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A CONDITION FOR THE EQUIVALENCE OF
COUPLING AND SHIFT COUPLING

By M. Cranston1 and Feng-Yu Wang2

University of Rochester and Beijing Normal University

It is proved in this paper that a weak parabolic Harnack inequality
for a Markov semigroup implies the existence of a coupling and a shift
coupling for the corresponding process with equal chances of success. This
implies equality of the tail and invariant σ-fields for the diffusion as well
as equality of the class of bounded parabolic functions and the class of
bounded harmonic functions.

1. Introduction. Coupling methods have been widely used in the study
of Markov processes (see [12] and references therein.) In this paper we will
compare coupling and shift coupling of a Markov process. The tail σ-field is
naturally associated to coupling and the invariant σ-field is naturally associ-
ated to shift coupling. To describe this association, let �E��� be a Polish space
and �Pt� t ∈ I� a conservative Markov semigroup on C�E�, where I is either
�+ (discrete time) or �+ (continuous time). Let ����t� θt� be the canonical
path space on E (cadlag paths) with the usual σ-fields �t and shift operator
θt. Then � = ⋂

t θ
−1
t �∞ and � = �
 ∈ �∞ 	 θ−1t 
 = 
� t ∈ I
 are the tail

and invariant σ-fields respectively. For any two initial distributions µ and ν
in � �E�, the space of probability measures on �E���, let X and Y be two
copies of the Markov process on E with semigroup Pt and initial distributions
µ and ν, respectively.
We shall say �X�Y� is a shift coupling if there are stopping times S and T

for X and Y, respectively, such that XS = YT a.s. on the set �S <∞
∩ �T <
∞
. We shall call �X�Y� a coupling if S = T a.s. For clarity we shall use T′ for
S (or T) in couplings. By �µ�ν ( or � for simplicity) we denote the distribution
law of a coupling (or a shift coupling) with initial distribution pair �µ� ν�, and
let �µ be the distribution law of the Markov process with initial distribution
µ. A shift coupling (respectively, a coupling) is called successful if S ∨T <∞
(respectively, T′ < ∞� a.s. We say a shift coupling is maximally successful if
��S <∞�+��T <∞� is as large as possible and that a coupling is maximally
successful if ��T′ <∞� is as large as possible.
Existence of maximally successful couplings and shift couplings have been

established in various contexts in [9], [1], [5] and [19]. We will say coupling
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and shift coupling are equivalent when P�S <∞�+P�T <∞� = 2P�T′ <∞�
for maximally successful coupling and shift coupling.
Given a measure ν on (E��� with sub σ-field 	 ⊆ �, ν

∣∣
	
denotes the

restriction of ν to 	 � �ν� denotes the total variation norm of ν and denote
νV = ∫∞

0 νPtdt. Let us recall some relevant results which will be used in our
present study.

Theorem 1 [12], [19]. The following statements are equivalent	

(a) A successful coupling exists for any initial distributions µ� ν ∈ � �E��
(b) ��µ− ν�Pt� → 0 as t→∞ for any µ� ν ∈ � �E��
(c) �µ is trivial on � for any µ ∈ � �E��
(d) �µ = �ν on � for any µ� ν ∈ � �E��

Theorem 2 [1], [19]. The following statements are equivalent:

(e) A successful shift coupling exists for any µ� ν ∈ � �E��
(f) 1

t

∥∥ ∫ t
0�µ− ν�Psds

∥∥→ 0 as t→∞ for any µ� ν ∈ � �E�;
(g) �µ is trivial on � for any µ ∈ � �E�;
(h) �µ = �ν on � for any µ� ν ∈ � �E��

We let 
 1 denote the set of parabolic functions h�t� x� (i.e., Psh�t+ s� x� =
h�t� x� for any t > 0� x ∈ E) for which supt>0�x∈E �h�t� x�� ≤ 1 and � 1 the set of
harmonic functions �Pth�x� = h�x� for any t > 0� x ∈ E for which supx �h�x�� ≤
1. Similarly, 
b and�b will denote the sets of bounded parabolic and harmonic
functions respectively. The following result expresses the relation between 
 1

and coupling and that between � 1 and shift-coupling.

Theorem 3 [5]. Assume that I = �+ and µV� νV are σ-finite.

(a) There exists a coupling �X�Y� with coupling time T′ such that
2��T′ = ∞� = sup

h∈
 1
�h� �µ− ν� ⊗ δ0� = lim

t→∞
��ν − µ�Pt� �

(b) There exists a shift coupling �X�Y� with coupling epochs �S�T� such
that

��S = ∞� + ��T = ∞� = sup
h∈� 1

�h�µ− ν� = lim
t→∞

∥∥∥∥1t
∫ t
0
�µ− ν�Psds

∥∥∥∥ �
We also mention the following results which can be found in [8]. For the

coupling in Theorem 3,∥∥∥�µ�X ∈ ·�∣∣
�
− �ν�Y ∈ ·�

∣∣
�

∥∥∥ = sup{ ∫
�
Z�d�µ − d�ν��Z ∈ � � �Z� ≤ 1 a.s.

}

= sup
h∈
 1

�h� �µ− ν� ⊗ δ0� �
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For the shift coupling in Theorem 3,

��µ�X ∈ ·��� − �ν�Y ∈ ·��� � = sup
{∫
�
Z�d�µ − d�ν��Z ∈ � � �Z� ≤ 1 a.s.

}

= sup
h∈� 1

�h�µ− ν� �

A consequence of the above is:

Corollary 1. Under the assumption of Theorem 3�

(a) There is a coupling �X�Y� with coupling epoch T′ such that
��µ�X ∈ ·��� − �ν�Y ∈ ·�� � = 2�µ�T′ = ∞� = sup

h∈
 1
�h� �µ− ν� ⊗ δ0��

(b) There is a shift coupling �X�Y� with coupling epochs �S�T� such that
��µ�X ∈ ·��� − �v�Y ∈ ·��� � = P�S = ∞� +P�T = ∞� = sup

h∈� 1
�h�µ− ν� �

The application of the parabolic Harnack inequality to the equivalence of
coupling and shift coupling is enabled by the Derrienic 0-2 Law. Define for
x ∈ E, h > 0,

α�x�h� = lim
t→∞

�δxPt+h − δxPt�
and

α�h� = sup
x∈E
α�x�h� �

Theorem 4 (Derrienic 0-2 Law [8]). For any h > 0, α�h� = 0 or 2. More-
over, α�h� = 0 for some h > 0 if and only if � = � �equivalently, 
b = �b���µ
a.s. for every Borel probability measure µ on E.

The plan of the paper is as follows: In Section 2 we will show how a parabolic
Harnack inequality can be used to apply Derrienic’s 0-2 law. In Section 3 we
offer examples which satisfy this parabolic Harnack inequality. In Section 4
we show how gradient estimates can be used to apply Derrienic. In Section 5
we show by means of an example that parabolic Harnack is not a necessary
condition for the equivalence of coupling and shift coupling.

2. Equivalence of coupling and shift coupling. In terms of Theorems
1, 2, 3 and 4, the key point in proving the equivalence of coupling and shift
coupling is to show that α�h� = 0 for some h > 0. To this end, we shall use
the following parabolic Harnack-type inequality which will be studied in the
next section: there exist t� h ∈ I\�0
 and a nonnegative increasing � ∈ C�0�1�
such that ��0� < 1 and

Ptf ≤ ��Pt+hf�� 0 ≤ f ≤ 1�(2.1)

Note that � may depend on t and h.
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Theorem 5. Assume that �2�1� holds for some t� h ∈ I \ �0
 and increasing
� ∈ C�0�1� with ��0� < 1. Then α�h� = 0. Consequently, under �2�1� a success-
ful coupling exists for any pair of initial distributions if and only if so does a
successful shift coupling.

Proof. By the contractivity of Pt, we have

α�x�h� ≤ �δxPt − δxPt+h�� x ∈ E�(2.2)

By (2.1), for any 0 ≤ f ≤ 1 we have
Pt+hf�x� ≥ �−1�Ptf�x�� 	= inf�r ≥ 0 	 ��r� ≥ Ptf�x�
�(2.3)

It then follows from (2.2) and (2.3) that

α�h� = sup
x
α�x�h� = 2 sup

0≤f≤1�x∈E
�Ptf�x� −Pt+hf�x�


≤ 2 sup
s∈�0�1�

{
s−�−1�s�} < 2

since ��0� < 1 and �−1�r� > 0 for r > ��0� by our assumption on �. This
implies that α�h� = 0 by Theorem 4. The proof is now complete by Theorems
1, 2 and 4. ✷

Remark. Condition (2.1) is in some sense sharp for α�h� = 0. Actually, by
the definition of α�h� and the proof of Theorem 2, α�h� = 0 if and only if for
any x, there exists tx ∈ I such that

Ptxf�x� ≤ Ptx+hf�x� + 1
2 � 0 ≤ f ≤ 1�(2.4)

If tx is independent of x, then (2.1) holds for ��s� = s+ 1
2 �

Corollary 2. Assume that I = �+ and µV is σ-finite for any µ ∈ � �E��
If �2�1� holds, then � = � �
b = �b�

lim
t→∞

1
t

∥∥∥∥
∫ t
0
�ν − µ�Ptdt

∥∥∥∥ = limt→∞��ν − µ�Pt��(2.5)

and for any µ� ν ∈ � �E�� there exist a shift coupling �X�Y�S�T� and a cou-
pling �X′�Y′�T′� with initial distribution �µ� ν� such that

2��T′ = ∞� = maxh∈
 1��ν − µ� ⊗ δ0� h��
��S = ∞� + ��T = ∞� = maxh∈� 1�ν − µ�h��

(2.6)

Proof. By Theorem 5, α�h� = 0 for any h, thus � = � and 
b = �b
according to [8]. Consequently, (2.5) and (2.6) follows from Theorem 3 and
Corollary 1. ✷

Before ending this section, we present a result on the weak parabolic Har-
nack inequality (2.1) under perturbations.
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Theorem 6. Let E =M be a complete Riemannian manifold, and P�i�t the
diffusion semigroups generated by Li = $ + Zi, where Zi�i = 1�2� are two
C1-vector fields. If c 	= �Z1 −Z2�∞ <∞� then P�1�t satisfies �2�1� for some t� h
and �1 with �1�0� = 0 if and only if P�2�t also satisfies (2.1) for the same t� h
and some �2 satisfying �2�0� = 0.

Proof. The key point of the proof is the following comparison between
semigroups:

∣∣P�i�t f∣∣r ≤ exp [ c2rt

4�r− 1�
]
P
�j�
t �f�r� r > 1� i� j = 1�2�(2.7)

The proof of this inequality is similar to that of Lemma 2.1 in [23]. For positive
f ∈ C∞0 �M�, let φ�s� = P�i�s �P�j�t−sf�r� s ∈ �0� t�� It is easy to see that

φ′�s� ≥ r

P
�i�
s �P�j�t−sf�r

P
�i�
s �P�j�t−sf�r

{
�r− 1� �∇P

�j�
t−sf�2

�P�j�t−sf�2
− c �∇P

�j�
t−sf�

P
�j�
t−sf

}

≥ − rc2

4�r− 1� �
(2.8)

This implies (2.7) immediately.
Now, assume that P�1�t satisfies (2.1) for t� s and �1. By (2.7) with r = 2, for

any f with 0 ≤ f ≤ 1 we have
�P�2�t f�2 ≤ exp�c2t/2��P�1�t f� ≤ exp�c2t/2��1�P�1�t+sf�

≤ exp�c2t/2��1
(
exp�c2t/4�

√
P
�j�
t+sf

)
�

Therefore, (2.1) also holds for P�2�t with

�2�r� = exp�c2t/4�
√
�1

(
exp�c2t/4�r1/2)� ✷

3. Weak parabolic Harnack inequalities. The aim of this section is to
present sufficient conditions for the weak parabolic Harnack inequality (2.1).
Let us first recall some results on parabolic Harnack inequalities which are
much stronger than (2.1).
Let E = M be a connected, complete Riemannian manifold and let Pt be

the diffusion semigroup generated by L = $ +Z for some C1-vector field Z.
A well known parabolic Harnack inequality was proved by Li and Yau[14] for
Z = 0 under the assumption that the Ricci curvature is bounded from below.
This inequality has been up to now extended and refined by several papers,
for instance, Setti[17] (for the case Z = ∇V with Ric + exp�V�Hessexp�−V�
bounded from below), Qian [15] (for bounded �Z� with Ric −�∇·Z� ·� bounded
from below), Yau [24] (for general non-self-adjoint operators) and Bakry and
Qian [2] (under a curvature-dimension condition). We state here the result in
[2] which recovers and improves those in [14], [15] and [17].
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Given a second order operator L, let )�f�g� = Lfg − fLg − gLf and

)2�f�g� = 1
2

{
L)�f�g� − )�f�Lg� − )�Lf�g�}�

Define a distance ρ on E by setting ρ�x�y� = sup�ψ�x� −ψ�y� 	 )�ψ�ψ� ≤ 1
.
In the case E = M, a Riemannian manifold and L = $ + Z, ρ is the usual
Riemannian distance.
If there exist K ≥ 0 and n ∈ �0�∞� such that

)2�f�f� ≥ −K)�f�f� +
1
n
�Lf�2� f ∈ C∞0 �M��(3.1)

Then

Ptf�x� ≤ Pt+sf�y�
[t+ s
t

]n/2
exp

[ (
ρ+√nKs)2

4s

+
√
nK

2
min

{(√
2− 1)ρ�

√
nK

2
s
}]
�

(3.2)

Taking y = x in (3.2) so that ρ = ρ�x� x� = 0, we see (2.1) holds with ��r� =
r�t+ h/t�n/2enK/4. Note that when n = ∞, (3.1) becomes the usual curvature
condition: Ric −�∇·Z� ·� ≥ −K�
Next, we introduce a result by Saloff-Coste [16] using the doubling property,

D�R�, and local Poincaré inequality, P�R�, described below. Let Z = ∇V and
denote dµ = exp�V�dx, where dx is the Riemannian volume element on M.
Let µ�x� r� be the measure of µ on B�x� r�, the geodesic ball with center x and
radius r. Given R > 0, the conditions D�R� and P�R� read as follows.
D�R�: there exists C1 > 0 such that for all r ∈ �0�R� and all x ∈M�µ�x�2r�

≤ C1µ�x� r��
P�R�: there exists C2 > 0 such that for all r ∈ �0�R� and all x ∈ M, if

fr = �1/µ�x� r��
∫
B�x�r� fdµ � then∫

B�x�r�
�ψ− ψr�2dµ ≤ C2r2

∫
B�x�2r�

�∇ψ�2dµ� ψ ∈ C1�B�x�2r�� �

The properties D�R� and P�R� are particularly nice as they are essentially
geometric properties and are equivalent to a parabolic Harnack inequality
which we will discuss below. Also, these properties make sense in settings
more general than the class of Riemannian manifolds which also we will dis-
cuss later on. Finally the properties P�R� and D�R� are preserved by quasi-
isometries and isometries at infinity (see [16] and [6]). On the other hand,
however, D�R� fails to be true if the measure µ is finite and decays faster
than polynomial. For instance, µ�dx� = exp�−c�x�ε�dx in �d for some ε� c > 0�
According to [16], if

P�R� and D�R�(3.3)
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hold, then there is a C > 0 such that given x ∈M, 0 < r < R and any positive
f� one has

Ptf�x1� ≤ Pt+sf�x2� exp
{
C

[
ρ2�x1� x2�

s
+

(
1
t
+ 1
r

)
s

]}
(3.4)

for t� s > 0 and x1� x2 ∈ B�x� 12r�. Once again, with x2 = x1, (2.1) holds under
D�R� and P�R� with ��r� = r exp {C ( 1

t
+ 1
R

)
h
}
.

Remarks. We would like to examine various examples where P�R� and
D�R� and therefore (3.4) hold. Consequently, Theorem 5 holds for all of the
examples below. Our discussion follows [16].

1. Assume �M�g� is a Riemannian manifold for which P�R� andD�R� hold for
Z = 0 and someR > 0, and g̃ is another metric onM for which λg ≤ g̃ ≤ 
g
for two positive constants λ and 
. Then �M� g̃� also satisfies D�R� and
P�R�. We note thatD�R� follows from the Bishop comparison theorem when
�M�g� is a manifold satisfying Ric ≥ −Kg. Furthermore, Buser has proven
an L1 version of the Poincaré inequality (which is stronger than Poincaré):
with fB = 1/µ�B�

∫
B fdµ,∫

B
�f− fB�dµ ≤ exp

[
Cn�1+

√
κ r�r] ∫

B
�∇f�dµ

under the same Ricci curvature assumption, Ric ≥ −Kg. Thus, If �M� g̃� is
conformally equivalent to �M�g� and Ric≥ −Kg, then (3.4) holds for Z = 0.

2. By the results of [6], P�R� and D�R� are preserved by rough isometries.
This allows one to deduce �b = 
b for a discretization of a manifold which
satisfies P�R� and D�R� or for a manifold isometric at infinity to one which
satisfies P�R� and D�R�. See [6] for details.

3. If G is a unimodular Lie group and µ Haar measure on G, let X1� � � � �Xk
be left invariant vector fields on G and set L = −∑k

i=1X
2
i . A distance can

be defined by setting

ρ�x�y� = sup�ψ�x� − ψ�y� 	 ψ ∈ C∞0 �G�� )�ψ�ψ� ≤ 1

where ) is the carré du champ above. Under this distance, metric balls on
G either satisfy

∀r > 1� crN ≤ µ�r� ≤ CrN

or

∀r > 1� c exp�Cr� ≤ µ�r� ≤ C exp�Cr� �
These are results of [10]. In either case, D�R� is satisfied. Varopoulos [20]
showed P�R� is satisfied for these operators. Thus the parabolic Harnack
inequality holds for these operators.
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4. Subelliptic operators on �d satisfyP�R� andD�R� under certain conditions.
These are operators of the form

Lf = −m�x�−1
n∑

i�j=1
∂i�m�x�aij�x�∂jf�

with 0 < m�x� < ∞, �aij�x�� positive semi-definite and m and a
smooth. L is self-adjoint on L2��d� µ� with µ�dx� = m�x�dx, )�f�f� =∑n
i�j=1 aij�x�∂if∂jf. L is locally subelliptic if for each bounded domain

U ⊂ �d

��I− $�2εf�2 ≤ C��Lf�2 + �f�2�� f ∈ C∞0 �U�(3.5)

for some C�ε > 0. Suppose (3.5) holds with U3 = �x 	 �x� ≤ 3
 (Euclidean
ball of radius 3) and assume m�m−1, aij and their derivatives of any order
are bounded by a constant A in U3. Then if B�x� r� = �y 	 ρ�x�y� ≤ r
,
there exist constants D and P such that

µ�B�x�2r�� ≤ Dµ�B�x� r�� � x ∈ U1� 0 < r < 1�∫
B�x�n�

�f− fB�dµ ≤ P
∫
B

√
)�f�f� dµ� x ∈ U1�0 < r < 1 �

Thus, if the subellipticity and boundedness condition hold on U3�x� for any
x ∈ �d with the same constant A, then D�1� and P�1� hold.
We now present some new criteria for our weak parabolic Harnack inequal-

ity (2.1).

Theorem 7. Let E = M be a complete, connected Riemannian manifold,
and let Pt be generated by L = $+Z for some C1-vector field Z. If

�3�1� holds for some K ≥ 0 and n = ∞� and there exist
r > 0� h > 0 such that pr 	= inf x∈MPh1B�x�r��x� > 0�

(3.6)

Then, for any t > 0 and the above h > 0, �2�1� holds for

��s� = exp
[

Kr2

2�1− exp�−2Kt��
]√
prs�

Proof. By Lemma 2.1 in [23], for 0 ≤ f ≤ 1 we have if xh is the Markov
process at time h,

[
Ptf�x�

]2 exp [− Kρ�x� xh�2
1− exp�−2Kt�

]
≤ Ptf2�xh� ≤ Ptf�xh��

This proves the theorem since it implies that

[
Ptf�x�

]2
pr exp

[
− Kr2

1− exp�−2Kt�
]
≤ Pt+hf�x�� x ∈M� ✷
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We now go back to the general case and use a sort of Lipschtz continuity
of semigroups. Let γ be a nonnegative symmetric function on E × E, define
Bγ�x� r� = �y ∈ E 	 γ�x�y� ≤ r
. Assume that there exist c > 0 and t > 0 such
that

�Ptf�x� −Ptf�y�� ≤ γ�x�y��f�∞� x� y ∈ E�(3.7)

Theorem 8. If there exist t� h ∈ I \�0
 and r ∈ �0�1� such that �3�7� holds,
and

pr 	= inf
x∈E
Ph1Bγ�x�r��x� > 0�(3.8)

then �2�1� holds for the above t� h > 0 and ��s� = p−1r s+ r�

Proof. By (3.6) we have

Ptf�xh� ≥
[
Ptf�x� − ρ�x� xh�

]+
� 0 ≤ f ≤ 1�

where xh denotes the corresponding Markov process starting from x. Then,
by taking expectation, Pt+hf�x� ≥ pr�Ptf�x� − r�. The proof is complete. ✷

To conclude this section, we present the following consequence of Theorem
6 and results mentioned and proved above.

Corollary 3. There exist t� h ∈ I \ �0
 and increasing � ∈ C�0�1� with
��0� < 1 such that �2�1� holds. Hence the assertions in Theorem 5 and Corol-
lary 2 are true, provided �3�7� and �3�8� hold. They also hold provided Pt is
generated by L = $ + Z on M and one of the following holds: for some Z′

with �Z − Z′�∞ < ∞ in place of Z: �3�1�� �3�3� (for the case that Z′ = ∇V�
and �3�6�.

4. Further results for diffusion processes using gradient estimates.
We first consider diffusions on �d� Let

L = 1
2

n∑
i�j=1

aij�x�∂i∂j +
n∑
i=1
bi�x�∂i

where ∂i = ∂/∂xi� Assume that there exist λ > 0�C ≥ 0 such that∑
i�j

aij�x�ξiξj ≥ λ�ξ�2� ξ� x ∈ �d�(4.1)

�∇va�x��2 + 2�∇vb�x�� v� ≤ C� v� x ∈ �d� �v� ≤ 1�(4.2)

Here �� � and ��� denote, respectively, the Eucleadien inner product and
Hermite-Schmidt norm, and ∇vf�x� 	=

∑
i vi∂if�x� = �∇f� v��

Next, consider the SDEs on �d 	
dxt = a�xt�dBt + b�xt�dt�
dvt = �∇vta�xt��dBt + �∇vtb�xt��dt�
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where Bt is the d-dimensional Brownian motion. Then xt is the L-diffusion
process and vt its derivative flow. By Itô’s formula,

d�vt�2 = 2��∇vta�xt��dBt� vt� +
{
2�∇vtb�xt�� vt� + �∇vta�xt��2

}
dt�

Then by (4.2),

E�vt�2 ≤ �v0�2 exp�Ct�� t ≥ 0�(4.3)

This then implies

E

{ ∫ t
0
�a�xs�−1vs� dBs�

}2
=

∫ t
0
E�a�xs�−1vs�2ds

≤ 1
λ2

∫ t
0
exp�Cs�ds = exp�Ct� − 1

cλ2
�

Hence
∫ t
0�a�xs�−1vs� dBs� is a martingale (square integrable). By Theorem 5 in

[7], and furthermore, according to an observation in [18], for any g ∈ C1�0� t�
with g0 = 0� gt = 1, one has

�∇Ptf�x0�� v0� = Ef�xt�
∫ t
0
g′s�a�xs�−1vs� dBs��

Taking gs = 1− exp�−Cs�/�1− exp�−Ct��� the above formula yields that

�∇Ptf�x��2 ≤ Ptf2�x�
∫ t
0
�g′s�2E�a�xs�−1vs�2ds

≤ C
2Ptf

2�x�
λ2

∫ t
0

exp�−Cs�ds
�1− exp�Ct��2 =

CPtf
2�x�

λ2�1− exp�−Ct�� �
(4.4)

Now, taking γ�x�y� = C�x − y�/�λ2�1 − exp�−Ct��� in Theorem 8, we obtain
the following result.

Theorem 9. Assume that �4�1� and �4�2� hold. If there exist r < λ/√C and
h > 0 such that

pr 	= inf
x

�x��xs − x� ≤ r� > 0�(4.5)

then �2�1� holds for some t > 0� the above h and some increasing � ∈ C�0�1�
with ��0� < 1� Consequently, the assertions in Theorem 5 and Corollary 2 hold.

The gradient estimates of Pt can also be obtained by using coupling, see for
instance [22], in which the mirror coupling is used to estimate the gradient of
diffusion semigroups. This coupling has been developed and exploited in [13],
[11], [4], [3], [21] and many other places.
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Theorem 10. Let Pt be generated by L = $ +Z on a complete, connected
Riemannian manifold M. Suppose that the Ricci curvature is bounded from
below and for any r > 0, there exists h > 0 such that

sup
ρ�x�y�=r�y/∈ cut�x�

[
Zρ�·� y��x� +Zρ�x� ·��y�] <∞�

inf
x∈M

�x�xh ∈ B�x� r�� > 0�

where ρ�x�y� denotes the distance between x and y, and cut�x� denotes the cut
locus of x. Then for any t > 0, there exists h > 0 and increasing � ∈ C�0�1�
with ��0� < 1 such that �2�1� holds, and therefore, the assertions in Theorem
5 and Corollary 2 are true.

Proof. Simply note that by Theorem 4.4 in [22], our assumption implies
the gradient estimate �∇Ptf�∞ ≤ C�t��F�∞ for some C�t� > 0. ✷

5. Supplementary example. We now analyze the following reflecting
diffusion process on �1�∞�

rt = r+ bt +
∫ t
0
rasds+ Ct�r��(5.1)

where bt is one-dimensional Brownian motion, Ct�r� is local time of r at 1,
r ≥ 1, and 0 ≤ a ≤ 1 is fixed. This provides an example, when 0 ≤ a ≤ 1

3 , of a
diffusion for which the conditionD�R� clearly fails yet� = � . SinceD�R� and
P�R� together are equivalent to a parabolic Harnack inequality, this example
shows a parabolic Harnack inequality is not a necessary condition for the
conclusion � = � . This diffusion is (essentially) the radial part of Brownian
motion on a model manifold with Ric�∂r� ∂r� " −r2a as r → ∞. Obviously
since rt → ∞ a.s., given two starting points 1 ≤ r < ρ we can always shift
couple with T = inf�t > 0 	 rt = ρ
, S = 0. Thus � is always trivial for
0 ≤ a ≤ 1.

Theorem 11. If rt satisfies �5�1� and 0 ≤ a ≤ 1
3 , then � = � is trivial. If

1
3 < a ≤ 1, then ��� .

Proof. By Itô’s formula,

r1−at = r1−a + �1− a�
∫ t
0
r−au dbu + �1− a�

∫ t
0
r−au dCu�r�

+a�a− 1�
2

∫ t
0
r−1−au du+ �1− a�t �

Since ru ≥ 1 for all u ≥ 0 and ε > 0, there is a finite T�ω� ε� such that for
t ≥ T�ω� ε�

−t 12+ε ≤ �1− a�
∫ t
0
r−au dbu ≤ t

1
2+ε �
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Thus, for t ≥ T�ω� ε� both
r1−at ≥ r1−a − t 12+ε + �1− a− δ�t

and

r1−at ≤ r1−a + t 12+ε + �1− a�C∞ + �1− a�t
for some δ ∈ �0�1− a�. Note that C∞ <∞ by the transience of rt.
Thus, there exists finite T�ω� C∞�r�� η� ε� δ� such that for all

t ≥ T�ω� C∞�r�� η� ε� δ��

r1−a + �1− a− η�t ≤ r1−at ≤ r1−a + �1− a+ η�t �(5.2)

This inequality implies that the quadratic variation of the martingale term
�1 − a� ∫ t0 r−au dbu diverges for 0 ≤ a ≤ 1

3 and converges for
1
3 < a ≤ 1 since it

is �1 − a�2 ∫ t0 r−2au du and r−2au " t−2a/�1−a� for large t� and −2a/�1 − a� ≥ −1
for 0 ≤ a ≤ 1

3 , −2a/�1 − a� < −1 for 1
3 < a ≤ 1. The inequality (5.2) also

implies
∫∞
0 r

−1−a
u du is convergent a.s. for all a ∈ �0�1�. Consider now the case

0 ≤ a ≤ 1
3 and take ρ > r ≥ 1. Put ρt = ρ− bt +

∫ t
0 ρ

a
sds+ Ct�ρ� where bt is the

Brownian motion used to drive rt and Ct�ρ� is local time of ρ at 1 up to time
t. Then

ρ1−at − r1−at = ρ1−a − r1−a − �1− a�
∫ t
0
�ρ−as + r−as �dbs

+�1− a�
∫ t
0
�ρ−au dCu�ρ� − r−au dCu�r��

+a�a− 1�
2

∫ t
0
�ρ−1−as − r−1−as �ds �

But ∫ ∞
0
�ρ−at dCt�ρ� + r−at dCt�r�� ≤ C∞�ρ� + C∞�r� ∈ �

by transience of rt and ρt, and
∫∞
0 �ρ−1−as − r−1−as �ds is also a.s. finite. Since

E�∫ t0�ρ−as + r−as �dbs�2 ≥ E�∫ t0�ρ−2as + r−2as �ds� tends to infinity a.s., as the
martingale

∫ t
0�ρ−as +r−as �dbs does not converge a.s. and so must be unbounded.

Thus, T = inf�t > 0 	 ρt = rt
 <∞ a.s. and � is trivial so � = � a.s.
For 13 < a < 1 we use Derrienic’s 0-2 law (Theorem 4). For a >

1
3 , recall that

the martingale
∫ t
0 r

−a
s dbs converges a.s. since �r

( ∫∞
0 r

−2a
s ds <∞) = 1. Put

g�t� s� = r1−a + �1− a�t+ 1
2�1− a�s �

Then for any t > 0,

�r
(
rt ≤ g�t� s�

1
1−a

)
= �r

(
r1−at ≤ g�t� s�)
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= �r

{
r1−at − r1−a − �1− a�t ≤ �1− a�s

2

}

≥ �r

{
�1− a�

∫ t
0
r−au dbu +

�a− 1�a
2

∫ t
0
r−1−au du

+�1− a�Ct�r� ≤
�1− a�s
2

}

≥ 3
4
�

provided s is large enough since the integrals on the C�h�s� inside the proba-
bility all converge by (5.2).
Similarly,

�r
(
rt+s ≥ g�t� s�

1
1−a

)
= �r

(
r1−at+s ≥ g�t� s�

)
≥ �r

{
�1− a�

∫ t+s
0
r−au dbu + �1− a�s+

a�a− 1�
2

∫ t+s
0
r−1−au du ≥ �1− a�s

2

}

= �r

{
�1− a�

∫ t+s
0
r−au dbu +

�a− 1�a
2

∫ t+s
0
r−1−au du ≥ −�1− a�s

2

}

≥ 3
4
�

for s sufficiently large since all integrals converge as t + s→ ∞. Thus, since
for any A and probability measures ν and µ, �ν−µ� ≥ 2�ν�A�−µ�A��� taking
A = �g�t� s� 1

1−a �∞� we have, for large enough s,
�Pt+sδr −Ptδr� ≥ 2�Pt+sδr�A� −Ptδr�A��

= 2[�r(rt+s ≥ g�t� s� 1
1−a

)− �r
(
rt ≥ g�t� s�

1
1−a

)]
≥ 3

2 − 1
2 = 1�

Thus, by Theorem 4, supx α�x� s� = 2 and ��� . ✷
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