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THE SURVIVAL OF NONATTRACTIVE INTERACTING
PARTICLE SYSTEMS ON Z

By Aidan Sudbury

Monash University

We consider interacting particle systems on Z which allow five types
of pairwise interaction: Annihilation, Birth, Coalescence, Death and
Exclusion with corresponding rates a� b� c� d� e. We show that whatever the
values of a� c� d� e, if the birthrate is high enough there is a positive prob-
ability the particle system will survive starting from any finite occupied
set. In particular: an IPS with rates a� b� c� d� e has a positive probability
of survival if

b > 4d+ 6a� c+ a ≥ d+ e�
or

b > 7d+ 3a− 3c+ 3e� c+ a < d+ e

We create a suitable supermartingale by extending the method used by

Holley and Liggett in their treatment of the contact process.

1. Survival of interacting particle systems. In this paper we shall be
concerned with processes ξ defined on the state-space �0�1�Z. We say a site x
is occupied if ξ�x� = 1, unoccupied when ξ�x� = 0. The processes will evolve
by means of five types of pairwise interaction between neighbors where, on
Z, x and y are neighbors if 	x− y	 = 1. Neighboring sites interact with each
other independently of all other pairs of sites. In this paper we shall not allow
“spontaneous birth” and assume that two unoccupied neighbors do not inter-
act with each other. The only change we shall consider which is not pairwise
(though it can be represented as such) is “single death,” when occupied sites
become unoccupied at a fixed rate independently of all other sites. We repre-
sent this transition 1 → 0 at site x at rate 1 by the two transitions 11 → 01
and 10 → 00, both at rate 1/Nx, where Nx is the number of neighbours of x.
Nx = 2 on Z.
In the following representation, 10 → 11 means that a pair of neighboring

sites, one of which is occupied and the other not, flip to the state of both being
occupied, and so on. Directional symmetry is assumed, so that if 10 → 11 at
a certain rate, then 01 → 11 at the same rate. The possible changes are:

Annihilation 11 → 00 at rate a
Birth 10 → 11 at rate b
Coalescence 11 → 10 at rate c
Death 10 → 00 at rate d
Exclusion 10 → 01 at rate e
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The Interacting Particle Systems (IPS) most frequently considered are spe-
cial cases in which only some of a� b� c� d� e are positive. In general they
correspond to more or less plausible models of physical systems.
The only processes for which survival is an issue are those with b > 0 and

one of a� c� d > 0. If there is spontaneous birth then survival is certain. In
general these problems are hard to solve; see, for example, Bramson and Gray
(1985), Bezuidenhout and Grimmett (1990), Sudbury (1990). One of the most
celebrated treatments is “The survival of contact processes” by Holley and
Liggett (1978). It is their ingenious method that we intend to follow here.

2. The Holley–Liggett method. The Holley–Liggett method was intro-
duced in “The survival of contact processes” (1978). Although very effective at
providing bounds for critical values of the contact process, the method has not
been used very often. Examples include Liggett (1995a), in which the method
is enhanced to provide a better bound for the 1-dimensional contact process,
Liggett (1995b) where the technique is applied to discrete time models and in
Chapter 5 of Konno (1994) where the θ-contact process is treated. The treat-
ment in Liggett (1985) is probably easier to follow than in the 1978 paper. Two
interacting particle systems ξ� ζ are said to be dual with parameter µ when

E
{
µ	ξAt ∩B	} = E{

µ	ζBt ∩A	}�(1)

for all finite A�B. It is possible to have one of either A or B infinite or a
measure as 	ξAt ∩ B	 and 	ζBt ∩ A	 are a.s. finite. Sudbury (1999) shows that
when b > 0, all IPS which have pairwise interactions and do not have sponta-
neous birth are self-dual with self-duality parameter µ = �d− a− c�/b, µ ≥ 0
for attractive processes and µ < 0 for nonattractive processes. When µ > 1,
Sudbury (2000) shows that the process will die out.
We consider a process ξ with rates a� b� c� d� e and infinitesimal genera-

tor �ξ. The Holley–Liggett method essentially consists of differentiating both
sides of the duality equation and finding conditions under which the derivative
is always negative. They replace A by a renewal measure η, and then

d

dt
E
{
µ	ξηt ∩B	} = d

dt
E
{
µ	ξBt ∩η	}

= ∑
A

P
(
ξBt = A)

�ξEηµ
	A∩η	


(2)

The method is then to determine conditions under which �ξEηµ	A∩η	 < 0
for all finite sets A. However, this is also the condition for Eηµ	ξt∩η	 to be
a supermartingale for the IPS ξ. We shall adopt this way of looking at the
problem.
Equation (2) was also used by Holley and Liggett to show the convergence

of ξηt , where η is the renewal measure mentioned above. When 	µ	 < 1, this
convergence is ensured by Theorem 7 of Sudbury (2000) since η is an essen-
tially infinite measure, that is, a measure whose intersection with any infinite
set of sites is a.s. infinite.
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3. Properties of the renewal measure. Suppose η is a renewal mea-
sure on Z defined by a probability density �f�k�: k = 1�2� 
 
 
� with

m−1 = ∑
kf�k� <∞�

so that P�η�0� = 1� =m. (Note: in the original paper k starts at 0.)
In what follows, we wish to use the term s in a flexible way: s = s1s2 
 
 
 � sn,

si = 0 or 1 is a finite string of 0’s and 1’s, but it may also be used to define the
set of occupied sites when s is put directly to the right of the origin. In this
case the set of occupied sites on Z is �i: si = 1�. The string 0s is the string
produced by adding a 0 to the left end of s; sT is to mean s in reverse order.
Define

K�s� = Eη
{
µ	η∩s	}
(3)

Since η is translation invariant, the location of s is not important. Let s be
placed to the right of 0. Define

G�s� = Eη
{
µ	η∩s		η�0� = 1

}

(4)

We note G�0s� = G�s� although K�0s� =K�s�.
The following lemma demonstrates the crucial simplification obtained by

requiring that η be a renewal measure.

Lemma 1. If s� t are finite strings of 0’s and 1’s,

K�s0t� −K�s1t� =m′G�sT�G�t�
(5)

where m′ =m�1− µ�.

Proof. The only way in which K�s0t� and K�s1t� can have different val-
ues is when the site at which s0t, s1t differ is occupied in the renewal measure.
That site does not belong to the set s0t so there is no contribution to K�s0t�,
but it belongs to s1t, and thus there is a multiplicative contribution of µ. Given
that the site is occupied in the renewal process, the distributions to the right
and left of the site are independent. Since the renewal measure is symmetric,
the contribution to the left is G�sT�.
In the special case when the occupied set is �1�2� 
 
 
 � r� we put

Gr = E
{
µ	η∩�1�2�


�r�	 	 η�0� = 1

}

(6)

Then, G0 = 1, G1 = 1 − �1 − µ�f1 and conditioning on the first jump of the
renewal process

Gr = µ
r∑
l=1
flGr−l + 1−

r∑
l=1
fl
(7)

At this point we should like to find the optimal choice of �Gn�; that is, the
choice which will allow for a minimum value of b. Holley and Liggett (1978)
correctly surmised that the worst possible case for the growth of a contact
process would be when there were no gaps between the particles. Once the IPS
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is nonattractive, it is not clear that a continuous group of particles is the worst
possible case. Nevertheless, it was tried, but the resulting recurrence relation
gave no simple solution for the �Gn�. Thus we shall use for G, their function
F, even though µ = 0 for the contact process. This has the property that

βGn =
n∑
k=1
Gk−1Gn−k� n ≥ 1� G0 = 1�(8)

where the exact choice of β can be made later. The solution to this equation
is Gn = �2n�!/�n!�n + 1�!�β−n. G1 = 1/β. If β > 4 then Gn ↓ 0, and we show
with µ ≤ 0 that this is a sufficient condition for there to exist a renewal
measure �fi�. After Lemma 4 it is pointed out that the cases with µ > 0 can
also be treated.

Lemma 2. If �Gn� satisfy (8), β > 4 and µ ≤ 0, then there exists a proba-
bility mass function �fi� which satisfies (7).

Proof. First we note that since µ ≤ 0, G1 = 1 − �1 − µ�f1 implies that
f1 < 1. Next we show that the �fi� are positive. Subtracting the equation (7)
for r from that for r− 1, we obtain

Gr−1 −Gr − µ
r−1∑
l=1

�Gr−1−l −Gr−l�fl = �1− µ�fr


Since �Gn� are monotonic decreasing and µ ≤ 0, fr is positive as long as
fl ≥ 0, l < r, and thus each fr is positive by induction. To show that they
sum to 1, we put γ�u� = ∑∞

0 Gru
r and φ�u� = ∑∞

1 fru
r. Equation (7) implies

γ�u� = 1−φ�u�
1− u + µφ�u�γ�u�
(9)

From (7) we see that
∑r
l=1 fl < 1, so that φ�u� is bounded. Further, γ�1� exists

for β > 4. Since both γ�u� and φ�u� are bounded for u ≤ 1, it follows that
φ�1� = 1. ✷

Lemma 3. Let s = s1s2 · · · sn be a string of 0’s and 1’s. Define s�i� = �si+1,
si+2� 
 
 
 � sn�, i < n. Let sc = �i: si = 0�. Then

G�s� = ∑
i∈sc
giG�s�i�� +Gn�

where gi = Gi−1 −Gi.

Proof. Define si, i = 1� 
 
 
 � n+1 to be the string s.t. sij = 1, j < i, sij = sj,
n ≥ j ≥ i. s1 = s.G�sn+1� = Gn. We shall proceed by induction going backward
through the members of sc.
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Assume the theorem is true for s = sk. Let l be the largest value of i s.t.
i < k and si = 0. The theorem is still true for l < j < k, trivially, since then
sj = sk
 The strings si� si+1 differ only at the point i so

K�0si� −K�1si� − �K�0si+1� −K�1si+1��
=K�0si� −K�0si+1� − �K�1si� −K�1si+1�
=m′�G�s�i��Gi−1 −G�s�i��Gi�
=m′G�s�i��gi


(10)

since si consists of 1’s for j < i. Summing K�0si� − K�1si� − �K�0si+1� −
K�1si+1�� from i = 1� 
 
 
 � n− 1 we obtain

K�0s1� −K�1s1� − �K�0sn+1� −K�1sn+1�� =m′ ∑
i∈sc
G�s�i��gi�

from which the lemma follows sinceK�0sn+1�−K�1sn+1� =m′Gn andK�0s1�−
K�1s1� =m′G�s�. ✷

Corollary. If s is a string of 0’s and 1’s thenG�0s�−G�1s� = �1−G1�G�s�.

With Lemma 3 we have virtually returned to the situation in Holley and
Liggett (1978). In that paper, the duality was coalescing and in place ofGn was
F�n� = ∑∞

i=n fi. This can be thought of as being the case µ = 0 in (3), because
F�s� is only nonzero when the renewal measure does not coincide anywhere
with the set s. Conditioning on the first jump of the renewal process it is
obvious that if s is a finite string, F�s� = ∑

i∈sc fiF�s�i��, since, if the first
jump lands on an occupied site, the term inside the expectation in (4) is 0.
Thus, when µ = 0, gi plays the role that fi did when the dual was coalescing.
In fact, this observation allows us to decouple the whole argument from

duality and renewal measures. We can define Gn by (8) and G�s� for all finite
strings by Lemma 3. It is obviousK��0�� = 1−m�1−µ�. Lemma 1 then defines
K�s� for all finite strings s using a value of m′ which ensures K is bounded
[equation (3) shows any value with 0 ≥ µ > −1 will do]. What we are now
going to find is values of a� b� c� d� e which will makeK�ξt� a supermartingale.
Since K is bounded, K will converge, and since its expectation will be less
that its initial value, the probability the IPS dies out will be < 1. We shall not
abandon the friends that have brought us this far, but, as we shall see, a value
of µ will not actually be needed in our calculations. For IPS with self-duality
parameter in �0�1� we simply adopt a renewal measure defined by (7) with
µ ∈ �−1�0�. This causes no problems, as we are longer relying on the duality
equation.
It is in a way unnecessary to prove the next two lemmas, as once we have

established such a close parallel between our G�g and Holley and Liggett’s
F�f, we can plunge into the Holley–Liggett stream and it will take us much
of the rest of the way. However, they do have some interest in their own right.
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Lemma 4. Define Bn = E�µη�n�	η�0� = 1�, then

Bn =
n−1∑
r=0
Gr/β
(11)

Proof. Bn = 1− �1− µ�P�η�n� = 1	η�0� = 1�, so

B�u� =
∞∑
n=1
Bnu

n = u

1− u − �1− µ� φ�u�
1−φ�u� = 1

1− u
[
1− 1

γ�u�
]

from (9). However, βGn = ∑n
k=1Gk−1Gn−k, so that

β

[
γ�u� − 1

u

]
= γ2�u��

giving 1− γ−1�u� = uγ�u�/β and

B�u� = uγ�u�
β�1− u� �

from which the lemma follows. ✷

Corollary. P�η�n� = 1	η�0� = 1� is decreasing in n.

Lemma 5. If s is a finite string, and 0r a string or r0’s, then G�0r1s� is an
increasing function of r.

Proof. Lemma 4 has shown that the lemma is true when s has no 1’s
Assume the lemma is true when s contains j 1’s, j < k. Then

G�0r0s� −G�0r1s� = E
[
µ
∑
iη�r+1+i�si − µη�r+1�+

∑
iη�r+1+i�si 	η�0� = 1

]
= E[

µ
∑
iη�r+1+i�si − µη�r+1�+

∑
iη�r+1+i�si � η�r+ 1� = 1	η�0� = 1

]
(12)

= �1− µ�P�η�r+ 1� = 1	η�0� = 1�G�s�

If s has <k 1’s, then G�0r0s� is increasing in r by the inductive hypothesis
and P�η�r+ 1� = 1	η�0� = 1� is decreasing in r by Lemma 4. ✷

Lemma 6.

�2−G1�G�s� ≥ G�0s� ≥ G�s� > 0� G�1s� ≥ G1G�s�
(13)

Proof. Suppose s is of length n. Lemma 3 gives G�s� = ∑
i∈sc giG�s�i�� +

Gn. The equation Gn = �2n�!/�n!�n + 1�!�β−n implies gi > 0. The inequal-
ity G�s� > 0 then follows by induction on the length of s. Lemma 5 shows
G�0s� ≥ G�s�. We may then use G�s� = ∑

i∈sc giG�s�i�� +Gn to give
G�0s� = �1−G1�G�s� + ∑

i∈sc
gi+1G�s�i�� +Gn+1
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Gn+1 < Gn and gi+1 < gi for all i, so �2 − G1�G�s� ≥ G�0s�. Since G�0s� −
G�1s� = �1−G1�G�s�, G�0s� ≥ G�s� implies G�1s� ≥ G1G�s�.
Following Holley and Liggett (1978) we now fix a finite subset A = ⋃k

i=1Ai
ofZwhereA1� 
 
 
 �Ak are the ordered maximal connected subsets ofA, so that
there are integers li and ri such that Ai = �li + 1� ri − 1� and ri ≤ li+1 < ri+1
for all i. Define

ρ�x� = E{
µ	η∩�A∩�x�∞��		η�x� = 1

}
(14)

and

λ�x� = E{
µ	η∩�A∩�−∞�x��		η�x� = 1

}

(15)

In the lemmas that follow we should note that Gr = 0 for r < 0 and gr = 0
for r ≤ 0. In what follows, if a term such as gz−x appears, it is to be assumed
that z > x.

Lemma 7. ρ�x� = ∑
x∈Ac gz−xρ�z�,

ρ�x� ≤ ∑
j≥i
Grj−x−1ρ�rj�� λ�x� ≤ ∑

j≤i
Gx−lj−1λ�lj�� x ∈ Ai
(16)

Proof. Lemma 3 implies

ρ�x� = ∑
z∈Ac� z<rk

gz−xρ�z� +Grk−x−1

= ∑
z∈Ac� z<rk

+ ∑
z∈Ac� z≥rk

gz−xρ�z��
(17)

since ρ�z� = 1 for z ≥ rk. The first proposition follows. Lemma 5 shows that
ρ�z� ≤ ρ�rj� for rj ≤ z ≤ lj+1. Thus∑

rj≤z≤lj+1
gz−xρ�z� < ρ�rj�

∑
rj≤z≤lj+1

gz−x < Grj−x−1ρ�rj�


Similarly for the inequality in λ�x�. ✷

4. The conditions for K to be a supermartingale. We now consider the
rate of change of Eη�µ	η∩A	� for an IPS with its pairwise interactions defined
as in the introduction by a� b� c� d� e. The terms produced by annihilation a
are of the form

K�s00t� −K�s11t� =K�s00t� −K�s01t� +K�s01t� −K�s11t�
=m′[G�0sT�G�t� +G�sT�G�1t�]
=m′[G�t�{�1−G1�G�sT� +G�1sT�}+G�sT�G�1t�]


(18)
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The contribution from x ∈ Ai is

m′
[ ∑
x∈Ai/�ri−1�

ρ�x+ 1���1−G1�λ�x� + λ�x+ 1�� + λ�x�ρ�x�
]

=m′
{ ∑
x∈Ai\�ri−1�

�1−G1�λ�x�ρ�x+ 1� + 2
∑
x∈Ai

ρ�x�λ�x�

− ρ�li + 1�λ�li + 1� − ρ�ri − 1�λ�ri − 1�
}



(19)

The contribution from the effect of c + d at the left end of a group of 1’s is
K�s00t� −K�s01t� or, with the right end as well,

m′�ρ�li + 1�λ�li + 1� + ρ�ri − 1�λ�ri − 1��
(20)

Each particle within a group of 1’s disappears at rate 2c giving a contribution
of

m′
{ ∑
x∈Ai\�li+1� ri−1�

ρ�x�λ�x�
}

(21)

The contribution from b is

−m′[ρ�li�λ�li� + ρ�ri�λ�ri�]
(22)

Terms in e are of the form

K�s01t� −K�s10t� =K�s01t� −K�s11t� +K�s11t� −K�s10t�
=m′[G�sT�G�1t� −G�1sT�G�t�]
(23)

We have seen in Lemma 6 that G�0t� −G�1t� = �1 −G1�G�t�. Thus if the 0
in s10t is at ri, contributions of this kind are of the form

m′[λ�ri − 1��ρ�ri − 1� − �1−G1�ρ�ri�� − λ�ri�ρ�ri�
]

(24)

Call the rate of change of Eη�µ	η∩A	�, S, then, collecting the terms associated
with x ∈ Ai and dividing by −m′ we obtain from equations (18)–(23)

S = ∑
i

[
�b+ e��ρ�li�λ�li� + ρ�ri�λ�ri��

+ e�1−G1��λ�li�ρ�li + 1� + λ�ri − 1�ρ�ri��
+ �c+ a− d− e��λ�li + 1�ρ�li + 1� + λ�ri − 1�ρ�ri − 1��

− 2�a+ c� ∑
x∈Ai

λ�x�ρ�x� − a�1−G1�
∑

x∈Ai\�ri−1�
λ�x�ρ�x+ 1�

]



(25)

We aim to collect the terms in λ�li�, using the left-hand half of the terms in
b+ e� e� c+ a− d− e in the above equation and half the terms in a+ c and a
alone. The conditions under which these terms are positive will, by symmetry,
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be conditions under which the right-hand terms are also positive. We shall
use the inequalities of Lemma 7 to replace terms in λ�x�:

ρ�x� ≤ ∑
j≥i
Grj−x−1ρ�rj�� λ�x� ≤ ∑

j≤i
Gx−lj−1λ�lj�� x ∈ Ai
(26)

Contributions to terms in λ�li� come from
− ∑
x∈A

λ�x�ρ�x� > −∑
i

∑
x∈A

Gx−li−1ρ�x�λ�li�

= −∑
i

∑
j≥i

∑
x∈Aj

Gx−li−1ρ�x�λ�li�


The left-hand term in c+a−d− e is λ�li+ 1� not λ�li�. Since G�s� < G�0s� <
�2 − G1�G�s�, we have λ�li� < λ�li + 1� < �2 − G1�λ�li�. Which side of the
inequality we use depends on the sign of c+ a− d− e. Thus we put

C = �c+ a− d− e� + e�1−G1� = c+ a− d−G1e� c+ a ≥ d+ e
= �c+ a− d− e��2−G1� + e�1−G1�
= �c+ a− d��2−G1� − e� c+ a < d+ e


(27)

Define

Sli = �b+ e�ρ�li� +Cρ�li + 1� − �a+ c�∑
j≥i

∑
x∈Aj

Gx−li−1ρ�x�

−a
2
�1−G1�

∑
j≥i

∑
x∈Aj\�rj−1�

Gx−li−1ρ�x+ 1�

(28)

Sri is defined similarly in terms of the right-hand halves of the brackets in
(24), and the argument above has shown that S >

∑
i�Sli + Sri �. The rest of

the proof will be devoted to determining conditions under which Sli > 0.

Lemma 8.

βρ�li� =
∑

x∈Aj�j≥i
Gx−li−1ρ�x�


Proof. It follows by subtracting the equation for n from that for n− 1 in
(8) that

βgn =
n−1∑
k=1
Gk−1gn−k −Gn−1� n ≥ 2
(29)

Lemma 3 says that ρ�li� =
∑
z>li� z∈Ac gz−liρ�z�, so using (29),

βρ�li� =
∑

z>x>li� z∈Ac
ρ�z�[gz−xGx−li−1 −Gz−li−1]
(30)
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But ∑
z∈Ac

ρ�z�Gz−li−1 =
∑
x∈Ac

ρ�x�Gx−li−1 =
∑

z� x∈Ac� z>x
ρ�z�Gx−li−1gz−x


Substituting this into (29) subtracts out the terms in x ∈ Ac leaving those in
x ∈ A and the lemma follows once again using Lemma 7.
Similarly, when li + 2 ∈ A,

βρ�li + 1� = ∑
x∈A\�li+1�

Gx−li−2ρ�x�


However, when li + 2 ∈ Ac, the analysis is not so straightforward, because
equation (29) requires n ≥ 2. In that case we have

ρ�li + 1� = g1ρ�li + 2� + ∑
z>li+2

gz−l1−1ρ�z�


The argument for summation proceeds as above, except that the term in x =
l1 + 2 is not subtracted out. We obtain

βρ�li + 1� = βg1ρ�li + 2� + ∑
x∈A∪�li+2�

Gx−li−2ρ�x� >
∑
x∈A

Gx−li−2ρ�x�


Changing variables so that x→ x+ 1, the sum is over the sets �Aj� with the
�rj − 1� removed and �lj� j > i� added in. Thus

βρ�li + 1� > ∑
j≥i

∑
x∈Aj\�rj−1�

Gx−li−1ρ�x+ 1�
(31)

Note that when li + 2 ∈ Ac, Ai\�ri − 1� is empty.
Substituting Lemma 8 and (30) into (27) we obtain

Sl > �b+ e− β�a+ c��ρ�li� +
[
C− βa

2
�1−G1�

]
ρ�li + 1�
(32)

We have seen in Lemma 6 that ρ�li� ≥ G1ρ�li + 1�. Also G1 = 1/β. Thus a
sufficient condition for Sl > 0 and thus S > 0 is that

b+ e
β

− �a+ c� +C− a
2
�β− 1� > 0
(33)

When c+ a ≥ d+ e we need
b+ e
β

− d− e

β
− a
2
�β− 1� > 0�(34)

or, since Gn is finite for β > 4,

b > 4d+ 6a� c+ a ≥ d+ e
(35)

When c+ a < d+ e, we need
b+ e
β

− �a+ c� +
(
2− 1

β

)
�c+ a− d� − e− a

2
�β− 1� > 0�

giving

b > 7d+ 3a− 3c+ 3e� c+ a < d+ e
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Theorem 1. An IPS with rates a� b� c� d� e has a positive probability of
survival if

b > 4d+ 6a� c+ a ≥ d+ e
or

b > 7d+ 3a− 3c+ 3e� c+ a < d+ e


5. Bounds on the survival probabilities. Since K is a bounded super-
martingale, K�ξt� tends to a limit a.s. The only possible limits are 0 and 1.
Suppose 0 < 	ξt	 < n. If the change that occurs in K�ξt� is of the form K�s1t�
to K�s0t� or vice versa, there is a change of m′G�sT�G�t�. If the change is
of the form K�s11t� to K�s00t� then (18) shows the change is greater than
m′G�sT��1 − G1�G�t�. It is clear from Lemma 3 that G�sT��G�t� > Gn. The
other possible change is from K�s10t� to K�s01t� or vice versa, but for any
finite configuration, this is the next change with probability less than e/�b+e�.
If 0 < 	ξt	 < n i.o., then changes of size >m′�1−G1�G2

n occur i.o. contradicting
the convergence of K�ξt�. Thus 	ξt	 → ∞ ⇒ K�ξt� → 0 for 	µ	 < 1. We have
the following theorem.

Theorem 2. K�ξt� → �0�1� a.s.

Because K�ξt� is a supermartingale, E�K�ξt�� < K�ξ0�. But Theorem 2
shows that from initial occupied set A, E�K�ξAt �� → 1 − sA where sA is the
probability of survival starting from A. We have the lemma.

Lemma 9. sA > 1−K�A�.

From the definition in (5) it is obvious that K�∅� = 1 and K��0�� = 1 −
m�1 − µ�, where m−1 is the mean of the renewal measure. Equation (9) can
be written

�1− u��1− µφ�u��γ�u� = 1−φ�u�

Differentiating this gives

−�1− µ�γ�1� = −φ′�1� = −m−1�

so that

m�1− µ� = 1
γ�1� 


K��0�� = 1−m�1− µ� and Lemma 9 imply that s�0� > 1/γ�1� = 1/
∑∞
i=0Gi.

Now Lemma 1 gives

K��0�1� 
 
 
 � n�� −K��0�1� 
 
 
 � n− 1�� = −m�1− µ�Gn�
implying thatK��0�1� 
 
 
 � n�� = 1−m�1−µ�∑n

i=0Gi. From Lemma 9 we may
thus deduce the theorem.
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Theorem 3.

s�0�1�


�n� >
∑n
i=0Gi∑∞
i=0Gi




The series �Gi� defined in (8) converges faster as β increases; thus the best
bound for s above will be using �Gi� with largest possible β. The β to be used
should be the largest that will satisfy the inequalities in (33) and (36).
The so-called correlation identities follow directly from the self-duality

equation. A particular case is

µP�ξ∞�0� = 1� + 1−P�ξ∞�0� = 1� = 1− s�0� < 1− γ�1�

We have

P�ξ∞�0� = 1� > 1
�1− µ�γ�1� 
(36)

6. Conclusion. It has been possible to show that given values of a� c� d� e
a b can be found which will ensure that extinction is not certain. However,
the Gi used in this paper were chosen for their convenience rather than being
tailored to a particular interacting particle system. It is unlikely that they
cannot be improved upon.
One of the most unsatisfactory aspects of the inequalities given in

Theorem 1 is that as e increases to the point that c+ a < d+ e, b must then
increase rapidly, yet intuition would suggest that e should assist the spread of
an IPS, not hinder it. This is confirmed for the contact process with exclusion,
that is, b > 0, e > 0, c = d = 1/2. Durrett and Neuhauser (1994) showed that
the critical value of b ↓ 1/2 as e→ ∞. The bound given in Theorem 1 would
be 2+ 3e. It suggests that the form of Gn chosen may not be very suitable for
exclusion.
Another problem is that is does not provide any bound for the branching

annihilating random walk of Bramson and Gray (1985), because in that pro-
cess b = c always.
An example may suggest how good the inequalities are. Sudbury (1998)

finds a lower bound for the critical value of b for a model which is essentially an
annihilating random walk counteracted by birth; that is, with a = 2� b� e = 1.
The bound given is 0.30, but because the rates are inverted in the treatment
in that paper, this translates to extinction for b < 1/0
3 = 3
33. Theorem 1
gives nonextinction possible for b > 12.
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