The Annals of Probability 2002, Vol. 30, No. 1, 480–482

CORRECTION

AN INVARIANCE PRINCIPLE FOR DIFFUSION IN TURBULENCE

BY ALBERT C. FANNJIANG AND TOMASZ KOMOROWSKI

The Annals of Probability (1999) 27 751-781

The use of the Poincaré inequality in (44), page 768, is in error. Instead, we should have used the Poincaré–Wirtinger inequality; see [1]. The estimation of the first term on the right-hand side of (42), page 768, thus needs to be reworked.

By the Poincaré–Wirtinger inequality and the fact that $|u_{k,\varepsilon}| \le |y_{k,\varepsilon}| + 1$ we have, for a certain positive constant *c*,

$$\iint_{\Omega_{2T,2R}} |u_{k,\varepsilon}\phi_t| \, dx \, dt \leq \iint_{\Omega_{2T,2R}} |y_{k,\varepsilon}| \, dx \, dt + |\Omega_{2T,2R}|$$
(E1)

$$\leq \int_0^{2T} \left| \int_{B_{2R}} y_{k,\varepsilon}(t,x) \, dx \right| \, dt$$

$$+ c \iint_{\Omega_{2T,2R}} |(\nabla y_k)(t/\varepsilon^2, x/\varepsilon)| \, dx \, dt + |\Omega_{2T,2R}|.$$

Since

$$\partial_t y_{k,\varepsilon}(t,x) = \sum_{i,j=1}^d \partial_{x_i} \left(a_{i,j,\varepsilon}(t,x) \partial_{x_j} y_{k,\varepsilon}(t,x) \right)$$

we have

(E2)
$$\begin{aligned} \left| \int_{B_{2R}} y_{k,\varepsilon}(t,x) \, dx \right| &\leq \left| \int_{B_{2R}} y_{k,\varepsilon}^0(x) \, dx \right| \\ &+ \sum_{i,j=1}^d \int_0^t \int_{\partial B_{2R}} |a_{i,j,\varepsilon}(s,x)| |\partial_{x_j} y_{k,\varepsilon}(s,x)| \, ds \, S(dx). \end{aligned}$$

Integrating both ends of (E1) over R from R_0 to $2R_0$ and using (E2) we obtain

$$R_{0} \iint_{\Omega_{2T,2R_{0}}} |u_{k,\varepsilon}\phi_{t}| \, dx \, dt$$

$$\leq \int_{R_{0}}^{2R_{0}} dR \iint_{\Omega_{2T,2R}} |u_{k,\varepsilon}\phi_{t}| \, dx \, dt$$

$$\leq 2T \int_{R_{0}}^{2R_{0}} dR \left| \int_{B_{2R}} y_{k,\varepsilon}^{0}(x) \, dx \right|$$

Received June 2001.

CORRECTION

$$+ \int_{R_{0}}^{2R_{0}} dR \int_{0}^{2T} dt \int_{0}^{t} \int_{\partial B_{2R}} |a_{i,j,\varepsilon}(s,x)| |\partial_{x_{j}} y_{k,\varepsilon}(s,x)| ds S(dx) + cR_{0} \iint_{\Omega_{2T,4R_{0}}} |(\nabla y_{k})(t/\varepsilon^{2}, x/\varepsilon)| dx dt + R_{0}|\Omega_{2T,4R_{0}}| (E3) \leq 2T \int_{R_{0}}^{2R_{0}} dR \Big| \int_{B_{2R}} y_{k,\varepsilon}^{0}(x) dx \Big| + \int_{0}^{2T} dt \int_{0}^{t} \int_{A_{2R_{0}},4R_{0}} |a_{i,j,\varepsilon}(s,x)| |\partial_{x_{j}} y_{k,\varepsilon}(s,x)| ds dx + cR_{0} \iint_{\Omega_{2T,4R_{0}}} |(\nabla y_{k})(t/\varepsilon^{2}, x/\varepsilon)| dx dt + R_{0}|\Omega_{2T,4R_{0}}|$$

where $A_{2R_0,4R_0}$ is the annulus with inner and outer radii $2R_0$ and $4R_0$, respectively. As ε tends to zero the second and the third terms have finite limits *P*-a.s. by (Y2) of the main lemma, page 757, and Proposition 4, page 765. The first term can be shown to stay bounded as follows.

By (34), page 765, we have

(E4)
$$\int_{B_R} y_{k,\varepsilon}^0(x) \, dx = \int_0^1 d\sigma \int_{B_R} x \cdot \nabla y_{k,\varepsilon/\sigma}^0(x) \, dx \qquad \forall R > 0$$

Moreover, we know that

$$\sup_{\rho>0}\int_{B_R}|\nabla y^0_{k,\rho}(x)|^2\,dx=M(w)<+\infty,\qquad P\text{-a.s.}$$

from the individual ergodic theorem, Proposition 4, equation (33) (for small ρ), and the almost sure, local boundedness of $\nabla y_k^0(\cdot)$ (for intermediate and large ρ). Thus σ -integral of the right-hand side of (E4) can be bounded by

$$\sup_{\rho>0} \|\nabla y_{k,\rho}^0\|_{L^2(B_{2R_0})} \|x\|_{L^2(B_{2R_0})} < +\infty \qquad \forall R \in [R_0, 2R_0].$$

Therefore the first term on the right-hand side of (E3) remains bounded *P*-a.s., as $\varepsilon \downarrow 0$.

Summarizing, we have from (E1) that

$$\lim_{\varepsilon\to 0}\sup_{[0,T]}\int_{B_R}u_{k,\varepsilon}\,dx<+\infty,\qquad P\text{-a.s.}$$

The proof of (41), page 767, is thus complete in view of the point-wise estimate $|y_{k,\varepsilon}| \le |u_{k,\varepsilon}|$.

481

CORRECTION

REFERENCES

[1] KESAVAN, S. (1989). Topics in Functional Analysis and Applications. Wiley, New York.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA DAVIS, CALIFORNIA 95616-8633 E-MAIL: fannjian@math.ucdavis.edu INSTITUTE OF MATHEMATICS UMCS LUBLIN POLAND

482