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THE FUNCTIONAL CENTRAL LIMIT THEOREM UNDER
THE STRONG MIXING CONDITION

By Florence Merlevède and Magda Peligrad1

Université Paris VI and University of Cincinnati

We prove a central limit theorem for strongly mixing sequences under
a sharp sufficient condition which combines the rate of the strong mixing
coefficient with the quantile function. The result improves on all earlier
central limit theorems for this type of dependence and answers a conjecture
raised by Bradley in 1997.

Moreover, we derive the corresponding functional central limit theorem.

1. Introduction and results. Suppose X �= �Xk�k ∈ �� is a strictly
stationary sequence of random variables on a probability space ���� �P�. For
−∞ ≤ m ≤ p ≤ ∞, let �

p
m denote the σ-field of events generated by the

random variables �Xj�m ≤ j ≤ p�. For any two fields � and � ⊂ � , in
1956, Rosenblatt introduced the following measure of dependence:

α�� ��� �= sup �P�A ∩B� −P�A�P�B��� A ∈ � � B ∈ ��(1.1)

and the mixing coefficients:

α0 = 1/4 and αn = α�� 0
−∞��

∞
n � for all n ∈ �∗�(1.2)

If αn → 0 as n → ∞, we say that the sequence X is strongly mixing. Since
1956, a vaste body of work has been devoted to study the limiting behavior
of strongly mixing sequences. This is a large class of random variables which
contains both weakly dependent sequences and sequences with long range
dependence. Examples include time series, Gaussian processes and Markov
processes. These processes appear in other branches of mathematics, as well
as statistics and mathematical physics, giving rise to a great deal of interest
in their asymptotic properties.

The question concerning the central limit theorem in this setting is the
following: under what assumptions, besides that of strong mixing, do there
exist real numbers a1� a2� a3� � � � and positive numbers b1� b2� b3� � � � with bn →
∞ as n→ ∞, such that

Sn − an
bn

�→N ∼ � �0�1� as n→ ∞�(1.3)

where Sn =∑n
i=1Xi.

A result of Ibragimov (1962) [see Theorem 18.1.1 in Ibragimov and Linnik
(1971)] tells us that (under strict stationarity and strong mixing) if (1.3) holds
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FUNCTIONAL CLT UNDER STRONG MIXING 1337

with bn → ∞ as n → ∞, then necessarily bn has the representation b2n =
nh�n� where h�n� is a slowly varying function as n→ ∞.

An important problem is to determine subclasses of mixing sequences of
random variables satisfying (1.3). Most of the research in this direction addre-
sses the problem of a particular sequence of bn’s and little is known about (1.3)
in its full generality. For the particular case of b2n = VarSn we would like to
mention the characterization due to Denker (1986).

Theorem 1.1. Assume �Xk� k ∈ �� is a strictly stationary and strongly
mixing sequence such that

ƐX0 = 0� ƐX2
0 <∞ and Var�Sn� → ∞�(1.4)

Then

Sn
�Var�Sn��1/2

�→N ∼ � �0�1� as n→ ∞(1.5)

is equivalent to{
S2
n

Var�Sn�
}
n≥1

is an uniformly integrable family�

The most useful results in this area point out classes of strong mixing seque-
nces satisfying (1.4) under sharp sufficient conditions imposed on both the
individual summands and the strong mixing coefficients. By the term “sharp
sufficient conditions” we mean those conditions whose violation allows the con-
struction of counterexamples. Some of the first sufficient conditions for central
limit theorems in this setting are due to Ibragimov (1962). These conditions
are in terms of moments of random variables and strong mixing rates. These
results have a conclusion (1.3) for the particular choice bn = cn1/2.

More recently, Doukhan, Massart and Rio (1994) showed the particular role
played by quantiles in deriving a central limit theorem. For any nonnegative
random variable W, define the “upper tail” quantile function via

QW�u� = inf�t ≥ 0� P�W > t� ≤ u��
Doukhan, Massart and Rio (1994) proved the following.

Theorem 1.2. Suppose �Xk� k ∈ �� is a strictly stationary, strongly mixing
sequence of random variables such that ƐX0 = 0 and ƐX2

0 <∞:
(a) If

∞∑
n=1

∫ αn
0
Q2

�X0��u� du <∞�(1.6)

then σ2 = ƐX2
0 + 2

∑∞
n=1 ƐX0Xn exists in �0�∞�, the sum being absolutely

convergent.
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(b) If in addition, σ2 > 0, then

Sn
n1/2σ

�→N ∼ � �0�1� as n→ ∞�(1.7)

Part (a) is due to Rio [(1993) Theorem 1.2] and part (b) to Doukhan, Massart
and Rio [(1994), Theorem 1]. This theorem sharpened earlier central limit
theorems of Ibragimov (1962) and Herrndorf (1985).

Notice that Theorem 1.2 has two main conditions. One is (1.6) and the other
imposed at the point (b) is the following:

lim inf
n→∞

Ɛ�S2
n�

n
> 0�(1.8)

In a certain sense, Theorem 1.2 is of the form

�1�6� and �1�8� ⇒ �1�7��

Several papers address the problem of the minimality of conditions (1.6) and
(1.8) for the central limit theorem in this setting. In a recent paper, Bradley
(1997) constructed a class of strong mixing sequences which does not sat-
isfy the central limit theorem. His sharp counterexample shows that, if (1.8)
is assumed, then condition (1.6) is essentially sharp in Theorem 1.2, in the
sense that if (1.6) is violated then (1.7) does not hold. For the case of mixing
rates of the form αn ∼ n−θ as n→ ∞ for a given θ > 1, this has already been
shown by the construction of Doukhan, Massart and Rio (1994). When we say
above that (1.7) no longer holds, we mean the central limit theorem does not
hold under the normalization b2n such that limn→∞

(
b2n/n

) = σ2. It is possible
that a central limit theorem might hold in this setting with a more general
normalization. To see that more general normalizations are possible, examine
the example given by Ibragimov and Rozanov [(1978), pages 179–180, Exam-
ple 1], or the central limit theorems derived by Dehling, Denker and Philipp
(1986), Denker (1986), Mori and Yoshihara (1986), Peligrad (1992) or Rosen-
blatt (1956). In all these papers b2n = nh�n� where h�n� is slowly varying
as n → ∞. In view of the above, Bradley (1997) asked the following ques-
tion: assuming (1.8), what conditions are “minimally” sufficient to insure that
(1.3) holds with bn → ∞ as n → ∞? In dealing with this question from the
point of view of counterexamples, Bradley noticed that there remains a slight
“gap” between the properties of his construction and the assumption (1.6) of
Theorem 1.2 and he made the following conjecture.

Conjecture 1.1. Assume that �Xk� k ∈ �� is a strictly stationary, strongly
mixing sequence of random variables such that ƐX0 = 0� ƐX2

0 <∞, (1.8) holds
and ∫ αn

0
Q2

�X0��u� du = o

(
1
n

)
as n→ ∞�(1.9)
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Then there is a sequence bn → ∞ as n→ ∞, such that

Sn
bn

�→N ∼ � �0�1� as n→ ∞�

In this paper, we prove the truth of this conjecture. This result enlarges
the class of strong mixing sequences known to satisfy a central limit theorem.
Moreover, this result is as sharp as possible according to the second class of
examples constructed in Bradley (1997). In addition, we identify bn. Our main
result is the following.

Theorem 1.3. Suppose that �Xk� k ∈ �� is a strictly stationary, centered,
strong mixing sequence with finite second moment. Assume that (1.8) and (1.9)
hold. Then

Sn√�π/2�Ɛ�Sn�
�→N ∼ � �0�1� as n→ ∞�(1.10)

For the sake of applications, we give the following corollary in term of con-
ditions imposed to mixing rates and to moments of individual summands. It
extends the corresponding results of Ibragimov (1962).

Corollary 1.1. Suppose that X �= �Xk�k ∈ �� is a strictly stationary,
centered, strong mixing sequence which satisfies (1.8). In addition if:

(i) X has moments of order 2+ δ finite, for a δ > 0 and

nα
δ/�2+δ�
n → 0 as n→ ∞�(1.11)

or if
(ii) X is bounded and

nαn → 0 as n→ ∞�(1.12)

then (1.10) holds.

Remark 1.1. By analyzing our proofs, we can easily see that under the
additional assumption limn→∞�ƐS2

n/n� = σ2 > 0, all our results of type (1.10)
hold with the normalization σ

√
n instead of

√�π/2�Ɛ�Sn�.

The rest of the paper deals with the functional central limit.
We define the process �Wn�t�� t ∈ �0�1�� by

Wn�t� =
∑�nt�
i=1Xi√�π/2�Ɛ�Sn�

�

square brackets designating here and throughout the paper the integer part,
as usual. For each ω� Wn�·� is an element of the Skorohod space D��0�1�� of
all functions on [0, 1] which have left-hand limits and are continuous from
the right. It is equipped with the Skorohod topology [see Billingsley (1968),
Section 14]. W denotes the standard Brownian motion on [0, 1].
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Theorem 1.4. Assume that the conditions of Theorem 1�3 are satisfied.
Then Wn converges in distribution to W in the Skorohod space D��0�1��.

The results stated in this section are proved in Section 3. They are based
on some preliminary material collected in Section 2.

Throughout the paper, the notation cn � dn means that cn = O�dn�.

2. Preparatory material. In this section we collect some preliminary
material.

Before stating the first lemma, let us recall the Rio’s covariance inequality:
For (say) square-integrable random variables Y and Z, Rio [(1993), Theorem
1.1] proved the covariance inequality

�Cov�Y�Z�� ≤ 4
∫ α
0
Q�Y��u�Q�Z��u� du�(2.1)

where a �= α�σ�Y�� σ�Z��. [Here the notation σ�· · ·� means the σ-field gener-
ated by �· · ·�.] The inequality actually proved by Rio was slightly sharper (by
up to a certain constant factor), but (2.1) is more convenient for what follows.

The following lemma is a consequence of (2.1) and of Theorem 6.3 and
relation (C.4) in Annex C in Rio (2000).

Lemma 2.1. Suppose that �Xk� k ∈ �� is a strictly stationary sequence
having moment of order 2 finite. Then for all m ≥ 1,

Ɛ

(
m∑
i=1

�Xi −EXi�
)2

≤m VarX0 + 8m
m−1∑
i=1

∫ αi
0
Q2

�X0��u� du�

If in addition EX4
0 < ∞ then we can find two universal constants C1 and C2

such that

Ɛ

(
max
1≤j≤m

∣∣∣∣
j∑
i=1

�Xi −EXi�
∣∣∣∣
4
)
≤ C1m

2

(
m−1∑
i=0

∫ αi
0
Q2

�X0��u� du
)2

+C2m
m−1∑
i=0

�i+ 1�2
∫ αi
0
Q4

�X0��u� du

The next lemma refers to the structure of the variance of partial sums.

Lemma 2.2. Assume that �Xk� k ∈ �� is a strictly stationary sequence of
random variables such that ƐX0 = 0� ƐX2

0 <∞, (1.8) holds and

lim
n→∞nƐ�X0Xn� = 0�(2.2)

Then we have the representation

σ2
n = nh�n��(2.3)

where σ2
n = ƐS2

n and h�n� is a slowly varying function of n. Moreover, h�n� has
an extension to the whole real line which is slowly varying.
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Proof. To prove (2.3), we first need to show that for every j ≥ 1,

lim
n→∞

σ2
nj

σ2
n

= j�(2.4)

We shall prove this by induction.
First, it is obvious that (2.4) is true for j = 1; then assume that (2.4) is true

for any j < k. To prove (2.4) for the rank k, we notice that by stationarity,

σ2
nk = σ2

n�k−1� + σ2
n + 2Ɛ

( n∑
i=1

Xi

nk∑
l=n+1

Xi

)
�

Now by using stationarity, easy computations lead to∣∣∣∣Ɛ
( n∑
i=1

Xi

nk∑
l=n+1

Xl

)∣∣∣∣ ≤
nk−1∑
i=1

i�Ɛ�X0Xi���

which combined with (1.8) entails that∣∣∣∣σ
2
nk

σ2
n

−
σ2
n�k−1�
σ2
n

− 1
∣∣∣∣�

∑nk−1
i=1 i�Ɛ�X0Xi��

n
�

This in turn together with (2.2) implies that the left-hand side of the above
inequality is a o�1� as n→ ∞�

We now finish the proof of (2.4) by using the recurrence assumption. It
remains to show that h�n� admits an extension to a slowly varying function
of a continuous variable. We do not give the proof here since it is the same
as the one in Ibragimov and Linnik [(1971), pages 327–328], with just trivial
modifications, for example, involving the use of (1.8) and (2.2). ✷

Remark 2.1. By using (2.1), it is easy to see that (1.9) implies (2.2). It
follows that the conclusions of Lemma 2.2 hold under the assumptions of
Conjecture 1.1.

Before stating the next two lemmas which are technical in nature and
needed for the proof of Conjecture 1.1, let us first give the following exten-
sion of the strong mixing coefficients αn: let the sequence �αn� n ∈ �� of
dependence coefficients be extended to a continuous, nonincreasing function
α�·�� �0�∞� → �0�1/4� with α�0� = 1/4 and α�n� = αn for n = 1�2�3� � � �.
Moreover for each n = 0�1�2� � � �, let α�x� be linear on �n�n+ 1��

Lemma 2.3. For any nonincreasing on (0, 1) positive function Q�·� satis-
fying (1.9) there exists a nonincreasing and continuous on (0, 1) function Q∗
which satisfies

x
∫ α�x�
0

Q2
∗�u� du→ 0 as x→ ∞(2.5)

and such that

Q�u� ≤ Q∗�u� ≤ Q�u/2� for all u ∈ �0�1��(2.6)
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Proof. Let define the function Q∗ as follows: for each u ∈ �0�1��

Q∗�u� �=
2
u

∫ u
u/2

Q�v� dv�

Since the function Q�·� is positive and nonincreasing on (0, 1), one has by
elementary arguments that Q∗ is nonincreasing and continuous on (0, 1) and
satisfies (2.6). Then for each n = 1�2�3� � � �,∫ α�n�

0
Q2

∗�u� du = 2
∫ �1/2�α�n�

0
Q2

∗�2u� du

≤ 2
∫ �1/2�α�n�

0
Q2�u� du

≤ 2
∫ α�n�
0

Q2�u� du�

which shows that n
∫ α�n�
0 Q2

∗�u� du → 0 as n → ∞ since Q�·� satisfies (1.9).

Consequently, since we also have �n + 1� ∫ α�n�0 Q2
∗�u� du → 0 as n → ∞, we

obtain

x
∫ α�x�
0

Q2
∗�u� du ≤ ��x� + 1�

∫ α��x��
0

Q2
∗�u� du

→ 0 as x→ ∞�

which completes the proof of this lemma. ✷

From now on, we will always take Q�·� = Q�X0��·�.

Lemma 2.4. Assume (1.9) holds. Then there exists a continuous, nondecreas-
ing function a�·�� �0�∞� → �1�∞� with a�x� → ∞ and a�x + 1�/a�x� → 1 as
x→ ∞, such that the following two relations are satisfied:

lim
x→∞a�x�x

∫ α�x�
0

Q2
∗�u�du = 0(2.7)

and

lim
x→∞a�x�xα�x�Q

2
∗�α�x�� = 0�(2.8)

where Q∗ is defined as in Lemma 2.3.

Proof. Notice first that because of Lemma 2.3, (1.9) implies (2.5) which
in turn entails that limx→∞ ax

∫ α�x�
0 Q2

∗�u�du = 0� for all a > 0. Then, we
can construct a continuous, nondecreasing function a�·�� �0�∞� → �1�∞� with
a�x� → ∞ and a�x+ 1�/a�x� → 1 as x→ ∞ and such that (2.7) is satisfied.

Now since Q∗�·� is a nonincreasing function, we have

Q2
∗�α�x�� ≤ Q2

∗�u� for all 0 ≤ u ≤ α�x��
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which yields

a�x�xα�x�Q2
∗�α�x�� ≤ a�x�x

∫ α�x�
0

Q2
∗�u�du�

This last inequality shows that (2.7) implies (2.8) and ends the proof of this
lemma. ✷

The next lemma is a consequence of Theorem 4 in Rio (1995).

Lemma 2.5. Let �Xn�n ≥ 1� be a sequence of real random variables such
that, for each n ≥ 1�P�an ≤ Xn ≤ bn� = 1 where an ≤ bn are real numbers.
Denote by � n

1 = σ�X1� � � � �Xn�. Then, we can redefine �Xn�n ≥ 1� onto a
richer probability space on which there exists a sequence �X∗

n� n ≥ 1� of inde-
pendent random variables such that, for each n ≥ 1�Xn andX∗

n have the same
distribution and

Ɛ��Xn −X∗
n�� ≤ 2�bn − an�α

(
� n−1
1 � σ�Xn�

)
�

Moreover, for every n > 1�X∗
n and �X1� � � � �Xn−1� are independent r.v.’s.

Proof. Let �δn�n≥1 be a sequence of independent random variables uni-
formly distributed on �0�1�, independent of �Xn�n≥1. We redefine �Xn�n≥1 on a
new probability space which supports �δn�n≥1. LetX∗

1 =X1 and suppose that
X∗

1� � � � �X
∗
n−1 are defined. Then, we apply Theorem 4 in Rio (1995) with � =

�n−1 = σ�X1� � � � �Xn−1� δ1� � � � � δn−1� and X = Xn. Thus there exists a ran-
dom variableX∗

n, measurable with respect to the σ-field�n−1∨σ�Xn�∨σ�δn�,
independent of �n−1 and distributed as Xn, such that

Ɛ��Xn −X∗
n�� ≤ 2�bn − an�α

(
�n−1� σ�Xn�

)
�

To finish the proof, we notice that by independence,

α��n−1� σ�Xn�� = α
(
� n−1
1 � σ�Xn�

)
� ✷

3. Proofs.

3.1. Proof of Conjecture 1.1 and Theorem 1.3. We shall start the proof
by taking a continuous, nondecreasing function a�·�� �0�∞� → �1�∞� with
a�x� → ∞ more slowly than ln�x� and a�x + 1�/a�x� → 1 as x → ∞ and
which in addition satisfies (2.7) and (2.8).

Now defineQ∗�·� as in Lemma 2.3 and note that for x ∈ �0�∞�, the quantity
a2�x�x2Q2

∗�α�x��
is continuous, nonnegative and nondecreasing. In addition, once it becomes
positive, it is strictly increasing since x2 is strictly increasing and a2�x� and
Q2

∗�α�x�� are each nondecreasing. We also have a2�x�x2Q2
∗�α�x�� → ∞ as

x → ∞. Consequently for each n = 1�2�3� � � �, there exists a unique positive
number θn such that

a2�θn�θ2nQ2
∗�α�θn�� = n�(3.1)
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Notice that the number θn is not necessarily an integer. Note also that θn → ∞
as n→ ∞. Now let qn �= �θn� + 1 and pn �= �a�θn�θn� + 1.

By construction, it is clear that pn and qn converge to infinity and that
qn = o�pn�. We now divide the variables in big blocks of size pn and small
blocks of size qn in the following way: let us set kn = �n/�pn + qn��. For a
given positive integer n, the set 1�2� � � � � n is being partitioned into blocks of
consecutive integers, the blocks being I1�J1� � � � � Ikn�Jkn

�Jkn+1, such that for
each 1 ≤ j ≤ kn� Ij contains pn integers and Jj contains qn integers, while
jkn+1 contains at most �pn + qn − 1� integers.

Denote by Yj �= ∑
i∈Ij Xi and Zj �= ∑

i∈Jj
Xi for 1 ≤ j ≤ kn and Zkn+1 �=∑

i∈Jkn+1
Xi and let us truncate the variables Xi in the following way: Set

Tn = Q�X0��α�θn�� and

X′
i=

{
XiI��Xi� ≤Tn�−ƐXiI��Xi� ≤Tn�� if Xi is an unbounded variable,

Xi� if ess supXi = A a.s.

and(3.2)

X′′
i =

{
XiI��Xi�>Tn�−ƐXiI��Xi�>Tn�� if Xi is an unbounded variable,

0� if ess supXi = A a.s.

For j = 1�2� � � � � kn, set Y
′
j �= ∑

i∈Ij X
′
i�Y

′′
j �= ∑

i∈Ij X
′′
i and Z

′
j �= ∑

i∈Jj
X′

i�

Z′′
j �=∑

i∈Jj
X′′

i for j = 1�2� � � � � kn + 1.
Now, let us consider sequences �Y′∗

j �1≤j≤kn and �Z′∗
j �1≤j≤kn of independent

real random variables each distributed asY′
j andZ

′
j, respectively, and defined

as in Lemma 2.5. Since

Sn =
kn∑
j=1

Y′
j +

kn+1∑
j=1

Z′
j +

n∑
i=1

X′′
i �

it is easy to see that we have

∣∣∣∣Snbn −
∑kn
j=1Y

′∗
j

bn

∣∣∣∣≤
∣∣∑kn

j=1�Y′
j −Y′∗

j �
∣∣

bn
+
∣∣∑kn

j=1�Z′
j −Z′∗

j �
∣∣

bn

+
∑n
i=1 �X′′

i �
bn

+
∣∣∑kn

j=1Z
′∗
j

∣∣
bn

+
∣∣Z′

kn+1
∣∣

bn
�

(3.3)

where b2n = knσ
2
pn

with σ2
n �= ƐS2

n.
We treat each term from the right-hand side of the above relation separately,

to show that

lim
n→∞Ɛ

∣∣∣∣Snbn −
∑kn
j=1Y

′∗
j

bn

∣∣∣∣ = 0�(3.4)
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First, since for all 1 ≤ j ≤ kn� �Y′
j� ≤ 2pnQ�X0��α�θn�� and �Z′

j� ≤ 2qnQ�X0� ×�α�θn��, Lemma 2.5 yields∑kn
j=1 Ɛ�Y′

j −Y′∗
j �

bn
≤ 8pnknαqnQ�X0��α�θn��

bn

and ∑kn
j=1 Ɛ�Z′

j −Z′∗
j �

bn
≤ 8qnknαpnQ�X0��α�θn��

bn
�

Now by using (1.8), (2.6), the definition of qn and (3.1), we derive

pnknαqnQ�X0��α�θn��
bn

� √
nα�θn�Q∗�α�θn��

� a�θn�θnα�θn�Q2
∗�α�θn���

which converges to 0 by (2.8).
Moreover, since qn ≤ pn and �αn� is decreasing, we also have

qnknαpnQ�X0��α�θn��
bn

→ 0 as n→ ∞�

It follows that

Ɛ
∑kn
j=1 �Y′

j −Y′∗
j �

bn
→ 0 as n→ ∞(3.5)

and

Ɛ
∑kn
j=1 �Z′

j −Z′∗
j �

bn
→ 0 as n→ ∞�(3.6)

We now treat the last two terms in the extreme right-hand side of (3.3). First
notice that for rn � pn, according to Lemma 2.1, we have

Var
(
S′′
rn

σpn

)
≤ rnVar�X′′

1�
σ2
pn

+
8rn

∑rn
i=1

∫ αi
0 Q2

�X0�I��X0�>Tn��u�du
σ2
pn

=�I1 + I2�

(3.7)

where S′′
n �=∑n

i=1X
′′
i . First, by using (1.8), we derive that

I1 �
rn
pn

Var
(
X′′

1

)� Ɛ
(
X2

0I��X0� > Tn�
)
�

which converges to 0 as n → ∞ since ƐX2
0 < ∞ and Tn → ∞ in the unboun-

ded case.
On the other hand, in order to analyze the second term in (3.7), notice that

Q�X0�I��X0�>Tn��u� =
{
Q�X0��u�� if u < α�θn�,
0� if u ≥ α�θn�,(3.8)
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whence
rn∑
i=1

∫ αi
0
Q2

�X0�I��X0�>Tn��u�du ≤ rn

∫ α�θn�
0

Q2
�X0��u�du�

By using (1.8), the definition of pn and (2.6), we find that

I2 � pn

∫ α�θn�
0

Q2
�X0��u�du

� a�θn�θn
∫ α�θn�
0

Q2
∗�u�du�

which converges to 0 by (2.7).
Finally, by the above considerations, for rn � pn we get

Var

(
S′′
rn

σpn

)
→ 0 as n→ ∞�(3.9)

Then, if we denote by σ ′′2
n �= Ɛ

(
S′′
n

)2, we have particularly shown both

σ ′′
pn

σpn
→ 0 as n→ ∞(3.10)

and

σ ′′
qn

σpn
→ 0 as n→ ∞�(3.11)

Moreover, (3.10) also implies that

σ ′
pn

σpn
→ 1 as n→ ∞�(3.12)

where σ ′2
n �= Ɛ�S′

n�2. Notice now that

I �= Ɛ

(∑kn
j=1Z

′∗
j

bn

)2

= knσ
′2
qn

b2n
= σ ′2

qn

σ2
pn

�

However, by (2.3) and from the standard properties of h�n�, we obtain
σ2
qn

σ2
pn

= qnh�qn�
pnh�pn�

�
(
qn
pn

)1−ε
for every ε > 0�(3.13)

Since qn = o�pn�, it follows that
σ2
qn

σ2
pn

→ 0 as n→ ∞�

which combined with (3.11) shows that

I = o�1� as n→ ∞�(3.14)
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Moreover, if we denote by ln the number of terms in Zkn+1, using once again
(2.3), the standard properties of h�n� and the fact that ln � pn, we derive

σ2
ln

knσ
2
pn

= lnh�ln�
knpnh�pn�

�
(
ln
pn

)1−ε 1
kn

for every ε > 0

= o�1� as n→ ∞�

(3.15)

This relation, together with the fact that, by (3.9), limn→∞
(
σ ′′2
ln
/σ2

pn

) = 0
yields

lim
n→∞

ƐZ′2
kn+1
b2n

= 0�(3.16)

It remains to look at �Ɛ∑n
i=1 �X′′

i �/bn�. By using stationarity, the definition of
bn and (1.8), we derive that

Ɛ
∑n
i=1 �X′′

i �
bn

≤ 2nƐ�X0�I��X0� > Tn�
bn

� √
nƐ�X0�I��X0� > Tn��

However, it is well known that ifU is a random variable uniformly distributed
on the interval [0, 1] and if W is a nonnegative random variable, then the r.v.
QW�U� has the same distribution as the r.v. W, and then

Ɛ�W� =
∫ 1

0
QW�u�du�

This last equality applied to the r.v. �X0�I��X0� > Tn� together with (3.8) yield

Ɛ�X0�I��X0� > Tn� =
∫ α�θn�
0

Q�X0��u�du�

Then the Cauchy–Schwarz inequality entails that

Ɛ
∑n
i=1 �X′′

i �
bn

�
√
nα�θn�

∫ α�θn�
0

Q2
�X0��u�du�

By using now (3.1) combined with (2.6), (2.7) and (2.8), we find that

lim
n→∞

Ɛ
∑n
i=1 �X′′

i �
bn

= 0�(3.17)

Finally (3.4) follows by combining (3.5) with (3.6), (3.17), (3.14) and (3.16).
Let us concentrate now on the limiting behavior of

{∑kn
j=1Y

′∗
j

}
n≥1. As a

consequence of stationarity and of (3.12), it follows that

lim
n→∞

Var
(∑kn

j=1Y
′∗
j

)
b2n

= 1�(3.18)

We just have to check the Liapunov condition; that is,

lim
n→∞

∑kn
j=1 Ɛ

(
Y′∗
j

)4
b4n

= 0�(3.19)
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Because of stationarity, in order to verify (3.19), we shall apply Lemma 2.1
which gives

Ɛ

( pn∑
i=1

X′
i

)4

� p2
n

( pn∑
i=0

∫ αi
0
Q2

�X0�I��X0�≤Tn��u�du
)2

+ pn

pn∑
i=0

�i+ 1�2
∫ αi
0
Q4

�X0�I��X0�≤Tn��u�du�

Next, by using the facts that Q�X0�I��X0�≤Tn��u� ≤ Q�X0��u��Q4
�X0�I��X0�≤Tn��u� ≤

T2
nQ

2
�X0��u��

∫ αi
0 Q2

�X0��u�du = o�1/i� and since lnpn = o�√pnQ�X0��αqn�� we
obtain

Ɛ

( pn∑
i=1

X′
i

)4

�p2
n�lnpn�2 + pnT

2
n

pn∑
i=0

�i+ 1�2
∫ αi
0
Q2

�X0��u�du

= o
(
p3
nT

2
n

)
�

(3.20)

Now by the definition of b2n, of pn and by using (1.8), (2.6) and (3.1), we derive

knƐ
(∑pn

i=1X
′
i

)4
b4n

= o

(
p2
nQ

2
∗�α�θn��
n

)
= o�1��(3.21)

Then the classical Liapunov’s theorem [see, e.g., Theorem 7.3 in Billingsley
(1968)] yields ∑kn

j=1Y
′∗
j

bn

�→N ∼ � �0�1� as n→ ∞�(3.22)

which combined with (3.4) ends the proof of the conjecture.
Now we prove that

lim
n→∞

bn√
π/2Ɛ�∑kn

j=1Y
′∗
j �

= 1�(3.23)

To do this, it is enough to show that
{∑kn

j=1Y
′∗
j /bn

}
n≥1 is a uniformly integrable

family. Indeed recall that by Theorem 5.4 in Billingsley (1968), if∑kn
j=1Y

′∗
j /bn →�N as n→ ∞ and if

{∑kn
j=1Y

′∗
j /bn

}
n≥1 is a uniformly integrable

family, then Ɛ
∣∣∑kn

j=1Y
′∗
j

∣∣ → Ɛ�N� as n → ∞, and in our case Ɛ�N� = √
2/π.

Then notice that (3.23) holds since (3.18) entails that
{∑kn

j=1Y
′∗
j /bn

}
n≥1 is a

uniformly integrable family.
We finish the proof of Theorem 1.3 by using (3.4) together with (3.23) which

yields

lim
n→∞

bn√
π/2Ɛ�Sn�

= 1

and consequently the desired result. ✷
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3.2. Proof of Theorem 1�4� In order to derive the functional form of the
central limit theorem, we notice that under strong mixing, Wn�t� has asymp-
totically independent increments [Lemma 1.1 in Peligrad (1986) could be used
in order to see this]. Then the central limit theorem will imply that the finite-
dimensional distributions of Wn�t� will converge to the corresponding ones of
the Brownian motion. By Prohorov’s theorem [see Billingsley (1968), Theorem
6.1], the functional form of the central limit theorem will result by proving
the tightness ofWn�t�. We shall make use of the same notation from the proof
of Conjecture 1.1.

Denote by W′
n�t� =

∑�nt�
i=1X

′
i/bn and by W′′

n�t� =
∑�nt�
i=1X

′′
i /bn, where X

′
i and

X′′
i designate the truncated variables as described in (3.2).
Let us prove first that W′′

n�t� is negligible for the weak convergence: for all
ε > 0, we have

P

(
sup
0≤t≤1

∣∣W′′
n�t�

∣∣ ≥ ε

)
≤P

(∑n
i=1
∣∣X′′

i

∣∣
bn

≥ ε

)

≤ 1
ε

Ɛ
∑n
i=1
∣∣X′′

i

∣∣
bn

�

(3.24)

which is convergent to 0 by (3.17).
Now take pn and qn as defined in the beginning of the proof of Conjecture

1.1. Set knt =
[�nt�/�pn + qn�

]
and divide the sequence of random variables

�X′
n� in big and small blocks as in the proof of Conjecture 1.1. We obvi-

ously have

∑�nt�
i=1X

′
i

bn
=
∑knt
j=1Y

′
j

bn
+
∑knt
j=1Z

′
j

bn
+ R′

n� t

bn
�(3.25)

where

R′
n� t �=

�nt�∑
i=1

X′
i −

(
knt∑
j=1

Y′
j +

knt∑
j=1

Z′
j

)
�

Note that R′
n� t is a sum of at most pn + qn consecutive X′

i’s.
Let us consider now the independent variables �Y′∗

j �i≤j≤knt (respectively,
�Z′∗

j �1≤j≤knt), each distributed as Y′
j (respectively, Z′

j) and defined as in
Lemma 2.5. Notice that for all ε > 0, Markov’s inequality yields

P

(
sup
0≤t≤1

�∑knt
j=1Y

′
j −

∑knt
j=1Y

′∗
j �

bn
≥ ε

)
≤P

(∑knt
j=1 �Y′

j −Y′∗
j �

bn
≥ ε

)

≤ Ɛ�∑kn
j=1 �Y′

j −Y′∗
j ��

εbn

(3.26)

which converges to 0 by (3.5).
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Similarly to (3.6), for all ε > 0 we derive that

lim
n→∞P

(
sup
0≤t≤1

∣∣∑knt
j=1Z

′
j −

∑knt
j=1Z

′∗
j

∣∣
bn

≥ ε

)
= 0�(3.27)

Moreover, by stationarity and Markov’s inequality, for all ε > 0 we have

P

(
sup
0≤t≤1

�R′
n� t�
bn

≥ ε

)
≤ �kn + 1�P

(
max

1≤i≤pn+qn

�∑i
j=1X

′
j�

bn
≥ ε

)

≤ �kn + 1�
ε4b4n

Ɛ

(
max

1≤i≤pn+qn

∣∣∣∣
i∑

j=1
X′

j

∣∣∣∣
4)

By Lemma 2.1 and since qn ≤ pn, we obtain

kn
b4n

Ɛ

(
max

1≤i≤pn+qn

∣∣∣∣
i∑

j=1
X′

j

∣∣∣∣
4)

� kn
b4n

{
p2
n

(2pn∑
i=0

∫ αi
0
Q2

�X0�I��X0�≤Tn��u�du
)2

+ pn

2pn∑
i=0

�i+ 1�2
∫ αi
0
Q4

�X0�I��X0�≤Tn��u�du
}
�

which converges to zero as n → ∞ by involving the arguments used to
prove (3.21). This shows that for all ε > 0,

lim
n→∞P

(
sup
0≤t≤1

�R′
n� t�
bn

≥ ε

)
= 0�(3.28)

Combining (3.25), (3.26), (3.27) and (3.28), we reduced the problem to prove
the tightness of the random elements

{∑knt
j=1Y

′∗
j /bn

}
and

{∑knt
j=1Z

′∗
j /bn

}
which

are based on sums of independent random variables.
According to Theorem 8.3 in Billingsley (1968) formulated for random ele-

ments inD��0�1�� as in Billingsley [(1968), page 137], by using the stationarity
it is enough to prove that for all ε > 0,

lim
δ→0

lim sup
n→∞

1
δ
P

(
sup
0≤t≤δ

�∑knt
j=1Y

′∗
j �

bn
≥ ε

)
= 0(3.29)

and

lim
δ→0

lim sup
n→∞

1
δ
P

(
sup
0≤t≤δ

�∑knt
j=1Z

′∗
j �

bn
≥ ε

)
= 0�(3.30)

Notice first that for all ε > 0, Markov’s inequality leads to

P

(
sup
0≤t≤δ

�∑knt
j=1Y

′∗
j �

bn
≥ ε

)
=P

(
max

1≤i≤knδ

�∑i
j=1Y

′∗
j �

bn
> ε

)

≤ Ɛ�max1≤i≤knδ �
∑i
j=1Y

′∗
j �4�

ε4b4n
�

(3.31)
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Now since the �Y′∗
j � are independent, the upper bound of Rosenthal’s inequal-

ity [see, e.g., Theorem 2.11 in Hall and Heyde (1980)] yields

Ɛ

(
max

1≤i≤knδ

∣∣∣∣
i∑

j=1
Y′∗
j

∣∣∣∣
4)

�
(
Ɛ

( knδ∑
j=1

Y′∗
j

)2
)2

+ Ɛ

(
max

1≤i≤knδ
�Y′∗

i �4
)

≤ k2nδ

(
Ɛ

( pn∑
i=1

X′
i

)2)2

+ knδƐ

( pn∑
i=1

X′
i

)4

�

Then the definition of bn and of knδ combined with (3.21) and (3.12) entails
that

Ɛ�max1≤i≤knδ �
∑i
j=1Y

′∗
j �4�

b4n
� k2nδ

(
Ɛ�Spn�2

)2
k2n
(
Ɛ�Spn�2

)2 +
knδƐ

(∑pn
i=1X

′
i

)4
b4n

� δ2 + δ
knƐ

(∑pn
i=1X

′
i

)4
b4n

= δ�δ+ o�1�� as n→ ∞�

This last result combined with (3.31) leads to (3.29). Similarly, (3.30) holds
and the tightness is proved. The only difference in the proof is that

Ɛ
(
max1≤i≤knδ �

∑i
j=1Z

′∗
j �4
)

b4n
� δ

(
δ

(
Ɛ
(
S′
qn

)2)2
(
Ɛ
(
Spn

)2)2 + o�1�
)

as n→ ∞

and then we use (3.14) to prove the convergence to zero of the extreme right-
hand side of the above inequality.

Finally, we end the proof by using the fact that limn→∞�bn/
√
π/2Ɛ�Sn��=1.

✷
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Mathématiques et Applications de la SMAI. 31. Springer, Berlin.

Rosenblatt, M. (1956). A central limit theorem and a strong mixing condition. Proc. Nat. Acad.
Sci. U.S.A. 42 43–47.

LSTA, Université Paris VI
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