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MEASURE-VALUED BRANCHING PROCESSES ASSOCIATED
WITH RANDOM WALKS ON p-ADICS

By Sergio Albeverio1 and Xuelei Zhao2

Universität Bonn and Fudan University

Measure-valued branching random walks (superprocesses) on p-adics
are introduced and investigated. The uniqueness and existence of solu-
tions to associated linear and nonlinear heat-type (parabolic) equations are
proved, provided some condition on the parameter of the random walks is
satisfied. The solutions of these equations are shown to be locally constant
if their initial values are. Moreover, the heat-type equations can be iden-
tified with a system of ordinary differential equations. Conditions for the
measure-valued branching stable random walks to possess the property of
quasi-self-similarity are given, as well as a sufficient and necessary condi-
tion for these processes to be locally extinct. The latter result is consistent
with the Euclidean case in the sense that the critical value for measure-
valued branching stable processes to be locally extinct is the Hausdorff
dimension of the image of the underlying processes divided by the dimen-
sion of the state space.

1. Introduction. There has been much work in the study of stochas-
tic processes on p-adics and local fields [see, e.g., Evans (1998), Albeverio,
Karwowski and Zhao (1999), Albeverio and Zhao (1999a, b, c, d) and ref-
erences therein]. Meanwhile, superprocesses have been extensively studied
in a general setting [see Dawson (1993), Dynkin (1994), and Zhao (1994,
1999)]. Recently, Evans and Fleischmann (1996) have constructed a class of
measure-valued diffusions from Lévy processes on totally disconnected groups.
Their processes, which are not measure-valued branching processes (superpro-
cesses), motivated us to investigate superprocesses on p-adics (which do not
seem to have been studied so far). The p-adic field, �p, is a totally discon-
nected, nondiscrete, Abelian group and is very different from the Euclidean
space [see, e.g., Koblitz (1984), Gel’fand, Graev and Pyatetskii-Shapiro (1969),
Chapter 2]. It is interesting to get insight into the difference in properties of
superprocesses on different spaces, like �p and Euclidean spaces.

Since the existence and uniqueness of superprocesses on locally compact,
complete metric spaces is well known [see Dawson (1993), Dynkin (1994) and
Zhao (1999)], we can work directly with measure-valued branching processes
on �p. We consider here the measure-valued branching processes built from
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the random walks constructed in Albeverio and Karwowski (1991, 1994) and
studied in Yasuda (1996), Albeverio, Karwowski and Zhao (1999) and Albeverio
and Zhao (1999a, b, c, d). For the reader’s convenience, we first review the
construction of random walks in Albeverio and Karwowski (1991, 1994) and
Karwowski and Vilela-Mendes (1994). Some new results for these random
walks are also presented [the identification of these random walks with other
construction in Figà-Talamanca (1994) has been discussed in Hussmann
(1997)]. For background and applications in physics see Albeverio (1985),
Brekke and Olson (1989).

We then consider the initial valued heat-type equations associated with
these random walks. Uniqueness and existence of solutions to these equa-
tions are proved. The solutions are locally constant if their initial values are.
The equations can be identified with a system of linear ordinary differential
equations, which can be solved recursively.

To study the superprocesses associated with symmetric random walks on
�p, we need first to consider the corresponding nonlinear evolution equations.
Uniqueness and existence of nonnegative solutions for the nonlinear heat-
type equations are obtained. As in the linear cases, the solutions to these
nonlinear evolution equations are also locally constant if their initial values
are. In particular, when the initial value is the indicator of a ball the cor-
responding nonlinear evolution equation is equivalent to a system of nonlin-
ear ordinary differential equations, which provides a way to solve the former
equations. Some comparison lemmas for the nonlinear evolution equations are
established.

We also consider in this paper some typical questions for superprocesses
having the branching characteristic λ1+β, 0 < β ≤ 1. We first investigate the
absolute continuity of these superprocesses with respect to the Haar mea-
sure. We show that the superprocess is absolutely continuous in the case of
binary branching (i.e., β = 1) and the corresponding Radon–Nikodym deriva-
tive forms a random field indexed by �+ × �p. This motivates us to further
consider the “white noise” on �p [first introduced by Evans (1995, 1998)].
Second, if the random walk is stable (see Section 2.2 for the definition) we
find that the superprocesses possess a property of “quasi-self-similarity,” sim-
ilar to (but different from) the self-similarity of super α-stable processes on
�d, provided some condition on the parameter determining the random walk
is satisfied. Finally, we study the local extinction, the counterpart for super
α-stable processes on �d first investigated by Dawson and his research groups
[see Dawson, (1977), (1993), Dawson, Fleischmann, Foley and Peletier (1986)]
and for the superdiffusions recently studied by Pinsky (1996). A natural and
interesting question is to find the difference of the properties of superprocesses
on �dand �p. For this purpose, applying the idea in Dawson, Fleischmann,
Foley and Peletier (1986) we prove that �ξ�β�-superprocesses (see Section 4
below for the definition) are locally extinct when β ≤ − logp c, where c is
closely connected with the Lévy measure of the underlying process [see Albev-
erio and Zhao (1999a)]. Conversely, we shall also prove the nonlocal extinction
when β > − logp c. To approach this goal we first reduce our question to check
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the finiteness of an integral on the half line whose integrand is the β-power of
the L1-norm of the square of the transition function. We then prove that the
L1-norm of solutions of the nonlinear evolution equations possesses a lower
positive bound. In fact, in the terminology of Evans (1989) we find that the crit-
ical point �− logp c� ∧ 1 for these superstable processes to be locally extinct is
the Hausdorff dimension of the image of the stable random walk [see Albeverio
and Zhao (1999b)]. This result can be regarded as an analogue in the p-adic
case of the corresponding result for the Euclidean case, reflecting typically the
structural differences between �p and �d.

2. Random walks on p-adics. Let p > 1 be a prime number. A p-adic
number can be defined through the formal power series

a =
∞∑

i=−m
αip

i�(2.1)

where m is an integer (i.e., m ∈ �), and αi = 0�1� � � � � p − 1. With addition
and multiplication defined in the natural way for formal power series, the set
�p of all p-adic numbers becomes a field.

Let a be given by (2.1) and i0 = min�i ≥ −m
αi �= 0�. We define

�a�p = p−i0 �(2.2)

It is well known that the map a→ �a�p defines a norm in �p. This norm has
the non-Archimedean triangle property,

�x+ y�p ≤ max��x�p� �y�p�� x� y ∈ �p(2.3)

and �p is a complete separable metric, locally compact, totally disconnected
space (with the cardinality of the continuum). The series (2.1), called Hensel
expansion of a, is convergent to a in �·�p norm. The rational number field Q
is dense in �p and it is a subfield of �p [see, e.g., Koblitz (1984), Taibleson
(1975)].

Let a ∈ �p and M ∈ �. The set

K�a�pM� = �x ∈ �p
 �x− a�p ≤ pM��(2.4)

is called a ball of radius pM centered at a.K�a�pM� is both open and compact.
�p can be uniquely represented as a countable union of disjoint balls of radius
pM. Let �p denote the α-algebra generated by the set of all balls in �p. Then,
the set function defined on balls by

ν
(
K�a�pM�) = pM(2.5)

can be uniquely extended to a measure on �p which we denote by ν. We note
that ν is the Haar measure for the additive group in �p [see Albeverio and
Karwowski (1994)].

Let ρ be a nonnegative measurable function on �p such that

0 <
∫
K�a�pM�

ρ�x�ν�dx� <∞
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for any a ∈ �p and M ∈ �. ρ determines a σ-finite measure νρ�dx� �=
ρ�x�ν�dx� on �p.

Let �a�M��M ∈ �� be a given sequence of nonnegative numbers satisfying:

(i) a�M� ≥ a�M+ 1�;
(ii) limM→∞ a�M� = 0.

Put

u�M�j� ≡ a�M+ j− 1� − a�M+ j��
Albeverio and Karwowski (1994), and Karwowski and Vilela-Mendes (1994)

solved the following forward, resp., backward Kolmogorov equations on the
balls of �p:

ṖKM
i KM

f
�t� = ã�KM

f �PKM
i KM

f
�t� +

∞∑
j �=f

ũ�KM
j �KM

f �PKM
i KM

j
�t��(2.6)

resp.,

ṖKM
i KM

f
�t� = ã�KM

i �PKM
i KM

f
�t� +

∞∑
j �=i

ũ�KM
i �KM

j �PKM
j KM

f
�t��(2.7)

with ã�KM
i � ≡

∑∞
j �=i ũ�KM

j �KM
i � and the initial conditions PKM

i KM
f
�0� = δif for

t ≥ 0� i� f ∈ �. Here ũ�KM
i �KM

j � �= νρ�KM
j �u�M�k� when distp�KM

i �KM
j � =

pM+k. � M = �KM�∞i=1 is the family of disjoint balls of radius PM such that
�p =

⋃∞
i=1K

M
i . Let

�
j

K�a�pM� �= −
∞∑
k=j

�u�M�k� − u�M�k+ 1��νρ�K�a�pM+k���

These authors then shrink the balls into points and construct a Markov pro-
cess on �p with the following transition functions: (1) In case ρ∞ < ∞ we
normalize the function ρ so that ρ∞ = 1,

Pt�x�K�a�pM��=νρ�K�a�pM��
{
1+

∞∑
i=0

(
1

νρ�K�a�PM+i��
− 1
νρ�K�a�PM+i+1��

)
e
t� i+1

K�a�pM�

}
�

(2.8)

resp.,

Pt�x�K�b�pM��

= νρ�K�b�pM��
{
1− 1

νρ�K�b�pM+j0��e
t�

j0
K�b�pM�

+
∞∑
i=0

(
1

νρ�K�b�pM+j0+i��

− 1
νρ�K�b�pM+j0+i+1��

)
e
t�

i+1+j0
K�b�pM�

}
�

(2.9)
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where x ∈ K�a�pM� and distp�K�b�pM��K�a�pM�� = pM+j0 � (2) If ρ∞ = ∞
we have

Pt�x�K�a�pM��

= νρ�K�a�pM��
∞∑
i=0

(
1

νρ�K�a�PM+i�� −
1

νρ�K�a�PM+i+1��
)
e
t� i+1

K�a�pM�
(2.10)

and

Pt�x�K�b�pM��

= νρ�K�b�pM��
{
− 1
νρ�K�b�pM+jo��e

t�
j0
K�b�pM� +

∞∑
i=0

(
1

νρ�K�b�pM+j0+i��

− 1
νρ�K�b�pM+j0+i+1��

)
e
t�

i+1+j0
K�b�pM�

}
�

(2.11)

where x ∈K�a�pM� and distp�K�b�pM��K�a�pM�� = pM+j0 .
Denote by ���p� the set of �p-measurable functions on �p, and for any

q > 0, introduce

Lq��p� νρ� �=
{
φ ∈ ���p�


∫
�p

�φ�x��qνρ�dx� <∞
}
�

and denote Lq��p� νρ�+ the set of nonnegative elements in Lq��p� νρ�. Define

Stφ�x� �=
∫
�p

φ�y�Pt�x�dy�� t ≥ 0� φ ∈ L2��p� νρ��

It is easy to show that �St� t ≥ 0� is the semigroup associated with the tran-
sition function �Pt�x�dy�� x� y�∈ �p� t ≥ 0�. From Albeverio, Karwowski and
Zhao [(1999), Proposition 2.3, 2.4] we know that the following holds.

Lemma 2.1. Pt�x�A�� t > 0� x ∈ �p�A ∈ �p is a Markovian νρ-symmetric
transition function (or kernel) on the measurable space ��p��p�. Its semigroup
�St� t > 0� is a strongly continuous νρ-symmetric Markovian semigroup.

For φ ∈ ���p�, define

D�	� �=
{
φ ∈ ���p�
 lim

t→0+
Stφ�x� −φ�x�

t
exists for any x ∈ �p

}

and

−	φ�x� �= lim
t→0+

Stφ�x� −φ�x�
t

� φ ∈ D�	��

From Albeverio, Karwowski and Zhao (1999), we know that �−	�D�	��
is the generator of the Markovian strongly continuous semigroup St� t > 0,
acting in L2��p� νρ�, and we have the following.
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Lemma 2.2. Let χK�a�pM� be the indicator function for the ball K�a�pM�,
then

�−	χK�a�pM���x� =


WK�a�pM�� for x ∈K�a�pM�,
νρ�K�a�pM��u�M�j�� for x such that

distp�x�K�a� pM�� = pM+j.

Here WK�a�pM� �= −∑∞
i=1�u�M�i��νρ�K�a�pM+j+1� \K�a�pM+i��.

Remark. In general, the infinitesimal generator −	 does not possesses the
positive definite property in the sense that if φ ∈ D�	� has a minimal point,
that is, there is x0 ∈ �p and a neighborhood U�x0� such that

φ�x� ≥ φ�x0�� x ∈ U�x0��
then −	φ�x0� ≥ 0. This is so because by Lemma 2.2, we have limt→0+ 1 −
Pt�x� K�x� pM��/t > 0 for any M ∈ � such that a�M+ 1� > 0 and∫

φp\K�x�pM�
ρ�y�ν�dy� > 0�

This fact can also be seen from (2.8)–(2.11). Of course, if φ ∈ D�	� and x0 is a
global minimum point of φ, that is, φ�x� ≥ φ�x0� for all x ∈ �p, then the fact
that St1 ≡ 1 (the conservative property) implies −	φ�x0� ≥ 0.

2.1. The Haar symmetric case. We now consider the case where ρ is con-
stant. In this case the transition kernel is spatially homogenous and the corre-
sponding process is a Lévy process. It is convenient to work with this process
in the terminology of Albeverio and Karwowski (1994). This means that we
need to express �a�M��M ∈ �� in terms of another sequence of real numbers,
say �a′�M��M ∈ �� satisfying the condition (i) and (ii) in Section 2 above as
follows:

a�M� = p−M
[
�p− 1�−1a′�M� −

∞∑
i=1

a′�M+ i�p−i
]
�

Without loss of generality, we may assume ρ ≡ 1, and we still denote �a′�M��
M ∈ �� by �a�M��M ∈ ��. According to Evans (1989) and Yasuda (1996), the
sequence �a�M��M ∈ �� determines the Lévy measure, say κ on �p, of the
additive Lévy process �ξt� t ≥ 0�P0� through the relation κ��p\K�0�PM�� =
a�M��M ∈ � [see Albeverio and Zhao (1999 a, b)]. We know from Albeverio and
Karwowski (1994), Albeverio, Karwowski and Zhao (1999) that the transition
function can be rewritten as follows:

Pt�x�K�a�pM��

= p− 1
p

∞∑
i=0

p−i exp
{−�p− 1�−1�pa�M+ i� − a�M+ i+ 1��t}(2.12)
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if x ∈K�a�pM� and
Pt�x�K�b�pM��

= p−j
[
p−1�p− 1�

∞∑
i=0

p−i

× exp�−�p− 1�−1�pa�M+ j+ i� − a�M+ j+ i+ 1��t�

− exp�−�p− 1�−1�pa�M+ j− 1� − a�M+ j��t�
]

(2.13)

if distp�x�K�b�pM�� = pM+j� j ∈ �. It is worth remarking that after a change
of variables the infinitesimal generator is defined by

�−	χK�a�pM���x�

=



−a�M�� for x ∈K�a�pM�;
p−j+1�p− 1�−1u�M�j�� for x such that

distp�K�a�pM�� x� = pM+j.

(2.14)

[see Albeverio and Karwowski (1994), (3.4)]. From (2.12) and (2.13) we have
the following symmetry property, resp., rotation invariance, resp., translation
invariance for the transition kernels:

Pt�x�K�y�pM�� = Pt�y�K�x�pM��� x� y ∈ �p�M ∈ ��(2.15)

Pt�x�K�y�pM�� = Pt�x�K�z�pM��� x� y� z ∈ �p�M ∈ �(2.16)

if distp�x�y� = distp�x� z�, and
Pt�x�K�y�pM�� = Pt�x+ z�K�y+ z�pM��� x� y� z ∈ �p�M ∈ ��(2.17)

Proposition 2.3. If x �= y, then for any t ≥ 0 the density function
pt�x�y� �= limM→−∞p−MPt�x�K�y�pM�� exists and can be expressed by

pt�x�y� = �p− 1�−1p−m+1�Pt�m� −Pt�m− 1��(2.18)

if distp�x�y� = pm, where Pt�m� �= Pt�0�K�0� pm��. If
lim

M→−∞
a�M� = ∞�(2.19)

then for any t > 0 and x ∈ �p�Pt�x� ·� is absolutely continuous with respect to
ν. In particular, if

∞∑
i=−∞

p−i exp�−t�p− 1�−1�pa�i� − a�i+ 1��� <∞�(2.20)

then

pt�x� x� = p−1�p− 1�
∞∑

i=−∞
p−i exp�−t�p− 1�−1�pa�i� − a�i+ 1����(2.21)
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Proof. Because of the rotation invariance and the symmetry property, we
have for x�y: distp�x�y� = pm,

pt�x�y� = lim
M→−∞

p−MPt�x�K�y�pM��

= lim
M→−∞

p−MPt�x�K�y�pm�� −Pt�x�K�y�pm−1��
�p− 1�pm−M−1

= �p− 1�−1p−m+1�Pt�m� −Pt�m− 1���
As for the absolute continuity, we only need to check that condition (2.19)
implies limM→−∞ PT�x�K�y�pM�� = 0. This is clear from (2.12). To prove
(2.21), we consider

p−MPt�x�K�a�pM��

= p−1�p− 1�
∞∑

i=M
p−i exp�−�p− 1�−1�pa�i� − a�i+ 1��t��

Letting M→−∞ we see that pt�x� x� exists if and only if (2.20) holds. ✷

Remark. Obviously, (2.20) is equivalent to

0∑
i=−∞

p−i exp�−t�p− 1�−1�pa�i� − a�i+ 1��� <∞�(2.22)

We remark that the validity of (2.22) for all t > 0 is then equivalent to

lim
n→∞

a�−n�
n

= ∞�(2.23)

which is the condition (iii) of Proposition 2 in Evans (1989).

We say a point y ∈ �p is recurrent for a process ξt� t ≥ 0 if for any t0 > 0
there exists almost surely a finite time t > t0 such that ξt = y. In other words,
ξt hits the point y an infinite number of times after any given time.

Proposition 2.4. Let �a�M��M ∈ �� be a sequence of positive numbers
satisfying the condition (i) and (ii). Suppose

∞∑
i=0

p−i

a�i� <∞�(2.24)

then the only possible recurrent point in �p for the process ξt� t ≥ 0 with
transition semigroup St started at x, is x itself. On the contrary, if

∞∑
i=0

p−i

a�i� = ∞�
0∑

i=−∞

p−i

1+ a�i� <∞�(2.25)

then the corresponding process is point recurrent (in the sense that every point
is recurrent).
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Proof. Define

Vx �= inf�t > 0
 ξt = x�
and

gλ�x�y� �=
∫ ∞
0

exp�−λt�pt�x�y�dt� λ ≥ 0

if the density pt�x�y� exists. Since �ξt� t ≥ 0�Px� is a Markovian process, a
point y is recurrent iffPx�Vy <∞� = 1.

Now we suppose that the condition (2.24) holds, and we intend to prove
that Px�Vy < ∞� < 1 for any y �= x. For this purpose, we observe that
for any y �= x, Yasuda [(1996), Theorem 3.4] implies Px�Vy < ∞� < 1 if
limM→−∞ a�M� <∞ or if limM→−∞ a�M� = ∞ but

∑0
i=−∞�p−1/1+a�i�� = ∞.

Therefore, the remaining case is the one where
∑0

i=−∞�p−1/1+ a�i�� <∞. In
this case and under the condition (2.24), it is easy to see that (2.20) is true;
that is, the density exists, and

∞∑
i=m

p−i

pa�i� − a�i+ 1� <
∞∑

i=−∞

p−i

pa�i� − a�i+ 1� <∞�

From Yasuda [(1996), Theorem 3.4(3)], we have

Px�Vy <∞� = lim
λ→0

gλ�x�y�
gλ�x� x�(2.26)

for any x�y ∈ �p. However, if �x− y�p = pm, we have

gλ�x y� =
∞∑

i=m

(
p−i

λ+ �p− 1�−1�pa�i� − a�i+ 1��

− p−i

λ+ �p− 1�−1�pa�i− 1� − a�i��
)

= p− 1
p

∞∑
i=m

p−i

λ+ �p− 1�−1�pa�i� − a�i+ 1��

− p−m

λ+ �p− 1�−1�pa�m− 1� − a�m��
and

gλ�x� x� = p− 1
p

∞∑
i=−∞

p−i

λ+ �p− 1�−1�pa�i� − a�i+ 1�� �

It is easy to see that for x �= y,

lim
λ→0

gλ�x�y�
gλ�x� x� <

∑∞
i=m

(
p−i/

(�p− 1�−1�pa�i� − a�i+ 1��))∑∞
i=−∞

(
p−i/

(�p− 1�−1�pa�i� − a�i+ 1��)) < 1�

That is, Px�Vy <∞� < 1 as we desired.
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Now we turn to prove that Px�Vy < ∞� = 1 for any x�y ∈ �p under the
condition (2.25). We first note that for any m ∈ �,

lim
λ→0+

∞∑
i=m

p−i

λ+ �p− 1�−1�pa�i� − a�i+ 1�� = ∞�

but

lim
λ→0+

m−1∑
i=−∞

p−i

λ+ �p− 1�−1�pa�i� − a�i+ 1�� <∞�

We then observe that

gλ�x�y�
gλ�x� x� =

∑∞
i=−m

(
p−i/

(
λ+ �p− 1�−1�pa�i� − a�i+ 1��))∑∞

i=−∞
(
p−i/

(
λ+ �p− 1�−1�pa�i� − a�i+ 1��))

−
(
p−m/

(
λ+ �p− 1�−1�pa�m− 1� − a�m��))

��p− 1�/p�∑∞
i=−∞

(
p−i/

(
λ+ �p− 1�−1�pa�i� − a�i+ 1��))

=
(
1+

∑m−1
i=−∞

(
p−i/

(
λ+ �p− 1�−1�pa�i� − a�i+ 1��))∑∞

i=m
(
p−i/

(
λ+ �p− 1�−1�pa�i� − a�i+ 1��))

)−1

−
(
p−m/

(
λ+ �p− 1�−1�pa�m− 1� − a�m��))

��p− 1�/p�∑∞
i=−∞

(
p−i/

(
λ+ �p− 1�−1�pa�i� − a�i+ 1��))

→ 1 as λ→ 0+ �

Therefore, we have Px�Vy <∞� = 1 for any x�y ∈ �p. This means that every
point in �p is recurrent. ✷

Remark. In the Haar symmetric case, we know from Albeverio and
Karwowski (1994) that ��p − 1�−1�pa�M� − a�M = 1���M ∈ �� constitutes
the pure point spectrum of the infinitesimal generator −	 given by (2.14).

2.2. The stable case. In addition to the Haar symmetry, let us put

a�M� = a0c
M�M ∈ �(2.27)

for some 0 < c < 1 and a0 > 0. Obviously, �a�M��M ∈ �� defined in this
way satisfies the conditions (i) and (ii). We refer to the associated processes as
c-random walks on p-adics. For c-random walks, we have:

Proposition 2.5. Let �a�M��M ∈ �� be given by �2�27�
 then in addition to
the results in Propositions 2.3, 2.4, Pt�x�A�� x ∈ �p�A ∈ �p has the following
“scaling properties”:

Pcmt�x�K�a�pM�� = Pt�x�K�x+ �a− x�p−n�PM+n���(2.28)

n�M ∈ �� t ≥ 0� a ∈ �p. Moreover, the density pt�x�y�� t > 0� x� y ∈ �p exists,
and

pct�x�y� = ppt�p−1x�p−1y��(2.29)
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Proof. Equation (2.28) follows easily from (2.12) and (2.13). The existence
of the density is given by the fact that condition (2.20) is satisfied; (2.29) follows
from (2.18), (2.21) and a direct computation. ✷

Proposition 2.6. Assume that �a�M��M ∈ �� is given by �2�27�� then

pt�0� x� ∼
a0p�1− c�
c�p− 1� �x�logp cp−1

p t� �x→∞�(2.30)

and

pt�0�0� = tlogc p exp�ψ�log t���(2.31)

where “f�x� ∼ g�x�” means lim�x�p→∞ f�x�/g�x� = 1, and ψ is a continuous

periodic function of period − log c. Moreover, for �x�p ≥
(�p−1�−1�p−c�t)− logc p,

pt�0� x� ≤
a0p�2− c�
2c�p− 1� �x�

logp cp
−1

p t�(2.32)

Proof. For �x�p = pm, we have proved in Proposition 2.3 that

pt�0� x� = �p− 1�−1p−m+1�Pt�m� −Pt�m− 1��

= p−m
( ∞∑
i=0

p−i�exp�−a0�p− 1�−1�p− c�cm+it�(2.33)

− exp�−a0�p− 1�−1�p− c�cm−1+it��
)
�

Since

�x�−1p = p−m = p− log �x�p/ logp

and

cm = c− log �x�p/ logp = �x�log c/ logpp �

we shall write for x �= 0,

pt�0� x� = �x�−1p f�h�x�log c/ logpp t��(2.34)

where h �= a0�p−1�−1�p−c�, and f�y� �=∑∞
i=0p

−i�exp�−ciy�−exp�−ci−1y��.
Since log c/ logp < 0, we have

pt�0� x� ∼ �x�−1p f′�0�h�x�log c/ logpp t

= �x�−1p h�x�log c/ logpp t
∞∑
i=0

(
c

p

)i

�c−1 − 1�

= a0p�1− c�
c�p− 1� �x�logp cp

−1
p t�
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as �x�p →∞. We now turn to prove (2.31). If we write g�u� �= peu�0�0�, then
from (2.28) we know pct�0�0� = ppt�0�0�, and then

g�u− log c� = pc−1eu�0�0� = p−1g�u��
Let ψ�u� = logg�u� − �logp/ log c�u. It is easy to check that ψ�u+ log c−1� =
ψ�u�, and

pt�0�0� = g�log t�
= exp�ψ�log t� + logc p log t�
= tlogc p exp�ψ�log t���

As for (2.33), we notice that 1− x ≤ e−x ≤ 1− x+ x2/2� x ∈ �0�∞�. By the
definition of f and (2.34), we know that if �x�p ≥

(�p− 1�−1�p− c�t)− logc p,

pt�0� x� ≤
2− c

2c
h�x�logp cp

−1
p t

∞∑
i=0

(
c

p

)i

= a0p�2− c�
2c�p− 1� �x�

logp cp
−1

p t�

This completes the proof. ✷

Remark 1. Proposition 2.3 and the first part of Proposition 2.6 can be
found in Yasuda (1996), but the proof is slightly different. A particular case of
Proposition 2.5 is given in Yasuda (1996).

Remark 2. If we set

a0 =
p− 1

p�1− p−α−1� � c = p−α� α > 0(2.35)

then the corresponding random walk is associated with the operatorDα� α > 0
introduced by Vladimirov (1988) [see Albeverio and Zhao (1999b)]. This opera-
tor has been extensively studied [see Vladimirov (1988), Vladimirov, Volovich
and Zelenov (1993), Kochubei (1992, 1993a, b) and references therein].

From now on, we consider the symmetric random walks on �p; that is, we
consider the Haar symmetry case.

3. The heat-type equations on p-adics and the uniqueness of their
solutions. In this section we study the Haar symmetry case for any given
a�i�� i ∈ � satisfying conditions (i), (ii) in Section 2. We first give a definition
of locally constant functions.

Definition 3.1. We say a function φ on �p is locally constant if there
exists an integer n (depending on φ) such that φ is constant on any ball
whose radius is not larger than pn.
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From this it follows automatically that φ is a continuous function on �p.
Clearly, the function family of locally constant functions on �p forms a linear
space.

Definition 3.2. Let �g�t�� t ≥ 0� be an increasing positive functions on
�0�∞� with limt→∞ g�t� = ∞. Set

θ �= inf
{
c > 0

∞∑
i=1
�a�i� − a�i+ 1���g�pi+1��c = ∞

}
(3.1)

with the convention inf � = ∞. We call θ the converging index of the sequence
�a�i�� i ∈ �� with respect to the function g�t�.

Example. If a�i� = a�0�ci for some 0 < c < 1� a�0� > 0 and g�t� = t, then
θ = − logp c > 0.

We now fix a given function g as in Definition 3.2 and consider the following
heat equation:

u̇�t� x� = −	u�t� x�(3.2)

with initial value u�0� x� = φ�x� ∈ Cc��p�, where 	 is given in (2.14), and
Cc��p� is the set of continuous functions with compact support in �p. It is
easy to verify that

u�t� x� = Stφ�x� �=
∫
�p

Pt�x�dy�φ�y�(3.3)

satisfies (3.2) with initial value φ�x�.
In general, θ ≥ 0. In fact, for any given a�i�� i ∈ � satisfying conditions (i),

(ii) in Section 2 we can always find g such that θ > 0, which will be proved
later. We restrict here our consideration to the case θ > 0, where we have

lim sup
M→∞

a�M��g�pM+1��γ = 0(3.4)

for any 0 < γ < θ. Now for any given 0 < γ < θ, we introduce


γ �=
{
φ ∈ ���p�
 �φ�x�� ≤ Cφ�1+ �g��x�p��γ�� x ∈ �p

for some constant Cφ > 0
}
�

(3.5)

Theorem 3.3. Suppose θ > 0, then the solution to �3�2� is unique in the
function class 
γ�0 < γ < θ.

Proof. It is sufficient to prove that a solution u ∈ 
γ to (3.2) with initial
value 0 must be equal to 0. To this end, we set

wa�s� �=
{
1� if 0 ≤ s ≤ a�

0� otherwise,
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and, for an integer n > 0,

δn�x� = pnwp−n��x�p��
Clearly, δn�x� has the compact support K�0� p−n� and satisfies

∫
�p

δn�x�×
ν�dx� = 1.

For any γ < η < θ, let

ψ�x� �=
∫
�p

δn�x− y��g��y�p��ην�dy��

It is easy to see that ψ is locally constant and is equal to �g��x�p��η if �x�p ≥
p−n. By an elementary computation we have

−	ψ�x� = a0χK�0�P−n��x� +
∞∑
k=1

akχ��y�p=p−n+k��x��(3.6)

where

a0 = −a�−n�Gn+
∞∑
i=1
�g�p−n+i��η�a�−n+ i−1�−a�−n+ i���

a1 =
1

p−1
�a�−n�−a�−n+1��Gn

+�g�p−n+1��η
[
−a�−n�+ p−2

p−1
�a�−n�−a�−n+1��

]

+
∞∑

i=−n+2
�g�p−n+i��η�a�−n+ i−1�−a�−n+ i���

ak =
p−k+1

p−1
�a�−n+k−1�−a�−n+k��

[
Gn+

k−1∑
i=1
�g�p−n+i��ηpi−1�p−1�

]

+�g�p−n+k��η
[
−a�−n+k−1�+ p−2

p−1
�a�−n+k−1�−a�−n+k��

]

+
∞∑

i=−n+k+1
�g�p−n+i��η�a�−n+ i−1�−a�−n+ i��� k≥ 2�

Gn �=
∫
K�0�p−n�

�g��y�p��ην�dy��

Clearly, Gn is finite. Set

An �= sup
i≥−n

a�i��g�pi+1��η�

Bn �=
∞∑
i=1
�g�p−n+i��η�a�−n+ i− 1� − a�−n+ i���
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Because of η < θ�An�Bn are finite and,

a0 ≤ Bn�

a1 ≤
1

p− 1
a�−n�Gn +Bn

and

ak ≤
1

p− 1
a�−n�Gn +

1
p− 1

An +Bn

for k ≥ 2. Therefore,

O �= max�ak� k = 0�1� � � � � � < a�−n�Gn +An +Bn <∞�

Now we turn to prove u�t� x� ≥ 0. Suppose there exist x′ ∈ �p and t′ ∈
�0�∞� such that u�t′� x′� = ζ < 0. We can find a T > t′ and some constants
a > 0 and b > 0 such that

ζ +Ta+ bψ�x′� < 0(3.7)

and

a−Ob > 0�(3.8)

We consider the function

v�t� x� = u�t� x� + at+ bψ�x��
From (3.7) we know that v�t′� x′� < 0 and then

inf
x∈�p�0≤t≤T

v�t� x� < 0�

Assume v�0� x� = bψ�x� ≥ 0. Since u�t� ·� ∈ 
γ� u�t� x� = o�ψ�x�� as �x�p →
∞. This implies that v�t� x� > 0 for sufficiently large �x�p and the point x
making v�t� x� negative must be located in a finite open-compact ball. By the
completeness of any bounded open-compact subset of �p, there exist x0 ∈ �p

and t0 ∈ �0�T� such that

inf
x∈�p�0≤t≤T

v�t� x� = v�t0� x0� < 0
(3.9)

that is, �t0� x0� is one of global minimum points of v�t� x� in �0�T�×�p. Thus,
v̇�t0� x0� ≤ 0 and −	v�t0� x0� ≥ 0; that is,

v̇�t0� x0� +	v�t0� x0� ≤ 0�(3.10)

However, on the other hand,

v̇�t0� x0� +	v�t0� x0� = a+ b	ψ�x0� ≥ a− bO > 0�(3.11)

Thus, we have a contradiction. Therefore, u�t� x� ≥ 0.
We can prove u�t� x� ≤ 0 by considering −u�t� x� instead of u�t� x� in the

above argument. That is, u�t� x� ≡ 0. ✷



SUPER RANDOM WALKS ON p-ADICS 1695

Proposition 3.4. There is an increasing sequence �b�i�� i ≥ 1� with
limi→∞ bi = ∞ such that

∞∑
i=1
�a�i� − a�i+ 1��b�i� <∞�(3.12)

That is, θ ≥ 1 for a g satisfying the condition in Definition 3.2. Therefore, the
bounded solution to �3�2� is unique.

Proof. Since the series
∑∞

i=1�a�i� − a�i + 1�� converges and each term
in this series is nonnegative, we can find a sequence of strictly increasing
integers �ki� i ∈ �� such that k1 = 1, and ki > ki−1 + 1 such that

∞∑
j=ki

�a�j� − a�j+ 1�� < 1
2i
� i ≥ 2�

For i ∈ �, set

b�i� �= 1�5j� kj ≤ i ≤ kj+1�

Obviously �b�i�� i ∈ �� is strictly increasing and limi→∞ bi = ∞. Moreover,

∞∑
i=1
�a�i� − a�i+ 1��b�i� =

∞∑
i=1

ki+1−1∑
j=ki

�a�j� − a�j+ 1��b�j�

<
∞∑
i=1

0�75i <∞�

This proves the first part.
Now we construct a nonnegative function g�t�� t ≥ 0 which is increasing

and satisfies limt→∞ g�t� = ∞. Let b0 = 0 and define g�t�� t ≥ 0,

g�t� = b1
t

p
� 0 ≤ t ≤ p

and

g�t� = bn
pn+2 − t

pn+1�p− 1� + bn+1
t− pn+1

pn+1�p− 1� � pn+1 ≤ t < pn+2�

for n ≥ 0. That is, g�t� is the polygonal line derived from �bn� n ≥ 0�. We easily
know that θ ≥ 1 > 0 with respect to this g�t� and the uniqueness of bounded
solutions is immediate from Theorem 3.3. This completes the proof. ✷

The unique solution to (3.2) can be expressed by

u�t� x� = e−t limM→−∞ a�M�φ�x�

+
∞∑

M=−∞

∫
�x−y�p=pM

φ�y�p
−M+1

p− 1
�Pt�M� −Pt�M− 1��ν�dy��(3.13)
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In this case, (3.2) can be reduced to a system of linear ODEs, which can be
solved recursively.

Proposition 3.5. Suppose φ�x� = χK�a�pM��x� for some a ∈ �p andM ∈ �,
then the solution u�t� x� satisfies

u�t� x� = u�t� y� if �x− a�p = �y− a�p > pM�(3.14)

Therefore if we let

u�t� x� = wM�0�t�χK�a�pM��x� +
∞∑
i=1

wM�i�t�χK�a�pM+i�\K�a�pM+i−1��x��(3.15)

then �wM�i�t�� i = 0�1� � � � � � satisfies

ẇM�0�t� = −a�M�wM�0�t� +
∞∑
i=1
�a�M+ i− 1� − a�M+ i��wM�i�t�(3.16)

and

ẇM� i�t� =
[
− 1
p− 1

a�M+ i− 1� − p− 2
p− 1

a�M+ i�
]
wM�i�t�

+
∞∑

j=i+1
�a�M+ j− 1� − a�M+ j��wM�j�t�

+ p−i+1�p− 1�−1�a�M+ i− 1� − a�M+ i��

×
[i−1∑
j=1

pj−1�p− 1�wM�j�t� +wM�0�t�
]

(3.17)

with initial condition wM�i�0� = 0� i ∈ ��wM�0�0� = 1.

Proof. Equation (3.5) is easily seen from (2.15)–(2.17), (3.16) and (3.17)
can be derived from (2.6) and (2.7) by classifying the balls of pM in terms of
their distances fromK�a�pM� and taking into account the form of the solution
(3.13). ✷

The function family Cc��p� is not easy to deal with and it is useful to make
the following remark concerning its dense subset of locally constant functions.

Proposition 3.6. Suppose the initial value φ ∈ Cc��p� is locally constant,
then the solution of �3�2� is also locally constant, but is not of compact support.

The proof can be seen from (3.13) and the spatial homogenity of the tran-
sition kernels of the random walks involved.
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Remark. We remark that Kochubei (1992) considers the heat-type equa-
tion (3.2) for the case where

a�M� = �p− 1�
p�1− p−α−1�p

−αM� M ∈ ��

which corresponds to the operatorDα�α > 0, introduced by Vladimirov (1988).

4. Measure-valued branching processes. Since �p is a locally com-
pact, complete separable metric space and the process ξ = �ξt�t∈�+ constructed
(e.g., by Kolmogorov’s procedure) from the transition semigroup St of Section 2
[cf. Albeverio and Karwowski (1994)] is a strongly continuous Markovian pro-
cess, the theory of superprocesses can naturally be applied to the measure-
valued branching processes on �p.

Let � ��p� be a cone set of (positive) measures under the ordinary addi-
tion operator and scale multiplication. We recall from Dawson (1993), Dynkin
(1994) or Zhao (1999) that the measure-valued branching process �Xt� t ≥
0�Pµ�µ∈� ��p� with underlying process �ξt� t ≥ 0� is determined by the follow-
ing Laplace functional:

Pµ exp�−�Xt�φ�� = exp�−�µ�Vtφ��� φ ∈ Cc��p�+� µ ∈� ��p��(4.1)

where Cc��p�+ stands for the family of nonnegative continuous functions with
compact support, and Vtφ satisfies the nonlinear integral equation [i.e., log-
Laplace equation; see, e.g., Dawson (1993), Section 4.3]

Vtφ�x� +Ex

∫ t

0
A�ξs�Vt−sφ�ξs��ds = Exφ�ξt�(4.2)

and

A�x� λ� = b�x�λ+ c�x�λ2 +
∫ ∞
0
�e−λu − 1+ uλ�n�x�du��

x ∈ �p� λ ≥ 0
(4.3)

for some bounded �p-measurable function b, a bounded nonnegative
�p-measurable function c and a positive measure n�x� ·� on the positive half-
line such that ∫ ∞

0
un�x�du� <∞(4.4)

is a bounded �p-measurable function in x ∈ �p. Here �µ�φ� means the inte-
gral of φ with respect to µ. We note that (4.2) has a unique solution [see,
e.g., Dawson (1993), Lemma 4.3.3, Dynkin (1994), Chapters 3, 5 and Zhao
(1999), Chapter 3] and the corresponding superprocessX has finite first-order
moments under condition (4.4). Heuristically, the measure-valued branching
processes can be regarded as a highly dense limit of branching particle sys-
tems [see Dynkin (1994) and Zhao (1999)].
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For simplicity, from now on we assume A�x� λ� = λ1+β�0 < β ≤ 1 and
� ��p� =Mq��p�, where

Mq��p� �=
{
µ� (positive) Radon measure on �p


∫
�p

�1+ �x�p�−qµ�dx� <∞
}
�

In order to make the Haar measure ν belong to Mq��p� we assume q > 1. In
fact, ∫

�p

�1+ �x�p�−qν�dx� ≤ 1+
∞∑
i=1
�1+ pi�−q�pi − pi−1�

≤ 1+
∞∑
i=1

p−�q−1�i <∞�

We call the corresponding superprocesses �ξ�β�-superprocesses.
We refer to Mq��p� as the q-tempered measured space on �p (this is in

analogy with the corresponding known definition in the case of �d instead of
�p). Under this setting we can rewrite (4.2) as

Vtφ�x� +
∫ t

0
Ss�Vt−sφ�x��1+β ds = Stφ�x��(4.5)

and its strong version is

u̇�t� x� = −	u�t� x� − �u�t� x��1+β(4.6)

with the initial condition u�0� x� = φ�x� ∈ Cc��p�+.
Uniqueness of solutions to (4.5) can be proved in a similar manner to,

for example, Dawson [(1993), Lemma 4.3.3], and its unique solution satisfies
Vtφ�x� ≥ 0 if φ�x� ≥ 0. As for (4.6), we have the following theorem.

Theorem 4.1. With the notations in Section 3, the nonnegative solution
to �4�6� is unique in the function class
γ, 0 < γ < θ. In particular, the bounded
nonnegative solution is unique; that is, the unique (nonnegative) solution to
�4�6� is Vtφ�x� given by �4�5�.

Proof. Suppose that there exist two solutions u1�t� x� and u2�t� x�. We
shall prove u1�t� x� = u2�t�x�. Let u�t� x� = u1�t� x� − u2�t� x�, then u�t� x�
satisfies

u̇�t� x� = −	u�t� x� − �u1�t� x��1+β + �u2�t� x��1+β(4.7)

with the initial value u�0� x� = 0. As in the proof of Theorem 3.3 we then
prove u�t� x� ≥ 0 [by noticing that u�t0� x0� < 0 means

�u2�t0� x0��1+β − �u1�t0� x0��1+β > 0

because u1�t� x� and u1�t� x� are nonnegative].
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In the same manner we can also prove u�t� x� ≤ 0. That is, (4.6) has a
unique (nonnegative) solution in the class of 
γ, 0 < γ < θ. The remaining
statement is clear. ✷

Similarly to Proposition 3.5, concerning nonnegative solutions, (4.6) can also
be reduced to a system of nonlinear ODEs, which can be solved recursively.

Proposition 4.2. For any initial condition of the form φ�x� = χK�a�pM��x�
the nonnegative solution to �4�6� can be expressed by

u�t� x� = vM�0�t�χK�a�pM��x� +
∞∑
i=1

vM� i�t�χK�a�pM+i�\K�a�pM+i−1��x��(4.8)

in which �vM� i�t�� i = 0�1� � � � � � satisfy

v̇M�0�t�=−a�M�vM�0�t� +
∞∑
i=1
�a�M+ i− 1�

− a�M+ i��vM� i�t� − v
1+β
M�0�t�

(4.9)

and

v̇M� i�t�=
[
− 1

p− 1
a�M+ i− 1� − p− 2

p− 1
a�M+ i�

]
vM� i�t�

+
∞∑

j=i+1
�a�M+ j− 1� − a�M+ j��vM�j�t�

+ p−i+1�p− 1�−1�a�M+ i− 1� − a�M+ i��

×
[

i−1∑
j=1

pj−1�p− 1�vM�j�t� + vM�0�t�
]
− v

1+β
M� i�t�

(4.10)

with initial condition uM�i�0� = 0, i ∈ �, uM�0�t� = 1. In general, �4�5� and
�4�6� are equivalent if the initial condition φ is locally constant.

The proof is similar to the one of Proposition 3.5 using the uniqueness of
solutions of (4.8).

Remark. Further study of the heat equation in both linear and nonlinear
cases is an interesting topic, depending on the chosen initial conditions. On one
hand, we have failed to prove that (4.6) has no negative solutions. On the other
hand, concerning the heat-type equations associated with the generators of
random walks, our knowledge is very limited so far. For example, if a�M� ≡ 1,
M ≥ 0 and a�M� ≡ 0, M < 0, we know that the corresponding random walk
jumps among the p number of p−1-balls within the integer ball K�0�1�. It is
not reasonable to consider the corresponding heat equation for some initial
value, for example, which is not constant on p−1-balls.



1700 S. ALBEVERIO AND X. ZHAO

Lemma 4.3 (Maximum principle). Let vi�t� x� be the nonnegative solutions
of (4.6) with φ�x� = φi�x� ∈ Cc��p�+, i = 1�2. If φ1 ≥ φ2 on �p, then
v1�t� x� ≥ v2�t� x� on �0�∞�×�p.

Proof. Suppose that the assertion is not true, that is, there exists �t′� x′� ∈
�0�∞� × �p such that v1�t′� x′� < v2�t′� x′�. Let u�t� x� = v1�t� x� − v2�t� x�.
Because vi�t� x� is nonnegative we have vi�t� x� ≤ Stφi�x� by Theorem 4.1,
and this implies lim�x�p→∞ vi�t� x� = 0 for i = 1 or 2. Therefore, for any fixed
T > 0, we can find a minimum point of u�t� x�, say �t0� x0� ∈ �0�T� ∈K�0� pM�
for some M ∈ � such that

inf
0<t≤T�x∈�p

u�t� x� = u�t0� x0� = v1�t0� x0� − v2�t0� x0� < 0�

Noticing that �t0� x0� is actually a global minimum point of u�t� x� in �0�T� ×
�p, we know that −	u�t0� x0� ≥ 0 and u̇�t0� x0� ≤ 0. However,

0 ≤ −	u�t0� x0� − u̇�t0� x0� = v
1+β
1 �t0� x0� − v

1+β
2 �t0� x0� < 0�

a contradiction, which proves the lemma. ✷

From the classical theory of superprocesses in Dawson (1993), Dynkin (1994)
and Zhao (1999), we know that the superprocesses defined above areMarkovian
processes having the càdlàg path property. Naturally, the questions investi-
gated for the super α-stable processes and the superdiffusions on �d are also
interesting for the superprocesses on �p. We first discuss the absolute conti-
nuity of these processes with respect to the Haar measure ν.

Theorem 4.4. Assume �ξt� t ≥ 0� is Haar symmetric and pt�x� ·� has a
density pt�x�y� with respect to the Haar measure ν. Then for any measure µ ∈
Mq��p� such that µ(dx) ≤ αν(dx) for some constant α > 0, the corresponding
�ξ�1�-superprocess Xt� t ≥ 0 is absolutely continuous with respect to Haar
measure ν, with Radon–Nikodym derivative X�t� x�, which is a random field
on �0�∞�×�p and is not identically zero.

Proof. By a similar discussion to that in Konno and Shiga (1988), we
need to check that for any fixed T > 0,

sup
h>0

∫
�p

∫ T

0
Pµ

( ∫
�p

ph�x�y�Xt�dy�
)2
�1+ �x�p�−q dtν�dx� <∞(4.11)

and

lim
h�h′→0

∫
�p

∫ T

0
Pµ

( ∫
�p

�ph�x�y� − p′
h�x�y��Xt�dy�

)2
× �1+ �y�p�−q dtν�dx� = 0

(4.12)

hold. This follows from the estimates in Section 2 and the moments formulas
[cf. Dawson (1993), Lemma 4.7.1 and Zhao (1999), Theorem 3.4.2]. If we set
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Xh�t� x� �= �Xt�ph�x� ·��, we conclude that �Xh�t� x�� t ≥ 0� is a Cauchy
sequence in the Hilbert space L2�B × �0�T� × �p�P

u × dt × ν�dx��, where
B is the probability space for Xt [and dt the Lebesgue measure on �0�∞��.
Therefore, there exists a random field �X�t� x�� t ≥ 0� x ∈ �p� such that

lim
h→0+

Xh
t �x� L

2=X�t� x��

where L2 �= L2�B× �0�T� ×�p�P
u × ds× ν�dx��. It is easy to check that for

any φ ∈ Cc��p�+, ∫
�p

φ�x�Xt�dx� L
2=
∫
�p

φ�x�X�t� x�ν�dx��(4.13)

Moreover, by the arbitrariness ofT > 0, we can defineX�t� x� for t ≥ 0, x ∈ �p.
That is, the corresponding superprocess �Xt� t ≥ 0�Pu� is absolute continuous
with respect to the Haar measure ν. The nontriviality of the corresponding
Radon–Nikodym derivative X�t� x� can be seen easily from (4.13).

Remark 1. The random field X�t� x� can be further studied; for exam-
ple, it can be characterized by a stochastic partial differential equation [cf.
Dawson (1993), Theorem 8.3.2 and Konno and Shiga (1988)]. Following the
manner of previous authors [see, e.g., Walsh (1986)] we need to define a “white
noise” on �p [in fact, “white noise” has been introduced in Evans (1995), even
though it is not precisely what we want here]. Nevertheless, it is an interest-
ing question to study stochastic fields, differential equations and stochastic
partial differential equations on �p and local fields.

Remark 2. For the case β < 1 we know that the superprocesses have only
finite first-order moments but infinite higher-order moments. This means the
method we use above is invalid for this case. However, it is possible to study
this question following Fleischmann (1988).

5. The quasi-self-similarity of (�, �)-superprocesses. In this and
next sections, we consider

L1��p� ν� �= �f ∈ ���p�

∫
�p

�f�x��ν�dx� <∞��

and denote by L1��p� v�+ the set of nonnegative elements in L1��p� ν�.
We consider �ξ�β�-superprocesses where ξ is a c-random walks as defined

in Section 2.2. We call the corresponding superprocess a �c� β�-superprocess.
We first state a fundamental result [see Vladimirov, Volovich and Zelenov

(1993)].

Lemma 5.1 (Formula for change of variable). For any φ ∈ L1��p� ν�,∫
�p

φ�x�ν�dx� = p−1
∫
�p

φ�px�ν�dx��(5.1)
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Proof. By standard arguments (method of monotone classes), it suffices
to check the formula for indicator functions. Let φ�x� = χK�a�pM��x�. The left-
hand side is clearly equal to pM, and for the right-hand side, we have∫

�p

φ�px�ν�dx� =
∫
�p

χK�p−1a�pM+1��x�ν�dx� = pM+1�

Therefore, (5.1) holds. ✷

Lemma 5.2. For any φ ∈ L1��p� ν�,
Sctφ�x� = p2�Stφ�p·���p−1x��(5.2)

Proof. This follows from

Sctφ�x�=
∫
�p

pct�x�y�φ�y�ν�dx�

=
∫
�p

ppt�p−1x�p−1y�φ�y�ν�dx� �by �2�29��

=p2
∫
�p

pt�p−1x�y�φ�py�ν�dx� �by �5�1��

=p2�Stφ�p·���p−1x�� ✷

Let us consider (4.5), where Vt is the nonlinear semigroup entering (4.1).
We have the following lemma.

Lemma 5.3. If c = p−2�1+β�, then

�Vctφ��px� = p2�Vtφ�p·���x�� φ ∈ L1��p� ν�+�(5.3)

Proof. Consider

Vctφ�x� = �Sctφ��x� −
∫ ct

0
Sct−s�Vsφ�1+β�x�ds

= p2�Stφ�p·���p−1� − p2c
∫ t

0
ds
[
St−s�Vcsφ�1+β�p·�

]
�p−1x��

we have

p−2�Vctφ��px� = �Stφ�p·���x� −
∫ t

0

[
St−s�C1/�1+β�Vcsφ�1+β�p·�

]
�x��

when c = p−2�1+β�, the above formula becomes

�p−2Vctφ��px� = �Stφ�p·���x� −
∫ t

0
ds
[
St−s�p−2Vcsφ�1+β�p·�

]
�x��(5.4)

However, �Vtφ�p·���x� also satisfies

�Vtφ�p·���x� = �Stφ�p·���x� −
∫ t

0
ds
[
St−s�Vsφ�p·��1+β

]
�x��(5.5)

Since the solution of (5.5) is unique, we have the desired conclusion. ✷
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Theorem 5.4 (Quasi-self-similarity). Let �Xt� t ≥ 0�Pµ�µ∈Mq��p� be the
�c� β�-superprocess on �p associated with the process ξt� t ≥ 0 on �p. Suppose
c = p−2�1+β�; then for t > 0� �Xct�K�a�pM���Pµ� is equal to �Xt�K�p−1a�
pM+1���Pµ′ � in distribution for any a ∈ �p�M ∈ �� µ ∈ Mq��p�. Here µ′ is
given by ∫

�p

φ�x�µ′�dx� = p2
∫
�p

φ�p−1x�µ�dx�� φ ∈ L1��p� ν�+�

Proof. It is sufficient to prove that

Pµ exp�−λXct�K�a�pM��� = Pµ′ exp�−λXt�K�p−1a�pM+1���� λ ≥ 0�

In fact, from (4.1) and (4.5), we have

Pµ exp�−λXct�K�a�pM��� = exp�−�µ�VctλχK�a�pM���
= exp�−�µ�p2[VtλχK�p−1a�pM+1�

]�p−1·���
= Pµ′ exp�−λXt�K�p−1a�pM+1����

which completes the proof. ✷

Remark. The property of quasi-similarity is analogous to the one of self-
similarity for super-α-stable process on �d [cf. Dawson (1993), Lemma 4.5.1].
This is the reason for calling it “quasi-self-similarity.”

6. The local extinction. In this section we again consider the �c� β�-
superprocesses. The main topic of investigation will be the local extinction of
these superprocesses. Without loss of generality we assume a0 = 1.

We say the superprocess �Xt� t ≥ 0� is locally extinct if

lim
t→∞

Xt�K� = 0(6.1)

in probability for any compact set K. For any f ∈ L1��p� ν�, let

�f�1 �=
∫
�p

�f�x��ν�dx��

Clearly, L1��p� ν� with this norm forms a Banach space.
It is easy to see from (2.18) the symmetry of the transition density,

pt�x�y� = pt�y�x�� t > 0� x� y ∈ �p�(6.2)

This implies that

�Stf�1 = �f�1� f ∈ L1��p� ν�+�(6.3)

Using (6.1) we easily deduce the following.
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Proposition 6.1. SupposevM�t� x� is the solution to (4.5)withφ = χK�0�pM�,
M ∈ �� �Xt� t ≥ 0�Pν� is locally extinct iff for any M ∈ �,

lim
t→∞

�vM�t·��1 = 0�(6.4)

According to Zhao (1995), if µ is a finite measure thenXt is Pµ-a.s. extinct;
that is,

lim
t→∞

Xt��p� = 0� Pµ-a.s.(6.5)

If µ is an infinite measure we cannot expect such a strong result. From now
on we assume that the initial measure µ is the Haar measure ν.

We first have the theorem.

Theorem 6.2. If β ≤ − logp c, then the �ξ�β�-superprocess is locally extinct.

Proof. For any integer k ∈ �, let

Bk
t �=

{
x ∈ �p
 �x�p ≤ pk+�− logc t�}�(6.6)

where �·� stands for the integer part of the number. We can prove that∫ ∞
0
�ν�Bk

t ��−β dt = ∞�(6.7)

In fact, by noticing p−β�− logc t� ≥ 1 for 0 < t ≤ 1, we have

∫ ∞
0
�ν�Bk

t ��−β dt ≥ p−βk + p−βk
∞∑
i=1

∫ �c−1�i
�c−1�i−1

p−β�− logc t� dt

≥ p−βk + p−βk�1− c�
∞∑
i=1
�pβc�−1 = ∞

for β ≤ − logp c.
From Propositions 2.3 and 2.6 we know that p1�0� x� exists and is bounded,

continuous and positive on�p. Therefore, by Lemma 4.3 it is sufficient to prove

lim
t→∞

�vt�1 ≡ lim
t→∞

∫
�p

vt�x�ν�dx� = 0�(6.8)

where vt satisfies

vt +
∫ t

0
dsSt−sv

1+β
s �x� = Stp1�0� x��(6.9)

From (6.3) and (6.9) we have

�vt�1 +
∫ t

0
ds
∥∥v1+βs

∥∥
1 = 1�(6.10)
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This tells us that �vt�1 is decreasing in t and is bounded by 1. Thus,

1 ≥
∫ t

0
ds
∥∥v1+βs

∥∥
1

≥
∫ t

0
ds

( ∫
Bk

s

dx

)−β
g1+β�s� by the Hölder inequality,

where g�t� �= ∫
Bk

t
vt�x�dx. Noticing (6.7), we have

lim inf
t→∞

g�t� = 0�(6.11)

On the other hand,∫
�p\Bk

t

vt�x�ν�dx� ≤
∫
�p\Bk

t

pt+1�0� x�ν�dx�

=1− �Pt+1�0�Bk
t ��

≤ 1− p− 1
p

∞∑
i=0

p−i exp
[
−p− c

p− 1
ci−1+k−logc tt

]

=1− p− 1
p

∞∑
i=0

p−i exp
[
−p− c

p− 1
ci−1+k

]
→ 0

(6.12)

as k→∞. Combining (6.11) and (6.12), it is easy to see that

lim inf
t→∞

∫
�p

vt�x�ν�dx� = 0
(6.13)

therefore, by the monotonicity of �vt�1� limt→∞ �vt�1 = 0. ✷

Let us consider the complementary case where β > − logp c. It is natural to
guess thatXt is not locally extinct. To see this we first establish some lemmas.

Lemma 6.3. If β > − logp c, then∫ ∞
0
�P2

t �·�U��β1dt < +∞�(6.14)

where U �= �x ∈ �p
 �x�p ≤ 1�, then unit ball of �p.

Proof. We first notice that for any sequence �c�i�� i ∈ � ∪ �0��, we have( ∞∑
i=0

p−1c�i�
)2
=
( ∞∑

i=0
p−1/2�p−i/2c�i��

)2

≤
∞∑
i=0

p−i
∞∑
i=0

p−i�c�i��2 (by the Hölder inequality)

= p

p− 1

∞∑
i=0

p−i�c�i��2�

(6.15)
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From (2.12) and (2.18), we have

�P2
t �·�U��1 =

(
p− 1
p

∞∑
i=0

p−i exp
{
−p− c

p− 1
cit

})2

+
∞∑

m=1
pm−1�p− 1�

(
p−m

[
p− 1
p

∞∑
i=0

p−i exp
{
−p− c

p− 1
cm+it

}

− exp
{
−p− c

p− 1
cm−1t

}])2

≤
(
p− 1
p

) ∞∑
i=0

p−i exp
{
−2p− c

p− 1
cit

}

+
(
p− 1
p

)2 ∞∑
m=0

p−m
∞∑
i=0

p−i exp
{
−2p− c

p− 1
cm+it

}
�

where the latter inequality is obtained using (6.15). Noticing that for 0 < β ≤ 1,

�a+ b�β ≤ aβ + bβ� a� b ≥ 0�

we then have∫ ∞
0

dt�P2
t �·�U��β1

≤
∫ ∞
0

dt

[(
p−1�p− 1�)β ∞∑

i=0
p−βi exp

{
−2βp− c

p− 1
cit

}

+ (p−1�p− 1�)2β ∞∑
m=0

p−βm
∞∑
i=0

p−βi exp
{
−2βp− c

p− 1
cm+it

}]

≤
(
p−1�p− 1�)β

2β�p− 1�−1�p− c�
∞∑
i=0
�cpβ�−i

+
(
p−1�p− 1�)2β

2β�p− 1�−1�p− c�
∞∑

m=0
�cpβ�−m

∞∑
i=0
�cpβ�−i�

Obviously, the series in the above formulas converge iffcpβ > 1; that is, β >
− logp c. This completes the proof. ✷

Let I �= ∫∞
0 �P2

t �·�U��β1 dt.

Lemma 6.4. Assume β > − logp c. Let vt be the unique solution of �4�5�
with φ�x� = χU�x�. Then there exists a positive constant c0 such that

�vt�1 ≥ c0 for any t ≥ 0�(6.16)
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Proof. By Lemma 4.3, it is sufficient to prove (6.16) for vt which is the
solution of (4.5) with a smaller initial value φ0�x� = 1

b
χU�x� for some b > 1.

To this end, from (4.5) and (6.3) we have

�vt�1 = �φ�1 −
∫ t

0
�v1+βs �1 ds

≥ �φ�1 −
∫ t

0
�v2s�β1�vs�1−β1 ds (by the Hölder inequality)

≥ �φ�1 −
∫ t

0
��Ssφ�2�β1�φ�1−β1 ds�

(6.17)

Putting φ�x� = 1
b
χU�x� into above formula, we get

�vt�1 ≥
1
b
− 1
�b�1+β

∫ t

0
�P2

s�·�U��β1 ds

≥ 1
b
− I

�b�1+β =
1
b

(
1− I

bβ

)
�

which is positive when b > I1/β ∨ 1. For this b, we choose c0 = 1
b

(
1 − I

bβ

)
> 0

and this completes the proof. ✷

With the help of Lemmas 6.3, 6.4 and 4.3 we actually have proved the
following.

Theorem 6.5. If β > − logp c, then the �c� β�-superprocess is not locally
extinct.

Combining Theorems 6.2 and 6.5 we have the following criteria.

Theorem 6.6. The �ξ�β�-superprocess is locally extinct if and only if β ≤
�− logp c� ∧ 1. That is, �− logp c� ∧ 1 is the critical value of local extinction.

Remark. (a) The results of local extinction can be generalized to all mea-
sures µ dominated by Cν for some constant C > 0 [see Dawson (1977) and
Zhao (1999)].

(b) Pinsky (1996) studied the local extinction for measure-valued L-
diffusions on �d with βλ − α�λ�2 branching and proved that local extinction
(defined in a slightly more restrictive sense than here) occurs iff the principal
(i.e., highest) eigenvalue of the generator L (corresponding to the motion pro-
cess) is not larger than β. This is analogous to Theorem 6.6 in the sense that
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it compares a parameter of the branching (mass production) to a “transience”
parameter releasing the strength of the transience of the motion process.

Since the range of β is the interval (0, 1], we then have the following result.

Corollary 6.7. If c ≤ p−1, then the corresponding �ξ�β�-superprocess is
locally extinct for any 0 < β ≤ 1.

Remark. We know from Albeverio and Zhao (1999b) that whereas the
Hausdorff dimension of �p is 1, the Hausdorff dimension of the image of
the stable random walks is 1∧ �− logp c�, just the critical point for the �ξ�β�-
superprocess to be locally extinct. On the other hand, it is well known that
the corresponding critical point for super α-stable processes on �d is �α/d�∧1
and the Hausdorff dimension of the image of α-stable processes is α ∧ d [see
Dawson (1977), Dawson, Iscoe and Perkins (1989) and Perkins (1988)]. There-
fore, our result is consistent with the Euclidean case. However, we can not
expect the result for general Lévy processes because extinction–nonextinction
is a question about the relation between large-scale behavior of the spatial
motion, whereas the Hausdorff dimension of the image is a question about
the local behavior.
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Fields (K. Itô and H. Hida, eds.) 86–99. World Scientific, Singapore.

Albeverio, S. and Karwowski, W. (1994). A random walk on p-adics: the generator and its
spectrum. Stochastic Process. Appl. 53 1–22.

Albeverio, S., Karwowski, W. and Zhao, X. (1999). Asymptotics and spectral results for random
walks on p-adics. Stochastic Process. Appl. 83 39–59.

Albeverio, S. and Zhao, X. (1999a). A decomposition theorem of Lévy processes on local fields.
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