## CORRECTION

# AN INVARIANCE PRINCIPLE FOR DIFFUSION IN TURBULENCE 

By Albert C. Fannuiang and Tomasz Komorowski

The Annals of Probability (1999) 27 751-781
The use of the Poincaré inequality in (44), page 768, is in error. Instead, we should have used the Poincaré-Wirtinger inequality; see [1]. The estimation of the first term on the right-hand side of (42), page 768, thus needs to be reworked.

By the Poincaré-Wirtinger inequality and the fact that $\left|u_{k, \varepsilon}\right| \leq\left|y_{k, \varepsilon}\right|+1$ we have, for a certain positive constant $c$,

$$
\iint_{\Omega_{2 T, 2 R}}\left|u_{k, \varepsilon} \phi_{t}\right| d x d t \leq \iint_{\Omega_{2 T, 2 R}}\left|y_{k, \varepsilon}\right| d x d t+\left|\Omega_{2 T, 2 R}\right|
$$

$$
\begin{align*}
\leq & \int_{0}^{2 T}\left|\int_{B_{2 R}} y_{k, \varepsilon}(t, x) d x\right| d t  \tag{E1}\\
& +c \iint_{\Omega_{2 T, 2 R}}\left|\left(\nabla y_{k}\right)\left(t / \varepsilon^{2}, x / \varepsilon\right)\right| d x d t+\left|\Omega_{2 T, 2 R}\right|
\end{align*}
$$

Since

$$
\partial_{t} y_{k, \varepsilon}(t, x)=\sum_{i, j=1}^{d} \partial_{x_{i}}\left(a_{i, j, \varepsilon}(t, x) \partial_{x_{j}} y_{k, \varepsilon}(t, x)\right)
$$

we have

$$
\begin{align*}
\left|\int_{B_{2 R}} y_{k, \varepsilon}(t, x) d x\right| \leq & \left|\int_{B_{2 R}} y_{k, \varepsilon}^{0}(x) d x\right| \\
& +\sum_{i, j=1}^{d} \int_{0}^{t} \int_{\partial B_{2 R}}\left|a_{i, j, \varepsilon}(s, x) \| \partial_{x_{j}} y_{k, \varepsilon}(s, x)\right| d s S(d x) . \tag{E2}
\end{align*}
$$

Integrating both ends of (E1) over $R$ from $R_{0}$ to $2 R_{0}$ and using (E2) we obtain

$$
\begin{aligned}
& R_{0} \iint_{\Omega_{2 T, 2 R_{0}}}\left|u_{k, \varepsilon} \phi_{t}\right| d x d t \\
& \quad \leq \int_{R_{0}}^{2 R_{0}} d R \iint_{\Omega_{2 T, 2 R}}\left|u_{k, \varepsilon} \phi_{t}\right| d x d t \\
& \quad \leq 2 T \int_{R_{0}}^{2 R_{0}} d R\left|\int_{B_{2 R}} y_{k, \varepsilon}^{0}(x) d x\right|
\end{aligned}
$$

Received June 2001.

$$
\begin{aligned}
& +\int_{R_{0}}^{2 R_{0}} d R \int_{0}^{2 T} d t \int_{0}^{t} \int_{\partial B_{2 R}}\left|a_{i, j, \varepsilon}(s, x)\right|\left|\partial_{x_{j}} y_{k, \varepsilon}(s, x)\right| d s S(d x) \\
& +c R_{0} \iint_{\Omega_{2 T, 4 R_{0}}}\left|\left(\nabla y_{k}\right)\left(t / \varepsilon^{2}, x / \varepsilon\right)\right| d x d t+R_{0}\left|\Omega_{2 T, 4 R_{0}}\right| \\
\leq & 2 T \int_{R_{0}}^{2 R_{0}} d R\left|\int_{B_{2 R}} y_{k, \varepsilon}^{0}(x) d x\right| \\
& +\int_{0}^{2 T} d t \int_{0}^{t} \int_{A_{2 R_{0}}, 4 R_{0}}\left|a_{i, j, \varepsilon}(s, x)\right|\left|\partial_{x_{j}} y_{k, \varepsilon}(s, x)\right| d s d x \\
& +c R_{0} \iint_{\Omega_{2 T, 4 R_{0}}}\left|\left(\nabla y_{k}\right)\left(t / \varepsilon^{2}, x / \varepsilon\right)\right| d x d t+R_{0}\left|\Omega_{2 T, 4 R_{0}}\right|
\end{aligned}
$$

where $A_{2 R_{0}, 4 R_{0}}$ is the annulus with inner and outer radii $2 R_{0}$ and $4 R_{0}$, respectively. As $\varepsilon$ tends to zero the second and the third terms have finite limits $P$-a.s. by (Y2) of the main lemma, page 757, and Proposition 4, page 765. The first term can be shown to stay bounded as follows.

By (34), page 765, we have

$$
\begin{equation*}
\int_{B_{R}} y_{k, \varepsilon}^{0}(x) d x=\int_{0}^{1} d \sigma \int_{B_{R}} x \cdot \nabla y_{k, \varepsilon / \sigma}^{0}(x) d x \quad \forall R>0 . \tag{E4}
\end{equation*}
$$

Moreover, we know that

$$
\sup _{\rho>0} \int_{B_{R}}\left|\nabla y_{k, \rho}^{0}(x)\right|^{2} d x=M(w)<+\infty, \quad P \text {-a.s. }
$$

from the individual ergodic theorem, Proposition 4, equation (33) (for small $\rho$ ), and the almost sure, local boundedness of $\nabla y_{k}^{0}(\cdot)$ (for intermediate and large $\rho$ ). Thus $\sigma$-integral of the right-hand side of (E4) can be bounded by

$$
\sup _{\rho>0}\left\|\nabla y_{k, \rho}^{0}\right\|_{L^{2}\left(B_{2 R_{0}}\right)}\|x\|_{L^{2}\left(B_{2 R_{0}}\right)}<+\infty \quad \forall R \in\left[R_{0}, 2 R_{0}\right]
$$

Therefore the first term on the right-hand side of (E3) remains bounded $P$-a.s., as $\varepsilon \downarrow 0$.

Summarizing, we have from (E1) that

$$
\lim _{\varepsilon \rightarrow 0} \sup _{[0, T]} \int_{B_{R}} u_{k, \varepsilon} d x<+\infty, \quad P \text {-a.s. }
$$

The proof of (41), page 767, is thus complete in view of the point-wise estimate $\left|y_{k, \varepsilon}\right| \leq\left|u_{k, \varepsilon}\right|$.

## REFERENCES

[1] Kesavan, S. (1989). Topics in Functional Analysis and Applications. Wiley, New York.
Department of Mathematics Institute of Mathematics
University of California
Davis, CALIFORNIA 95616-8633
E-mAIL: fannjian@math.ucdavis.edu

UMCS
Lublin
Poland

