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In a previous work, we proved the validity of the replica-symmetric
solution for the Hopfield model in a nontrivial domain of parameters. This
was done at the accuracy of the LLN. In a somewhat larger domain, we
obtain a description at the level of the CLT, or, in the terminology of physics,
we calculate the fluctuations around the mean field. This is obtained by
refining the tools we developed for a rigorous use of the cavity method
and proving new a priori estimates about the “localization” of the Gibbs
measure.

1. Introduction. The Hopfield model of memory was recently the object
of much attention, and, in particular, this author devoted a long paper to the
study of its many aspects [7]. In order to make the present paper reasonably
self-contained, we will repeat the main definitions.

The Hopfield model centers on a certain random function defined on the
space �N = �−1� 1�N. An element ε of �N is called a configuration (because
physically it describes a configuration of N spins). The randomness is brought
in by an independent sequence �ηi�k�i≤N�k≤M such thatP�ηi�k = 1� = P�ηi�k =
−1� = 1/2. The configurations ηk = �ηi�k�i≤N, called the prototypes, play a
special role, and so do the quantities

mk�ε� =
1
N

∑
i≤N

ηi�kεi�(1.1)

which are called the overlaps. The random function of interest (the
Hamiltonian) is given by

H�ε� = −N
2

∑
k≤M

mk�ε�2 − hNm1�ε�(1.2)

(where h > 0 is a parameter). When h = 0, this is the most natural function
that takes large negatives values at each of the configurations ηk. The purpose
of the extra term −hNm1�ε� is to distinguish one of the overlaps. It is natural
in statistical mechanics to study (1.1) through the introduction of an inverse
temperature β, and to introduce the Gibbs measure given by

G�ε� = 2−N

Z
exp

(−βH�ε�)�(1.3)
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where Z is the normalization factor

Z = 2−N
∑
ε∈�N

exp
(−βH�ε�)�

All the quantities we write then depend on N� M� β and the randomness
�ηi�k�. The dependence on the randomness is always kept implicit. The depen-
dence on the other parameters will be made explicit whenever there is a risk
of ambiguity. The model is studied as N → ∞, for the “typical configura-
tion” of the randomness. We are interested here only in the so-called case
of the Hopfield model with many patterns, where M is a (small) proportion
M = �αN� of N. (This is by far a more challenging situation than the case
M/N→ 0.) The parameters of the model are then α� β� h (and N→∞�. The
Hopfield model (as well as other models for spin glasses) is, despite the appar-
ent simplicity of its definition, an object of enormous complexity. All the results
of the present paper concern the range of the parameters “where the system is
in a pure state,” in which physicists have discovered very beautiful formulas
[A-G-S] by methods that the mathematically inclined reader will likely find of
the utmost interest. The most important of these formulas, that is, the value
of the average free energy per site,

FN�α� β� h� = lim
N→∞

1
N
E logZN�(1.4)

was calculated rigorously in [7] in a domain that, although smaller than the
region where physicists predict that the formula holds, contains an appar-
ently very nontrivial region. This was done by developing the “cavity method,”
that is, computations of quantities relevant to the N-spin model in function of
quantities relevant to the �N−1�-spin model. It is absolutely not trivial to see
how to do these computations, and for that purpose we had to develop rather
involved methods. Soon after reading our proof Bovier and Gayrard (who previ-
ously had authored a string of important papers on the Hopfield model) found
a very different proof, with considerably greater geometric appeal than ours
[3]. Despite the beauty of their argument, we see two reasons not to be fully
satisfied by it. First, it seems that this argument uses very specific properties
of the Hopfield model. On the other hand, the cavity method is very versatile
and has been successful on a variety of spin-glass models [8, 9] (although with
computational tools different from those we will use here). The second reason
is that the geometric property on which the Bovier–Gayrard approach is based
[the convexity of the function (6.2)] appears to be valid only in a subregion
of the correct domain of parameters [as will be explained after (6.8)] so that
it can be feared that (unless its formulation can be weakened) this geometric
property is an accidental rather than an essential feature.

As far as aesthetics is concerned, it must also be said that [7] greatly suf-
fers from the fact that we attempt there to make systematic use of “thermo-
dynamical arguments.” These require us to add a “perturbating term” to the
Hamiltonian (1.2). This perturbating term creates a number of unessential
but unpleasant complications. Moreover, while it does not change the value
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of (1.4), it somewhat changes the problem. The choice of this approach was the
result of the fascinating work of Guerra [5] that appears to produce crucial
information literally out of nothing. It turns out in retrospect that this was
not the way to follow. For our purposes, perturbated Hamiltonians are a hin-
drance rather than a help, and we will not use them at all here. The primary
motivation behind the present work is a recent paper [10] (itself motivated by
physicists’ questions) where (in a subregion of the “high temperature” region)
the famous Sherrington–Kirkpatrick (SK) model is solved “at the accuracy of
the CLT” (in a sense that will soon be explained). There are (at least in our
mind) close connections between the SK and the Hopfield model. The validity
of the physicists’ solution for the SK model was first proved [6] (at nonzero
external field) in a nontrivial region using a somewhat rough argument. A
much more detailed picture was obtained in [10]; the main tools for this are
an adaptation of arguments that were developed in [7] for the Hopfield model.
The SK model is, however, much simpler than the Hopfield model, and the
rather nontrivial task of extending the results of [10] to the Hopfield model
will be carried out here. Specific motivation is also provided by the recent
CLT proved by Bovier and Gayrard in [4] for the case where M = M�N�
satisfies limM→∞M�N�/N = 0. While this is certainly nontrivial, it is, in
our opinion, significantly easier than the case we consider here. In particu-
lar, our proofs seem to indicate that (even at high temperature) there is some
intrinsic exquisite complication in the structure of the Hopfield model when
M = �αN�. This complication is of an algebraic nature; possibly a simple
underlying structure remains to be discovered.

Let us now state our results. These are stated in terms of overlaps and repli-
cas. We will consider p-replicas, which are simply the product �pN provided
with the product measure �GN�⊗p (for the same realization of randomness).
A point in a p-replica is a sequence �ε1� � � � � εp� of p configurations. The over-
lap of two configurations is defined as

ε1 · ε2 = 1
N

∑
i≤N

ε1
i ε

2
i �(1.5)

We will also define

ml = (
mk�εl�

)
2≤k≤M

and, quite reasonably,

ml ·ml′ = ∑
2≤k≤M

mk�εl�mk�εl
′ ��(1.6)

A quantity such as (1.6) will also be called an overlap. The reader should
observe that the summations do not include k = 1; the terms m1�εl� have to
be handled separately [their special role being obvious from (1.2)]. The reason
for the different normalizations in (1.5) and (1.6) is that

∑
i≤N ε

2
i = N while∑

2≤k≤Mm2
k�ε� is of order 1. The fact that the overlaps either as in (1.5) or

as in (1.6) are “nearly constant” (in fact have fluctuations of order N−1/2) is
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the central feature of the high-temperature phase. This is explained in [7],
Section 4, and made even more blatant in [8, 9] and [11]. The fact that the
overlaps are “nearly constant” will be expressed in a strong way by exponential
inequalities that are interesting for their own sake. Before we state these, we
must explain in which region we prove them. We define the accessible region
as the region of the parameters for which either

1 ≤ β ≤ 2 and α ≤ 1
L
�β− 1�2(1.7)

or

β ≥ 2 and α ≤ 1
L log β

�(1.8)

There, as well as in the rest of the paper, L is a number, not necessarily
the same at each occurrence. In the case of (1.7), (1.8), it helps to think of the
constant L in (1.7), (1.8) as a parameter that we choose as large as convenient
(as our methods are not appropriate to obtain reasonable numerical values,
we make no attempt in this direction). The term “accessible” simply refers
to the fact that we could prove something there. The parameter h can take
any positive value, but we will provide complete details only when h is very
small [i.e., for α� β as in (1.7), (1.8), our results will proved for 0 < h < h�α� β�
where h�α� β� > 0]. For large h, condition (1.7) (in particular) can be improved
upon. This is, however, a source of (real but unessential) complications and
the reader is referred to Section 3 of [7] to enjoy these.

In contrast with (1.8) (which gives the correct behavior as β→ ∞) Bovier
and Gayrard obtain only the smaller region Lαβ ≤ 1 when β ≥ 1, and their
approach (as it stands now) does not extend to the correct region (1.8). [For
later discussion, the subregion of the accessible region where (1.8) is replaced
by Lαβ ≤ 1 will be called the BG region.] The results of [7] are obtained only
in the BG region, although the condition Lαβ ≤ 1 occurred there for very
different reasons than in the geometric method of Bovier and Gayrard.

Theorem 1.1. For each value of the parameters �α� β� h� inside the acces-
sible region, there is a number K �possibly depending on α� β� h� such that
for all N large enough, and all t ∈ � we have

E�exp t�ε1 · ε2 −E�ε1 · ε2��� ≤ expKNt2�(1.9)

E�exp tN�m1 ·m2 −E�m1 ·m2��� ≤ expKNt2�(1.10)

There, as well as in the rest of the paper, the bracket �·� denotes thermal
average, that is, integration with respect to the Gibbs measure, and E denotes
expectation in the “quenched variables” �ηi�k�. There is an interesting inter-
pretation of (1.9) as a strong way to express “lack of symmetry breaking”;
see [10].
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In order to express our convergence results in a general fashion, and consid-
ering now p-replicas, let us define an admissible function on �

p
N as a (finite)

product of expressions of the following four possible types:

N−1/2�εl · εl′ −E�εl · εl′ ���(1.11)

N1/2�ml ·ml′ −E�ml ·ml′ ���(1.12)

N1/2��ml�2 −E��ml�2���(1.13)

N1/2
(
mk�εl� −E�mk�εl��

)
� 1 ≤ k ≤M�(1.14)

Theorem 1.2. If W is an admissible function on �pN� then

lim
N→∞

E�W� exists�(1.15)

Our proof of (1.15) is constructive and provides (in principle) a way to com-
pute explicitly the limit for every W. The limits (1.15) contain all the infor-
mation about the joint law of finitely many admissible functions W1� � � � �WR.
Indeed, the joint law ofW1� � � � �WR under the Gibbs measure is determined by
the (random) quantities �Wn1

1 � � � � �W
nR
R �. The joint h law of these under the dis-

order is determined by their moments, which (using replicas) are themselves
of the type E�W� for an admissible function W. The only problem remaining
is to find explicit formulas. This is a problem of a somewhat algebraic nature,
and, as we feel that the challenge of the model (in the accessible region!) is
largely gone, we could not find the energy to do this. It seems almost certain
that the finite family of functions on �

p
N of the type

N−1/2�εl · εl′ − �εl · εl′ ���
N1/2�ml ·ml′ − �ml ·ml′ ���(1.16)

N1/2(mk�εl� − �mk�εl��
)

is under the Gibbs measure asymptotically Gaussian, perhaps even with a
covariance structure independent of the disorder (the reader should have no
problem to make such a statement precise!). Moreover, the families

N−1/2(�εl · εl′ � −E�εl · εl′ �)�
N1/2��ml ·ml′ � −E�ml ·ml′ ���(1.17)

N1/2(�mk�εl�� −E�mk�εl��
)

should also be asymptotically jointly Gaussian. We did check this in the sim-
plest case of the family (1.16), l = 1, k ≥ 2 varying (which is asymptotically
i.i.d. with a variance independent of the disorder) and (1.17) (which is asymp-
totically i.i.d.).

To conclude, let us say a few words on how to read the present paper. As
already mentioned, the methods we will use are closely related to these of [7],



1398 M. TALAGRAND

Sections 4–8. However, since we take a different route (not using “perturbated
Hamiltonians”), we have to redo all the work, and familiarity with [7] is not
required and even probably not helpful to penetrate the present work. The
present work is also in theory rather independent of [10]. But, since [10] per-
forms the same program as we do here, but in the technically much simpler
case of the SK model, studying [10] first should provide invaluable help to
the serious reader. We should also mention that one of the main contribu-
tions of the paper, the proof of new “a priori” estimates on Gibbs measures
(Proposition 2.3), which is given in Section 6, can be read independently of
the cavity method arguments of the other sections.

2. The tools. To simplify the notation, we observe that we obtain an
equivalent model if we replace ηi�k by ηi�kη

−1
i�1. That is, we can assume that

η1� k = 1 for all k and that �ηi�k�i≤N�2≤k≤M are i.i.d. Bernoulli.
The starting point is to relate a situation with N + 1 spins to a situation

with N spins. This is done basically through simple algebra. It will unfortu-
nately look complicated because we have at the same time to introduce our
basic notation, which will remain in force throughout the paper. Before we
do this, we should mention that our point of view will be slightly different
from that of [7] and [10]. When we relate a situation with N + 1 spins to a
situation with N spins, this introduces a slight change of β and of h, which,
in the present case has the unpleasant tendency to push the parameter value
�α� β� h� outside the accessible region. This is an obstacle toward the use of
induction upon N as in [10]. This obstacle possibly could be passed using
enough force; but rather than doing this, we find that it is more instructive to
explore a slightly different point of view. In this point of view β� h are given
once and for all.

Throughout the paper, we set

N′ =N+ 1� β′ = N′

N
β� h′ = N

N′h�(2.1)

We consider a new independent Bernoulli sequence �ηk�2<k≤M, we set η1 = 1
and we set ηN′� k = ηk. For σ ∈ �N+1, we consider the Hamiltonian

HN′ �σ� = − 1
2N′

∑
k≤M

( ∑
i≤N′

ηi�kσi

)2

− h′ ∑
i≤N′

εi�(2.2)

which corresponds to (1.2) for N+ 1 rather than N, with a small change of h.
To relate conveniently sequences in �N and in �N′ , we make the following

convention. Given ε in �N, and σ ∈ �−1� 1�, we set σ = �ε� σ� ∈ �N+1. Given
σ in �N′ , we set σ = σN+1� ε = �σ1� � � � � σN�. With this notation elementary
algebra shows the basic identity

− β′HN′ �σ� = −βHN�ε� + βM/2N+ σβ
( ∑

1≤k≤M
ηkmk�ε� + h

)
�(2.3)
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We will now work with p-replicas. The generic point in a p-replica will be
denoted �ε1� � � � � εp�, where εl ∈ �N. For simplicity, we will write ml

k =mk�εl�,
η = �ηk�2≤k≤M� ml = �ml

k�2≤k≤M� η ·ml = ∑
2≤k≤M

ηkm
l
k�

The last component of σl will be written as σl rather than σl, to avoid confus-
ing the replica index l with a power. (We hope that the notation ml

k will not
create confusion in this respect.) Then (2.3) becomes

− β′HN′ �σl� = −βHN�εl� + β′M/2N+ σlβ�η ·ml + h+ml
1��(2.4)

We will denote by �·�′ average with respect to the Gibbs measure on �
p
N′

relative to the Hamiltonian (2.2) at inverse temperature β′, and its prod-
ucts on �

p
N′ , while �·� denotes average of the Gibbs measure relative to the

Hamiltonian (1.2) at inverse temperature β.
To simplify the notation, we write

� = � �σ1� � � � �σp� = expβ
∑
l≤p

σl�η ·ml + h+ml
1��(2.5)

A direct consequence of (2.4) is as follows.

Proposition 2.1. Given a function f on �pN′ , we have

�f�′ = �Avf� �
�Av� � �(2.6)

In this formula, Av means average over all the values of σ1� � � � � σp =
±1. Thus Av f� is a function of ε1� � � � � εp only, and �Avf� � is its aver-
age with respect to (the pth power of) the Gibbs measure relative to the
Hamiltonian (1.2). We should also note that in (2.6) f might possibly depend
on �ηi�k�.

We will use (2.6) to estimate E�f�′, so that we want to estimate

E
� Av f� �
� Av � � �(2.7)

We will first integrate in the variables η = �ηk�. The idea for handling the
denominator is that (in the region of parameters under consideration) this
denominator depends on η essentially only through η ·b, where bk = �mk�ε��.
(That this is indeed the case is not obvious at this stage.) The natural idea
then is to try a conditioning argument upon η · b. Unfortunately, there are
essentially no techniques to work with the variables ηk. However, we would
succeed if we could replace the variables �ηk� by i.i.d. N�0� 1� variables. We
could then appeal to the rich theory of Gaussian processes. But this can be
done with a small error only if

∑
2≤k≤Mm4

k is small in average (of course, the
reader has guessed that here the superscript is a power not a replica index!).
Our first task will be to prove this. In [7], this was done through the cavity
method, because one of our primary goals there was to check the stability of
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this property against addition of a new spin. Since here we are interested only
in the accessible region, we will directly prove an exponential inequality.

Theorem 2.2. If the parameters α� β� h belong to the accessible region,
then, for k ≥ 2,

E

〈
exp

N

K
m2

k

〉
≤K�(2.8)

Here, as in the rest of the paper, mk = mk�ε�, and K denotes a number
depending on α� β� h only, but not on N. It is understood that such numbers
(which are not necessarily the same at each occurrence) remain bounded on
each compact subset of the accessible region. In the BG region, Theorem 2.2
is proved in [3].

The proof of this result, and in fact the entire paper, depends crucially on
certain a priori estimates of the Gibbs measure. For β > 1, h > 0, we consider
the unique root m∗ of the equation

m∗ = thβ�m∗ + h��(2.9)

The basic fact is that, if α is small, the image G′ of the Gibbs measure on
�N by the map ε→ �mk�ε��1≤k≤M is, with high probability, almost supported
by a small ball centered at the point �m∗� 0� � � � � 0� of �M. More precisely, if
β > 1, we have, ∀ρ > 0, ∃α�ρ� β� > 0,

α < α�ρ� β� ⇒ EG

({
ε� �m1 −m∗�2 + ∑

2≤k≤M
m2

k ≥ ρ2
})

≤ exp
(
−N
K

)
�(2.10)

This statement, which is not deep, is sufficient to get the main story; that
is, at given β > 1, there is α�β� > 0 such that our results hold for α ≤ α�β�.
The correct dependence of α�β� on β as β→ 1 or β→∞ is a side story, albeit
an important one, that requires more work.

Before we state the a priori estimates, we should mention that we have not
attempted to make these sharp, but rather to state what will be required in
our proofs. Once the replica-symmetric equations have been proved, together
with our exponential inequalities, we will have an extremely precise picture.
The image G′ of the Gibbs measure under the map ε→ �mk�ε��k≤M is sharply
concentrated close to a sphere of random center and nonrandom radius, the
value of which is explicitly known.

Throughout Sections 2 to 6, we will use the following notation:

If 1 < β ≤ 2� ρ0 =
Lα

�β− 1�3/2 � ρ = ρ1 = L

(
α

β− 1

)1/2

�

If β ≥ 2� ρ0 = ρ = L

β2
� ρ1 = L

√
α�

(2.11)

Thus, in the admissible region, we have ρ0 ≤ ρ ≤ ρ1.



EXPONENTIAL INEQUALITIES IN THE HOPFIELD MODEL 1401

Proposition 2.3. If the constant L of �1�7�, �1�8� is large enough, then the
following occurs:

EG

({
ε � �m1 −m∗�2 + ∑

2≤k≤M
m2

k ≥ ρ2
1

})
≤K exp

(
−N
K

)
�(2.12)

Moreover, there is a random point c of �M with c1 =m∗ such that

EG

({
ε � ∑

1≤k≤M
�mk − ck�2 ≥ ρ2

})
≤K exp

(
−N
K

)
�(2.13)

Moreover, we have

EG
({
ε � �m1 −m∗� ≥ ρ0

}) ≤ exp
(
−N
K

)
�(2.14)

The meaning of (2.13) is that G′ is sharply concentrated on a ball of radius
ρ1 and of center �m∗� 0� � � ��. The meaning of (2.13) is that the radius ρ1 can
be decreased to ρ if we allow a random center.

Inequality (2.12) is proved in [2] and [7]. In the case β ≥ 2, (2.13) is proved
in Section 6, and is the new ingredient that allows us to prove our results
in the accessible region rather than only in the BG region. There is nothing
specific about the power 2 in the expression of ρ for β ≥ 2 in (2.13) that could
be replaced by a larger power. As strange as it may seem, the order of ρ0
for β ≤ 2 is optimal in (2.14), because (5.4) below shows that E�m1� −m∗ is
already of order ρ0.

Proof of Theorem 2.2. By symmetry we can assume that k = M. We
consider the set U of configurations ε given by

U = {
ε � �m1 −m∗� ≤ ρ0

}
so that by (2.14) we have

E�1Uc� ≤ exp
(
− N

K1

)
�

(Of course, K1� K2 denote specific numbers independent of N.) We immedi-
ately run into a minor recurring problem. A statement such as Proposition 2.3
does not control certain small sets of exponentially small measure. This was
not an obstacle in [7] because there we were integrating functions that
grew only polynomially with N. However, in the present case, the function
expNm2

k/K takes exponentially large values, up to exp�N/K�. There is a
simple way around this difficulty, which will have to be used in many occur-
rences. It is simply to observe that, since �mM�ε�� ≤ 1, we have

E

〈
1Uc exp

Nm2
M

K

〉
≤ exp

N

K
E�1Uc� ≤ expN

(
1
K1

− 1
K

)
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and this is less than or equal to 1 if K ≥K1. Thus, it is enough to prove

E

〈
1U exp

N

K
m2

M

〉
≤K�(2.15)

In other words, the solution to the obstacle of uncontrolled exponentially
small sets is simply to prove exponential inequalities with a sufficiently small
coefficient (here 1/K for large K) in the exponent. From now on, we will com-
pletely ignore any exponentially small set we wish, and we will use expressions
such as “we can pretend that �m1 −m∗� < ρ0” to mean that we know that the
fact that this condition sometimes fails is not an obstacle (as proved above)
and that it suffices to prove (2.15) to have (2.8).

Let us denote by �·�1 the Gibbs measure corresponding to the Hamiltonian

HN�M−1 = −
N

2

∑
1≤k≤M−1

mk�ε�2 − hNm1�ε��

Considering a parameter A, in the spirit of Proposition 2.1 we have the
(much easier) identity〈

1U exp
N

A
m2

M

〉
=

〈
1U exp 1

2�β+ 2/A�Nm2
M

〉
1〈

exp 1
2βNm2

M

〉
1

�(2.16)

Considering a parameter x > 0 to be determined later, we bound the right-
hand side of (2.16) by

exp
Nx2

A
+
〈
W exp

β̄

2
Nm2

M

〉
1

(2.17)

where β̄ = β + 2/A and where W = 1U∩��mM�≥x�. Consider the parameters
s1� s2 > 0, with 1/s1 + 1/s2 = 1, so that, by Hölder’s inequality, and since
Ws1 =W, we have〈

W exp
β̄

2
Nm2

M

〉
1
≤ �W�1/s1

1

〈
W exp

β̄

2
s2Nm2

M

〉1/s2

1
�

To bound the first term on the right, we use the Chebyshev inequality:

�W�1 ≤ exp
(
− β̄

2
s2Nx2

)〈
1U exp

β̄

2
s2Nm2

M

〉
1

and we get that the quantity (2.17) is bounded by

exp
Nx2

A
+ exp

(
− β̄s2

2s1
Nx2

)〈
1U exp

β̄

2
s2Nm2

M

〉
1
�(2.18)

We choose x the smallest possible to make the last term less than or equal
to 1, and we see from (2.16) that〈

1U exp
N

A
m2

M

〉
≤ 2

〈
1U exp

β̄

2
s2Nm2

M

〉2s1/Aβ̄s2

1
�(2.19)
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We now claim that to finish the proof it suffices to show that we can find
β1 > β and s > 0 such that

E

(〈
1U exp

β1

2
Nm2

M

〉s
1

)
≤K�(2.20)

Indeed, we take s2 close enough to 1 that βs2 < β1, and thenA large enough
that β̄s2 < β1, 2s1/Aβ̄s2 < s.

To prove (2.20), we write

mM�ε� =
1
N

(∑
i≤N

ηi�Mm
∗ + ∑

i≤N
ηi�M�εi −m∗�

)
(2.21)

so that, for t > 0, using that �a+ b�2 ≤ �1+ t�a2 + �1+ 1/t�b2, we have

Nm2
M�ε� ≤ �1+ t�

1
N

(∑
i≤N

ηi�Mm
∗
)2

+
(

1+ 1
t

)
1
N

(∑
i≤N

ηi�M�εi −m∗�
)2

�

(2.22)

Thus,〈
1U exp

β1

2
Nm2

M

〉s
1
≤ exp

�m∗�2
2N

sβ1�1+ t�
(∑
i≤N

ηi�M

)2

×
〈
1U exp

β1

2N

(
1+ 1

t

)(∑
i≤N

ηi�M�εi −m∗�
)2〉s

1
�

and thus, using the Cauchy–Schwarz and Hölder inequalities (assuming, as
we may, that 2s ≤ 1�,

E

(〈
1U exp

β1

2
Nm2

N

〉s
1

)2

≤ E exp
s�m∗�2
N

β1�1+ t�
(∑
i≤N

ηi�M

)2

×
(
E

〈
exp 1U exp

β1

2N

(
1+ 1

t

)

×
(∑
i≤N

ηi�M�εi −m∗�
)2〉

1

)2s

�

(2.23)

We note that, since Nm1�ε� =
∑

i≤N εi, we have∑
i≤N
�εi −m∗�2 =N�1− 2m1�ε�m∗ +m∗2)

=N
(�1−m∗2� − 2�m1�ε� −m∗�m∗)
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so that

ε ∈ U⇒ ∑
i≤N
�εi −m∗�2 ≤N�1−m∗2 + 2ρ0m

∗��(2.24)

We now use the simple fact (see [7], proof of Lemma 2.1) that

E exp

(∑
i≤N

ηi�Mxi

)2

≤
(

1

1− 2
∑

i≤N x
2
i

)1/2

�(2.25)

Computing the expectation E inside the bracket �·�1 on the right-hand side
of (2.23), using (2.24) and (2.25), we see that all that is required is that

s�m∗�2�1+ t�β1 <
1
2
�

β1

(
1+ 1

t

)
�1−m∗2 + 2ρ0m

∗� < 1�

Since s is arbitrarily small, all that is required is that, in the accessible region,
we have

β�1−m∗2 + 2ρ0m
∗� < 1�

For 1 < β ≤ 2, this follows (at least for h very small) from the elementary
fact that 1 − β�1 −m∗2� is of order β − 1 and m∗ of order

√
β− 1; while if

β ≥ 2, β�1−m∗� is less than or equal to L/β [and, in fact, less than or equal
to exp�−β/L�!. ✷

Theorem 2.3 gives us a very strong control of the functions mk, but still we
have to be careful because we integrate large functions f.

Proposition 2.4. Consider a function f on �
p
N+1. This function might

depend on the r.v. �ηi�k�i≤N�k≤M, but may not depend on the variables ηk =
ηN+1� k. If to compute E�f�′ we replace in �2�6� the variables �ηk�2≤k≤M by i.i.d
N�0� 1� variables, we make an error of at most

KE

〈
Av�f�

( ∑
l≤p+1

∑
2≤k≤M

�ml
k�4

)〉
�(2.26)

Comments. (1) In this formula, the thermal integral is over a p+1 replica
�
p+1
N , and Av �f� is identified to a function on �

p+1
N in the obvious manner,

Av �f��ε1� � � � � εp+1� = Av
σ1�����σp±1

�f��σ1� � � � �σp��

where εl and σl are related as usual, that is, σl = �εl� σl�.
(2) The constant K in (2.26) depends on p.
(3) The true formula would involve an extra error term

expK
( ∑
l≤p+1

�ml�2
)
�



EXPONENTIAL INEQUALITIES IN THE HOPFIELD MODEL 1405

However, we have (see the Appendix of [7]) an easy inequality

P

(
sup
ε
�ml�ε��2 ≥ Lt

)
≤ exp�−Nt�(2.27)

for t ≥ 1 (here and throughout the paper we assume without loss of generality
that α ≤ 1), so that this term does not matter.

Even though Proposition 2.4 is proved in [7], it is worthwhile to repeat
the proof in the present case, which is simpler because we do not have a
perturbated Hamiltonian.

Proof of Proposition 2.4. We replace the variables �ηk�2≤k≤M by i.i.d.
N�0� 1� variables gk one at a time. Assuming that η2� � � � � ηk have already
been replaced, we show that the error made when replacing ηk+1 by gk+1 is
at most

KE

〈
Av�f� ∑

l≤p+1

�ml
k+1�4

〉
�

To see this, let us consider the function ϕ�t� obtained by replacing ηk+1 by t
in each of its occurrences in �Avf� �/�Av� �. Thus, ϕ depends on g1� � � � � gk,
ηk+2� � � � � ηM as well as on the �ηi�M�i≤N�2≤k≤M. We want to bound

Eϕ�ηk+1� −Eϕ�gk+1��(2.28)

The basic fact is that the first three moments of ηk+1 and gk+1 coincide, so
that the quantity (2.28) is at most

E�ψ�ηk+1�� +E�ψ�gk+1���(2.29)

where

ψ�t� = ϕ�t� − ϕ�0� − tϕ′�0� − t2

2
ϕ′′�0� − t3

3!
ϕ�3��0��

A convenient (and somewhat crude) way to bound ψ is

�ψ�t�� ≤ �t�3
∫ ∞
−∞
�ϕ�4��x��1��t�≥�x�� dx�(2.30)

Now, we calculate ϕ�4��x�, and use replicas to express products of brackets as
a single bracket; thus, ϕ�4��x� is a sum of terms

c�l1� � � � � l4�
〈
Av fml1

k+1m
l2
k+1m

l3
k+1m

l4
k+1�

′〉
�Av � �5 �

There, the numerator is a thermal integral on �
5p
N , 1 ≤ l1� � � � � l4 ≤ 5p,

c�l1� � � � � l4� is a number, � ′ is defined as in (3.5) replacing p by 5p, and it
is understood that occurrences of ηk+1 are replaced by x. To bound (2.29)
using (2.30), only trivial bounds are needed. We use that �Av� � ≥ 1, we
integrate first in ηk′ , gk′� 2 ≤ k′ ≤ M, and we use Hölder’s inequality for
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�·� to replace terms ml1
k+1 · · ·ml4

k+1 by terms �ml
k+1�4. We then obtain (2.26),

except that we have 5p rather than p + 1. But, for l ≥ p + 1, all the terms
�Av �f��ml

k+1�4� are equal to �Av �f����ml
k+1�4� so it is enough to introduce

only one of these terms in our error bound. ✷

The main effort is the evaluation of E�f�′ in (2.6). Before we state the
result, we set up the notation, which will remain in force through the paper.
We define

b = �m��(2.31)

ṁl =ml − b =ml − �ml��(2.32)

al = �ṁl�2 − ��ṁl�2��(2.33)

cl =ml
1 − �m1��(2.34)

Y = β�g · b+ �m1� + h��(2.35)

where, of course, g · b =∑
2≤k≤Mgkbk, �gk� is an i.i.d. N�0� 1� sequence, and

� = expβ
∑
l≤p

σl�g ·ml +m1 + h��

�0 = expβ
∑
l≤p

σl�g · b+ �m1� + h��
(2.36)

Theorem 2.5. Consider a number R > 0, and assume that

EG�U� = E�1U� ≤ exp
(
−N
K

)
�

where

U = �ε� �ṁ1� ≤ R� �c1� ≤ R� �a1� ≤ R2��(2.37)

Then we can pretend that, for a function f on �pN+1, we have

E
�Av f� �
�Av � � = I+ II+ III+ IV + V + VI+S�(2.38)

where

I = E
1

chpY
�Avf�0��(2.39)

II = E
β2

chpY

〈
Avf�0

∑
l≤l′

σlσl′ṁ
l · ṁl′

〉
�(2.40)

III = 1
2
E

β2

chpY

〈
Avf�0

(∑
l≤p

al

)〉
�(2.41)

IV = E
β2

chpY

〈
Avf�0

(∑
l≤p

σl

)(∑
l≤p

σlṁ
l · b

)〉
�(2.42)



EXPONENTIAL INEQUALITIES IN THE HOPFIELD MODEL 1407

V = −pEβ
2thY

chpY

〈
Avf�0

(∑
l≤p

σlṁ
l · b

)〉
�(2.43)

VI = E
β

chpY

〈
Avf�0

(∑
l≤p

σlcl

)〉
�(2.44)

�S� ≤K�p��β2 + β4� expK�p��βR+ β2R2�(2.45)

×
〈
Av�f�

( ∑
l<l′≤p+2

�ṁl · ṁl′ �2 + ∑
l≤p+1

a2
l +

∑
l≤p+1

c2
l

)〉
�

Moreover, if

f #= 0⇒
∣∣∣∣∑
l≤p

σl

∣∣∣∣ ≤ p− 1�(2.46)

then the remainder term S can be improved by a factor

exp
(
− 1
Lα

)
+ 1

ch�β/2� �

Comments. (1) By the expression “we can pretend that” we mean that
there is an extra error term besides S, which takes into account the fact that
it is not always true that �ṁl� ≤ R, �cl� ≤ R, �al� ≤ R2. This term can, however,
be shown (as in the proof of Theorem 2.2) to be unimportant for the functions
f we will consider.

(2) In (2.45), it is essential that K�p� depends on p only, not on α� β� h.

Before we start the proof we explain why when β > 2 the condition Lαβ ≤ 1
was required in [7], and why is now can be improved into (1.8). In the case
that (2.46) holds and, say, p = 4, it is essential that in S the coefficient of the
bracket in (2.45) be bounded independently of α� β. This coefficient is

L�β2 + β4�
(

exp− 1
Lα

+ 1
ch�β/2�

)
expL�βR+ β2R2��(2.47)

In [7] we used (2.12), and R = L
√
α, and to make (2.47) bounded we needed

Lαβ ≤ 1. Now, we will be able to use (2.13) with R = Lβ−1, and α ≤ 1/L log β
is sufficient. This is the only place in the entire paper where (2.13) will be
needed.

Proof of Theorem 2.5. A statement of the same nature appears in [7],
Proposition 6.4. The proof is thoroughly rewritten in the simplest possible
case, of the SK model in [10], to which the reader is referred for a first
understanding of the method of proof (which is essentially a second-order
expansion). After reading this, the reader should be able to read the proof of
Proposition 6.4 of [7] without undue effort, and we will simply point out the
rather simple changes that are necessary to obtain the present statement.
There are two main issues, the algebraic form of the main terms and bounds
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for the remainder. To simplify the notation, we will write β rather than β′

(and we will explain later why such a change is irrelevant). In the course of
the proof, one has to handle terms of the type

exp
β2

2
�ṁl�2�

In [7] [equation after (6.23), and taking into account that what we write ml

here is denoted ul there] these are written as

exp
β2

2
��ṁl�2� exp

β2

2
��ml�2 − ��ml�2�� exp−β2ṁl · b

and it is argued by general arguments that �ml�2−��ml�2� gives a vanishing
contribution. Now, we use that

�ex − �1+ x�� ≤ x2e�x�(2.48)

for x = �β2/2���ml�2−��m�2��. The corresponding contribution of the term x
in (2.45) combined with term III of [7], Proposition 6.4, yields the term (2.41).

We also have to deal with terms

expβσlm
l
1 = expβσl�ml

1� expβσlcl�

In [7] it is argued through general principles that the contribution of cl is
vanishingly small. Rather, we now use (2.48) for x = βσlcl, and this creates
term VI.

The error terms arise from replacing at places ex by 1+x, and the error in
doing this is at most x2e�x� by (2.48). This is used in the proof for the value

x = ∑
l≤p′

β2

2
al +

∑
l≤p′

βσlcl +
∑

l<l′≤p′
β2σlσl′ṁ

l · ṁl′�

where p′ ≤ 3p. Thus,

x2 ≤K�p��β2 + β4�
(∑

a2
l +

∑
c2
l +

∑�ṁl · ṁl′ �2
)
�

while

�x� ≤K�p��β2R2 + βR��
when εl ∈ U for each l. This is what explains the error term S. As for the
improvement of the error term under (2.46), the reader is better referred to
the argument in the case of the SK model [10].

Terms I to VI in Theorem 2.5 will be called the main terms and S the error
term. The terms III to VI are of the same nature. It saves energy to perform
once and for all their computation in the special situation that we will use.
These elementary computations are left to the reader.
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Proposition 2.6. Assume that for a certain subset I of �1� � � � � p� of cardi-
nal n, we have

f�σ1� � � � �σp� =
(∏
l∈I
σl

)
f̄�ε1� � � � � εp��

where f is a function on �pN. Then [writing f̄ for f̄�ε1� � � � � εp�!, the contribu-
tions of the terms of Theorem 2�5 are as follows. The contribution of term II
is

β2Ethn−2Y

〈
f̄

∑
l<l′� l� l′∈I

ṁl · ṁl′
〉

+β2Ethn+2Y

〈
f̄

∑
l<l′� l� l′ #∈I

ṁl · ṁl′
〉

+β2EthnY
〈
f̄
∑
l<l′

ṁl · ṁl′
〉
�

where the last summation is over the pairs l� l′ such that exactly one of the
indexes l� l′ belongs to I and the other to its complement. The contributions of
terms IV and V are

�n− 1�β2E
thn−2Y

ch2Y

〈
f
∑
l∈I

ṁl · b
〉
− �n+ 1�β2E

thnY

ch2Y

〈
f
∑
l#∈I

ṁl · b
〉
�

The contribution of term III is

1
2
β2EthnY

〈
f
∑
l≤p

al

〉
�

The contribution of term VI is

βEthn−1Y

〈
f
∑
l∈I
cl

〉
+ βEthn+1Y

〈
f
∑
l#∈I
cl

〉
�

Throughout the paper, we write σ̃ = σ1 − σ2, m̃ = m1 −m2, σ̃ = σ1 − σ2
(where σl is the last component of σl) and so forth.

Corollary 2.7. If

f�σ1� � � � �σp� = σ̃σ3f̄�ε1� � � � � εp��
then the main terms of Theorem 2.5 reduce to

β2E
1

ch2Y

〈
f̄m̃ · ṁ3〉+ β2E

(
1− 3th2Y

ch2Y

)
�f̄m̃ · b�

+βE thY

ch2Y

〈
f̄�c1 − c2�

〉+ β2E
th2Y

ch2Y

〈
f̄
∑
l≥4

m̃ · ṁl

〉
�
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Of course, the terms ch−2Y arise as 1− th2Y.

Corollary 2.8. If

f�σ1� � � � �σp� = σ̃�σ3 − σ4�f̄�ε1� � � � � εp��
then the main terms of Theorem 2.5 reduce to

β2E
1

ch4Y
�f̄m̃ · �m3 −m4���

Corollary 2.9. If

f�σ1� � � � �σp� = σ̃f̄�ε1� � � � � εp��
then the main terms of Theorem 2�5 reduce to

β2E
thY

ch2Y

〈
f̄
∑
l≥3

m̃ · ṁ3

〉
− 2β2E

thY

ch2Y

〈
f̄m̃ · b〉

+ βE 1

ch2Y

〈
f̄�c1 − c2�

〉
�

Corollary 2.10. If

f�σ1� � � � �σp� = 1
2�σ̃�2 f̄�ε1� � � � � εp��

then the main terms of Theorem 2�5 reduce to

E
1

ch2Y

〈
f̄
〉− β2E

1

ch2Y

〈
f̄ṁ1 · ṁ2〉

+ β2 ∑
3≤l<l′

E
th2Y

ch2Y

〈
f̄ṁl · ṁl′ 〉+ β2E

(
3th2Y− 1

ch2Y

)〈
f̄
∑
l≥2

ṁl · b
〉

− 2β2E
1

ch2Y

〈
f̄

∑
l=1�2

ṁl · b
〉
+ β2

2
E

1

ch2Y

〈
f̄
∑
l≥1

al

〉

+ βE thY

ch2Y

〈
f̄
∑
l≥3

cl

〉
�

When ξ is a smooth function and g is N�0� 1�, integration by parts yields
the very useful formula

Egξ�g� = Eξ′�g��(2.49)

We would like to find a substitute for this when instead of g we use a variable
η with P�η = 1� = P�η = −1� = 1/2. The formula

ξ�1� − ξ�−1� = ξ′�1� + ξ′�−1� +
∫ 1

−1

1
2
�t2 − 1�ξ�3��t�dt(2.50)
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shows that

�Eηξ�η� −Eξ′�η�� ≤
∫ 1

−1
�ξ�3��t��dt�(2.51)

We will estimateEηk�f�′, where the thermal integral is on �pN+1, and where
f is a function of σ1� � � � �σp, which will also depend on ηk. In all the cases we
will consider, this function will be defined when we replace ηk ∈ �−1� 1� by
any real number, and it will be clear what is meant by ∂f/∂ηk. We denote by
Eη integration in the r.v. �ηk� only.

Proposition 2.11. �We can pretend that� we have

Eηk�f�′ = E

〈
∂f

∂ηk

〉′
+ β∑

l≤p
E�ml

kσlf�′ − pβE�mp+1
k σp+1f�′ +S′�(2.52)

where

�S′� ≤KE

〈
3∑
s=0

(
AvEη

∣∣∣∣ ∂sf∂ηsk
∣∣∣∣
2)1/2( ∑

l≤p+1

�ml
k�3−s

)〉
�(2.53)

Comments. (1) The “we can pretend” refers to the fact that we have not
taken into account the fact that it is not exactly true that �ml�ε�� ≤ L, but
that rather we have (2.27), a distinction that, as explained, is irrelevant for
our purposes.

(2) As the reader correctly guessed, the last bracket in (2.52) is on a p+1-
replica, as well as the bracket in (2.53).

Proof. We use Proposition 2.1 to write

Eηk�f�′ = Eηk
�Avf� �
�Av� � �

There is no longer dependence on ηk in the bracket �·�. We have

∂�

∂ηk
= β

(∑
l≤p

σlm
l
k

)
� �

We then apply (2.51) at all other r.v. fixed. We have

∂

∂ηk

�Avf� �
�Av� � =

�Av�∂f/∂ηk�� �
�Av� � + β�Avf�∑l≤p σlm

l
k�� �

�Av� �

−β�Avf� ��Av �∑l≤p σlm
l
k�� �

�Av� �2 �

(2.54)

It should be obvious using Proposition 2.1 that the first two terms on the
right-hand side of (2.54) contribute to the first two terms on the right-hand
side of (2.52). As for the last term, we observe that, when taking expectations,
each term �Avσlm

l
k� � contributes as �Avσp+1m

p+1
k � � and one then sees that
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this gives the last bracket of (2.52). Only crude bounds are necessary for the
error term [the right-hand side of (2.51)]. As in the proof of Proposition 2.4,
one uses that �Av� � ≥ 1. The details are left to the reader. What makes
everything easy is that we allow the constant K of (2.53) to depend on α� β.

3. Exponential inequalities, I. The aim of this section is to prove the
following result.

Theorem 3.1. At values of the parameters α� β in the accessible region, we
have, for each 0 ≤ t ≤N/L0,

E�exp tNm̃ ·m3� ≤ expKt2N�(3.1)

E�exp tN��m̃�2 − �m∗�2�� ≤ expKt2N�(3.2)

E�exp tNm̃1� ≤ expKt2N�(3.3)

There K depends on α� β� h, but not on N, m̃ = m1 − m2, m∗ = m3 −
m4. [Please do not confuse m∗ and m∗ of (2.9).] The quantity �m̃�2 − �m∗�2,
is a symmetrized version of a1 = �ṁ1�2 − ��ṁ1�2�, and the quantity m̃1 =
m1

1 −m2
1 is a symmetrization of c1 = m1 − �m1�. The reason why the three

inequalities (3.1) to (3.3) go hand in hand is that Theorem 2.5 introduces three
types of error terms, so that there is no other choice than controlling them all
together.

The overall idea of the proof is as follows. We consider the best possible
constants for which (a variant of) (3.1) to (3.3) hold. We then estimate certain
quantities E�f�′ in two different ways using Theorem 2.5 and using (3.1)
to (3.3) to control the error terms. Comparing the (equal) results of the two
computations, we then derive relations from which it will follow that the best
possible constants in (3.1) to (3.3) are bounded independently of N.

Let us consider the functions

A�t� = E�m̃ ·m3 exp tNm̃ ·m3��(3.4)

B�t� = E���m̃�2 − �m∗�2� exp tN��m̃�2 − �m∗�2���(3.5)

C�t� = E�m̃1 exp tNm̃1��(3.6)

which are the derivatives of the left-hand sides of (3.1) to (3.3), respectively.
Let us recall the quantity ρ1 of Proposition 2.2.

Lemma 3.2. There exist L0 and K0 such that if for a number H1 ≥K0 we
have

∀t ≥ 0� NH1t
2 ≥ 1� t ≤ L0ρ

2
1/H1 ⇒ A�t� ≤ 2tH1 expH1Nt2�(3.7)

then

0 ≤ t ≤ 1
L0

⇒ E�expNtm̃ ·m3� ≤ 8 expNH1t
2�(3.8)
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Comment. In (3.7) the restriction NH1t
2 ≥ 1 is an inessential detail. What

is important is that in (3.7) it is enough to control A�t� for t ≤ L0ρ
2
1/H1. Then

we automatically get control of E�expNtm̃ ·m3� for much larger values of t,
control that will be crucial in bounding error terms.

Proof of Lemma 3.2. If ξ�t� = E�expNt�m̃ ·m3��, then NA�t� = ξ′�t�. It
is obvious that A′�t� ≥ 0, so that if 0 ≤ t ≤ t0 = 1/

√
NH1, then A�t� ≤ A�t0�,

so that [using (3.7) to bound A�t0�]

ξ�t� = 1+
∫ t

0
NA�u�du ≤ 1+Nt0A�t0� = 1+ 2e ≤ 8�

It is then obvious from (3.7) that ξ�t� ≤ 8 expH1Nt2 if t ≤ L0ρ
2
1/H1. To

control the larger values of t, we write

E�exp tN�m̃ ·m3�� ≤ exp 2Nρ2
1t+E�1��m̃·m3�≥2ρ2

1�� exp tNL1

+E�1��m̃·m3�≥L1� exp tNm̃ ·m3��
(3.9)

where L1 is a constant such that

x ≥ L1 ⇒ P

(
sup

ε1�ε2�ε3
�m̃ ·m3� ≥ x

)
≤ exp

(
−Nx

L1

)

[see (2.27)]. Thus, for t ≤ 1/2L1, using (2.12) to see that EG���m̃ · m3� ≥
2ρ2

1�� ≤ 3 exp−N/K1, the right-hand side of (3.9) is at most

exp 2Nρ2
1t+ 3 exp

(
− N

K1
+ tNL1

)
+L�(3.10)

If tH1 ≥ 2ρ2
1, then 2Nρ2

1t ≤H1Nt2. If tL1 ≤ 1/K1, then

exp
(
− N

K1
+ tNL1

)
≤ 1 ≤ expH1Nt2�

while if tL1 ≥ 1/K1, then

exp
(
− N

K1
+ tNL1

)
≤ expH1Nt2�

provided H1 ≥ L2
1K1. In conclusion, if H1 ≥ L2

1K1 and tH1 ≥ 2ρ2
1� t ≤ 1/2L1,

then term (3.10) is less than or equal to 8 expH1Nt2. Thus, the lemma holds
for K0 = L2

1K1, L0 = 2L1. ✷

The reader must certainly be wondering why we use (2.12), and do not take
advantage of (2.13), from which we know that (essentially) �m̃ ·m3� ≤ 2ρρ1
(much smaller than ρ2

1 for large β). This is simply because this better result
never helps.

With the same proof we have the following results.
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Lemma 3.3. If for a number H2 ≥K0 we have

∀t > 0� NH2t
2 ≥ 1� t ≤ L0ρ

2
1/H2 ⇒ B�t� ≤ 2tH2 expH2Nt2�(3.11)

then

0 ≤ t ≤ 1
L0

⇒ E�expNt��m̃�2 − �m∗�2�� ≤ 8 expH2Nt2�(3.12)

Lemma 3.4. If for a number H3 ≥K0 we have

∀t > 0� NH3t
2 ≥ 1� t ≤ L0ρ1/H3 ⇒ C�t� ≤ 2tH1 expH3Nt2�(3.13)

then

0 ≤ t ≤ 1
L0

⇒ E�expNtm̃1� ≤ 8 expH3Nt2�(3.14)

To obtain the condition t ≤ L0ρ1/H3 of (3.13), we use that we can pretend
from (2.12) that �m1 −m∗� ≤ ρ1. We could also use (2.14) and ρ0 instead of ρ1
(an improvement that will be required later on).

We now choose numbersH1� H2� H3 that satisfy (3.7), (3.11), (3.13), respec-
tively. These numbers might well depend on N and be very large. It is the
purpose of the proof to show that they can be taken bounded independently
of N. We will use (3.8), (3.12), (3.14) to bound our error terms.

We will now start the main line of arguments, whcih is a method of com-
putation based on the tools of Section 2. The same method will essentially be
used in Sections 4 and 5, but each time we will be able to say more because
we will build on the understanding reached in the previous sections. In the
present section there are six occurrences of the same (somewhat complicated)
computation. The only reasonable way to proceed is to detail the first occur-
rence of this computation, and to let the readers convince themselves that the
other cases are handled (exactly) the same way.

We will consider the quantity A′�t′�, which is the same as A�t� when one
replaces N by N′ = N + 1� β by β′ = βN′/N, h by h′ = hN/N′, t by t′ =
tN′/N, and one does not change M. Thus,

A′�t′� = E�m̃′ ·m′3 exp�t′N′m̃′ ·m′3��′�(3.15)

with the notation of Proposition 2.1.
We replace m̃′

k by its value

m̃′
k =

1
N′

∑
i≤N′

ηi�kσ̃i

so that

m̃′ ·m′3 = 1
N′

∑
i≤N′

∑
k≤M

ηi�kσ̃im
′3
k �
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(It is important to resist the temptation of also replacing m′3
k by its value of

N′−1 ∑
i≤N′ ηi�kσ

3
i .) Thus, by symmetry between the sites,

A′�t′� = E
∑
k

ηk�σ̃m′3
k f�′�(3.16)

where f = exp t′N′m̃′ ·m′3. (Let us recall that ηN′� k = ηk and that σ̃ is the
last component of σ̃.) The basic computation consists of three steps:

Step 1. Compute the dependence on ηk due to the fact that

m′3
k =

N

N′m
3
k +

1
N′ηkσ3�(3.17)

where σ3 is the last component of σ3 and where

m3
k =

1
N

∑
i≤N

ηi�kσi�

Step 2. Use Proposition 2.11 to integrate by parts, using Theorem 2.2 to
control the error terms.

Step 3. Use Theorem 2.5 and its corollaries to estimate the various terms.

Once this is done, we will use symmetry between sites differently, writing
now

A′�t′� = E
∑
k

�m̃km
′3
k f�′�(3.18)

where m̃k = �1/N�
∑

i≤N ηi�kσ̃k. We will then perform the same steps. Infor-
mation will be gained by comparing the results of the two previous com-
putations. The same program will then be accomplished for B�t� and C�t�.
Fortunately, once the method is understood, each computation reduces to a
half page of simple algebra. The difficulty is, of course, to control the error
terms, but it is always done in the same manner.

Step 1 is trivial. One substitutes (3.17) into (3.16) to get

A′�t′� = M

N′E�σ̃σ3f�′ +
N

N′E
∑
k≤M

ηk�σ̃m3
kf�′�(3.19)

Both terms are important, but, of course, the first looks smaller because of
the coefficient α′ =M/N′, which is small. In both terms we face the problem
that f depends on ηk. To make explicit this dependence, we write, by simple
algebra,

N′t′m̃′ ·m′3 =Ntm̃ ·m3 + t ∑
2≤k≤M

ηk�m̃kσ3 +m3
kσ̃� +

M− 1
N

tσ̃σ3�(3.20)
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Thus, with the notation of Proposition 2.11, we have

∂sf

∂ηsk
= ts�m̃kσ3 +m3

kσ̃�sf�

We now apply Proposition 2.11 (with p = 3, σ̃mkf rather than f) for each
k, and sum the results, to find

E
∑

2≤k≤M
ηk�σ̃m3

kf�′ = tE
〈(
σ̃σ3m̃ ·m3 + �σ̃�2�m3�2)f〉′

+βE��σ̃σ1m
1 ·m3 + σ̃σ2m

2 ·m3 + σ̃σ3�m3�2�f�′

−3βE�σ̃σ4m
3 ·m4f�′ +S′�

(3.21)

where �S′� is bounded by (2.53), with an extra summation over k. (Of course,
we have written sums such as

∑
2≤k≤M m̃km

3
k as m̃ · m3�� To work out the

bound (2.53), we use trivial bounds:∣∣∣∣ ∂sf∂ηsk
∣∣∣∣ ≤ ��m̃k� + 2�m3

k��sf

and

�Eηf
2�1/2 ≤Kf̄�(3.22)

where

f̄ = expNtm̃ ·m3�(3.23)

[To write (3.22), we pretend that �m� is bounded. The reader can write a
complete argument in the spirit of Lemma 3.1. Writing these unimportant
details makes the proof too hard to read.] Using Hölder’s inequality in �·�, we
see that

�S′� ≤KE

〈 ∑
1≤l≤4

∑
2≤k≤M

�ml
k�4f̄

〉
�(3.24)

This is the first of many error terms, which will all be handled through the
same general principle toward which we turn now.

Lemma 3.6. Consider two random variables U1, U2. Assume that for j =
1�2 we have

�t� ≤ t0 ⇒ E exp tUj ≤ 8 expAjt
2�(3.25)

Assume that 2 ≤ t0
√
A1. Then for each integer n ≤ 4, each t with

�t� ≤ t0/2� t2 ≤ t20A1

16A2
(3.26)

for

x = 8�t�
√
A1A2�
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we have

E��U1�n1��U1�≥x� exp tU2� ≤ LA
n/2
1 exp�−6t2A2��(3.27)

If, moreover, 1 ≤ t2A2, we have

E��U1�n exp tU2� ≤ L�t�n�A1A2�n/2 expA2t
2�(3.28)

Comments. (1) It is because of the restriction 1 ≤ t2A2 that we assume
that NH1t

2 ≥ 1 in (3.7).
(2) We start with information for �t� ≤ t0, and end up (at best) with infor-

mation for �t� ≤ t0/2. This potential disaster is fortunately compensated for
by the opposite phenomenon when going from (3.7) to (3.8).

Proof. We use Hölder’s inequality to bound the right-hand side of (3.27)
by

�EU4n
1 �1/4P��U1� ≥ x�1/4�E exp 2tU2�1/2�(3.29)

Since we assume that �t� ≤ t0/2, we can use (3.25) for j = 2�2t instead of t to
get

�E exp 2tU2�1/2 ≤ 8 exp 2A2t
2�

Also,

EU16
1 ≤ L

t16
E ch tU1 ≤

L

t16
expA1t

2

whenever �t� ≤ t0/2. Taking t = A
−1/2
1 , we have EU16

1 ≤ LA8
1 (this requires

2 ≤ t0
√
A1), and thus

E�U1�n ≤ LA
n/2
1 for n ≤ 16�

Also, we have for each y with �y� ≤ t0 that

P�U1 ≥ x� ≤ 8 exp�−yx+ y2A1�
so that if x ≤ 2t0A1 we can take y = x/2A1 to get

P��U1� ≥ x� ≤ 16 exp
(
− x2

2A1

)
�

Combining these estimates yields a bound for the term (3.29) of

LA
n/2
1 exp

(
− x2

8A1

)
exp 2A2t

2

and taking x = 8�t�√A1A2 [which requires �t� ≤ �t0/4�
√
A1/A2], we have

proved (3.27). To prove (3.28), we write, for the same value of x,

E�Un
1 � exp tU2 ≤ xnE exp tU2 +E�Un

1 �1��U1�≥x� exp tU2

≤ Ltn�A1A2�n/2 expA2t
2 +LAn/2

1 exp�−6A2t
2�

using (3.25), (3.27). The first term dominates for t2A2 ≥ 1. ✷
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We will use that the operator E�·� has the formal properties of an expecta-
tion to apply Lemma 3.5. We go back to the study of the bound (3.24).

Lemma 3.7. Under �3�7�, and if the constant K0 of Lemma 3�2 is large
enough, we have the following:

NH1t
2 ≥ 1� t ≤ L0ρ

2
1/H1 ⇒ �S′� ≤Kt expNtH1�(3.30)

Proof. We will use (3.27) for t0 = 1/L0, U2 = Nm̃ ·m3�A2 = NH1 [so
that (3.25) holds for j = 2 by (3.8); because of symmetry (3.8) is valid for −t
when it is valid for t] and for U1 = Nml

k, A1 = NK, so that (3.25) holds for
j = 1 by Theorem 2.2. Then x =KN�t�√H1 and, by (3.27),

E��ml
k�41�Nml

k�≥x� exp tm̃ ·m3� ≤ K

N2
exp�−6NH1t

2��(3.31)

We can do this because if 0 ≤ t ≤ L0ρ
2
1/H1 then t ≤ 1/L0 and

t2 ≤ K

H2
1

≤ t20A1

16A2
= K

H1
�

provided the constant K0 of Lemma 3.2 is large enough (the restriction 2 ≤
t0
√
A1 is trivially satisfied).

Thus, from (3.31), we get

E

〈 ∑
l≤p
k≤M

�ml
k�41��Nml

k�≥x� exp tm̃ ·m3

〉
≤ K

N
exp�−6NH1t

2��(3.32)

On the other hand, pretending as usual that �ml� is bounded [or otherwise
using (2.27)], we have

E

〈 ∑
l≤p
k≤M

�ml
k�41��Nml

k�≤x� exp tm̃ ·m3

〉

≤K

(
x

N

)2

E

〈∑
l≤p
�ml�2 exp tm̃ ·m3

〉

≤Kt2H1 expNt2H1�

(3.33)

Combining (3.32), (3.33) yields (3.30), since, for t2H1N ≥ 1, the right-hand
side of (3.33) dominates the right-hand side of (3.32), and since t ≤ ρ2

1/H1 ≤
1/H1. ✷

Before we can use Theorem 2.5 (the third step in our program), there
remains the obstacle that in (3.21) f depends on the r.v. ηk. We now show,
by most brutal bounds, that we can replace f by f̄ with an error at most
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Kt expNtH1, not worse than the error we already made when integrating by
parts. We simply write

�f̄− f� ≤ f exp
(
M− 1
N

tσ̃σ3

)
� expW− 1� + f

∣∣∣∣exp
M− 1
N

tσ̃σ3 − 1
∣∣∣∣�(3.34)

where W = t
∑

2≤k≤Mηk�m̃kσ3 +m3
kσ̃�. Now

Eη�expW− 1�2 = Eη�exp 2W− 2 expW+ 1�
≤ Eη�exp 2W− 1� ≤Kt2

by pretending as usual that �m̃�� �m3� remain bounded, and since we consider
only t ≤ 1. Thus, by (3.34), we have

Eη�f̄− f�2 ≤Kt2f2�(3.35)

To apply this, we write (using Proposition 2.1)

�E�σ̃σ3f�′ −E�σ̃σ3f̄�′� ≤ E��f̄− f��′

≤ E�Av �f̄− f�� �
≤ E�Av �Eη�f̄− f�2�1/2�Eη�

2�1/2�
≤KtE�f� ≤Kt expNH1t

2�

(3.36)

There, we have pretended again that �m� remains bounded, and we have
used (3.8) in the last inequality.

Let us now summarize the situation:

Lemma 3.8. If NH1t
2 ≥ 1 and t ≤ L0ρ

2
1/H1, then

A′�t′� = α′E�σ̃σ3f̄�′ + βE��σ̃σ1m
1 ·m3 + σ̃σ2m

2 ·m3 + σ̃σ3�m3�2�f̄�′

−3βE�σ̃σ4m
3 ·m4f̄�′ +S′′�

(3.37)

where f̄ = expNm̃ ·m3 and where �S′′� ≤Kt expNH1t.

Proof. We apply the method of (3.36) to the terms on the right-hand side
of (3.21); we absorb the first of these terms into the error term by obvious
bounds. ✷

We are ready for the main computation, namely, the application of
Theorem 2.5 (and its corollaries) to the five first terms on the right-hand
side of (3.37) and control of the error terms. A first observation is that, if
σ̃ = σ1 − σ2 is not 0, since σ1, σ2 ∈ �−1� 1�, then σ1 = −σ2 = σ̃/2, so that

σ̃σ1m
1 ·m3 + σ̃σ2m

2 ·m3 = 1
2�σ̃�2m̃ ·m3�
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Thus, we have to apply Theorem 2.5 to the following four terms:

α′E�σ̃σ3f̄�′�
β

2
E��σ̃�2m̃ ·m3f̄�′�

βE�σ̃σ3�m3�2f̄�′� −3βE�σ̃σ4m
3 ·m4f̄�′�

(3.38)

Lemma 3.9. IfNH1t
2 ≥ 1 and t ≤ L0ρ

2
1/H1, then under �3�7�, �3�11�, �3�13�

the error terms when Theorem 2�5 is used to compute the terms �3�38� have a
total contribution at most

Lt�α+ ρ2
1�ρ2

1�H1 +H2 +H3��

Proof. We have to apply Theorem 2.5 when the function denoted f there
is now, respectively, σ̃σ3f̄, �σ̃�2m̃ ·m3f̄, σ̃σ3�m3�2f̄, σ̃σ4m3 ·m4f̄. These all
satisfy (2.46), since σ̃ #= 0 ⇒ σ1 + σ2 = 0. As explained after the statement
of this theorem, and owing to (2.13), the coefficient of the bracket in (2.45)
remains uniformly bounded in the accessible region, even after multiplication
by an extraneous factor β. The first term of (3.38) has a factor α; in all the
other ones, there is a term such as m̃ ·m3 in front of f̄, a term that we can
pretend is bounded by Lρ2

1. Thus, the error terms are bounded by

L�α+ ρ2
1�E

〈
f̄

( ∑
l<l′≤5

�ṁl · ṁl′ �2 +∑
l≤4

a2
l +

∑
l≤4

c2
l

)2〉
(3.39)

and we will control these through the case n = 2 of (3.28). Using (3.12), for
0 ≤ t ≤ 1/L0, we have

E�exp t��m̃�2 − �m∗�2�� ≤ 8 expNH2t
2�

If we integrate in m2, m3, m4 for the Gibbs measure in the exponent rather
than outside, Jensen’s inequality shows that we decrease the bracket. This
yields

E
〈
exp t��ṁ1�2 − ��ṁ1�2��〉 ≤ 8 expH2t

2�(3.40)

Thus, we can use (3.28) for A1 =NH2, A2 =NH1 to obtain

E�f̄a2
l � ≤ Lt2H1H2 expNH1t

2

provided

t ≤ 1
L0

� t2 ≤ t20A1

16A2
= H2

16L2
0H1

�

which is brutally satisfied in the range we consider. We then use that t2 ≤
L0tρ

2
1/H1. The other terms are handled similarly. ✷
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We now turn to the main terms obtained by applying Theorem 2.5 to each of
the terms (3.38). What will keep the situation manageable is that all but one
of these terms [given by (3.44) below] will be treated as error terms (because
they are much smaller).

The main terms arising from E�σ̃σ3f̄�′ are provided by Corollary 2.7, and
are

β2E
1

ch2Y
�f̄m̃ ·m3� + β2E

1− 3 th2Y

ch2Y
�f̄m̃ · b� + βE th Y

ch2Y
�f̄�c1 − c2��

We bound this by

β2E
1

ch2Y
�f̄�m̃ ·m3��+3β2E

1

ch2Y
�f̄�m̃ ·b��+βE 1

ch2Y
�f̄��c1�+ �c2����(3.41)

Before we can proceed, we have to learn how to handle factors such as
ch−2Y. We recall that

Y = β�g · b+ �m1� + h��
where g is independent of all the other random variables. Thus, when integrat-
ing, we can integrate first in g to replace ch−2Y byEg�ch−2Y�. Moreover, (2.12)
shows that with probability greater than or equal to 1 − exp�−N/K� (in the
quenched variables ηi�k) we have

�b�2 + �m∗ − �m1��2 ≤ 2ρ2
1�

To simplify the notation, we will set

1
ch
= sup

{
E

1

ch2β�g · v + x+ h� � �v�
2 + �x−m∗�2 ≤ 2ρ2

1

}
�(3.42)

We have already explained why events with exponentially small probability
%≤ exp�−N/K�! can be ignored for our purposes, so that we can pretend, if B
is a bracket that is greater than or equal to 0, that

E
1

ch2Y
B ≤ 1

ch2E B�

We now observe that β2/ch2 remains bounded in the accessible region; in fact,

β

ch2 ≤
L

ch2β/4
+L exp

(
− 1
Lα

)

[which is the reason of the improvement under (2.46) of the error term in
Theorem 2.5]. This is simply because m∗ ≥ 3/4 (for β large) and thus x ≥ 1/4
in (3.42), so that ch−2β�g · v + x + h� ≤ ch−2β/4 unless �g · v� ≥ 1/4; but
�v�2 ≤ Lα.

We bound in this manner the terms (3.41) by

LE�f̄�m̃ ·m3�� +LE�f̄�m̃ · b�� +LE�f̄��c1� + �c2����
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We now apply (3.28), for n = 1, to get a bound

α′Lt
(
H1 +

√
H1H3

)
expNH1t

2(3.43)

for the main terms of Theorem 2.5 corresponding to α′E�σ̃σ3f̄�.
For �β/2�E��σ̃�2m̃ ·m3f̄�, the main terms are provided by Corollary 2.10,

with p = 3, and where f̄ has to be replaced by m̃ ·m3f̄. The first, and most
crucial, of these terms is

βE
1

ch2Y
�m̃ ·m3f̄��(3.44)

We observe the important fact that �m̃ ·m3f� ≥ 0 so that (we can pretend
that) we can write

βE
1

ch2Y
�m̃ ·m3f̄� ≤ β

ch2A�t��

In the other terms provided by Corollary 2.10, we use that �m̃ ·m3� ≤ Lρ2
1,

�thY� ≤ 1 and β2/ch2 ≤ L. We then appeal to (3.28), with n = 1, to bound
these terms by

Lρ2
1t
(
H1 +

√
H1H2 +

√
H1H3

)
expNH1t

2�

Thus, the contribution of the main terms of Theorem 2.5 corresponding to
�β/2�E��σ̃�2m̃ ·m3f̄�′ is at most

β

ch2A�t� +Lρ2
1t
(
H1 +

√
H1H2 +

√
H1H3

)
expNH1t

2�(3.45)

The main terms of βE�σ̃σ3�m3�2f̄� are provided by Corollary 2.7, with p =
3, replacing f̄ by �m3�2f̄. In each of these terms we use that �m3�2 ≤ ρ2

1,
�thY� ≤ 1, β2/ch ≤ L, and then (3.28), with n = 1, to obtain a bound

Lρ2
1t
(
H1 +

√
H1H2 +

√
H1H3

)
�

If we use that
√
H1H2 ≤H1+H2,

√
H1H3 ≤H1+H3 and α ≤ ρ2

1 ≤ L, we
see that we have proved the following result.

Proposition 3.11. Under �3�7�, �3�11�, �3�13� and if t is as in �3�7�, we
have

N′

N
A′�t′� ≤ β

ch2A�t� + �t expNH1t
2�%Lρ2

1�H1 +H2 +H3� +K!�(3.46)

Surely the reader will take comfort in the fact that we have done one sixth
of the job. We begin the second sixth, which is to find a lower bound for A′�t′�,
starting from (3.19),

A′�t′� = E
∑

2≤k≤M
�m̃km

′3f�′

= N

N′E�m̃ ·m3f�′ + 1
N′E

∑
2≤k≤M

ηk�m̃kσ
3f�′�

(3.47)
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To study the first term, we replace f by f̄ and apply Proposition 2.4. We
then apply Theorem 2.5. It should be obvious that the error terms at each step
are of the same type as previously. The main terms are computed through the
case I = & of Proposition 2.6, and are

E�m̃ ·m3f̄� + β2E thnY
〈
f̄m̃ ·m3 ∑

l<l′
ṁl ·ml′

〉

+ 1
2β

2E th2Y

〈
f̄m̃ ·m3 ∑

l≤3

al

〉
+ βE thY

〈
f̄m̃ ·m3 ∑

l≤3

cl

〉
�

The first term is A�t�. We bound the others as previously by

Lρ2
1t
(
H1 +

√
H1H2 +

√
H1H3

)
expNH1t

2�

We will let the reader deal with the last term of (3.47), where the factor 1/N′

created a huge safety margin, to see that (after integration by parts) it does
not create new error terms. We now combine with (3.46) to get our first basic
estimate.

Proposition 3.12. Under �3�7�, �3�11�, �3�13� and if t is as in �3�7�, we
have (

1− β

ch2

)
A�t� ≤ �t expNH1t

2�%Lρ2
1�H1 +H2 +H3� +K!�(3.48)

So that the reader can see where we are heading, let us assume for a
moment that we already know that H2, H3 are bounded depending only on
α� β� h. Then (3.48) implies(

1− β

ch2

)
A�t� ≤ �t expNH1t

2�%Lρ2
1H1 +K!�(3.49)

If we take for H1 the smallest number for which (3.7) holds, then an obvious
compactness argument shows that there must be some t satisfying (3.7) for
which equality holds, that is,

A�t� = 2H1t expNH1t
2�(3.50)

Now (3.49) was established under the hypothesis H1 ≥ K0, but, of course,
there is nothing to show if H1 ≤K0. Substituting (3.50) into (3.49) yields(

1− β

ch2

)
H1 ≤ Lρ2

1H1 +K

and yields H1 ≤ K provided β/ch2 + Lρ2
1 < 1 in the admissible region, a

critical (but easy) fact that is proved in detail in [7].
Our program is simply to prove a version of Proposition 3.11 for B�t� and

C�t� and proceed as above, but simultaneously for H1� H2� H3. We turn to the
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case of B�t� which fortunately is very similar to the case of A�t�. We consider
the quantity

B′�t′� = E���m̃′�2 − �m′∗�2�f�′�
where now

f = expN′t′��m̃′�2 − �m′∗�2��(3.51)

We separate B′�t′� in two pieces

B′�t′� = E��m̃′�2f�′ −E��m′∗�2f�′(3.52)

and we show how to deal with the first term on the right-hand side. We write

m̃′
k =

1
N′

∑
i≤N′

ηi�kσ̃i

so that by symmetry between sites we get the two basic relations

E��m̃′�2f�′ = E
∑

2≤k≤M
ηk�σ̃m̃′

kf�′�(3.53)

E��m̃′�2f�′ = E
∑

2≤k≤M
�m̃km̃

′
kf�′�(3.54)

Using that

m̃′
k =

N

N′ m̃k +
1
N′ηkσ̃�(3.55)

we get from (3.53) that

E��m̃′�2f�′ = M− 1
N′ E��σ̃�2f�′ + N

N′E
∑

2≤k≤M
ηk�σ̃m̃kf�′�(3.56)

To make the dependence on ηk explicit in f, we write

N′t′��m̃′�2 − �m′∗�2� =Nt��m̃�2 − �m∗�2� + 2t
∑

2≤k≤M
ηk�σ̃m̃k + σ∗m∗

k�

+tM− 1
N

�σ̃2 + σ∗2�
(3.57)

and we set

f̄ = expNt��m̃�2 − �m∗�2��
The errors made while integrating by parts, replacing f by f̄ and treating

the term E�σ̃m̃k�∂f/∂ηk��′ of (2.52) as an error term are controlled exactly as
in the case of A�t�. The other terms resulting from the integration by parts of
E
∑

2≤k≤Mηk�σ̃m̃kf�′ are (after replacing f by f̄)

β��σ̃σ1m̃ ·m1 + σ̃σ2m̃ ·m2 + σ̃σ3m̃ ·m3 + σ̃σ4m̃ ·m4�f̄�′

−4β�σ̃σ5m̃ ·m5f̄�′�
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As in the case of A�t�, we have

σ̃σ1m̃ ·m1 + σ̃σ2m̃ ·m2 = 1
2�σ̃�2�m̃�2

so we are left with four terms

1
2β��σ̃�2�m̃�2f̄�′� β�σ̃σ3m̃ ·m3f̄�′� β�σ̃σ4m̃ ·m4f̄�′� −4β�σ̃σ5m̃ ·m5f̄�′�(3.58)

Applying Theorem 2.5 to the first term of (3.58), the main terms are given
by Corollary 2.10 as

βE
1

ch2Y
��m̃�2f̄� − β3E

1

ch2Y
�f̄�m̃�2ṁ1 · ṁ2��

We can bound the last term by

Lt
√
H1H2 expNH2t

2�

The main terms arising from the last three terms of (3.58) can be bound by

�Lt expNH2t
2�
[√

H1H2 +H2 +
√
H2H3

]
�

When we regroup the term βE�1/ch2Y���m̃�2f̄� with the corresponding term
−βE�1/ch2Y���m∗�2f̄� arising from −E��m∗�2f̄�, we get

βE
1

ch2Y
���m̃�2 − �m∗�2�f̄�

and, as the bracket is positive, this is at most �β/ch2�B�t�. Applying now Corol-
lary 2.10 to the term E��σ̃�2f̄�′ of (3.56), the main terms give a contribution

2E
1

ch2Y
�f̄� − β2E

1

ch2Y
�f̄ṁ1 · ṁ2� + β2E

th2Y

ch2Y
�f̄ṁ3 · ṁ4��

The first term would be devastating, but fortunately it cancels with the corre-
sponding contribution from −E��σ∗�2f̄�′. The other two terms can be bounded
by Lt

√
H1H2 expNH2t

2.
If we were now to start from (3.54) to get a lower bound for B�t�, we would

find that, with the same error terms, N′/NB′�t′� ≥ B�t�. In conclusion, we
have obtained for B�t� exactly the same result as for A�t�.

Proposition 3.13. Under �3�7�, �3�11�, �3�13� and if t is as in �3�11�, then(
1− β

ch2

)
B�t� ≤ �t expNH2t

2�%Lρ2
1�H1 +H2 +H3� +K!�(3.59)

It remains to handle the case of C�t�, which, while technically simpler,
is somewhat different, and does not give as good control. We consider the
quantity

C′�t� = E�m̃′
1 expN′tm̃′

1�′
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(we have t rather than t′ in the exponent). Since N′m̃′
1 =

∑
i≤N′ σ̃i, we have

by symmetry between sites the two basic relations

C′�t� = E�σ̃ expN′tm̃′
1�′�(3.60)

C′�t� = E�m̃1 expN′tm̃′
1�′�(3.61)

Now replacing N′m̃′
1 =Nm̃1 + σ̃ by Nm̃1 in the exponent creates an error

at most Kt expNH3t
2, so that we have to evaluate

E�σ̃f̄�′(3.62)

for f̄ = expNtm̃1. The error terms when applying Proposition 2.4 are bounded
by Kt expNH3t

2. The error terms of Theorem 2.5 are bounded by

E

〈
f̄

( ∑
l<l′≤3

�ṁl · ṁl′ �2 +∑
l≤2

a2
l +

∑
l≤2

c2
l

)〉
�

which, through (3.28), are bounded by

Lt2�H1H3 +H2H3 +H2
3� expNH3t

2

≤ Ltρ1�H1 +H2 +H3� expNH3t
2

since now we consider t as in (3.13). The main terms are provided by
Corollary 2.9 as

− 2β2E
th Y

ch2Y
�f̄m̃ · b� + βE 1

ch2Y
�f̄�c1 − c2���(3.63)

We observe that c1 − c2 = m̃, so that, since �m̃f̄� ≥ 0, the last term is at most
βC�t�/ch2, and (3.63) is at most

Lt
√
H1H3 +

β

ch2C�t��(3.64)

When getting a lower bound for C′�t� using (3.61), there is no new contri-
bution to the error terms, but use of Proposition 2.6 in the case I = & gives
the following for the main terms of E�m̃1f̄�′:

E�m̃1f̄� + β2E th2Y�m̃1f̄ṁ1 · ṁ2�

−β2E
1

ch2Y
�m̃1f̄�ṁ1 · b+ ṁ2 · b��

+β
2

2
E�m̃1f̄�a1 + a2�� + βE th Y�m̃1f̄�c1 + c2���

The first term is C�t�. As we can pretend that �ṁ1 ·ṁ2� ≤ Lρ2
1, �ṁl ·b� ≤ Lρ2

1,
�a1+a2� ≤ Lρ2

1, �c1+c2� ≤ Lρ1, the sum of the second and third terms is at least
−Ltρ1H3, and introduces no new error terms. Thus, we have the following
result.
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Proposition 3.13. Under �3�7�, �3�11�, �3�13� and if t is as in �3�13�, then(
1− β

ch2

)
C�t� ≤ �t expNH3t

2�%Lρ1�H1 +H2 +H3� +L
√
H1H3!�(3.65)

Comment. A significant difference with (3.46), (3.59) is that now we do not
have a small coefficient in front of the term

√
H1H3.

Proof of Theorem 3�1. We recall that Propositions 3.11 to 3.13 assume
that H1� H2� H3 ≥ K0. The (easier) case where one of these relations fails
is left to the reader. (This case is easier because we already have part of the
result.) Proceeding as after Proposition 3.11 by taking H1� H2� H3 optimal
(i.e., as small as possible) and considering a number t with equality in (3.7)
[resp. (3.11), (3.13)], we get the relations(

1− β

ch2

)
H1 ≤ Lρ2

1�H1 +H2 +H3� +K�

(
1− β

ch2

)
H2 ≤ Lρ2

1�H1 +H2 +H3� +K�

(
1− β

ch2

)
H3 ≤ Lρ1�H1 +H2 +H3� +L

√
H1H3 +K�

We add the first two relations to get, setting H =H1 +H2,

(
1− β

ch2

)
H ≤ Lρ2

1�H+H3� +K�(3.66)

(
1− β

ch2

)
H3 ≤ Lρ1�H+H3� +L

√
HH3 +K�(3.67)

Let us now consider the case of large β. Then β/ch2 is small, and 1−β/ch2−
Lρ2

1 ≥ 1/2, so that (3.66) yields

H ≤ Lρ2
1H3 +K

and plugging into (3.67) yields

1
2
H3 ≤

(
1− β

ch2

)
H3 ≤ Lρ1H3 +K

so that H3 ≤ K if ρ1 (i.e., α) is small enough. The same argument yields
that the inequalities in Theorem 3.1 hold at each β if α is small enough [α ≤
α0�β�], but, unfortunately, (3.67) cannot give the correct dependence as β→ 1
because, in particular, it is not true in the accessible region that 1− β/ch2 +
Lρ1 < 1 since 1−β/ch2 ∼ β− 1 as β→ 1 and ρ1 = L

√
α/�β− 1�. One reason

for this failure is that the a priori estimate

EG��m1 −m∗� ≥ ρ1� ≤ exp�−N/K�(3.68)
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used in (3.13) is not sufficient and has to be replaced by (2.14) instead. But
getting the correct dependence as β→ 1 requires significant other work, and
rather than doing this now, we will observe that, quite conveniently, Bovier and
Gayrard have proved through the Brascamp–Lieb inequalities that H3 ≤K in
the BG region (which coincides with the accessible region when one restricts
β to be ≤ 2) so that then Theorem 3.1 follows from (3.66). ✷

Comments. (1) In the BG region, Bovier and Gayrard also prove that H1 <
∞; however, I do not see how their approach could yield H2 <∞.

(2) In the next section, the difficulty linked to the several insufficient
estimates used in this section will resurface, and this time we will have no
other choice than to improve upon them. So, in fact, we could have proved
Theorem 3.1 in all the accessible region, without lengthening the paper, not
using the results of Bovier and Gayrard; but this is not the best way to make
friends.

4. Exponential inequalities, II. In this section we will prove the follow-
ing improvement of Theorem 3.1.

Theorem 4.1. For each value of the parameters in the accessible region, we
have, for �t� ≤N/L0,

E
〈
exp tN�m1 ·m2 −E�m1 ·m2��〉 ≤ expKNt2�(4.1)

E
〈
exp tN��m�2 −E��m�2��〉 ≤ expKNt2�(4.2)

E
〈
exp tN�m1 −E�m1��

〉 ≤ expKNt2�(4.3)

%There is only one replica in �4�3��!

The reason that we can take up this greater challenge is that Theorem 3.1
gives us excellent control of the error terms of Theorem 2.5, which now makes
it a rather irresistible tool.

We set

a = E�m1 ·m2� = E��m��2� b = E��m1�2�� c = E�m1�

(hoping that this will not create confusion with the notation al� cl) and we
define

A�t� = E��m1 ·m2 − a� expNt�m1 ·m2 − a���

B�t� = E���m�2 − b� expNt��m�2 − b���

C�t� = E��m1 − c� expNt�m1 − c���
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[Thus, A�t�, B�t� etc. are not the same as in Section 3.] We consider numbers
H1� H2� H3 with the following properties:

Nt2H1 ≥ 1� 0 ≤ t ≤ L1ρ
2
1/H1 ⇒ A�t� ≤ 2tH1 expNH1t

2�

−A�−t� ≤ 2tH1 expNH1t
2

(4.4)

Nt2H2 ≥ 1� 0 ≤ t ≤ L1ρ
2
1/H2 ⇒ B�t� ≤ 2tH2 expNH2t

2�

−B�−t� ≤ 2tH2 expNH2t
2

(4.5)

Nt2H3 ≥ 1� 0 ≤ t ≤ L1ρ0/H3 ⇒ C�t� ≤ 2tH3 expNH3t
2�

−C�−t� ≤ 2tH3 expNH3t
2�

(4.6)

The reason we need to consider −A�−t� is that we can no longer invoke
symmetry to say that −A�−t� = A�t�. Thus, unfortunately, all the estimates
we have to do for A�t� are also required for −A�−t�. Fortunately, this is done
exactly in the same way and will simply be ignored. As in Section 3, we have
the following, provided L1 has been chosen large enough,

Lemma 4.2. If H1� H2� H3 are greater than or equal to K0, then, under
�4�4� to �4�6�, we have

0 ≤ �t� ≤ 1/L1 ⇒ E�exp t�m1 ·m2 − a�� ≤ 8 expNH1t
2�

E�exp t��m�2 − b�� ≤ 8 expNH2t
2�

E�exp t�m1 − c�� ≤ 8 expNH3t
2�

It is to prove that E�exp t�m1 − c�� ≤ 8 expNH3t
3 for �t� ≤ 1/L1 when we

know (4.6) only for t ≤ L1ρ0/H2 that (2.14) is needed.
Lemma 4.2, together with (3.28), will be essential in producing bounds.

The principle of the proof of Theorem 4.1 is very similar to the principle of the
proof of Theorem 3.1. The a priori estimates (4.4) to (4.6) are used to produce
bounds, that will imply that the best possible choices of H1� H2� H3 will be
bounded independently of N. The main difference with Theorem 3.1 will be
in the different behavior of the main terms arising from Theorem 2.5 through
Proposition 2.6.

We consider t such that Nt2H1 ≥ 1, 0 ≤ t ≤ L1ρ
2
1/H1 and

A′�t′� = E��m′1 ·m′2 − a′� exp�N′t′m′1 ·m′2 −Nta��′�
where a′ = E�m′1 ·m′2�′, t′ =N′t/N, so that N′t′a′ =Nta. We write

m′1 = 1
N′

∑
i≤N′

ηi�kσ
1
i

so that, by symmetry, setting f = exp�N′t′m′1 ·m′2 −Nta�
E�m′1 ·m′2f�′ = E

∑
2≤k≤M

ηk�σ1m
′2
kf�′(4.7)
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and also

E�m′1 ·m′2f�′ = E
∑

2≤k≤M
�m1

km
′2
kf�′�(4.8)

From (4.7) we write

E�m′1 ·m′2f�′ = M− 1
N′ E�σ1σ2f�′ +

N

N′E
∑

2≤k≤M
ηk�σ2m

2
kf�′�(4.9)

To make explicit the dependence of f on ηk, we write

N′t′m′1 ·m′2 =Ntm1 ·m2 + t ∑
2≤k≤M

ηk�σ1m
2
k + σ2m

1
k� + t

M− 1
N

σ1σ2�(4.10)

Setting f̄ = expNt�m1 ·m2 − a�, we see through integration by parts of the
last summation in (4.9) as in Section 3 that we make an error at most

Kt expNH1t
2(4.11)

if we estimate E�m′1 ·m′2f�′ by

M− 1
N′ E�σ2σ2f̄�′ + β

N

N′ � E�m1 ·m2f̄�′ +E�σ1σ2�m2�2f̄�′

− 2E�σ1σ3m
2 ·m3f̄�′��

We will use Proposition 2.4 [which creates an error of the type (4.11)] and
Theorem 2.5. The error terms created by Theorem 2.5 are of the type

LE�f̄��ṁl · ṁ′l�2 + c2
l + a2

l �
(bounding m1 ·m2 by L and losing a factor ρ2

1), and use of Theorem 3.1 and
of (3.28) (case n = 2) provides a bound KH1t

2 expNH1t
2; but, as we are

interested only in t ≤ L1ρ
2
1/H1, this is of the type (4.10).

What makes the use of Theorem 2.5 possible without extreme complication
is that (3.28) and Theorem 3.1 imply that all the terms that do not arise from
the term I of Theorem 2.5 are bounded by

Kt
√
H1 expNH1t

2(4.12)

and are not dangerous as we will see because
√
H1 << H1. Thus, we see that,

modulo terms (4.12), E�m′1 ·m′2f�′ is equal to

M− 1
N′ E th2Y�f̄� + βN

N′ �E�m1 ·m2f̄� +E th2Y��m2�2f̄�

− 2E th2Y�m2 ·m3f̄���
(4.13)

We now turn to the evaluation of a′E�f�′. In order to obtain terms that look
like those of (4.13), we write

a′ = E�m′1 ·m′2�′ = E
∑
k

ηk�σ1m
′2
k�′

= M− 1
N′ E�σ1σ2� +

N

N′E
∑
k

ηk�σ1m
2
k��
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We integrate by parts, apply Proposition 2.4 and Theorem 2.5 and obtain∣∣∣∣a′ −
(
M− 1
N′ E th2Y+ βN

N′
(
E�m1 ·m2�

+E th2Y��m2�2� − 2E th2Y�m2 ·m3�
))∣∣∣∣ ≤ K√

N
�

(4.14)

This is because from Theorem 3.1 we know that E��ṁl · ṁl′ �n� ≤K�n� N−n/2

(etc.) so that the error terms can be controlled via the Cauchy–Schwarz
inequality.

We also obtain

�E�f�′ −E�f̄�′� ≤Kt
√
H1 expNH1t

2�(4.15)

We observe (using 2.14) that

K√
N
E�f̄� ≤ K√

N
expNH1t

2 ≤Kt
√
H1 expNH1t

2

as we deal only with Nt2H1 ≥ 1. Combining this observation with (4.14) and
(4.15), we see that, modulo an error (4.12), we can estimate a′E�f�′ by

E�f̄�
[
M− 1
N′ Eth2Y+ βN

N′
(
E�m1 ·m2� +Eth2Y��m2�2�

− 2Eth2Y�m2 ·m3�)]�
It is apparent by symmetry that one could replace �m2 ·m3� in the last term
by �m1 ·m2� and also �m2�2 by 1

2��m1�2 + �m2�2�, and (4.16) becomes

E�f̄�
[
M− 1
N′ Eth2Y+ βN

N′

(
E

1

ch2Y
�m1 ·m2� +Eth2Y��m̃�2�

)]
�

Of course, we would want to perform the same simplifications in (4.13), and
this leads to the basic observation that will keep computations reasonable.
Modulo error terms (4.12), we can change the replica indexes in �ml ·ml′ f̄�,
l #= l′. Specifically, here, we can replace

Eth2Y�m2 ·m3f̄� by Eth2Y�m1 ·m2f̄�
because the difference is at most

E���m1 −m3� ·m2�f̄��
which is bounded by (4.12) due to Theorem 3.1 and to (3.28).

Thus, we have obtained that, modulo an error of type (4.12), A′�t′� is

M− 1
N′ �Eth2Y�f̄� −Eth2YE�f̄��

+βN
N′

(
E

1

ch2Y
�m1 ·m2f̄� −E 1

ch2Y
�m1 ·m2�E�f̄�

)
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+Eth2Y��m̃�2f̄� −Eth2Y��m̃�2�E�f̄���
The reader can check the much easier fact that within the same error (4.12)
A′�t′� =NA�t′�/N′ so that we have the following result.

Proposition 4.3. If t is as in (4.4), then, under (4.4) to (4.6),

A�t� ≤ M− 1
N

�Eth2Y�f̄� −Eth2YE�f̄��

+β
(
E

1

ch2Y
�m1 ·m2f̄� −E 1

ch2Y
�m1 ·m2�E�f̄�

)

+β�Eth2Y��m̃�2f̄� −Eth2Y��m̃�2�E�f̄��
+Kt

√
H1 expNt2H1

(4.16)

for f̄ = exp tN�m1 ·m2 − a�.

Before we attempt to extract information from (4.16), let us perform the
same computation for B�t�. It is nearly identical, so we will give only the
“algebraic” part and leave the control of the error terms to the reader. We
start with

B′�t′� = E
∑
k

ηk�σ̃m̃′
kf�′

[where, of course, here f = exp�Nt′�m̃′�2 −Ntb�]

= M− 1
N′ E��σ̃�2f�′ + N

N′E
∑
k

ηk�σ̃m̃kf�′�

Integration by parts of the last term yields that this is

[for f̄ = expNt��m̃�2 − b�]

β�E�σ̃σ1m
1 · m̃f̄�′ +E�σ̃σ1m

2 · m̃f̄�′ − 2E�σ̃σ3m̃ ·m3f̄�′��
The first two terms regroup as �β/2�E��σ̃�2�m̃�2f̄�′; the last term will give no
contribution because of the factor m̃ ·m3. Thus, we get the following result.

Proposition 4.4. If t is as in �4�5�� then under �4�4� to �4�8� we have

B�t� ≤ 2
M− 1
N

(
E

1

ch2Y
�f̄� −E 1

ch2Y
E�f̄�

)

+βN
N′

(
E

1

ch2Y
��m̃�2f̄� −E

(
1

ch2Y
��m̃�2�

)
E�f̄�

)

+Kt
√
H2 expNt2H2�

(4.17)

The case of C�t� is much simpler, and left to the reader.
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Proposition 4.5. If t is as in �4�6�� then under �4�4� to �4�6� we have
C�t� ≤ E

(
thY�expNt�m1 − c��

)−EthYE�expNt�m1 − c��
+Kt

√
H3 expNt2H3�

(4.18)

Quite obviously, this is the relation to discuss first. We recall that Y =
β�g · b+ �m1� + h� so that

EgthY = ψ1��m1 ·m2�� �m1��
where

ψ1�x�y� = Egthβ
(
g
√
x+ y+ h��

where g is N�0�1�. Now, since we can replace thY by EgthY in (4.18), it is
natural to use a first-order expansion

�ψ1�x�y� − ψ1�a� c� − ∂1ψ1�a� c��x− a� − ∂2ψ1�a� c��y− c��
≤ R1�x− a�2 +R3�y− c�2

(4.19)

(where ∂1ψ1 = ∂ψ1/∂x, etc). The reader should observe that we allow the
different coefficients R1�R3. The reason for this is that getting the correct
shape of the accessible region at β→ 1 is an extremely unforgiving job, which
essentially requires us to use the correct order in every estimate. We need to
use R1�R3 such that (4.19) holds in the domain

9 = ��x�y�� √x ≤ 2ρ1� �y−m∗� ≤ ρ0�
because we know that ��m1·m2�� �m1�� belongs to this domain with probability
greater than or equal to 1 − exp�−N/K�. It is easy to compute the partial
derivatives of ψ1. In fact, for any smooth function ϕ if ξ�x� = Eϕ�g√x�, then

ξ′�x� = 1
2
√
x
Egϕ′�g√x� = 1

2
Egϕ

′′�g√x�(4.20)

by integration by parts. Using Taylor’s formula for the function

t→ ψ1
(
a+ t�x− a�� c+ t�y− c�)�

we see that in (4.19) we can take

R1 = sup
�x�y�∈D

∣∣∣∣ ∂2ψ1

�∂x�2
∣∣∣∣� R3 = sup

�x�y�∈D

∣∣∣∣ ∂2ψ1

�∂y�2
∣∣∣∣�(4.21)

We will see in due time what we need to know about these. (The reason for
the index 3 in R3 is that “R1 goes with H1 and R3 with H3.”)

Using Jensen’s inequality, we have

E expNt��m1 ·m2� − a� ≤ E�exp t�m1 ·m2 − a��
so that by Lemma 4.2 and (3.28) we have, for f̄ = expNt�m1 − c�,

E���m1 ·m2� − a��f̄�� = E���m1 ·m2� − a�f̄�
≤ Lt

√
H1H3 expNH3t

2�
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Similarly, and using that t ≤ L1ρ0/H3,

E
(
R1��m1 ·m2� − a�2 +R3��m1� − c�2��f̄�

)
≤ Lt2�R1H1H3 +R3H

2
3� expNH3t

2

≤ Ltρ0�R1H1 +R3H3� expNH3t
2�

(4.22)

Since

E
(
R1��m1 ·m2� − a�2 +R3��m1� − c�2

) ≤ L

(
R1H1

N
+ R3H3

N

)

[easily, by (4.4) to (4.6)], and since we consider only NH3t
2 ≥ 1, so that N−1 ≤

t2H3, the bound of (4.22) is also good for

E�R1��m1 ·m2� − a�2 +R3��m1� − c�2�E�f̄��
Using (4.19) for x = �m1 ·m2�, y = �m1� to estimate EgthY, substituting in
(4.18) for thY and using the previous estimates, we have proved the following
result.

Lemma 4.6. Under the conditions of Proposition 4�5, we have

C�t��1− ∂2ψ1�a� c��
≤ �Lt expNH3t

2�
[
�∂1ψ1�a� c��

√
H1H3

+ ρ0�R1H1 +R3H3� +K
√
H3

]
�

(4.23)

It remains to extract information by the same method from (4.16) and (4.17).
We start with (4.17). We use the function

ψ2�x�y� = Eg

1

ch2β�g√x+ y+ h�
so that

Eg

1

ch2Y
= ψ2��m1 ·m2�� �m1��

and we make a first-order expansion as in (4.19). The reader will note that
βψ2 = ∂1ψ1. We write

�ψ2�x�y�ψ2�a� c� − �x− a�∂1ψ2�a� c� − �y− c�∂2ψ2�a� c��
≤ R2

(�x− a�2 + �y− c�2)�
where R2 is smallest possible that this holds for �x�y� in D, and we bound
the error terms as previously, to obtain

E
1

ch2Y
�f̄� −E 1

ch2Y
E�f̄�

≤ ∂1ψ2�a� c�E��m1 ·m2 − a�f̄� + ∂2ψ2�a� c�E��m1 − c�f̄�
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+LR2t
2�H2H1 +H2H3� expNH3t

2

≤ �Lt expNH3t
2�
[
�∂1ψ2�a� c��

√
H1H2 + �∂2ψ2�a� c��

√
H3H1

+R2ρ
2
1�H1 +H3�

]
and

E
1

ch2Y
��m̃�2f̄� −E

(
1

ch2Y
��m̃�2�E�f̄�

)

≤ ψ2�a� c��E��m̃�2f̄� −E��m̃�2�E�f̄��
+∂1ψ2�a� c��E�m1 ·m2 − a���m̃�2f̄��
+∂2ψ2�a� c��E�m1 − c���m̃�2f̄��
+R2E

(���m1 ·m2� − a�2 + ��m1� − c�2
)�m̃�2f̄��

+R2E
(��m1 ·m2 − a�2 + �m1 − c�2�

)
E���m̃�2f̄���

As in Section 3, we can pretend that �m̃�2 ≤ Lρ2
1, so that the above is

bounded by
ψ2�a� c�B�t� + �Ltρ2

1 expNH2t
2�

×
[
�∂1ψ2�a� c��

√
H1H2 + �∂2ψ2�a� c��

√
H3H2 +R2ρ

2
1�H1 +H3�

]
�

Remembering that α ≤ Lρ2
1, we have proved from (4.17) the following coun-

terpart of Lemma 4.6 for B�t�.
Lemma 4.7. If t is as in (4.5), then under (4.4) to (4.6) we have

B�t�(1− βψ2�a� c�
)

≤ �Ltρ2
1 expNH2t

2�
[
β�∂1ψ2�a� c��

√
H1H2

+ β�∂2ψ2�a� c��
√
H3H2

+ βR2ρ
2
1�H1 +H3 +K

√
H2�

]
�

(4.24)

To handle the case of (4.16), we use that th2Y = 1−ch2Y, so we fortunately
do not need a new function, and we prove the following, exactly as in the case
of Lemma 4.7.

Lemma 4.8. If t is as in (4.4), then, under (4.4) to (4.6),
A�t�(1− βψ2�a� c�

)
≤ �Ltρ2

1 expNH1t
2�
[
β�∂1ψ2�a� c��H1

+ β�∂2ψ2�a� c��
√
H3H1 + βR2ρ

2
1�H1 +H2�

+ β�1− ψ2�a� c��
√
H1H2 +K

√
H1

]
�

(4.25)
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The (very dangerous) term β�1− ψ2�a� c��
√
H1H2 is created by(

1− ψ2�a� c�
)(
E��m̃�2f̄� −E��m̃�2�E�f̄�)�

Proof of Theorem 4�1. We chooseH1�H2�H3 as small as possible. Using
values of t that witness this optimality, we get from Lemmas 4.6 to 4.8 that

H3�1− βψ2�a� c��
≤ L%�∂1ψ1�a� c��

√
H1H3 + ρ0�R1H1 +R3H3�! +K

√
H3!�

(4.26)

[On the left-hand side we have replaced ∂2ψ1�a� c� by its value βψ2�a� c�.]
H2

(
1− βψ2�a� c�

) ≤ Lρ2
1

[
β�∂1ψ2�a� c��

√
H1H2

+ β�∂2ψ2�a� c��
√
H3H2(4.27)

+ βR2ρ
2
1�H1 +H3� +K

√
H2�

]
�

H1
(
1− βψ2�a� c�

) ≤ Lρ2
1

[
β�∂1ψ2�a� c��H1 + β�∂2ψ2�a� c��

√
H1H3

+βR2ρ
2
1�H1 +H3�(4.28)

+β�1− ψ2�a� c��
√
H1H2 +K

√
H1

]
�

To illustrate the ideas, let us start by proving that, for each β > 1, there
is a number α�β� > 0 such that, for α < α�β�, the previous relations imply
H1�H2�H3 < K. We will denote by L�β� a number depending on β only.
Bounding in (4.27) and (4.28) all the products such as

√
H1H2 by H1 +H2

(etc.), and, since �∂1ψ2�a� c�� (etc.) remain bounded in function of β only, we
get, since ρ2

1 ≤ αL�β�,
H2

(
1− βψ2�a� c�

) ≤ αL�β�(H1 +H2 +H3 +K
√
H2

)
�(4.29)

H1
(
1− βψ2�a� c�

) ≤ αL�β�(H1 +H2 +H3 +K
√
H1

)
�(4.30)

To handle the dangerous term
√
H1H3 in (4.26), we will use the inequality

2xy ≤ γx2 + 1
γ
y2(4.31)

so that, setting

θ = 1− βψ2�a� c��(4.32)

we get, from (4.26),

H3θ ≤
θ

2
H3 +

L�β�
θ

H1 + αL�β��H1 +H3� +K
√
H3

so that, for α small enough, as θ remains (at fixed β) bounded away from 0
we get

H3 ≤ L�β�H1 +K
√
H3
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so that

H3 ≤ L�β�H1 +K
and substitution in (4.29), (4.30) yields the result.

The rest of the proof is devoted to the more special task of getting the
correct behavior of α�β� as β → ∞, or β → 1. The easiest case is β → ∞.
In that case (inside the accessible region) βψ2�a� c� stays bounded away from
1, while βR1� βR2� βR3� β�∂1ψ2�a� c��� β�∂2ψ2�a� c�� (etc.) remain bounded, so
that (4.26) yields

H3 ≤ LH1 +K�(4.33)

Substitution in (4.28) yields

H1 ≤ Lα
[
H1 + β

√
H1H2 +K

√
H1

]
so that, for α small enough,

H1 ≤ β2H2 +K(4.34)

so that, from (4.33),

H3 ≤ β2H2 +K�(4.35)

Substituting in (4.27) yields

H2 ≤ Lα
[
β2�∂1ψ2�a� c�� + β2�∂2ψ2�a� c�� + β2�R1 +R2�H2 +K

√
H2

]
�

The coefficient ofH2 in the brackets has the good taste to remain bounded over
the accessible region, so that, if α ≤ α0 (α0 universal), we have H2 ≤K. (The
reader should note that the condition α ≤ 1/L logβ is required only through
the uniform control of β2R1, etc.)

Finally, we turn to the case 1 ≤ β ≤ 2. In that case it is easy to see (and is
done in detail in [7]) that in the accessible region 1 − βψ2�a� c� ≥ �β − 1�/L.
Also,

∂1ψ1�x�y� =
β2

2
Egϕ

(
β�g√x+ y+ h�

)
�

where ϕ�x� = �thx�′′ = thx/ch2x. It is simple to show that in 9, for β < 2, this
behaves like thβm∗ =m∗ of order

√
β− 1 (for h small). Since β∂2ψ2 = 2∂1ψ1,

we can also bound �∂2ψ2�a� c�� by L
√
β− 1. Also,

∂2ψ1

∂y2
= 1

2
∂1ψ1

so that, on 9, ��∂2ψ1/∂y
2��x�y�� is at most of order

√
β− 1; thus, we can take

R3 ≤ L
√
β− 1, we bound R1�R2� ∂1ψ2�a� c� by L, and (4.26) becomes

H3 ≤
L√
β− 1

√
H1H3 +

Lρ0

β− 1

(
H1 +

√
β− 1H3

)+K√
H3�(4.36)
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One then realizes the very remarkable fact that the value of ρ0 exactly
ensures that, if α/�β − 1�2 is small enough, then Lρ0/

√
β− 1 ≤ 1/2, so that

(4.36) implies

H3 ≤
LH1

β− 1
+K�(4.37)

We substitute this in (4.28), observing that

�∂2ψ2�a� c��
√
H1H3 ≤ L

√
β− 1

√
H1H3

≤ LH1 +K
and, since ρ2

1 ≤ Lα/�β− 1�, (4.28) implies

H1 ≤
Lα

�β− 1�2
[
H1 +H2 +

√
H1H2 +K

√
H1

]
so that H1 ≤ LH2 in the accessible region. We substitute this in (4.27), and
use (4.37) again; the dangerous factor �β−1�−1 gets neutralized as in the case
of (4.28), and the result follows. ✷

To end this section, we prove (1.9). We will consider

D�t� = E��ε1 · ε2 − d� exp t�ε1 · ε2 − d���(4.38)

where d = E�ε1 · ε2�. We consider the smallest constant H4 such that

∀t > 0� Nt2H4 ≥ 1� t ≤ 2/H4 ⇒ D�t� ≤ 2NtH4 expNH4t
2�

−D�−t� ≤ 2NtH4 expNH4t
2�

(4.39)

[As before, we will leave it to the reader to worry about D�−t�. The factor N
on the right-hand side comes from a different normalization than previously.]
To use Lemma 3.5, we observe that from (4.39), using �ε1 · ε2� ≤N, we have

∀t� E�exp t�ε1 · ε2 − d�� ≤ 8 expNt2H4�(4.40)

Consider

D′�t� = E���1 · �2 − d′� exp t��1 · �2 − d��′�
where d′ = E��1 · �2�′. By symmetry,

E��1 · �2 exp t��1 · �2 − d��′ =NE�σ1σ2 exp t��1 · �2 − d��′�(4.41)

For t ≤ 2/H4 we make an error at most KNt expNt2H4 if on the right-
hand side of (4.41) we replace t�1 ·�2 by tε1 · ε2, since the difference is tσ1σ2.
Using Theorem 2.5, we get

E�σ1σ2f̄� = Eth2Y�f̄��
where f̄ = exp t��1 · �2 − d�, and with error at most KtN

√
H4 expNH3t

2.
Continuing in this very predictable manner, we get

D�t� ≤ Eth2Y�f̄� − �Eth2Y�E�f̄� +KtN
(√

H4 + 1
)

expNH4t
2�
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Now we need only a trivial estimate

�th2Y−Eth2Y� ≤K���m1 ·m2� − a� + ��m1� − b��
to get, using Theorem 4.1, that

D�t� ≤KtN
(√

H4 + 1
)

expNH4t
2

and to conclude as usual.

5. Convergence. Consider the “replica-symmetric” equations

µ = Ethβ
(
g
√
r+ µ+ h)�(5.1)

q = Eth2β
(
g
√
r+ µ+ h)�(5.2)

r = αq

�1− β�1− q��−2
�(5.3)

It is proved in [7] that when the parameters belong to the BG region these
equations have a solution. The relations

lim
N→∞

E�m1� = µ�(5.4)

lim
N→∞

1
N
E�ε1 · ε2� = q�(5.5)

lim
N→∞

E�m1 ·m2� = r�(5.6)

lim
N→∞

E��m�2� = α
1− β�1− q�2
�1− β�1− q��2(5.7)

are proved in [7] for the perturbated Hamiltonian (and later by Bovier and
Gayrard for the standard Hamiltonian we use here). The key to these results
is Theorem 3.1 and only trivial modifications are needed to prove them in all
the accessible region.

In fact, it is a mere exercise to show that in (5.4) to (5.7) the speed of
convergence is in 1/

√
N, that is, �E�m1� − µ� ≤ KN−1/2 (etc.). This allows us

to obtain the following inequalities (valid for t ≤ 1/L0):

E�exp tN�m1 ·m2 − r�� ≤ 2 expKNt2�

E

〈
exp tN

(
�m�2 − α 1− β�1− q�2

�1− β�1− q��2
)〉
≤ 2 expKNt2�

E�exp tN�m1 − µ�� ≤ 2 expKNt2�

E�exp t�ε1 · ε2 −Nq�� ≤ 2 expKNt2�

It follows from (5.4) to (5.6) that

lim
N→∞

EthY = µ�(5.8)

lim
N→∞

Eth2Y = q(5.9)
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and more generally that

lim
N→∞

E
thnY

chn
′
Y

(5.10)

exists for all n�n′ ≥ 0.
In this section we will consider p-replicas and functions on p-replicas.

A function of one of the following types:

ml ·ml′ −E�ml ·ml′ �� l #= l′�(5.11)

�ml�2 −E��ml�2��(5.12)

ml
1 −E�ml

1��(5.13)

ml
k� k ≥ 2�(5.14)

1
N
�εl · εl′ −E�εl · εl′ ��(5.15)

will be called an expression of order 1.
The reason for which there is no centering term in (5.14) is that �E�mk�� ≤

K/N (integrating Eηk�εN� by parts). For an integer τ, an expression of order
τ is the product of τ expressions of order 1 (and a constant if τ = 0). It
will be convenient for the proof to consider certain linear combinations of the
expressions (5.11) to (5.15), among which we will use

�ml1 −ml2� · �ml3 −ml4��(5.16)

�ml1 −ml2�2 − �ml3 −ml4�2�(5.17)

�ml1 −ml2�2 −E�ml1 −ml2�2�(5.18)

m
l1
1 −ml2

1 �(5.19)

�ml1 −ml2� ·ml3 �(5.20)

A product of τ quantities of the type (5.11) to (5.20) will be called an extended
expression of order τ. Each of the quantities A [(5.11) to (5.20)] satisfies an
exponential inequality E�expNtA� ≤ expKt2N for �t� ≤ 1/L, and, in par-
ticular, if f is an extended expression of order τ, we have E��f�� ≤ KN−τ/2,
a statement that we will shorten in “f is of order N−τ/2.”

Theorem 5.1. If f is an expression of order τ, then limN→∞Nτ/2E�f�
exists.

The proof will be by induction over τ. Certainly the result holds for τ = 1
or τ = 0.

Before the proof starts, let us explain how the induction hypothesis will be
used.
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Lemma 5.2. Let us assume that limN→∞N�τ−2�/2E�f� exists for each expres-
sion f of order less than or equal to τ − 2. Then, if n�n′ are integers greater
than or equal to 0, if A is a product of terms of one of the following types:

ml ·ml′ � 1
N

εl · εl′ �ml
1�(5.21)

then the limit

lim
N→∞

N�τ−2�/2E
thnY

chn
′
Y
�Af�(5.22)

exists for each expression f of order τ − 2.

Proof. It is worthwhile to spell out the general principle at work here,
which will be used many times in the sequel, namely, that if A is a finite
product, A = ∏

As, where each As is of the type (5.21), and if f is an extended
expression of order ρ, then∣∣∣∣E thnY

chn
′
Y
�Af� −E thnY

chn
′
Y
E�f�∏

s

E�As�
∣∣∣∣

≤KN−�ρ+1�/2�

(5.23)

[The lemma then follows from (5.4) to (5.6) and (5.10) taking ρ = τ − 2.] To
prove this, we successively replace eachAs byE�As�, using that �As−E�As��f
is an extended expression of order ρ+ 1.

If we set

ϕ�x�y� = Eg

thnβ�g√x+ y+ h�
chn

′
β�g√x+ y+ h�

we then bound ∣∣∣∣ thnY

chn
′
Y
−E thnY

chn
′
Y

∣∣∣∣
by

sup ∂1ϕ2��m1 ·m2� −E�m1 ·m2�� + sup ∂2ϕ��m1� −E�m1�� +
K√
N
� ✷

To prove Theorem 5.1, we will assume the following induction hypothesis:

�H�τ − 1�� For each expression f of order

ρ ≤ τ − 1 the limit lim
N→∞

Nρ/2E�f� exists.

We will then prove that H�τ − 1� ⇒H�τ�.
Given one expression (5.11) to (5.20), say W, we will prove that limN→∞Nτ

E�Wf� exists when f is an expression of order τ−1. These expressions will be
considered in a carefully chosen order, and the proof for each new expression
will build on the previous ones. We will start with expressions (5.16); without
loss of generality, we can assume that this is m̃ ·m∗ = �m1 −m2� · �m3 −m4�.
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Proposition 5.3. Under H�τ − 1�, for any expression f of order τ − 1,

lim
N→∞

Nτ/2E�m̃ ·m∗f�

exists.

Proof. The principle of the proof is to show that

E�m̃ ·m∗f� = CE�m̃ ·m∗f� +R�(5.24)

where limN→∞C exists and is less than 1 and limN→∞R exists. The method
consists of repeating the proofs of Section 3 and 4 (looking at them differently).
We will compute E�f̃′�′ for a certain expression f̃′ in a situation with N + 1
sites in two different ways, and comparing the results will yield (5.24). For f̃′,
we could simply consider the expression that is to N + 1 sites what m̃ ·m∗f
is to N sites, but it will be easier to proceed a bit differently. We write f =∏
s≤τ−1 fs, where each fs is an expression of order 1. For each s, we define “the”

(somewhat canonical) quantity f′s such that fs+f′s is symmetric between sites
when seen as a function on �

p
N+1. Thus,

if fs =
1
N
�εl · εl′ −E�εl · εl′ ��� then f′s =

σlσl′

N
�(5.25)

if fs =ml
k� then f′s =

1
N
ηkσl� k ≥ 2�(5.26)

if fs =ml
1 −E�ml

1�� then f′s =
1
N
σl�(5.27)

if fs =ml ·ml′ −E�ml ·ml′ �� then f′s =
σlσl′

N2

+ 1
N

∑
2≤k≤M

ηk�σlml′
k + σl′ml

k��
(5.28)

(The only reason that we distinguished between expressions of order τ and
extended expressions of order τ is to shorten the previous enumeration.)

We consider the quantity

A′ = E��m̃′ ·m′∗�f′�′�(5.29)

where f′ = ∏
s≤τ−1�fs + f′s�. By symmetry between the sites, we have

A′ = E
∑

2≤k≤M
ηk��σ̃m′∗

k �f′�′

= M− 1
N′ E�σ̃σ∗f′�′ + N

N′E
∑

2≤k≤M
ηk�σ̃m∗

kf
′�′�

(5.30)

We will integrate by parts the last term. The error terms are of order N−�τ+1�/2

so are irrelevant for our purposes. To simplify the notation, throughout this
section we will use the notation A

c=B to mean that limN→∞Nτ/2�A − B�
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exists, so that for the purpose of convergence, there is no need to distinguish
A and B. Thus, integration by parts yields

E
∑

2≤k≤M
ηk�σ̃m∗

kf
′�′ c= ∑

l≤p
βE�σ̃σlml ·m∗f′�′

−βpE�σ̃σp+1m
p+1 ·m∗f′�′(5.31)

+ ∑
2≤k≤M

E

〈
σ̃m∗

k

∂f′

∂ηk

〉′
�

Our first goal is as follows.

Lemma 5.4. We have

∑
2≤k≤M

E

〈
σ̃m∗

k

∂f′

∂ηk

〉′
c=0�

Proof. Since f′ is the product of τ−1 terms fs+f′s, a look at the possible
values of f′s shows that it is enough to prove that, for each k,

1
N
E�σ̃σlm∗

kf
′′�′ c=0(5.32)

and that
1
N
E�σ̃σlm∗ ·ml′f′′�′ c=0�(5.33)

where f′′ is the product of τ − 2 terms fs + f′s. We expand this product f′′

to reduce to the case where f′′ is a product of terms that are either fs or f′s.
A basic idea is that “the terms f′s are of order 1/N, and the terms fs of order
1/
√
N.” What this means is that E��f̄��′ ≤KN−a−b/2 when f̄ is the product of

a terms f′s and b terms fs. To see this, we first observe that, for each integer n,

Eη

∣∣∣∣∣
∑
k

ηkm
l
k

∣∣∣∣∣
n

≤K�n��

We then use Proposition 3.1 to bound E��f̄��′ by E��f̄�� �, we integrate in
�η1� � � � � ηk� first with Hölder’s inequality, and we use Theorem 4.1.

To prove (5.32), we observe that the term m∗
k is itself of order N−1/2, so

that the left-hand side of (5.32) is of order N−τ/2−1/2. To prove (5.33), only the
case where f′′ is a product of τ − 2 terms fs has to be considered, for if one
of the factors is f′s, the expression (5.33) is of order N−�τ+1�/2. When f′′ is a
product of τ − 2 terms fs, use of Proposition 2.4 and Theorem 2.5 transform
these into a sum of terms to which we can apply Lemma 5.3. ✷

Lemma 5.5. For l ≤ p+ 1, we have

E�σ̃σlml ·m∗f′�′ c=E�σ̃σlml ·m∗f�′�
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Proof. We expand the product f′ = ∏
s≤τ−1�fs +f′s�. Thus, it is enough to

prove the following. If f′′ is a product of terms fs� f′s, s ≤ τ − 1 (i.e., for each
s we choose between fs and f′s), then E�σ̃σlml ·m∗f′′� c=0 when at least one
of the factors is f′s.

This is obvious if there are at least two factors f′s, because then the term
is of order N−�τ+1�/2, so we consider only the case where there is exactly
one factor f′s. But, in that case, integration by parts [if we are in case (5.26)
or (5.28)], use of Proposition 2.4 and Theorem 2.5 reduce again to
Lemma 5.3. ✷

Going back to (5.31), we have shown that

E
∑

2≤k≤M
ηk�σ̃m∗

kf
′�′ c= β

∑
l≤p

E�σ̃σlml ·m∗f�′

−βpE�σ̃σp+1m
p+1 ·m∗f�′�

(5.34)

We regroup as usual the terms for l = 1, l = 2 into

β

2
E��σ̃�2m̃ ·m∗f�′(5.35)

and we apply Theorem 2.5. What greatly helps is that m̃ ·m∗f is an extended
expression of order τ, so that many of the extended expressions we will find
are of order greater than or equal to τ + 1 and hence of order N−�τ+1�/2. This
is the case for all terms where, besides f, at least two terms such as ṁl · ṁl′ ,
al, al′ , m̃ ·ml, l ≥ 3, m̃ ·m∗, ml ·m∗, l #∈ 3�4 occur. Thus, the only contribution
from (5.35) is

βE
1

ch2Y
�m̃ ·m∗f��(5.36)

None of the termsE�σ̃σlml·m∗f�′ for l ≥ 5 contributes. Using Corollary 2.7,
the contributions of the terms for l = 3, l = 4 are (regrouping these terms)

β2E
1

ch2Y
��m̃ · ṁ3m3 ·m∗ + m̃ · ṁ4m4 ·m∗�f�

+β2E

(
1− 3th2Y

ch2Y

)
��m3 ·m∗ +m4 ·m∗�fm̃ · b�

+βE thY

ch3Y
��m3 ·m∗ +m4 ·m∗�f�c1 − c2��

+β2E
th2Y

ch2Y
��m3 ·m∗m̃ ·m4 +m4 ·m∗m̃ ·m3�f��

(5.37)

It is fortunate that m3 ·m∗ +m4 ·m∗ = �m3�2−�m4�2 so that only the first
and the last term are not of order �N−�τ+1�/2�. We observe that, using simple
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algebra,

m̃ · ṁ3m3 ·m∗ + m̃ · ṁ4m4 ·m∗

= m̃ ·m∗��m3�2 −m3m4� + m̃ ·m4��m3�2 − �m4�2�(5.38)

−m̃ · b��m3�2 − �m4�2��
It follows that

E
1

ch2Y
��m̃ · ṁ3m3 ·m4 + m̃ · ṁ4m4 ·m∗�f�

c= E
1

ch2Y
�m̃ ·m∗��m3�2 −m3 ·m4�f�

c=
(
E

1

ch2Y

)
�E��m�2� −E�m3 ·m4��E�m̃ ·m∗f�

(the last equality uses in an essential way that m̃ ·m∗f is of order τ).
For the last term of (5.37), a similar computation yields that (modulo con-

verging terms) it is

−β2E
th2Y

ch2Y
�E��m�2� −E�m3 ·m4��E�m̃ ·m∗f��

Estimating the contribution of E�σ̃σ∗f′�′ in (5.30) is much easier. One
shows as above that

E�σ̃σ∗f′�′ c=E�σ̃σ∗f�′
and Corollary 2.8 gives

E�σ̃σ∗f′� c=β2
(
E

1

ch4Y

)
E�m̃ ·m∗f��

Finally, rather than (5.28) using now that

A′ = N

N′E
∑
k

�m̃km
′∗
k f�

and using the previous arguments (in a much simpler situation), we get

A′ c= N

N′E�m̃ ·m∗f��
Combining these estimates, we arrive at the relation promised at the begin-
ning of the proof, namely,

E�m̃ ·m∗f� c=CE�m̃ ·m∗f��
where

C = β2
(
E

1

ch4Y

)(
M− 1
N

+ β�E�m1�2 −E�m3 ·m4��
)

+βE 1

ch2Y
�

(5.39)
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In the accessible region, this is at most

β2E
1

ch2Y

(
βα+L α

β− 1

)
+ βE 1

ch2Y
< 1

since 1− βE�1/ch2Y� is of order β− 1 for β ≤ 2. The proof is complete. ✷

Remark. The previous computation is an identification of the A-T line.
Indeed, using (5.6), (5.7), we see that (assuming the validity of the RS
solution � � �)

C∞ =� lim
N→∞

C = β2E
1

ch4β�g√r+ µ+ h�

(
α+ αβ�1− q�

�1− β�1− q��
)
+ β�1− q�

so that C∞ < 1 if and only if

αβ2E
1

ch4β�g√r+ µ+ h� < �1− β�1− q��
2(5.40)

(the condition of the A-T line).

Proposition 5.3 is good step forward, because in the use of Theorem 2.5 we
no longer have to worry about terms containing ṁl ·ṁl′ , as these terms can be
replaced by �ml−mp+1�·�ml′ −mp+2� for two new replicas of rank p+1� p+2.
Thus, if f is an expression of order τ − 1, we know that limN→∞Nτ/2E�ṁl·
ṁl′f� exists, and, since ṁl · ṁl′f is an extended expression of order τ, this
is also the case for limN→∞Nτ/2Eth2Y�ṁl · ṁl′f� and so on, as explained in
Lemma 5.2.

Proposition 5.6. UnderH�τ−1�, if f is an expression of order τ−1, then
limN→∞Nτ/2E�m̃ · bf� and limN→∞Nτ/2E�m̃1f� exist.

Proof. We introduce f′ as in Proposition 5.3, and we evaluate

E�m̃′ · b′f′�′ = E�m̃′ ·m′p+1f′�′�
The bracket on the right involves p + 1-replicas and f′ depends only on the
first p-replicas.

We start with

E�m̃′ ·m′p+1f′�′ = E
∑
k

ηk�σ̃m′
k
p+1f′�′

= M− 1
N′ E�σ̃σp+1f

′�′

+N

N′E
∑

2≤k≤M
ηk�σ̃m′

k
p+1f′�′�
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Use of Lemmas 5.4 and 5.5 and integration by parts yield

E�m̃′ ·m′p+1f′�′ c= M− 1
N

E�σ̃σp+1f�′

+N

N′β
∑

l≤p+1

E�σ̃σlmp+1 ·mlf�′

−N

N′β�p+ 1�E�σ̃σp+1m
p+1 ·mp+2f�′�

We now use Corollary 2.7 to see that

E�σ̃σp+1f�′ c= β2E

(
1− 3th2Y

ch2Y

)
�f̄m̃ · b� + βE thY

ch2Y
�f̄m̃1�

c= β2E

(
1− 3th2Y

ch2Y

)
E�f̄m̃ · b� + βE thY

ch2Y
E�f̄m̃1��

As previously, we have

σ̃σ1m
p+1 ·m1 + σ̃σ2m

p+1 ·m2 = 1
2
�σ̃�2m̃ ·mp+1

and Corollary 2.10 gives

E
1
2
��σ̃�2m̃ ·mp+1f� c= E

1

ch2Y
�m̃ ·mp+1f� c=E 1

ch2Y
E�m̃ · bf�

because all the other terms are of higher order. For l ≥ 3, Corollary 2.7 gives

E�σ̃σlmp+1 ·mlf�′ c= β2E

(
1− 3th2Y

ch2Y

)
�mp+1 ·mlm̃ · bf�

+βE thY

ch2Y
�mp+1 ·mlm̃1f�

and also

E�σ̃σp+1m
p+1 ·mp+2f�′ c= β2E

(
1− 3th2Y

ch2Y

)
�mp+1 ·mp+2m̃ · bf�

+βE thY

ch2Y
�mp+1 ·mp+2m̃1f��

In particular, if l < p + 1, these two expressions coincide modulo converging
terms, as is seen by regrouping the terms in their difference. It is simple to
show that

E�m̃′ ·m′p+1f′�′ c=E�m̃ ·mp+1f�
so that, if we set

A = E�m̃ · bf�� B = E�m̃1f��
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we get after regrouping the terms that

A
c=UA+VB�(5.41)

where

U = βE
1

ch2Y
+ β2E

(
1− 3th2Y

ch2Y

)[
α+ βE��m�2� − 3E��b�2�

]
�

V = βE
thY

ch2Y
�E��m�2� − 3E��b�2���

A similar, but much easier computation yields

B
c=βE 1

ch2Y
B− 2β2E

thY

ch2Y
A

so that

B

(
1− βE 1

ch2Y

)
c=−2β2E

thY

ch2Y
A�

Substitution in (5.11), together with the fact that 1− βE�1/ch2Y� +Lρ2
1 < 1,

then yields A c=0, and thus B c=0. ✷

Our position has strengthened again, because, when f is an expression of
order τ − 1, in the application of Proposition 2.6 and its corollaries, we no
longer need to consider the terms containing m̃ · bf, or m1f.

We now turn to the case of expressions of the type (5.17); without loss of
generality, we can consider �m̃�2 − �m∗�2.

Proposition 5.7. UnderH�τ−1�, if f is an expression of order τ−1, then

lim
N→∞

Nτ/2E���m̃�2 − �m∗�2�f�

exists.

Proof. We introduce f′ as in Proposition 5.3, and we evaluate E���m̃′�2−
�m′∗�2�f′�′.

We start with

E��m̃′�2f′�′ = E
∑
k

ηk�σ̃m̃′
kf

′�′

= M− 1
N′ E��σ̃�2f′�′ + N

N′E
∑

2≤k≤M
ηk�σ̃m̃kf

′�′�

Using Corollary 2.10,

E��σ̃�2f′�′ c=E��σ̃�2f�′

c=E
(

1

ch2Y
�f�

)
+ β2

2
E

1

ch2Y

〈
f
∑
l≥1

al

〉
+ βE thY

ch2Y

〈
f
∑
l≥3

cl

〉
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because all the other terms from Corollary 2.10 are known to be convergent
by Proposition 5.3. Now, integration by parts gives

E
∑

2≤k≤M
ηk�σ̃m̃kf

′�′ c= β
∑
l≤p

E�σ̃σlm̃ ·mlf�′

−βpE�σ̃σp+1m̃ ·mp+1f�′�
Use of Corollary 2.7 shows that only the terms for l = 1�2 can contribute.
They regroup as

1
2E��σ̃�2�m̃�2f�′

and use of Corollary 2.10 shows that

1
2
E��σ̃�2�m̃�2f�′ c= E

1

ch2Y
��m̃�2f� + β2

2
E

1

ch2Y

〈
�m̃�2f

∑
l≥1

cl

〉

+βE thY

ch2Y

〈
�m̃�2f

∑
l≥3

al

〉
�

Regrouping with the contributions from −E��m′∗�2f′�′, we obtain a total con-
tribution of

N

N′βE
1

ch2Y
���m̃�2 − �m∗�2�f�

c= N

N′βE
1

ch2Y
E���m̃�2 − �m∗�2�f�

because ��m̃�2 − �m∗�2�f is an extended expression of order τ. [The reader
will observe that we do not know yet that

E
1

ch2Y
��m̃�2f� c=

(
E

1

ch2Y

)
E��m̃�2f��!

In this way we obtain

A
c=β

(
E

1

ch2Y

)
A

and this completes the proof. ✷

We have made further progress, because when we apply Theorem 2.5 and
its corollaries, we have now controlled the terms containing al. Indeed,

���ṁl�2 − ��ṁl�2��f� = ���ml −mp+1�2 − �mp+3 −mp+2�2�f�
using three new replicas. So we now know that all terms such as Nτ/2E�1/
ch2Y��alf� are convergent when f is an expression of order τ − 1.

Now, when using Theorem 2.5, we will have to be concerned only about the
terms of type I. Still, we are not done.
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Proposition 5.8. Under H�τ − 1�, for each expression f of order τ − 1,
limN→∞Nτ/2E�m̃ ·m3f� exists.

Proof. We write

E�m̃′ ·m′3f′�′ =∑
k

Eηk�σ̃m′3
kf

′�′

c= M− 1
N′ E�σ̃σ3f� +

N

N′
∑
k

Eηk�σ̃m3
kf

′�′�

By integration by parts,

E
∑
k

ηk�σ̃m3
kf

′�′ = β
∑
l≤p

E�σ̃σlm3 ·mlf�′ − βpE�σ̃σlm3 ·mp+1�′�

As we now care only about the terms of type I of Theorem 2.5, only the
terms for l = 1�2 contribute; they regroup as

βE
1
2
��σ̃�2m̃ ·m3f�′

and we get

E�m̃ ·m3f� c=βE 1

ch2Y
E�m̃ ·m3f�� ✷

Proposition 5.9. Under H�τ − 1�, for each expression f of order τ − 1,
limN→∞Nτ/2E��m1 ·m2−E�m1 ·m2��f�, limN→∞Nτ/2E��m1

1−E�m1
1��f� and

limN→∞Nτ/2E���m̃�2 −E��m̃�2��f� exist.

Proof. Writing a = E�m1 ·m2�, b = E�m̃�2, c = E�m1�, we will first show
that

E��m1 ·m2 − a�f� c= α�Eth2Y�f� − �Eth2Y�E�f��

+β
(
E

1

ch2Y
�m1 ·m2f�

−E
(

1

ch2Y
�m1 ·m2�

)
E�f�

)
(5.43)

+β
2
�Eth2Y��m̃�2f� −Eth2Y��m̃�2�E�f���

E���m̃�2 − b�f� c=2α
(
E

1

ch2Y
�f� −

(
E

1

ch2Y

)
E�f�

)

+ βE
(

1

ch2Y
��m̃�2f� −E 1

ch2Y
��m̃�2�E�f�

)
�

(5.44)

E��m1
1 − c�f� = EthY�f� − �EthY�E�f��(5.45)
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This follows the usual pattern. We write

E�m′1 ·m′2f′�′ = M− 1
N

E�σ1σ2f
′�′ + N

N′
∑

2≤k≤M
Eηk�σ1m

2
kf

′�′

and

E�σ1σ2f
′� c=Eth2Y�f��

Also, integration by parts yields∑
2≤k≤M

Eηk�σ1m
2
kf

′�

c=β ∑
1≤l≤p

E�σ1σlm
l ·m2f�′ − βpE�σ1σp+1m

p+1 ·m2f�′

c=β�E�m1 ·m2f� +Eth2Y��m2�2f�
+ ∑

3≤l≤p
Eth2Y�m2 ·mlf� − pEth2Y�mp+1 ·m2f���

(5.46)

We now observe that, if l� l′ ≥ 3,

Eth2Y�m2 ·mlf� c=Eth2Y�m2 ·ml′f��(5.47)

Indeed, since m2 · �ml −ml�f is an extended expression of order τ,

Eth2Y�m2 · �ml −ml�f� c=�Eth2Y�E�m2 · �ml −ml′ �f� c=0�

where the last equality follows from Proposition 5.8. Thus, (5.46) simplifies to

∑
2≤k≤M

Eηk�σ1m
2
kf

′�′ c= βE
1

ch2Y
�m1 ·m2f�

+βEth2Y���m2�2 −m1 ·m2�f��
The replicas of rank 1 and 2 play the same role, so that in the last term

we can replace �m2�2 − m1 · m2 by 1
2��m1�2 + �m2�2 − m1 · m2� = 1

2�m̃�2.
Submitting E�m1 ·m2� to the same computation yields (5.43).

To obtain (5.44), we write

E��m̃2�2f′�′ c=M− 1
N′ E��σ̃�2f�′ = N

N′E
∑

2≤k≤m
ηk�σ̃m̃kf�′�(5.48)

We integrate by parts. Only the terms for l = 1�2 matter, since for the
others, due to the factor σ̃σl there is no contribution from the terms of type I
of Theorem 2.5. These two terms regroup as usual in

βE 1
2��σ̃�2�m̃�2f�′�
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This and the same computation forE��m̃�2� yield (5.44). As for (5.45), it should
be obvious.

To use (5.43) to (5.45), we make a first-order expansion of the terms such
as Eth2Y; we know from Theorem 4.1 that the higher order terms will not
contribute. We recall the functions ψ1� ψ2 of Section 4, and we write

A = E��m1 ·m2 − a�f��
B = E���m̃�2 − b�f��
C = E��m1 − c�f��

Let us examine what happens on a typical term, say,

E
1

ch2Y
�m1 ·m2f� −E 1

ch2Y
�m1 ·m2�E�f��(5.49)

We write

1

ch2Y
= ψ2�a� c� + �m1 ·m2 − a�∂1ψ2�a� c�

+ �m1 − c�∂2ψ1�a� c� +R�
(5.50)

where R is of order N−1 [in the sense that E��R�n� ≤K�n�N−n].
Substituting in (5.49) gives a contribution

ψ2�a� c�A+ ∂1ψ2�a� c��E�m1 ·m2 − a��m1 ·m2f�
−E�m1 ·m2 − a��m1 ·m2�E�f��
+∂2ψ2�a� c��E�m1 − c��m1 ·m2f�
−�m1 − c��m1 ·m2�E�f���

(5.51)

Now, in �m1 · m2f� we can replace m1 · m2 by E�m1 · m2� because the
difference is of higher order. In this manner, (5.59) simplifies to

ψ2�a� c�A+ ∂1ψ2�a� c�E�m1 ·m2�E�m1 ·m2 − a��f�
+∂2ψ2�a� c�E�m1 ·m2�E�m1 − c��f��

(5.52)

Let us first consider the case where f does not depend on replicas of rank
1 and 2, so that �m1 ·m2f� = �m1 ·m2��f�, and (5.52) further simplifies to

%ψ2�a� c� +E�m1 ·m2�∂1ψ2�a� c�!A+ ∂2ψ2�a� c�E�m1 ·m2�C�(5.53)
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Under the condition that f does not depend on the replicas of order 1 and
2, (5.43) to (5.45) simplify in this manner to

A
c=
[
−α∂1ψ2�a�c�+βψ2�a�c�+β∂1ψ2�a�c�E�m1 ·m2�

−β
2
∂1ψ2�a�c�E��m̃�2�

]
A+β

2
�1−ψ2�a�c��B

+
[
−α∂2ψ2�a�c�+β∂2ψ2�a�c�E�m1 ·m2�(5.54)

−β
2
∂2ψ2�a�c�E��m̃�2�

]
C�

B
c= [

2α∂1ψ2�a�c�+β∂1ψ2�a�c�E��m̃�2�]A(5.55)

+βψ2�a�c�B+
[
2α∂2ψ2�a�c�+β∂2ψ2�a�c�E��m̃�2�]C�

C
c= ∂1ψ1�a�c�A+∂2ψ1�a�c�C�(5.56)

To prove that A c=0, B c=0, C c=0, we then have to show that the 3 × 3
matrix � given by the right-hand sides of these equations is such that �Id−
� �−1 exists and remains bounded in the admissible region. This is a very
uninspiring task. We explain the idea only in the case β ≤ 2, which is the
hardest. Then Id −� = �1 − βψ2�a� c��Id +�1 +�2, where the coefficients
of �1 are all bounded by Lρ2

1 and where all the coefficients �mij� of �2 are 0,
except m1�2 and m3�1, which remain bounded. This easily implies the result.

This finishes the proof in the case where f does not depend on the replicas
of rank 1 and 2. But this special case implies that, for any expression f of
order τ − 1,

E
1

ch2Y
�f� c=E 1

ch2Y
E�f��(5.57)

This is seen using (5.50) and the fact that we now know that E�m1 ·m2 −
a��f� c=0 and E�m1−c��f� c=0 (because there it can be assumed, without loss
of generality that f does not depend on replicas of rank 1 and 2). Also, (5.57)
remains true if there is a factor m1 ·m2 or �m̃�2 in front of f. This is because
E�m1 ·m2 − a���m̃�2f� c=0 (and E�m1 − c���m̃�2f� c=0�. Indeed, this would
obviously be true if we replace �m̃� by E��m̃��; the difference is c=0 as it can
be written E�W�, where W is an expression of order τ + 1. Also,

E�f�E
(

1

ch2Y
�m1 ·m2�

)
c=E�f�E 1

ch2Y
E�m1 ·m2�� etc.
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Thus, (5.43) and (5.44) simplify, respectively, to

A
c= βE

1

ch2Y
A+ β

2
Eth2YB�

B
c= βE

1

ch2Y
B�

The result follows. ✷

As explained at the end of the previous proof, Proposition 5.9 allows us to
dispose of the annoying factors thnY that arise through the use of Theorem 2.5
and that were the last obstacle.

Proposition 5.10. UnderH�τ−1� if f is an expression of order τ−1, then
limNτ/2E��1/N���1 · �2 −E��1 · �2��f� exists.

Proof. Left to the reader.

Now, we can perform the last step in the proof of H�τ�, and hence of
Theorem 5.1.

Proposition 5.11. UnderH�τ−1�, if f is an expression of order τ−1, then
limN→∞Nτ/2E�m1

kf� exists for k ≥ 2.

Proof. The remarkable fact is that, despite all our machinery, this is not
totally obvious and the same arguments have to be used once more. As a first
step, we will prove that

lim
N→∞

Nτ/2E�m̃kf�(5.58)

exists. We compute

E
〈
m̃′

kf
′〉′ = Eηk

〈
σ̃f

〉′
c= β

∑
l≤p

E�σ̃σlml
kf� − pβE�σ̃σp+1m

p+1
k f�′�

Only the terms for l = 1�2 contribute, because in the others there is no con-
tribution of the terms of type I of Theorem 2.5. These two terms regroup as

β

2
E��σ̃�2m̃kf� c=βE 1

ch2Y
�m̃kf�

so that

E�m̃f� c=βE 1

ch2Y
E�m̃f�
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and this proves (5.58). To prove the proposition, we find as usual

E
〈
m1

kf
〉 c= β

∑
l≤p

E�σ1σlm
l
kf�′ − βpE�σ1σp+1m

p+1
k f�′

c= βE
〈
m1

kf
〉+ ∑

1≤l≤p
Eth2Y

〈
ml

kf
〉− βpEth2Y

〈
m

p+1
k f

〉
c= βE

1

ch2Y
E
〈
m1

kf
〉

because (5.58) implies that

Eth2Y
〈
ml

kf
〉 c=Eth2Y

〈
ml′

kf
〉

for any l� l′. ✷

6. A priori estimates for the Gibbs measure. In this section we prove
(2.13) and (2.14). The proof of (2.13) will start with an estimate of the same
nature as (2.14), that is, an estimate on how close m1�ε� is to m∗. A second
separate argument will then deduce (2.13) from this result. It is probably
possible to deduce (2.14) from the result of [3]. We feel, however, that seeing
first a direct proof of (2.14) would help the reader to understand the much
more delicate issues of Corollary 6.13, so we will provide such a proof.

Both (2.13) and (2.14) deal with the image G′ of the Gibbs measure under
the map ε→ �mk�ε��1≤k≤M. Rather than G′, it is much easier to use its convo-
lution Ḡ = G′ ∗γ with the Gaussian measure γ on �M of density W exp�−βN×
�w�2�, where W is the normalizing coefficient �βN/2π�M/2. This trick, called
the Hubbard–Stratonovich transformation, is very useful (and unfortunately
very specific to the form of the Hamiltonian). The reason for the success of this
method is that Ḡ has a simple density with respect to Lebesgue’s measure,
namely,

Z−1 expψ�z��(6.1)

where

ψ�z� = −βN
2
�z�2 + ∑

i≤N
log chβ�h+ �i · z��(6.2)

where �i = ��i� k�k≤M, the dot product is in �M and

Z =
∫

expψ�z�dz(6.3)

is the normalization factor. It is well known that γ is sharply concentrated
close to the sphere of radius

√
α/β centered at the origin. Thus, to prove that

G′ is sharply concentrated on a ball of radius R at least as large as
√
α/β,

a natural method is to prove that Ḡ = G′ ∗γ is concentrated on such a ball; but
it seems difficult to obtain results at a finer scale, because convolution with
γ “blurs” this information. [In particular, it seems difficult to prove (2.13) by
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studying Ḡ only, and this is why we use a separate argument.] The situation
is more favorable when we are interested only on the projection G1 of G on
the first copy of � [i.e., the image of G by the map ε → m1�ε�] because the
projection Ḡ1 of Ḡ on this copy is the convolution of G1 with a Gaussian
measure of variance 1/βN. Thus, to show that G1 is nearly supported by an
interval (the length of which is independent of N), it suffices to show the same
for Ḡ1. Thus, to prove (2.14), it suffices to prove the following result.

Proposition 6.1. If β ≤ 2, we have

EḠ��z� �z1 −m∗� ≥ ρ0�� ≤ exp
(
−N
K

)
�

Before the proof starts, we collect the probabilistic estimates on which it
relies. Throughout the section, we say that an event occurs with large prob-
ability if its probability is greater than or equal to 1− exp�−N/K�.

Lemma 6.2. With large probability the following occur:∥∥∥∥∑
i≤N

�i

∥∥∥∥ ≤ LN
√
α�(6.4)

∀w ∈ �M�
∑
i≤N
��i ·w�2 ≤ LN�w�2�(6.5)

∀w ∈ �M� �w� ≤ a⇒ ∑
i≤N
��i ·w�2 min�1� ��i ·w��(6.6)

≤ LN�a3 +√αa2��

Proof. Equation (6.4) is obvious. The proof of (6.5) is to be found in the
appendix of [T2] and is much easier than the proof of (6.6) that we give now. We
replace the function x2 min�1� �x�� by ϕ�x� = ∫ �x�

0 tmin�1� t�dt that is convex
and such that x2 min�1� �x�� ≤ Lϕ�x�, ϕ�x� ≤ Lx2/2. It is elementary (and
very useful) that there is a subset U of �M such that each u in U satisfies
�u� ≤ 2a, that cardU ≤ 5M and that each w with �w� ≤ a is in the convex
hull of U. Thus,

sup
�w�≤a

∑
i≤N

ϕ��i ·w� ≤ sup
u∈U

∑
i≤N

ϕ��i · u��(6.7)

The proof of (6.6) will follow from the following elementary version of
Bernstein’s inequality: if an r.v. X satisfies E exp �X� ≤ 2 and �Xi�i≤N are
i.i.d. copies of X, then, for each t > 0,

P

(∑
i≤N

Xi ≥NEXi + t
)
≤ exp

(
−min

(
t2

NL
�
t

L

))
�
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We use this for t = L
√
αN, Xi = �1/8a2�ϕ��i · u� so that

EXi ≤
1

8a2
E��i · u�3 ≤ La�

The condition E exp �Xi� ≤ 2 follows from the well-known fact that

E exp
1
4
��i · x�2 ≤ 2

if �x� ≤ 1. (See Lemma 6.6.) This proves that, given a, (6.6) occurs with large
probability, and it remains to show that, with large probability, it holds for each
a. If a ≥ 1, (6.6) follows from (6.5), and for a ≤ √α, (6.6) is, by homogeneity,
a weaker statement than for a = √α. Thus, (6.6) holds for each a > 0 provided
it holds for a = 2−k,

√
α ≤ 2−k ≤ 1. ✷

Proof of Proposition 6.1. We will use in an essential way that we already
know that

EḠ��z� �z−m∗e1� ≥ ρ1�� ≤ exp
(
−N
K

)
�(6.8)

where e1 is the vector �1�0� � � �� of �M. Given w in �M with w1 = 0 and t in
�, we consider the function

ψw�t� = ψ�w + �t+m∗�e1�(6.9)

and the probability measure µw on %−ρ1� ρ1! of density

1
Zw

1��t�≤ρ1� expψw�t�(6.10)

with respect to Lebesgue’s measure, where

Zw =
∫ ρ1

−ρ1

expψw�t�dt(6.11)

is the normalizing factor. The reason that we consider only �t� ≤ ρ1 is that
by (6.8) the other values of t do not matter. We will show that, with large
probability, we have

�w� ≤ ρ1 ⇒ µw�%−ρ0� ρ0!� ≥ 1− exp
(
−N
K

)
(6.12)

and this will conclude the proof because the projection of Ḡ on the first copy
of � is [modulo an exponentially small error due to (6.8)] a mixture of prob-
abilities of the type µw.

To prove (6.12), we will simply show that ψw is sufficiently concave and has
its maximum in %−ρ0/2� ρ0/2!. We have

ψ′w�t� = −βN
(
t+m∗ − 1

N

∑
i≤N

thβ�h+m∗ + t+ �i ·w�
)
�(6.13)

ψ′′w�t� = −βN
(

1− β

N

∑
i≤N

1

ch2β�h+m∗ + t+ �i ·w�

)
�(6.14)



1458 M. TALAGRAND

We write, for β ≤ 2,

�ϕ�x� − ϕ�0� − xϕ′�0�� ≤ Lx2(6.15)

for

ϕ�x� = 1

ch2β�h+m∗ + x�
and x = t+ �i ·w. By summation, we get∣∣∣∣ 1

N

∑
i≤N

1

ch2β�h+m∗ + t+ �i ·w�
− 1

ch2β�h+m∗�

∣∣∣∣
≤ �ϕ′�0��

∣∣∣∣t+ 1
N

∣∣∣∣
(∑
i≤N

�i

)
·w� +L

(
t2 + 1

N

∑
i≤N
��i ·w�2

)
�

We use (6.4), (6.5) and �t�� �w� ≤ ρ1 to see that this is at most

L�ϕ′�0��
( √

α√
β− 1

+ α√
β− 1

)
+L α

β− 1
�

Now

�ϕ′�0�� ≤ 2thβ�h+m∗� = 2m∗ ≤ L
√
β− 1

since we assume h very small; so the above is at most
√
α+L α

β− 1
�

Since

β
1

ch2β�h+m∗� = β�1−m∗2� ≤ 1− β− 1
L

�

we have proved that for α�β in the admissible region we have

�t� ≤ ρ1 ⇒ ψ′′w�t� ≤ −N�β− 1�/L�(6.16)

It is more delicate to study (6.13). Considering now

ϕ�x� = thβ�h+m∗ + x��
we write ∣∣∣∣ϕ�x� − ϕ�0� − xϕ′�0� − x2

2
ϕ′′�0�

∣∣∣∣ ≤ Lx2 min�1� �x���

We use this for x = �i ·w, and using (6.4) to (6.6) we get by summation∣∣∣∣ 1
N

∑
i≤N

thβ�h+m∗ + �i ·w� − thβ�m∗ + h�
∣∣∣∣

≤ L
√
α�w� +L�w�2�ϕ′′�0�� +L�√α�w�2 + �w�3��
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Now �ϕ′′�0�� ≤ 2thβ�h+m∗� = 2m∗ ≤ L
√
β− 1, and since �w� ≤ ρ1 this gives

a bound

L
α√
β− 1

+L α√
β− 1

+L α3/2

β− 1
+L α3/2

�β− 1�3/2 ≤ L
α√
β− 1

for α ≤ �β− 1�2. Thus, we have shown that

�ψ′w�0�� ≤ LN
α√
β− 1

�(6.17)

Comparing with (6.16), we see that the proof is complete: ψw has its maximum
in %−Lα�β− 1�−3/2�Lα�β− 1�−3/2!. ✷

The previous approach breaks down for large β because for certain values of
w there are too many indexes i for which h+m∗+�i ·w ( 0. The corresponding
terms in (6.14) are then large, and it does not seem possible to bound ψ′′w�t�
uniformly from above. The method of proof consists quite naturally of showing
that these values of w are exceptional and irrelevant. This, however, requires
a much more detailed analysis, toward which we turn now. Using (6.2), we
write

ψ�m∗e1 + v� = −βN
2
m∗2 − βN�v�2

2
− βNm∗v · e1

+ ∑
i≤N

log chβ�m∗ + h+ �i · v�
(6.18)

(we do not assume that v1 = v · e1 = 0).
From now on, we assume (without loss of generality since in Proposition 6.1

the condition β ≤ 2 can be replaced by β ≤ L) that β is large enough that
m∗ ≥ 3/4, and we consider the function

ξ�x� = β2x2

ch2�β/4� + 2β
(
�x� − 1

2

)+
�(6.19)

We set

ψ0�m∗e1 + v� =Nb∗ − βN

2
�v�2 + βm∗

(∑
i≤N

�′i

)
· v�(6.20)

where �′i = �i − e1 and where

b∗ = log chβ�m∗ + h� − βm∗2

2
�

Lemma 6.3. We have

ψ0�m∗e1 + v� ≤ ψ�m∗e1 + v� ≤ ψ0�m∗e1 + v� + ∑
i≤N

ξ��i · v��(6.21)
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Proof. The function

ξ1�x� = log chβ�m∗ + h+ x� − log chβ�m∗ + h� − βxm∗

is convex positive [since m∗ = thβ�m∗+h� and hence ξ′�0� = 0]. For �x� ≤ 1/2,
we have m∗ + x+ h ≥ 1/4, so that

ξ′′�x� = β2

ch2β�m∗ + h+ x� ≤
β2

ch2�β/4� �(6.22)

On the other hand, for all x,

ξ′�x� = βthβ�m∗ + h+ x� − βm∗

so that

�ξ′�x�� ≤ 2β�(6.23)

It is elementary to deduce from (6.22), (6.23) that ξ1�x� ≤ ξ�x�, so that

logβ�m∗ + h� + βxm∗ ≤ log chβ�m∗ + h+ x�
≤ logβ�m∗ + h� + βxm∗ + ξ�x��

Using this for x = �i · v and summation yield the result. ✷

We now consider the vector � = �1/N�m∗∑
i≤N �′i, whose importance is

revealed by (6.20). Thus,

ψ0�m∗e1 + v� =Nb∗ − βN

2
�v − ��2 + βN

2
���2�(6.24)

Lemma 6.4. For a subset A of �M, we have

Ḡ�A+m∗e1� ≤W
∫
A

exp�−β�z− ��2 + ∑
i≤N

ξ��i · z��dz�(6.25)

Proof. By the lower bound of Lemma 6.3, we have

Z =
∫
ψ�z�dz ≥ expNb∗

∫
exp

(
−βN

2
�v�2 + βN� · v

)
dv

=W−1 exp
(
Nb∗ + βN

2
���2

)

and the result follows from (6.1), the upper bound of (6.21) and (6.24). ✷

It is natural in (6.25) to make the change of variable z = � +w. Since, by
convexity,

ξ�x+ y� ≤ 1
2�ξ�2x� + ξ�2y���

we then have the following result.
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Lemma 6.5. For a subset A of �M, we have

Ḡ�A+m∗e1 + ��

≤ exp
(

1
2

∑
i≤N

ξ�2�i · ��
) ∫

A
exp

(
1
2

∑
i≤N

ξ�2�i ·w�
)
dγ�w��(6.26)

What we would like now is to show that Ḡ is essentially concentrated on
a ball of center � and radius L

√
α/β (the best accuracy we can hope for) and

that, moreover, only the part of this ball where the exponent in the integral
(6.26) is not too large matters. But, of course, before we can even start this
program we need to be able to control this exponent. The part

β2

ch2β/4
x2

of ξ is not dangerous because the coefficient of x2 is very small for large β.
We will use the following elementary lemma that reformulates (2.25).

Lemma 6.6. If t�w�2 < 1/2, we have

E exp t
∑
i≤N
��i ·w�2 ≤

(
1

1− 2t�w�2

)N/2

�

To handle the dangerous part of ξ, that is, β��x� − 1/2�+, we will use the
following result.

Lemma 6.7. If

16t�w�2 ≤ 1�(6.27)

then

E exp t
∑
i≤N

(
��i ·w� −

1
4

)+
≤ exp

(
2N exp

(
− 1

128�w�2

))
�(6.28)

Proof. We recall the “sub-Gaussian inequality,” valid for all u,

E expu�i ·w ≤ exp
u2

2
�w�2(6.29)

so that

E expu��i ·w� ≤ 2 exp
u2

2
�w�2(6.30)

and by Chebyshev’s inequality,

P���i ·w� ≥ 1/4� ≤ 2 exp− 1
32�w�2

�(6.31)
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We write

E exp t
(
��i ·w� −

1
4

)+
≤ 1+E�1���i·w�≥1/4� exp t��i ·w��

≤ 1+ exp
(
− 1

64�w�2

)
exp 2t2�w�2

using (6.30), (6.31) and the Cauchy–Schwarz inequality. The result follows. ✷

Lemma 6.8. Given a > 0, with large probability, we have

sup
�w�≤a

∑
i≤N

(
��i ·w� −

1
4

)+
≤ La2

(
α+ exp− 1

La2

)
�(6.32)

Proof. As in Lemma 6.1, we use a set U of �M of cardinality less than
or equal to 5M, consisting of vectors of length less than or equal to 2a, and
whose convex hull contains the ball of center 0 of radius a. Thus,

sup
�w�≤a

∑
i≤N

(
��i ·w� −

1
4

)+
≤ sup

u∈U

∑
i≤N

(
��i · u� −

1
4

)+
�(6.33)

Now we use (6.28) with t = 1/64a2 to get

P

(∑
i≤N

(
��i · u� −

1
4

)+
≥ y

)
≤ expN

(
− y

64a2
+ exp− 1

La2

)
�

The result follows easily. ✷

Lemma 6.9. With large probability, we have

∑
i≤N

(
��i · �� −

1
4

)+
≤ LN exp− 1

Lα
�(6.34)

Proof. It is pretty obvious that

E

(
��i · �� −

1
4

)+
≤ L exp− 1

Lα
�

The problem, however, is that, as i varies, the variables ��i ·�� are not indepen-
dent. (The reader is advised to skip the rest of this purely technical argument.)
All that we need is (e.g.) an inequality like

exp
(

1
16

∑
i≤N

(∣∣∣∣ 1
N

�i ·
∑
j #=i

�i

∣∣∣∣− 1
8

)+)
≤ exp

(
LN exp− 1

Lα

)
�(6.35)
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To prove this, we will show that for each subset I of �1� � � � �N�,

E exp
1
4

∑
i∈I

(∣∣∣∣ 1
N

�i ·
(∑
j #∈I

�i

)∣∣∣∣− 1
16

)+
≤ exp

(
LN exp− 1

Lα

)
�(6.36)

This will imply (6.35) by averaging over I since

Av
I

∑
i∈I

(∣∣∣∣ 1
N

�i ·
(∑
j #∈I

�j

)∣∣∣∣− 1
16

)+
≥ 1

2

∑
i≤N

(∣∣∣∣12 1
N

�i ·
∑
j #=i

�j

∣∣∣∣− 1
16

)+
�

To prove (6.36), we denote by E0 integration in ��i�i∈I alone, so that, as in
(6.28), denoting �I =

∑
i/∈I �i,

E0 exp
1
4

∑
i∈I

(∣∣∣∣ 1
N

�i · �I
∣∣∣∣− 1

16

)+
≤ exp

(
LN exp− N2

L��I�2

)
�(6.37)

provided ��I�2 ≤N2/L. Also,

E0 exp
1
4

∑
i∈I

∣∣∣∣ 1
N

�i · �I
∣∣∣∣ ≤ 2N expL��I�2/N(6.38)

by (6.30). Using that, from Lemma 6.6,

E exp
1

4M
��I�2 = ∏

i∈I
exp

1
4M

( ∑
k≤M

ηi�k

)2

≤ LN�

we see that if t ≥ 1, P���I�2 ≥ LtαN2� ≤ exp�−N�. The result follows easily
from (6.67), (6.68). ✷

Proposition 6.10. If β ≥ β0, α ≤ α0, then

EḠ

({
w� �w −m∗e1 − �� ≥ 2

√
α

β

})
≤ exp−N

K
�(6.39)

Proof. Given a > 0, consider the set

Ca =
{
w ∈ �M� a

2
≤ �w� ≤ a

}
�

Combining the estimates (6.4), (6.5), (6.32), (6.34), we have shown that, with
large probability, we have

∀�w�∈Ca�
1
2

∑
i≤N

(
ξ�2�i ·��+ξ�2�i ·w�

)

≤L
(
�a2+α� β2

ch2�β/4� +βa
2
(
α+exp− 1

La2

))
=�δ�a�

so that, by (6.26),

Ḡ�Ca +m∗e1 + �� ≤ γ�Ca� expNδ�a��
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Now we use the elementary fact that, for a ≥ 4
√
α/β, we have γ�Ca� ≤

exp−Nβa2/L. Thus, we have

Ḡ�Ca +m∗e1 + �� ≤ exp−N/K

as soon as a satisfies

a2
(
α+ exp− 1

La2

)
≤ a2

L

and

�a2 + α� β2

ch2�β/4� ≤
a2

L
�

For α ≤ α0, β ≥ β0, this is satisfied for

a ≤ a0� a2 ≥ Lαβ2/ch2�β/4��
Since we must in any case have a2 ≥ 16α/β, for β0 large enough this is
satisfied. Combining this with Proposition 9.2 of [7], we see that the case
a ≥ a0 is irrelevant. This completes the proof. ✷

What Proposition 6.10 shows is that in (6.26) we have to be concerned only
with those w for which �w� ≤ 2

√
α/β.

Lemma 6.11. If �w� ≤ 2
√
α/β we have

E exp
1
2

∑
i≤N

ξ�2�i ·w� ≤ exp�LNα exp
(
−β
L

))
�(6.40)

Proof. Using the Cauchy–Schwarz inequality, the left-hand side is
bounded by(

E exp
∑
i≤N
��i ·w�2

8β2

ch2�β/4�

)1/2(
E exp

∑
i≤N

2β
(
�2�i ·w� −

1
2

)+)1/2

�

We then use Lemmas 6.6 and 6.7 to get a bound

exp
(
LN

(
exp− β

Lα
+ αβ

ch2�β/4�

))
≤ exp

(
LNα exp

(
−β
L

))

for α ≤ α0, β ≥ β0. ✷

Proposition 6.12. We have

EG′
({

m1 ≤m∗ −L
(

1
β

exp− 1
Lα

+ α

β
exp−β

L

)1/2})
≤ exp

(
−N
K

)
�
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Proof. Consider t > 0. Using (6.8), (6.26), we have with large probability
that

Ḡ��w�w1 ≤m∗ − t�� ≤ exp
(
−N
K

)

+ exp
(

1
2

∑
i≤N

ξ�2�i · ��
) ∫

A0

exp
1
2

∑
i≤N

ξ�2�i ·w�dγ�w��

where

A0 = �w ∈ �M� �w� ≤ 2
√
α/β� w1 ≤ t��

and where we have used the fact that the first component of � is 0.
By (6.34) with large probability we have

∑
i≤N

ξ�2�i · �� ≤ LN

(
exp− 1

Lα
+ α β2

ch2�β/4�

)
�

Using (6.40), we see that

E
∫
A0

exp
1
2

∑
i≤N

ξ�2�i ·w�dγ�w�

≤ γ�A0� exp 2N
(
α exp

(
−β
L

))

≤ expN
(
−βt

2

2
+ 2α exp

(
−β
L

))

so that

P

(∫
A0

exp
1
2

∑
i≤N

ξ�2�i ·w�dγ �w�

≥ expN
(
−βt

2

2
+ 3α exp

(
−β
L

))
≤ exp

(
−N
K

)
�

It follows that with probability greater than or equal to 1−exp�−N/K� one
has

Ḡ��w�w1 ≤m∗ − t��

≤ exp
(
−N
K

)
+ expN

(
−βt

2

2
+L

(
exp− 1

Lα
+ α exp−β

L

))
�

The result should now be obvious. ✷

Corollary 6.13. If α ≤ 1/�L logβ�, then (for β large enough)

EG

({
ε�m1�ε� ≤m∗ − 1

β4

})
≤ exp

(
−N
K

)
�
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Comment. There is nothing specific about the power β−4 that could be
replaced by a larger power.

Corollary 6.13 completes the proof of (2.14).
We now turn to the proof of (2.13). We write, setting ρi = ρi�ε� = εi−m1�ε�,

−H�ε� = N

2

∑
k≤M

m2
k�ε� + hNm1�ε�

= ∑
1≤k≤M

1
2N

(∑
i≤N

ηk� i

)2

m1�ε�2

+ ∑
2≤k≤M

1
N

(∑
i≤N

ηk� iρi

)( ∑
j≤N

ηk�j

)
m1�ε�(6.41)

+hNm1�ε�

+N
2

∑
2≤k≤M

(
1
N

∑
i≤N

ηk� iρi

)2

�

The basic idea is that, since

∑
i≤N

ρ2
i =N�1−m1�ε�2��(6.42)

this sum is small for m1�ε� close to 1 (the only case we have to consider by
Corollary 6.13). Thus, the last two terms of (6.48) can be seen as small pertur-
bation terms. We will show that the only configurations that really contribute
to the Gibbs measure are such that

∑
2≤k≤M��1/N�

∑
i≤N ηk� iρi�2 is small. If

we denote by c the (random) point of �M given by

c =
(

1
N

∑
i≤N

ηk� i

)
k≤M

�

then

�m�ε� − cm1�ε��2 = ∑
2≤k≤M

(
1
N

∑
i≤N

ηk� iρi

)2

(6.43)

so that

�m�ε� − c�2 ≤ 2�1−m1�ε��2�c�2 + 2
∑

2≤k≤M

(
1
N

∑
i≤N

ηk� iρi

)2

(6.44)

will be small and we will have proved (2.13).
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Lemma 6.14. If ε is such that Lβ2 ∑
i≤N ρ

2
i ≤ 1, u ≥ Lα

∑
i≤N ρ

2
i , then we

have

E exp
[
β

∑
2≤k≤M

1
N

(∑
i≤N

ηk� iρi

)( ∑
j≤N

ηk�j

)
m1�ε�

+βN ∑
2≤k≤M

(
1
N

∑
i≤N

ηk� iρi

)2]
1�∑2≤k≤M��1/N�

∑
i≤N ηk� iρi�2≥u�(6.45)

≤ exp
(
− Nu

L
∑

i≤N ρ
2
i

)
�

Proof. The proof relies on Lemma 6.6. Using the inequality ab ≤ a2/12β+
6βb2 and Hölder’s inequality, we bound the left-hand side of (6.45) by U1/3 ×
V1/3 W1/3, where

U = E exp
∑

2≤k≤M

1
4N

(∑
i≤N

ηk� i

)2

�

V = E exp�3β+ 18β2� ∑
2≤k≤M

1
N

(∑
i≤N

ηk� iρi

)2

�

W = E1�∑2≤k≤M��1/N�
∑

i≤N ηk� iρi�2≥u��

It should be obvious that by Lemma 6.6 one has

U ≤ 2M� V ≤ expLMβ2
(∑
i≤N

ρ2
i

)
�

By Lemma 6.6 again,

E exp
1

4
∑

i≤N ρ
2
i

∑
2≤k≤M

1
N

(∑
i≤N

ηk� iρi

)2

≤ 2M

and, thus, by Chebyshev’s inequality, we have

W ≤ 2M exp
(
− Nu

4
∑

i≤N ρ
2
i

)
�

The result follows. ✷

Let us now recall the Chernov large deviation function,

ϕ�t� = 1
2��1+ t� log�1+ t� + �1− t� log�1− t���

so that, as well known, if tN ∈ �, we have

2N

L
√
N

exp�−Nϕ�t�� ≤ card
{
ε� ∑

i≤N
εi = tN

}
≤ 2N exp�−Nϕ�t���(6.46)
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Corollary 6.15. With large probability, for each t with Nt ∈ �, Lβ2 ×
�1− t2� ≤ 1, we have

∑
exp−βH�ε� ≤ 2N exp

(
−Nϕ�t� − Nα

L
+ t2βS

2
+ βhtN

)
�

where the summation is taken over all the configurations ε with

m1�ε� = t�
∑

2≤k≤M

(
1
N

∑
i≤N

ηk� iρi

)2

≥ Lα�1− t2�

and where

S = 1
N

∑
k≤M

(∑
i≤N

ηk� i

)2

�(6.47)

Proof. This should be obvious from (6.41) and Lemma 6.14, taking u =
Lα�1−m1�ε�2� = Lα�1− t2� and using (6.42). ✷

Lemma 6.16. If S is as in �6�47�� we have
∑
ε

exp−βH�ε� ≥ 2N sup
0≤t≤1

1

L
√
N

exp
(
−Nϕ�t� + t2βS

2
+ βhtN

)
�

Proof. This follows from Jensen’s inequality, since the average of −βH�ε�
over m1�ε� = t fixed is at least βt2S/2+ βhtN and using (6.46). ✷

The following proves (2.13).

Proposition 6.17. If α ≤ 1/�L logβ�, then for β large enough we have

EG

({
ε� ∑

k≤M

(
mk�ε� −

(
1
N

∑
i≤N

ηi�k

))2

≥ L

β4

})
≤ exp

(
−N
K

)
�

Proof. Combine Corollary 6.13, Corollary 6.15, Lemma 6.16 and (6.44). ✷
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