � �nb � ny

� � 1, j � nt .Ž .Ý
� �j� nb

Ž Ž ..This last event has exponentially small probability because the � 1, j are
i.i.d. with expectation 1 and y � t. �

Ž .The second point is to note the weak law of the interface processes in 6.5 .
This is a corollary of Proposition 5.2.

LEMMA 6.2. For any � � AA , b, y � R, t � 0 and � � 0,0

� �1 z Ž� nb � , 0.n � �6.11 lim P n � ny , nt � tg y�t 	 � � 0.Ž . Ž .Ž .Ž .n K
n��

Ž .PROOF. The lemma follows from 6.6 and Proposition 5.2, by the same
sort of reasoning that Corollary 5.1 followed from Proposition 5.1. �

Ž .One half of 6.4 , namely,

� �1 � �6.12 lim P n z nx , nt � U x , t � � � 0,Ž . Ž .Ž .Ž .n n
n��

� � Ž .is now immediate because setting i � ny inside the braces in 6.5 gives a
Ž� � . Ž . Ž . Ž .lower bound for z nx , nt , and by 2.8 , 6.3 and 6.11 , the limit of then

Ž .quantity in braces can be taken arbitrarily close to U x, t by choice of y.
Ž .For the other half, fix r � r so that 6.8 holds, and pick a partition1 2

r � b � b � ��� � b � b � r1 0 1 m�1 m 2

fine enough so that

6.13 tg x � b �t � tg x � b �t � ��2 for all l.Ž . Ž . Ž .Ž . Ž .K l�1 K l
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By Lemma 4.3 we may reason as follows:
znŽ i , 0. � �� r , r � max w nx � i , ntŽ . Ž .n 1 2

� � � �nr �i� nr1 2

znŽ i , 0. � �� max max w nx � i , ntŽ .
0�l�m � � � �nb �i� nbl l�1

znŽ� nbl � , 0. � � � �� max w nx � nb , nt� Ž .l
0�l�m

6.14Ž .

� � � ��z nb , 0 � z nb , 0 4Ž . Ž .n l�1 n l

� � znŽ� nbl � , 0. � � � �� max z nb , 0 � � nx � nb , nt .� 4Ž . Ž .n l�1 l
0�l�m

Ž . Ž . � Ž . �By 6.3 and 6.11 , the limit in P -probability of 1�n � the last line ofn
Ž .�6.14 is

max U b � tg x � b �t ,� 4Ž . Ž .Ž .0 l�1 K l
0�l�m

Ž . Ž . Ž .which by 6.13 , and by the definition 2.8 of U x, t , is bounded above by
Ž .U x, t � ��2. We have shown that

6.15 lim P � n�1� r , r 	 U x , t � � � 0,Ž . Ž . Ž .Ž .n n 1 2
n��

Ž . Ž . Ž .which together with 6.8 and 6.12 implies 6.4 , the goal of the argument.
Theorem 3 and the weak law part of Theorem 1 are thereby proved.

As a final matter in this section, we can now see why we have to bound the
Ž .rates � j away from zero in order to get nontrivial hydrodynamics. Suppose

Ž Ž . .Q � 0 � � � 0 for all � � 0. Then the limit in Proposition 5.1 would be
Ž .� x, y � �. For y � 0 this can be seen fromK

� �nx�11 1
� � � �T nx , ny 	 min � j � i , j ,Ž . Ž .Ž . Ý½ 5K nn n� �0�j� ny i�1

Ž . Ž .where the random j satisfies � j � min � j . For y � 0, similarn n 0 � j�� n y �
Ž . Ž .reasoning works. From � � � follows that g y � 0 for y 	 0 and g y �K K K

Ž . Ž . Ž .�Ky for y � 0. This in turn makes U x, t � U x in 2.8 .0

7. An upper tail estimate for the last-passage times. To obtain the
strong laws in Theorems 1 and 2, we need estimates that allow us to apply
the Borel�Cantelli lemma. In Lemma 5.4 we already have a lower tail
estimate. This section is devoted to the next lemma that gives the comple-
mentary upper tail estimate. Its proof is reminiscent of a proof of Grimmett

Ž .and Kesten 1984 for a lower tail estimate on the passage times of first-
passage percolation, although the main challenge here is different. The
geometry of our paths is simpler than in first-passage percolation. What
makes our upper tail estimate problematic is that passage times of individual

Ž� � � �.sites are unbounded, so an excessively high value of T nx , ny can beK
produced in a large number of ways. In contrast, a lower tail estimate can use
the fact that passage times are bounded below by zero. In the end we do not
quite get an exponential bound, although we certainly expect one, by analogy

� Ž .�with other similar models Seppalainen 1998b, c .¨ ¨
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Ž . Ž .LEMMA 7.1. Suppose a � � j � 1 for all j � Z. Fix x, y � UU and0 K
� � 0. Then there is a constant C � 0 such that

�1� � � �7.1 � T nx , ny 	 n� x , y � n� � exp �Cn log nŽ . Ž .Ž .Ž .Ž .K K

for large enough n.

Ž .The proof of this lemma takes several steps. Regard x, y fixed for the
duration of this section. We start with an exponential upper tail bound on
large enough deviations of order n.

Ž . Ž .LEMMA 7.2. Suppose a � � j � 1 for all j � Z. For x, y � UU , there0 K
Ž .exist positive constants b , n and c depending on x, y such that0 0 0

� � � �7.2 � T nx , ny 	 bn � exp �c bnŽ . Ž .Ž .Ž .K 0

for all b 	 b and n 	 n .0 0

Ž . Ž .PROOF. By 5.11 , 5.13 and Lemma 5.2, it suffices to prove the bound for
1�2Ž � � � �. � � � � Ž .the sum S 2 nx � ny of 2 nx � ny i.i.d. Exp 1�2 -distributed ran-

dom variables. The conclusion then follows from a standard large deviation
bound,

1�2 � � � �Prob S 2 nx � ny 	 bnŽ .Ž .
�1� � � � � � � �� exp � 2 nx � ny I bn 2 nx � ny ,Ž . Ž .Ž .½ 57.3Ž .

where

7.4 I x � x�2 � 1 � log x�2Ž . Ž . Ž .
Ž .is the Cramer rate function for the Exp 1�2 distribution. The reader can´

Ž .prove 7.3 easily with the exponential Chebyshev argument of Lemma 5.4
Ž .above. Alternatively, see Section 2.2 in Dembo and Zeitouni 1993 , Sec-

Ž . Ž .tion 1.2 in Deuschel and Stroock 1989 , Section 1.9 in Durrett 1991 or
Ž . Ž .Section 3 in Varadhan 1984 . The inequality 7.3 is true already for finite n

Ž .due to superadditivity. By 7.4 ,

�1 �11� � � � � � � �I bn 2 nx � ny 	 bn 2 nx � nyŽ . Ž .Ž . 4

� �for large enough b, so the bound exp �c bn follows. �0

�Ž . Ž . Ž .4Consider the level curve x, y � UU : � x, y � � x, y . Since � isK K K K
concave and strictly increasing in both variables, this level curve is the graph

Ž . Ž .of a convex function y � h x . Pick a tangent line of the curve at x, y . This
Ž . Žline has slope �� � ��, �1�K . The slope cannot be equal to �� or �1�K

because the level curve connects a point on the positive y-axis to a point on
.the positive part of the line y � �x�K. The tangent line itself intersects the

Ž . Ž .y-axis and the line y � �x�K at the points 0, y and Ky , �y for y �1 2 2 1
Ž . Ž . Ž .y � � x and y � y � � x � K � � 1 . Set y � y � y �2.2 0 1 2
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On the lattice Z2 define, for large M � N,
2 � � � � � �BB � i , j � Z : � � i � j � My � � i � 1, and forŽ .�M 1

� �some 0 � k � My �� , there is a K-admissible path from07.5Ž .
� �k , � �k to i , j .Ž . 4Ž .

The set BB is the lattice analogue, in the scale 1�M, of the trapezoidM
Ž . Ž .between the lines y � y � � x and y � �� x, with vertices clockwise 0, 0 ,1

Ž . Ž . Ž .0, y , 3 y ��, �y � y and y ��, �y . Let F be the closure of this1 0 0 2 0 0
trapezoid on the plane. See Figure 1.

Ž . Ž .Recall the definition 5.4 of the passage time T r of a K-admissible path.
Let

7.6 Y BB � max T r : r is a K-admissible path 
 BB .� 4Ž . Ž . Ž .M M

LEMMA 7.3. The limit
1

7.7 lim Y BB � � x , yŽ . Ž . Ž .M KMM��

holds �-a.s. There exist positive constants b , M and c such that0 0 0

� �7.8 � Y BB 	 Mb � exp �c MbŽ . Ž .Ž .M 0

for all b 	 b and M 	 M .0 0

Ž .FIG. 1. The region UU is bounded by the y-axis and the line y � �x�K dashed lines that meetK
Ž . � Ž .4 Ž .at the origin O. A � x, y on the level curve � � � x, y . BD is the tangent line at A � x, yK K

Ž . Ž .of slope ��. It intersects the boundary of UU at the points B � 0, y and C � Ky , �y . OE isK 1 2 2
a line of slope �� through the origin, ED a line of slope �1�K. The vertices of the trapezoid F
are OBDE.



HYDRODYNAMICS FOR K-EXCLUSION 393

PROOF. Since

� � � � � �7.9 My � My � M� x � My � M� x ,Ž . 1 1

Ž . Ž� � � � .every K-admissible path from 0, 1 to Mx , My � 1 lies inside BB , andM
consequently by the continuity of � ,K

1
lim inf Y BB 	 � x , y , �-a.s.Ž . Ž .M KMM��

For the converse, suppose a small number 	 � 0 is given. Then by the1
compactness of F it is possible to pick two even smaller numbers 	 , � � 0
and two finite sequences

x� � x� � ��� � x� and x� � x� � ��� � x�
0 1 I 0 1 J

such that this holds: with y� � �� � � x� and y� � y � � � � x�, we havek k l 1 l
the inclusions

I J
� � � �Ž	 . Ž	 .7.10 F 
 x , y � UU and F 
 x , y � UU ,Ž . Ž . Ž .� �k k K l l K

k�0 l�0

Ž	 . Ž � � . Ž � � .where F is the 	-neighborhood of F, and moreover, all x , y and x , yk k l l
lie in F Ž	1.. See Figure 2.

Ž . Ž � � . Ž � � .Let II be the set of pairs k, l such that x , y � x , y � UU . It thenl l k k K
follows, for large enough M, that if r is any K-admissible path in BB , thereM

Ž . Ž� � � � � �.is a pair k, l � II and a K-admissible path r � � r from Mx � 1, Myk k
Ž� � � � � �.to Mx , My . Consequently,l l

� � � � � � � � � � � �7.11 Y BB � max T Mx , My , Mx , My ,Ž . Ž . Ž . Ž .Ž .M K k k l l
Ž .k , l � II

and then

1
� � � �lim sup Y BB � max � x � x , y � y , �-a.s.Ž . Ž .M K 2 k 2 kM Ž .k , l � IIM��

Ž .To establish 7.7 it remains to argue that, given � , we can make0

� � � �max � x � x , y � y � � x , y � �Ž . Ž .K l k l k K 0
Ž .k , l � II

Ž . � �by choosing 	 small enough. Consider any point x�, �� x� , x� � 0, y �� ,1 0
Ž .on the southwest edge of F edge OE in Figure 1 . By convexity and the

choice of the slope �, the translated level curve

x , y � x�, �� x� � UU : � x � x�, y � � x� � � x , y� 4Ž . Ž . Ž . Ž .K K K

Ž .is on or above the line y � y � � x line BD in Figure 1 , and consequently1
Ž . Ž . Ž . �Ž . �� x � x�, y � � x� � � x, y for all x, y � x�, �� x� � UU � F. ThisK K K

works for all points on the southwest edge of F. Therefore

sup � x � x�, y � y� : x , y , x�, y� � F , x , y � x�, y� � UU� 4Ž . Ž . Ž . Ž . Ž .K K

� � x , y .Ž .K
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� Ž .� Ž	 . Ž � � .FIG. 2. To justify 7.10 . The trapezoid represents the neighborhood F , A � x , y , andk k
Ž � � . Ž � � .B � x , y . The dash-dot line bounds the set x , y � UU . The reader sees that finitely manyl l k k K

such sets can cover F Ž	 ., however close to F Ž	 . we require the basepoints A to be. The same
Ž � � .reasoning applies to x , y � UU bounded by the dashed line.l l K

By continuity of � and compactness of F, for small enough 	 � 0, we haveK 1

Ž	 .1sup � x � x�, y � y� : x , y , x�, y� � F , x , y � x�, y� � UUŽ . Ž . Ž . Ž . Ž .� 4K K

� � x , y � � .Ž .K 0

Ž .This completes the proof of 7.7 .
Ž .The deviation bound 7.8 follows by applying Lemma 7.2 to the finitely

Ž .many random variation on the right-hand side of 7.11 . �

The preliminaries are done and we can attack Lemma 7.1

Ž .PROOF OF LEMMA 7.1. Abbreviate � � � x, y . Suppose M is large enoughK
Ž .so that 7.8 is valid, and let n � M. Recall the definition of the number y in1

Ž . Ž .the paragraph preceding 7.5 point B in Figure 1 . Let R be the smallest0
integer that satisfies

� � � �7.12 R My 	 ny � 1.Ž . 0 1 1

Given � � 0,1

7.13 1 � � n�M � R � 1 � � n�MŽ . Ž . Ž .1 0 1
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for large enough n. Divide the lattice LL into parallel strips of slope �� andK
� �height My , so that the kth strip, 1 � k � R , is given by1 0

� � � �TT � i , j � LL : k � 1 My � � i� Ž . Ž .k K 1

� � � �� j � k My � � i � 1 .41

7.14Ž .

Ž . Ž . Ž� � � �.Equations 7.9 and 7.12 guarantee that nx , ny lies in the union
TT � ��� � TT .1 R 0

Ž .The definition 7.5 of BB was tailored so that the height of BB matchesM M
the height of a strip TT . We can cover each strip with finitely many translatesk
of the set BB so that these translates do not intersect on the bottomM
boundary line of the strip. That is, if BB�, BB� are two such translates inside TTk

Ž Ž .� � � �. Ž Ž .� � � �.and i, k � 1 My � � i � BB�, then i, k � 1 My � � i � BB�.1 1
Fix such a covering of each strip TT by translates of BB , henceforth calledk M

basic regions. For TT , only one basic region is needed. If M is large enough,1
any K-admissible path that starts in a basic region BB 
 TT can enter onlyk

Ž . R 0five possible basic regions inside TT . Figure 3. Thus there are at most 5k�1

FIG. 3. The dashed lines bound the strips TT and TT . Here BB is a basic region in TT , andk k�1 0 k
BB , . . . , BB are basic regions in TT . The figure gives a macroscopic representation. For i �1 5 k�1
1, . . . , 5, the label Bi is placed at the top vertex of the trapezoid that represents BB . BB , . . . , BBi 1 5
overlap in the interior of TT but not on the dashed boundary between the two strips. BB cank� 1 0

Ž .touch at most five basic regions in TT due to our choice of y � y � y �2. This makes thek� 1 0 1 2
Ž .length of the northeast edge BD in Figure 1 of the trapezoid three times the length of the

Ž .southwest edge OE in Figure 1 .
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Ž . Ž .FIG. 4. An example of a sequence BB 1 , . . . , BB R of basic regions whose union contains0
Ž . Ž .K-admissible paths from 1, 0 to the northeast edge of BB R . The solid lines mark the0

boundaries of the strips TT . The figure gives a macroscopic view so the basic regions arek
Ž .represented by shaded trapezoids. Here BB 1 in TT is reduced to a triangle because the trapezoid1

is larger than TT .1

Ž . Ž . Ž .sequences BB 1 , . . . , BB R of basic regions such that BB j 
 TT and such0 j
Ž . Ž .that the union of the BB j ’s can contain a K-admissible path from 1, 0 to

Ž� � � �. Ž . Ž . Ž .nx , ny . Figure 4 . If BB 1 , . . . , BB R is such a sequence that contains0
Ž . Ž Ž ..the K-admissible path r, then T r 	 n� � n� implies Y BB 1 �

Ž Ž .. Ž Ž ..��� �Y BB R 	 n� � n� , where the random variable Y BB j is defined as0
Ž .in 7.6 .

Ž . Ž .Now fix a sequence BB 1 , . . . , BB R . We shall estimate the probability0

R0

� Y BB j 	 n� � n� .Ž .Ž .Ýž /j�1

Incidentally, an ordinary exponential large deviation estimate for the i.i.d.
Ž Ž .. Ž R 0 Ž Ž .. .random variables Y BB j of the type � Ý Y BB j 	 R � �1 0

� Ž .�exp �R Q � for some unknown rate function Q would not be of help now0
because, in the final step, our estimate has to be multiplied by the factor 5R 0 ,

Ž . Ž .to account for all the possible ways of choosing the sequence BB 1 , . . . , BB R .0
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Pick and fix a number � � 0. In the first step we decompose like this:0

R0

� Y BB j 	 n� � n�Ž .Ž .Ýž /j�1

R0

� � Y BB j 	 � nŽ .Ž .Ž .7.15Ž . Ý 0
j�1

R0

�� Y BB j 	 n� � n� , Y BB j � � n for 1 � j � R .Ž . Ž .Ž . Ž .Ý 0 0ž /j�1

Ž . Ž Ž ..Next we partition 0, � n and count the number of Y BB j ’s that fall into0
Ž .each partition interval. First, pick small 	 � 0 and � � 0, � . Let2

� �7.16 L � b �	 � 1,Ž . 0 0

where b is the constant that appears in Lemma 7.3, and0

� �7.17 L � � n�M	 � 1.Ž . 1 0

Set
R0

� � I Y BB j � M � � � ,� 4Ž . Ž .Ž .Ý0 2
j�1

R0

� � I M � � � � Y BB j � ML 	� 4Ž .Ž . Ž .ÝL 2 00
j�1

and
R0

� � I M l � 1 	 � Y BB j � Ml	 for L � l � L .� 4Ž . Ž .Ž .Ýl 0 1
j�1

Ž . Ž Ž Ž .. . Ž .In the next step, apply 7.8 to the probabilities � Y BB j 	 � n in 7.15 .0
Ž .This is valid for n�M large enough. In the last probability in 7.15 , pick

Ž .� � 0 and separate cases according to the value of � . Then 7.15 becomes3 L0

R0

� Y BB j 	 n� � n�Ž .Ž .Ýž /j�1

� �� R exp �c � n � � � � � RŽ .0 0 0 L 3 00

R0

� � Y BB j 	 n� � n� ,Ž .Ž .Ýž j�1

7.18Ž .

Y BB j � � n for 1 � j � R , � � � R .Ž .Ž . 0 0 L 3 00 /
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Ž .In the last probability, the possible realizations of � , � , . . . , � are se-0 L L0 1
Ž . L1�L 0�2quences w � w , w , . . . , w � Z of nonnegative integers that sat-0 L L �0 1

isfy these properties:

L1

7.19 w � w � R ,Ž . Ý0 l 0
l�L0

L1

7.20 w M � � � � w Ml	 	 n � � �Ž . Ž .Ž . Ý0 2 l
l�L0

and

7.21 w � � R .Ž . L 3 00

Let

GG � w � Z L1�L 0�2 : w satisfies 7.19 , 7.20 and 7.21 .Ž . Ž . Ž .� 4�

Ž . ŽŽ . .The last probability in 7.18 is bounded above by � � , � , . . . , � � GG . Let0 L L0 1

us estimate the probability of a single element w � GG. Abbreviate

RR 00 � w , w , . . . , wž / ž /w 0 L L0 1

Ž Ž ..for the number of ways of arranging the Y BB j ’s in the partition intervals,
Ž . Ž Ž ..with counts w , w , . . . , w . Then, since the Y BB j ’s are i.i.d. and dis-0 L L0 1
Ž .tributed like Y BB ,M

� � , � , . . . , � � w , w , . . . , wŽ .Ž .Ž .0 L L 0 L L0 1 0 1

L1
wR l0� � M l � 1 	 � Y BB � Ml	Ž . Ž .Ž .Ł Mž /w l�L �10

L1R0� exp �c w M l � 1 	 by 7.8Ž . Ž .Ý0 lž / ½ 5w l�L �10

R0� exp �c n � � � � w M � � � � w ML 	Ž . Ž .0 0 2 L 00ž / ½w

L1

� w M	 by 7.20Ž .Ý l 5
l�L �10

R0� exp �c n � � � � R M	 � w M � � � � 	Ž . Ž .½ 0 0 0 2ž /w

�w M L � 1 	 by 7.19Ž . Ž .5L 00
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R0� exp �c n � � � � 1 � � � � � � � 1 � � bŽ . Ž .� 4Ž .0 1 2 3 1 0ž /w

by 7.13 , 7.16 and 7.21 and by choosing 	 small enoughŽ . Ž . Ž .
R0 � �� exp �c n ,1ž /w

�for a constant c � 0, by choosing � , � and � small enough. Note to the1 1 2 3
reader: The first step above would not work for the disordered case, because

Ž Ž ..the Y BB j ’s might not be independent. Indeed, for some sequence
Ž . Ž . Ž Ž .. Ž .BB 1 , . . . , BB R , the Y BB j ’s might all depend on some particular � j .0

Ž Ž ..This can be fixed by conditioning on � , but then the Y BB j ’s are no longer
identically distributed. On account of these complications we state and prove

�Lemma 7.1 only for the basic case without disorder.
Ž . Ž Ž . Ž .. Ž .Let 	 M � � Y BB 	 M � � � . By 7.7 we may suppose M is largeM 2

Ž .�3 Ž .enough to have 	 M � 1�2, for a fixed � � 0. Returning to 7.18 , we3
have

R0

� Y BB j 	 n� � n�Ž .Ž .Ýž /j�1

R0� � � �� R exp �c � n � � � � � R � exp �c nŽ . Ý0 0 0 L 3 0 10 ž /ww�GG

� R RR 3 0 00� � � �� R exp �c � n � 2 	 M � L � L � 2 exp �c nŽ . Ž .0 0 0 1 0 1
7.22Ž .

n Ž .1�� n�M� 13� �� 1 � � exp �c � n � 2	 MŽ . Ž .1 0 0M
n � n0� exp �c n � 1 � � log .Ž .1 1ž / ž /M M	

To recapitulate, we have come thus far by assuming that M, n and n�M are
large enough. By taking M 	 C log n for a large enough constant C, we can

� Ž .�1 �bound the last three terms above by exp �c n log n for a constant2
c � 0. Finally,2

� � � �� T nx , ny 	 n� x , y � n�Ž .Ž .Ž .K K

R0

� � Y BB j 	 n� � n�Ž .Ž .Ý Ýž /Ž . Ž . j�1BB 1 , . . . , BB R0

�1R 0� 5 exp �c n log nŽ .2

�1� exp n log n 1 � � log 5 �C � cŽ . Ž . Ž .Ž .1 2

�1� exp �c n log nŽ .3
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for yet another constant c � 0, by increasing C further if necessary. This3
completes the proof of Lemma 7.1.

One last word about the stage of the proof where we gave up the genuine
R0� � Ž . Ž .exponential bound exp �Cn : the culprit is the factor Ý in 7.22 ,w � GG w

Ž .R 0 Ž .Ž1��1.n � Mwhich we bounded above by L � L � 2 � � n�M	 . To con-1 0 0
trol this term, we need M to grow sufficiently fast with n. Then we can no

� Ž .�3 �Ž1��1.n � Mlonger assert that 2	 M decays exponentially, because we do
Ž .not know the true decay rate of 	 M . �

8. Proofs of the strong laws. In this section we prove the strong law
part of Theorem 1 for K-exclusion, and Theorem 2 for the marching soldiers

Ž .model. In this section the rates are constant � j � 1.

Ž .8.1. Proof of the strong law of Theorem 1. According to assumption 2.5 ,
Ž Ž ..the initial configurations � i, 0 are now defined on some common probabil-n

Ž .ity space �, FF, P . Augment this probability space to include the Poisson
processes required for the graphical construction. Define the initial server

Ž Ž .. Ž . Ž .configurations z i, 0 by 6.1 . Then construct the server processes z � andn n
znŽ i, 0.Ž . znŽ i, 0.Ž . Ž .w � and the interface processes � � on �, FF, P according to the

recipes of Section 4. As a corollary of our estimates we get the following
lemma.

Ž .LEMMA 8.1. Suppose a � � j � 1 for all j � Z. For any b, y � R and0
t � 0,

1
z Ž� nb � , 0.n � �8.1 lim � ny , nt � tg y�t P-a.s.Ž . Ž .Ž . Knn��

PROOF. By an argument similar to the one of Corollary 5.1, Lemmas 5.4
and 7.1 apply to deviations of � as well as of T and imply thatK

�

� �8.2 � � ny , nt � tg y�t 	 � � �Ž . Ž .Ž .Ž .Ý K
n�1

znŽ� nb �, 0.Ž� � .for any � � 0. Next note that the P-distribution of � ny , nt and the
Ž� � .�-distribution of � ny , nt are equal. Apply the Borel�Cantelli lemma. �

Ž . Ž .By the reasoning that led to 6.3 under assumption 3.2 , under the
Ž .stronger assumption 2.5 we get that

1
� �8.3 lim z ny , 0 � U y , P-a.s. for all y � R.Ž . Ž .Ž .n 0nn��

Ž . Ž . Ž . Ž .Fix x, t . As argued in conjunction with 6.12 above, equations 2.8 , 6.5 ,
Ž . Ž .8.1 and 8.3 imply that

1
� �8.4 lim inf z nx , nt 	 U x , t , P-a.s.Ž . Ž .Ž .nnn��
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On the other hand, by Lemma 6.1 and Borel�Cantelli,

1 1
� �lim sup z nx , nt � lim sup � r , r , P-a.s.,Ž .Ž .n n 1 2n nn�� n��

Ž .while by the development in 6.14 ,

1
lim sup � r , r � U x , t � ��2, P-a.s.Ž . Ž .n 1 2nn��

for any � � 0. In conclusion, we get

1
� �8.5 lim z nx , nt � U x , t , P-a.s.Ž . Ž .Ž .nnn��

and this suffices for the strong law of Theorem 1.

Ž .8.2. Proof of Theorem 2. Given the initial soldier locations � i, 0 , definen
initial server configurations by

8.6 z i , 0 � � 0, 0 � � �i , 0 � iL , i � Z.Ž . Ž . Ž . Ž .n n n 1

This defines admissible server configurations with K � L � L . Next, con-1 2
Ž .struct the server processes z � as in Section 4. Define the soldiers processn

Ž .� � byn

8.7 � i , t � � 0, 0 � z �i , t � iL , i � Z.Ž . Ž . Ž . Ž .n n n 1

The reader can check that this produces a process that satisfies the rules laid
Ž .down for the marching soldiers in Section 2. The jump rule of z � withn

Ž . Ž . ŽK � L � L implies that � i, t jumps right with rate 1 if � i, t � � i �1 2 n n n
. Ž . Ž .1, t � L � 1 and � i, t � � i � 1, t � L � 1.2 n n 1

Ž . Ž .Assumption 2.22 and definition 8.6 imply that

1
� �8.8 lim z ny , 0 � U y � V 0 � V �y � L y a.s.Ž . Ž . Ž . Ž .Ž .n 0 0 0 1nn��

Ž .for all y � R. From this assumption, we have just proved in 8.5 that

1
� �lim z nx , ntŽ .nnn��

� U x , t � sup U y � tg x � y �t a.s.Ž . Ž . Ž .Ž .� 40 L �L1 2
y

8.9Ž .

Ž . Ž .for all x � R and t � 0. The limit 8.9 and definition 8.7 then imply the
�1 Ž� � . Ž .limit of n � nx , nt . Theorem 2 is thereby proved. Statement 2.24 followsn

Ž .from 2.20 and Theorem 2 applied to x � 0.

Ž Ž .9. Properties of g and f . Suppose that the distribution of z i, 0 :K K
. Ž . Ž Ž . Ž .i � Z is such that z 0, 0 � 0 with probability 1 and that � i, 0 � z i, 0 �

Ž . . � Ž .�z i � 1, 0 : i � Z is an ergodic process with expectation E � i, 0 � �. Then,
Ž . Ž . Ž . Ž . Ž .with z i, 0 � z i, 0 for all n, 6.3 is satisfied with U y � � y. By 6.4 , inn 0
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P �-probability,
1

lim z 0, t � U 0, 1Ž . Ž .
tt��

� sup � y � g �y� 4Ž .K
y�R

9.1Ž .

� �f � ,Ž .K

Ž . Ž . Ž .where we used 2.8 and 2.10 . On the other hand, recall that z 0, t jumps
Ž . Ž . Ž . Ž .leftward with rate � 0 as long as � 0, t � z 0, t � z �1, t 	 1 and

Ž . Ž . Ž .� 1, t � z 1, t � z 0, t � K � 1. Then standard generator considerations
permit us to write

t
9.2 z 0, t � �� 0 I � 0, s 	 1, � 1, s � K � 1 ds � M ,� 4Ž . Ž . Ž . Ž . Ž .H t

0

where M is a martingale. Taking expectations givest

t� �9.3 E z 0, t � �� 0 P � 0, s 	 1, � 1, s � K � 1 ds.Ž . Ž . Ž . Ž . Ž .Ž .H
0

� Ž . �Clearly z 0, t is bounded above by the total number of jump attempts in
� � Ž Ž . .time 0, t which is Poisson � 0 t -distributed. This gives uniform integrabil-

Ž . Ž .ity, and, consequently, the limit in 9.1 holds also in expectation. So 2.14
Ž .and 3.5 are proved.

Next we have a lemma about g that will give us the properties of fK K
announced after Theorem 1. Recall that the limits of Proposition 5.1 and

Ž Ž ..Corollary 5.1 required only ergodicity of � j .

Ž Ž ..LEMMA 9.1. Assume � j is ergodic. We have these properties:

Ž . Ž . Ž . Ž . Ž .i For y 	 0, g y 	 g y and for y � 0, g y 	 g y � y.K K�1 K K�1
Ž . Ž Ž . . Ž Ž .ii Suppose in addition that � j : j � Z is reversible, so that � j :

. Ž Ž . . Ž . Ž .j � Z � � �j : j � Z . Then for all y � R, g �y � g y � Ky.d K K

Ž .PROOF. For i , use the bijection p: LL � LL defined byK K�1

i , j , j 	 0,Ž .
9.4 p i , j �Ž . Ž . ½ i � j, j , j � 0.Ž .

Ž . Ž .The image p r of a K-admissible path r may fail to be K � 1 -admissible,
Ž .but it is contained in a K � 1 -admissible path. This is because, under p,

Ž . Ž . Ž1, 0 -steps are preserved; a K, �1 -step becomes either a single K �
. Ž . Ž . Ž .1, �1 -step or a 1, 0 -step followed by a K � 1, �1 -step, and a 0, 1 -step

Ž . Ž . Ž .becomes either a single 0, 1 -step or a 1, 0 -step followed by a 0, 1 -step.
Since passage times are monotone under inclusion of paths, we get the

Ž . Ž Ž .. Ž .inequality T i, j � T p i, j . Passing to the limit 5.9 then givesK K�1

� x , y , y 	 0,Ž .K�19.5 � x , y �Ž . Ž .K ½ � x � y , y , y � 0.Ž .K�1

Ž .This implies statement i .
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Ž . Ž . Ž .For ii we use the bijection p: LL � LL defined by p i, j � i � Kj, �j .K K
Check that p is its own inverse, and that p preserves K-admissibility of

Ž . Ž .lattice paths, by interchanging K, �1 -steps with 0, 1 -steps, and by leaving
Ž .1, 0 -steps intact. The reversibility assumption implies that the distribution

Ž Ž . Ž . .of the sitewise passage times is invariant under p: � i, j : i, j � LL �K d
Ž Ž Ž .. Ž . . Ž . Ž .�1 Ž .� p i, j : i, j � LL where � i, j � � j � i, j as in Section 5. From allK

Ž . Ž Ž .. Ž . Žthis follows that T i, j � T p i, j , and consequently � x, y � � x �K d K K K
. Ž .Ky, �y . This implies statement ii . �

Ž .Lemma 9.1 ii implies that any tangent to g at x � 0 must have slope inK
� � Ž . � ��K�2, 0 . This and 2.10 imply that f is nondecreasing on 0, K�2 . TheK

Ž . Ž . Ž .symmetry 2.16 of f follows from 2.10 and Lemma 9.1 ii , while theK
Ž . Ž . Ž .K-monotonicity 2.17 comes from 2.10 and Lemma 9.1 i .

To get explicitly computable bounds, we restrict ourselves to the basic case
Ž .without disorder. First we explain Remark 5.2. Definition 2.10 , the convex-

� Ž .�ity and continuity of g and basic convex duality Rockafellar 1970 implyK
that

9.6 g y � sup f � � x� .� 4Ž . Ž . Ž .K K
0���K

Ž .For K � 1 we deduce, from 2.15 and Bernoulli equilibria � , the well-known�

Ž . Ž . Ž .flux f � � � 1 � � , and then 9.6 gives1

�y, y � �1,

2�g y �Ž . 1�4 1 � y , �1 � y � 1,Ž . Ž .1 �0, y 	 1.

Ž . Ž Ž . . � �From homogeneity 5.18 and the identity � g y , y � 1 for y � �1, 1 ,1 1
2'Ž . Ž . Ž . Ž .'one deduces � x, y � x � x � y . Equations 5.23 with a � 1 and1 1

Ž . Ž .9.5 then imply the boundary values 5.24 .
Ž .Lemma 9.1 i gives a lower bound for g in terms of g . To get an upperK 1

Ž . Ž .bound, we utilize Rost’s 1981 calculation 5.14 . Define a convex function hK
by

�Ky, y � �1,

2 2'1 � � y � Ky, �1 � y � �4� K � 2 ,Ž .Ž .

2 2�9.7 h y �Ž . Ž . K� K � 2 � Ky�2, �4� K � 2 � y � 4� K � 2 ,Ž . Ž . Ž .K

2 2'1 � y , 4� K � 2 � y � 1,Ž .Ž .�0, y 	 1.

Ž . Ž . Ž .LEMMA 9.2. Suppose � j � 1 for all j. Then g y � h y for all y � R.K K
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Ž . 2 Ž .PROOF. Let i, j � N . In the definition 5.12 of the last-passage time
Ž . Ž . Ž . Ž .V i, j , set v i, j � � i, j . Since the up-right paths r � in 5.12 are K-admis-

Ž . Ž . Ž . Ž .sible, T i, j 	 V i, j . By passing to the limits 5.9 and 5.14 , we getK
2 2'Ž . Ž . Ž . Ž .' '� x, y 	 x � y for x, y � 0, and consequently g y � 1 � y forK K

Ž .0 � y � 1. An application of Lemma 9.1 ii then gives

�Ky, y � �1,

2'1 � � y � Ky, �1 � y � 0,Ž .�˜9.8 g y � h y �Ž . Ž . Ž .K K 2'1 � y , 0 � y � 1,Ž .�0, 1 � y.

˜ ˜The function h is not convex while g is convex, so we can replace h inK K K
the inequality by its convex hull h , the greatest convex function majorizedK

˜by h . �K

Ž .Substituting the upper bound h for g in 2.10 gives the upper boundK K
Ž . Ž .2.19 for f . The function on the right-hand side of 2.19 has a corner atK
� � K�2. This corresponds to the linear segment of slope �K�2 that h hasK
on an interval around 0.

Ž . Ž . 2 Ž .10. A non-Markovian K-exclusion. Let � l, i , l, i � Z , be 0, � -
valued i.i.d. random variables with common cumulative distribution function
F. In this section we study a non-Markovian totally asymmetric K-exclusion

� Ž . 4that uses the process DD � � l, i : l � Z as the waiting times for jumpsi
from site i to i � 1.

These are the informally stated rules: Let t be the last time a particle0
jumped from site i to i � 1, or let t � 0 if we are just starting the process.0

� .Let t be the first time in t , � such that1 0

10.1 � i , t 	 1 and � i � 1, t � K � 1.Ž . Ž . Ž .1 1

Ž .Let � l, i be the next unused waiting time from DD . Then at time t � t �i 2 1
Ž . Ž . Ž� l, i one particle jumps from site i to i � 1; in other words, � i, t � � i,2

. Ž . Ž .t � � 1 and � i � 1, t � � i � 1, t � � 1.2 2 2
Notice that the only events involving sites i and i � 1 that can happen in

� .the time interval t , t are particles jumping from i � 1 to i � 2, or from1 2
Ž .i � 1 to i. Neither event violates the precondition 10.1 for the jump from i

to i � 1, so this jump can be legitimately executed at time t . The process DD2 i
need not be bi-infinite for this description, but later this property will be

Ž .useful. The jumping rule can be summarized like this: as soon as 10.1 holds,
pick an F-distributed waiting time � independently of everything else, and
let one particle jump from i to i � 1 after time �.

The possibility of simultaneous jumps is not a problem, so we make no
continuity assumptions on F. We shall not attempt a more technical descrip-
tion of the process at this point. In Section 10.1 below we define the process

Ž .through a rigorous construction of the corresponding server process z � , as
was done in Section 4 for the Markovian K-exclusion.
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Otherwise the basic set-up is the same as in Section 2. We assume a
Ž . Ž .sequence � � of processes that satisfies the weak law 2.4 at time zero. Letn

� Ž .� Ž .us normalize the waiting times by assuming E � l, i � 1 so that 2.6
Ž � Ž .�becomes part of the conclusion again. The case E � l, i � � gives trivial

hydrodynamic behavior where nothing moves, for the reason outlined in the
.last paragraph of Section 6.

THEOREM 4. There exists a nonnegative convex function g that dependsK
Ž .on F and has property 2.6 , and such that the following statement holds: if

Ž . Ž . Ž . Ž .assumption 2.4 is satisfied and u x, t is defined by 2.7 � 2.9 , then for each
Ž .t � 0, 
 � C R , and � � 0,0

10.2 lim P � nt , 
 � 
 x u x , t dx 	 � � 0.Ž . Ž . Ž . Ž .Hn nž /n�� R

If we wanted a strong law, we would need some boundedness assumptions
on F to make Lemma 7.1 valid. To prove Theorem 4 we first construct a

Ž .process � � that operates according to the rules laid down above, and then we
observe how the arguments of Sections 5 and 6 work in this more general
setting.

10.1. Construction of the process. As in Section 4, we construct the server
Ž .process z � whose particles jump to the left and then define the customer
Ž . Ž . Ž Ž .process � � by 4.1 . Assume we are given an initial configuration z i, 0 :

. Ž . Ž Ž . .i � Z such that 4.1 holds for t � 0, where � i, 0 : i � Z is the desired
initial K-exclusion configuration. In particular, the inequalities

10.3 0 � z i � 1, t � z i , t � KŽ . Ž . Ž .
hold at t � 0.

Ž .The informal rule for the evolution of z � follows from the earlier descrip-
Ž . Ž . Ž .tion for � � , and now we specify that � l, i is the waiting time for server z i

Ž .to execute the jump from site l � 1 to l. If z i, 0 � l, let t be the earliest1
moment at which these three conditions hold:

10.4 z i � 1, t � l , z i , t � l � 1 and z i � 1, t � l � K .Ž . Ž . Ž . Ž .1 1 1

Ž . Ž .Then at time t � t � � l, i server z i jumps to site l.2 1
Ž .We shall construct the trajectories z i, t by rigorously defining the jump

Ž . Ž .times. Let � l, i denote the earliest time t such that z i, t � l holds. There
Ž .is one technical twist; a particular z i may never reach certain sites l

Ž .because z i comes to a permanent halt during the dynamics. Then the
Ž .corresponding � l, i ’s must be infinite. This happens if in the initial K-exclu-

Ž .sion configuration either � i, 0 � 0 for all sites i far enough to the left or
Ž . Ž .� i, 0 � K for all sites i far enough to the right. For the initial z i, 0 ’s, the

corresponding conditions are these:

10.5 l	 � lim z i , 0 � ��Ž . Ž .
i���
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or

10.6 there exists i* � � such that z i � 1, 0 � z i , 0 � K for i 	 i*.Ž . Ž . Ž .
Ž . Ž . Ž . Ž .In case 10.5 , no z i ever makes it past l	, while in case 10.6 , z i never

Ž . Ž .makes it beyond z i*, 0 � K i � i* , for all i. This leads us to define the
Ž .domain II of � l, i as follows:

II � Z2 if neither 10.5 nor 10.6 holds,Ž . Ž .
II � l , i � Z2 : l 	 l	 if 10.5 holds but not 10.6 ,� 4Ž . Ž . Ž .

II � l , i � Z2 : l 	 z i*, 0 � K i � i*� 4Ž . Ž . Ž .
10.7Ž .

if 10.6 holds but not 10.5 andŽ . Ž .
2II � l , i � Z : l 	 max l	, z i*, 0 � K i � i*Ž . Ž . Ž .� 4

if both 10.5 and 10.6 hold.Ž . Ž .

Outside of this domain we set

10.8 � l , i � � for l , i � II .Ž . Ž . Ž .
�Ž . Ž .4 Ž Ž . .Let II � l, i : l 	 z i, 0 
 II. The initial configuration z i, 0 : i � Z dic-0

tates that

10.9 � l , i � 0 for l , i � II .Ž . Ž . Ž . 0

The remaining values are determined by the equation

� l , i � � l , i � max � l , i � 1 , � l � 1, i , � l � K , i � 1 ,� 4Ž . Ž . Ž . Ž . Ž .
10.10Ž .

l , i � II � II .Ž . 0

Ž .Equation 10.10 incorporates the dynamics, starting with the ‘‘initial
Ž . Ž .values’’ 10.9 . It is the formalization of the description around 10.4 above.

Ž .Observe that ‘‘time increases leftward’’ on the lattice l, i in the sense that
Ž . Ž .� l, i increases as l decreases, because z i jumps leftward.

Ž . Ž . Ž .We need to prove that 10.8 � 10.10 define all � l, i ’s, and thereby the
Ž . Ž . Ž .dynamics z � . Notice that 10.8 and 10.10 are consistent in this sense: it

Ž . Ž . Ž . Žfollows from the definition 10.7 of II that if l, i � 1 , l � 1, i and l � K,
. Ž . Ž .i � 1 all lie in II, then so does l, i . In other words, equation 10.10 cannot

Ž . Ž .define � beyond the domain II. Furthermore, since � l, i � 0, 10.9 and
Ž . Ž . Ž .10.10 together imply that � l, i � 0 iff l, i � II .0

To prevent the jump times from accumulating at a finite value, assume
that

l

10.11 � m , i � � for all l , i .Ž . Ž .Ý
m���

By the strong law of large numbers for i.i.d. random variables, a.e. realization
� Ž .4 Ž .� l, i satisfies 10.11 .
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� Ž . Ž . 24 Ž .LEMMA 10.1. For given � l, i : l, i � Z that satisfy 10.11 , there is a
2 Ž . Ž .unique function � on Z that satisfies equations 10.8 � 10.10 . Furthermore,

Ž .this function � satisfies lim � l, i � � for all i.l���

Ž . � Ž .4 Ž .PROOF. We first show that 10.9 and � l, i determine � l, i for each
Ž . Ž .l,i � II � II through 10.10 . To do this by induction, let II be the set of0 n
Ž .l, i � II such that

l , i � 0, �n � n , 0 � Kn , n � IIŽ . Ž . Ž . Ž .1 2 3 3 0

for all choices of n , n , n 	 0 such that n � n � n � n. First note that1 2 3 1 2 3

II 
 II 
 II 
 ���0 1 2

Ž .because by 10.3 , II is closed under the maps0

10.12 l , i � l , i � 0, �n � n , 0 � Kn , nŽ . Ž . Ž . Ž . Ž . Ž .1 2 3 3

Ž . Ž .for all n , n , n 	 0. Second, 10.10 defines � l, i inductively over succes-1 2 3
Ž . Ž . Ž .sive II ’s. Assume that � l, i is defined for all l, i � II . If l, i � II , thenn n n�1

Ž . Ž . Ž . Ž .l, i � 1 , l � 1, i and l � K, i � 1 all lie in II , and equation 10.10n
Ž .defines � l, i .

Ž .Next we argue that II � � II . Pick and fix l, i � II. By checking then	 0 n
Ž .different cases in 10.7 , one sees that it is possible to choose m large enough

Ž . Ž . Ž .so that l, i � m , l � m, i , l � Km, i � m all lie in II . It follows that0
Ž .l, i � II , because n � n � n � 3m forces some n 	 m, and because II3m 1 2 3 i 0

Ž .itself is closed under the maps 10.12 . We have showed that � is defined on
all of Z2.

Uniqueness is essentially contained in the previous paragraphs. Suppose �̃
Ž . Ž . Ž . Ž .is a different function that satisfies 10.8 � 10.10 . Then � l, i � � l, i for˜

Ž . Ž . Ž .some l, i � II � II . Then by 10.10 , � and � must differ at one of l, i � 1 ,˜0
Ž . Ž .l � 1, i , or l � K, i � 1 . Proceeding inductively, we eventually conclude

Ž . Ž .that � and � must differ at some l, i � II , contradicting 10.9 .˜ 0
Ž . Ž .Fix i. If l, i � II for some l, then lim � l, i � � is immediate.l���

Ž . Ž . Ž .Suppose l, i � II for all l. Set l � z i, 0 � 1. Since l , i � II � II , we can0 0 0
Ž .apply 10.10 repeatedly to get, for any l � l ,0

� l , i 	 � l , i � � l � 1, iŽ . Ž . Ž .
	 � l , i � � l � 1, i � � l � 2, iŽ . Ž . Ž .

l0

	 ��� 	 � m , i .Ž .Ý
m�l

Ž . Ž .Now lim � l, i � � follows from 10.11 . �l���

Ž .Having defined the jump times � l, i , we define the dynamics by

10.13 z i , t � l for � l , i � t � � l � 1, i for all l , i � Z.Ž . Ž . Ž . Ž .
Ž .Lemma 10.1 guarantees that z i, t is defined for all time 0 � t � �. Equa-

Ž . Ž .tion 10.10 implies that 10.3 holds for all t � 0.
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10.2. The auxiliary processes. As in Section 4, given an initial configura-
Ž Ž . . zŽ i, 0.Ž .tion z i, 0 : i � Z denote by w � the server process with the special

initial configuration

z i , 0 , j 	 0,Ž .zŽ i , 0.10.14 w j, 0 �Ž . Ž . ½ z i , 0 � Kj, j � 0.Ž .
Our goal is to prove a result that corresponds to the central Lemma 4.2. First

� Ž .4we define further requirements satisfied by a ‘‘good’’ realization of � l, i .
k

10.15 � l , j � � for all l , kŽ . Ž .Ý
j���

and
�

10.16 � l � j � k K , j � � for all l , k .Ž . Ž .Ž .Ý
j�k

� Ž .4 Ž . Ž . Ž .A.e. realization � l, i satisfies 10.11 , 10.15 and 10.16 . Corresponding to
Ž .4.4 , we stipulate that

zŽ i, 0.Ž . Ž .Particle w j uses waiting time � l, i � j for its jump
10.17Ž . from site l � 1 to l.

Ž . Ž . zŽ i, 0.Ž .The point of 10.17 is that both z k and w k � i use the same waiting
Ž .time � l, k to jump from site l � 1 to l.

Ž Ž . .LEMMA 10.2. Assume we are given an initial configuration z i, 0 : i � Z
Ž . � Ž .4for the z � -process and a realization � l, i of the waiting times that satisfies

Ž . Ž . Ž . zŽ i, 0.Ž .10.11 , 10.15 and 10.16 . Construct the processes w � according to the
Ž .description of Section 10.1 and rule 10.17 . Then the following equality holds

for all k � Z and t 	 0:

10.18 z k , t � sup w zŽ i , 0. k � i , t .Ž . Ž . Ž .
i�Z

iŽ . zŽ i, 0.Ž .PROOF. Let � l, j be the earliest time t when w j, t � l. By the
Ž . Ž . Ž . iconstruction 10.8 � 10.10 and the initial condition 10.14 , the domain of �

is Z2 for each i,
i � 410.19 � l , j � 0 for l 	 z i , 0 � K � min j, 0Ž . Ž . Ž .

and

� i l , j � � l , i � jŽ . Ž .
� max � i l , j � 1 , � i l � 1, j , � i l � K , j � 1� 4Ž . Ž . Ž .10.20Ž .

� 4for l � z i , 0 � K � min j, 0 .Ž .
Ž . Ž .Let II and II be as defined by 10.7 and by the sentence after 10.8 , on0

Ž Ž . .the basis of the given z i, 0 : i � Z . Set

10.21 � l , k � sup � i l , k � i .Ž . Ž . Ž .˜
i�Z
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Ž . Ž .Our first goal is to show that � satisfies 10.8 � 10.10 , and therefore by˜
Lemma 10.1, � � � .˜

Ž . iŽ .Condition 10.9 for � follows immediately because for all i, � l, k � i � 0˜
Ž . Ž . Ž .for l 	 z k, 0 by 10.19 and 10.3 .

Ž .To deduce 10.10 for � , note first that˜

10.22 � l , k � max 0, sup � i l , k � i ,Ž . Ž . Ž .˜ ½ 5
i�Jl , k

where

� 410.23 J � i � Z: z i , 0 � K � min k � i , 0 � l .� 4Ž . Ž .l , k

Ž . iŽ . Ž .Equation 10.22 is true because � l, k � i � 0 for i � J , by 10.19 . Byl, k
Ž . Ž .10.3 , J � � when l 	 z k, 0 , so we need the comparison with zero on thel, k

Ž . Žright-hand side of 10.22 . By convention, the supremum of an empty set is
. Ž . � Ž . ��� . If l � z k, 0 equivalently, l, k � II , then k � J , so J � �. Then0 l, k l, k

Ž . ithe comparison with zero is not needed in 10.22 because � 	 0 always.
Ž . Ž .Now we can deduce 10.10 for l, k � II � II . First,0

� l , k � sup � i l , k � iŽ . Ž .˜
i�Jl , k

i i� sup � l , k � max � l , k � i � 1 , � l � 1, k � i ,�Ž . Ž . Ž .
i�Jl , k

i� l � K , k � i � 1 4Ž .
by 10.20Ž .10.24Ž .

� � l , k � max sup � i l , k � i � 1 , sup � i l � 1, k � i ,Ž . Ž . Ž .½
i�J i�Jl , k l , k

sup � i l � K , k � i � 1Ž . 5
i�Jl , k

� � l , k � max � l , k � 1 , � l � 1, k , � l � K , k � 1 ,� 4Ž . Ž . Ž . Ž .˜ ˜ ˜
Ž .where the last inequality follows from 10.21 . On the other hand, one can

check that J � J � J � J . Then we can continue from thel, k l, k�1 l�1, k l�K , k�1
Ž .next-to-last line in 10.24 by

� l , kŽ .˜

	 � l , k � max 0, sup � i l , k � i � 1 , sup � i l � 1, k � i ,Ž . Ž . Ž .½
i�J i�Jl , k�1 l�1, k

sup � i l � K , k � i � 1Ž . 5
i�Jl�K , k�1

10.25Ž .

� � l , k � max � l , k � 1 , � l � 1, k , � l � K , k � 1 ,� 4Ž . Ž . Ž . Ž .˜ ˜ ˜
Ž .where the last step now comes from 10.22 . We have verified that � satisfies˜

Ž .10.10 .
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Ž . Ž . Ž .It remains to check 10.8 , namely, that � l, k � � for l, k � II. Two˜
Ž . Ž .cases, according to 10.5 and 10.6 , need to be considered.

CASE I. Suppose l	 � �� and l � l	. Let i be a large negative integer,
Ž .large enough so that z i, 0 � l	 and k � i � 0. By repeated application of

Ž .10.20 ,

� i l , k � i 	 � l , k � � i l , k � i � 1Ž . Ž . Ž .
	 � l , k � � l , k � 1 � � i l , k � i � 2Ž . Ž . Ž .

10.26Ž . k
i	 ��� 	 � l , j � � l , k � i � iŽ . Ž .Ý 0

j�k�i �10

Ž .as long as k � i � i 	 0 because then 10.20 is valid. Take i � k � i and0 0
Ž .combine with 10.21 to write

k
i� l , k 	 � l , k � i 	 � l , j .Ž . Ž . Ž .˜ Ý

j�i�1

Ž . Ž .Now � l, k � � follows from 10.15 by letting i � ��.˜

Ž . Ž . � 4CASE II. Suppose i* � � and l � z i*, 0 � K k � i* . Let i � max k, i* ,
Ž . Ž . Ž . Ž .and i � i � k. The assumption on l, k and z i, 0 � z i*, 0 � K i � i*0

Ž . Ž . Ž .imply that l � i K � z i, 0 � K k � i � i , and we can again apply 10.200 0
inductively to write

� i l , k � i 	 � l , k � � i l � K , k � i � 1Ž . Ž . Ž .
	 � l , k � � l � K , k � 1 � � i l � 2 K , k � i � 2Ž . Ž . Ž .

10.27Ž . k�i �10
i	 ��� 	 � l � j � k K , j � � l � i K , k � i � i .Ž . Ž .Ž .Ý 0 0

j�k

Ž . Ž .Take i � i � k, use 10.21 , let i � � and apply 10.16 to conclude that0
Ž .� l, k � �.˜

This concludes the first step of the proof of Lemma 10.2. Since � satisfies˜
Ž . Ž .10.8 � 10.10 , Lemma 10.1 implies that

10.28 � l , k � sup � i l , k � i .Ž . Ž . Ž .
i�Z

Ž . zŽ i, 0.Ž .This implies that ‘‘	 ’’ holds in 10.18 , because no w k � i arrives in l
Ž . zŽ i, 0.Ž .any later than z k . It remains to argue that some w k � i remains at
Ž . Ž .site l � 1 with z k until time � l, k .

Ž . Ž .For the dynamics of z � , we only concern ourselves with l, k � II in
Ž . Ž .10.28 . Fix such a pair l, k . The next step is to argue that the supremum in
Ž . iŽ10.28 is always realized at some finite i. To this end we show that � l, k �
. Ž .i � 0 for all large enough positive and negative i. By 10.19 , this follows

from showing that

� 410.29 l 	 z i , 0 � K � min k � i , 0 .Ž . Ž .
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Ž .First for large negative i, simply pick i � k so that z i , 0 � l, and then0 0
Ž .10.29 holds for i � i .0

Ž .For large positive i we need two cases. Suppose first that 10.6 does not
� 4 Ž .hold. Let u denote the number of indices j � k � 1, . . . , i such that z i, 0i

Ž . Ž .� z i � 1, 0 � K � 1. Since 10.6 does not hold, u � � as i � �. Pick i � ki 1
Ž .large enough so that u 	 z k, 0 � l. Then for i 	 i ,i 11

z i , 0 � z k , 0 � i � k � u K � u K � 1Ž . Ž . Ž . Ž .i i

� z k , 0 � u � K i � kŽ . Ž .i

� l � K i � k ,Ž .
Ž .and 10.29 follows.

Ž . Ž . Ž .On the other hand, if 10.6 holds, then l, k � II forces l 	 z i*, 0 �
Ž . Ž . Ž . Ž .K k � i* . This, together with z i, 0 � z i*, 0 � K i � i* for i 	 i*, implies

Ž .10.29 .
Ž .To summarize, for each l, k � II, there exists an index i such that0

10.30 � l , k � sup � i l , k � i � � i0 l , k � i .Ž . Ž . Ž . Ž .0
i�Z

Ž .We claim that for l, k � II,

w zŽ i0 , 0. k � i , t � z k , t � l � 1Ž . Ž .010.31Ž .
for � l � 1, k � t � � l , k .Ž . Ž .

As already observed,

w zŽ i0 , 0. k � i , t � z k , t � l � 1Ž . Ž .0

Ž . i0Ž .by virtue of 10.28 . On the other hand, � l, k � i is the earliest time0
zŽ i0 , 0.Ž . zŽ i0 , 0.Ž . Ž .for w k � i , t � l to hold, so w k � i , t 	 l � 1 for t � � l, k .0 0

Ž . Ž . Ž .This proves 10.31 . Consequently, 10.18 holds for t � � l, k whenever
Ž .� l, k � �.

Ž . Ž . Ž .It remains to consider the case � l � 1, k � t � � � � l, k . Now z k, t
has come to a halt at site l � 1, and there are two possible causes for this.

Ž .The first possibility is that z k, t � l � 1 � l	 � ��. By the calculation in
Ž . Ž . iŽ .10.26 , we can choose i � k so that z i, 0 � l	 and � l, k � i � t. Then

zŽ i, 0.Ž . Ž . Ž .w k � i, t � l � 1 � z k, t , and 10.18 is valid again. The other possi-
Ž . Ž . Ž . Ž .bility is that 10.6 holds and z k, t � z i*, 0 � K i* � k . Then we choose

� 4 iŽ .i � max i*, k large enough so that � l, k � i � t, as can be done by the
Ž . zŽ i, 0.Ž . Ž .calculation in 10.27 . Then w k � i, t � l � 1 � z k, t .

Ž .This concludes the proof of 10.18 . �

10.3. The growth model. The growth model is formulated exactly as in
Ž . Ž Ž . Ž . 2 .Section 5. Now � j � 1 for all j, and the � i, j : i, j � Z are i.i.d.

Ž .F-distributed instead of exponentially distributed. The passage times T i, jK
Ž .are defined in terms of K-admissible paths as in 5.5 , and the interface

Ž . Ž .process � j, t is defined by 5.8 .
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� Ž .4PROPOSITION 10.1. Let the common distribution F of the i.i.d. � l, i be
Ž . � Ž .�any distribution on 0, � that satisfies E � l, i � 1. Then there is a concave

function � defined on UU such thatK K

1
� � � �10.32 lim T nx , ny � � x , yŽ . Ž .Ž .K Knn��

Ž .holds almost surely, for all x, y � UU . Either � � � on all of UU or � � �K K K K
on all of UU .K

The equation

g y � inf x � 0: x , y � UU , � x , y 	 1� 4Ž . Ž . Ž .K K K

defines a finite, convex, continuous, nonincreasing function on R with prop-
Ž .erty 2.6 . For any y � R and t � 0,

1
� �10.33 lim � ny , nt � tg y�t a.s.Ž . Ž .Ž . Knn��

PROOF. The proof of Proposition 5.1 applies with some adjustments. The
point to note is that a nonnegative superadditive process converges almost
surely with or without the moment bound, as long as the other assumptions
are met. This can be seen by applying a truncation argument to the basic
subadditive ergodic theorem.

� �The first step of the proof of Proposition 5.1 now defines a 0, � -valued
Ž . Ž . Ž . Ž .function � k, l on LL that gives the limit 10.32 for x, y � k, l . Sup-K K
Ž . Ž . Ž .pose that � i, j � � for some i, j � LL . For any k, l � LL , find m largeK K K

Ž . Ž .enough such that mk, ml � i, j � LL . ThenK

m� k , l � � mk , ml 	 � i , j .Ž . Ž . Ž .K K K

Ž . Ž . Ž .This shows that either � k, l � � for all k, l � LL or � k, l � � for allK K K
Ž .k, l � LL . In the former case, follow the proof of Proposition 5.1, in theK

Ž . Ž .latter case modify that proof to show that 10.32 holds with � x, y � �.K
Ž .The limit 10.33 follows as Corollary 5.1 did. Note that � � � poses noK

Ž .problem for the definition of g . In this case, g y � 0 for y 	 0 andK K
Ž .g y � �Ky for y � 0. �K

Another collection of interface processes is defined, as in Section 4, by

10.34 � zŽ i , 0. j, t � z i , 0 � w zŽ i , 0. j, t .Ž . Ž . Ž . Ž .

LEMMA 10.3. For any sequence of possibly random initial configurations
Ž Ž . .z i, 0 : i � Z , any sequence of indices i and any y � R and t � 0,n n

1 y
z Ž i , 0.n n � �10.35 lim � ny , nt � tg in probability.Ž . Ž . K ž /n tn��

PROOF. Suppose first that we have a deterministic initial configuration
Ž Ž . .z i, 0 : i � Z . We shall show that for any fixed i, j and t,

10.36 � zŽ i , 0. j, t � � j, t .Ž . Ž . Ž .d
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Ž . Ž .Then 10.35 follows from 10.33 for a deterministic sequence of initial
Ž . Ž Ž . .configurations. Subsequently, 10.35 follows for random z i, 0 : i � Z byn

Ž .integrating over the distribution of z i , 0 .n n
Ž . zŽ i, 0.Ž .Fix i. By 10.34 , the time t when � j, t � l first holds is the same as

iŽ Ž . . zŽ i, 0.Ž . Ž .� z i, 0 � l, j , the time when server w j first reaches site z i, 0 � l.
Ž . Ž .By 5.8 , the time when � j, t � l first holds is the past-passage time

Ž . Ž .T l, j . To prove 10.36 and thereby the lemma, we show the equality inK
distribution of the time processes

10.37 � i z i , 0 � l , j : l , j � LL � T l , j : l , j � LL .� 4Ž . Ž . Ž . Ž . Ž .� 4Ž . K d K K

Ž .To establish this, we choose the sitewise passage times � l, j from a realiza-
Ž . Ž . Ž Ž . . Ž .tion of the waiting times � l, i . Set � l, j � � z i, 0 � l, i � j for l, j �

Ž . Ž .LL . By 5.5 , for l, j � LL ,K K

T l , jŽ .K

� � l , j � max T l , j � 1 , T l � 1, j ,T l � K , j � 1� 4Ž . Ž . Ž . Ž .K K K

� � z i , 0 � l , i � jŽ .Ž .
10.38Ž .

� max T l , j � 1 , T l � 1, j , T l � K , j � 1 ,� 4Ž . Ž . Ž .K K K

Ž . Ž . Ž . Ž .with initial T l, j � 0 for l, j � LL . A comparison with 10.19 and 10.20K
iŽ Ž . . Ž .shows that � z i, 0 � l, j satisfies the same recursion 10.38 , with the

iŽ Ž . . Ž .same initial values � z i, 0 � l, j � 0 for l, j � LL . It follows inductivelyK
Ž . Ž . iŽ Ž .that, with this particular choice of � l, j ’s, T l, j actually equals � z i, 0K

. Ž .� l, j . For arbitrary i.i.d. F-distributed passage times � l, j we then have
Ž .the equality in distribution 10.37 . �

Ž .Now rewrite 10.18 as

10.39 z k , t � sup z i , 0 � � zŽ i , 0. k � i , t .� 4Ž . Ž . Ž . Ž .
i�Z

Ž . Ž .10.4. Proof of Theorem 4. The route from 10.39 to 10.2 is the same as
Ž .the one taken in Section 6. The goal is again to prove 6.4 , with � � 1. The

Ž .easy half 6.12 is easy again and for the same reasons. The harder half
required two lemmas: Lemma 6.1, which allows us to exclude the extreme

Ž .values of i in 10.39 , and Lemma 4.3 about preserving the ordering of
Ž .particles. Both lemmas are valid again, and hence the reasoning 6.14 can be

Ž . Ž .repeated to deduce 6.15 , which together with 6.8 completes the proof of
Ž . Ž .10.2 . The Borel�Cantelli estimate 5.26 was required only for the disor-
dered weak law, and we do not need it now, although it would be valid here
too. With this we consider Theorem 4 proved.
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