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THE LIMIT POINTS IN Rd OF AVERAGES OF
I.I.D. RANDOM VARIABLES

By K. Bruce Erickson

University of Washington

Given any closed subset C of Rd, containing a pair of antipodal points
at ∞, there is a sequence of independent and identically distributed ran-
dom variables �Xi� such that the set of limit points (in the topology of Rd)
of ��X1 + · · · +Xt�/t�t≥1 equals C. Here Rd is the compact space gotten by
“adjoining the sphere, Sd−1∞ at infinity.”

1. Introduction. Let d ≥ 2 and let Rd denote the compactification of the
Euclidean space Rd obtained by “adjoining the sphere at ∞.” More precisely,
Rd is the compact metric space obtained by the completion of Rd with respect
to the metric ρ�x	y� = ��1 + �x��−1x − �1 + �y��−1y� where � · � is the usual
Euclidean norm. We use the same letter ρ to denote the extension of the
metric to Rd. Points in Rd∞ ≡ Rd\Rd are in a one-to-one correspondence with
the points of the unit sphere, Sd−1, and it is convenient to write such points
in the form z · ∞ for z ∈ Sd−1.
LetW0 = 0,Wt =

∑t
i=1Xi, t = 1	2	 
 
 
 where �Xi� is a sequence of i.i.d. ran-

dom variables with values in Rd and common distribution F. For a sequence
�at� of positive numbers which increase to ∞ with t, we define

A
{
Wt
/
at
} = {x ∈ Rd� lim inf

t→∞
ρ�a−1t Wt	x� = 0 a.s.

}
(1.1)

We call the elements of this set the (extended sense) limit points of the normal-
ized random walk �Wt/at�. If F has at least two distinct points in its support,
then �Wt/at� is the same thing as the set accumulation points in Rd of the
random point set �Wt/at�.
With probability 1, the setA�Wt/at� coincides with the nonstochastic closed

set

A�F	 �at�� =
{
x ∈ Rd� P[ρ�a−1t Wt	x� < ε i.o.] = 1 ∀ ε > 0

}

(1.2)

[See Kesten (1970), Theorem 1. His proof generalizes easily.] In other words,
the step distribution F and the sequence �at�, but not the sample paths,
determine these sets. In the case at = tβ one may write A�β� or A�F	β�
for A�F	 �at��. [Note: It is not asserted that �Wt/at� approaches points in
A�F	 �at�� as in Martin boundary theory. The equivalence of (1.1) and (1.2)
says that there is a single null event such that every neighborhood of every
point in A�F	 �at�� (and no others) will be visited infinitely often, as t ↑ ∞,
by every sample sequence of averages �Wt�ω�/at� for all ω outside of the null
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event. If a Markov process has a Martin boundary, then w.p.1, only one point,
albeit random, will occur in the limit for any given sample path.]
It is easily seen that a point x ∈ Rd is a finite limit point if and only if

P

[
lim inf
t→∞

∣∣∣Wt
at

− x
∣∣∣ = 0

]
= 1	(1.3)

and a point z · ∞, z ∈ Sd−1 is an infinite limit point if and only if

P

[
lim inf
t→∞

(∣∣∣ Wt�Wt�
− z
∣∣∣+ at

�Wt�
)
= 0
]
= 1
(1.4)

Let us write Af for A ∩Rd, and A∞ for A ∩ �Rd\Rd�. Note that if bt = o�at�,
then A∞�Wt/at� ⊂ A∞�Wt/bt�, and if also Af�Wt/at� = � (i.e., �Wt�/at → ∞,
a.s.), then A∞�Wt/bt� = A∞�Wt/at� = A∞�Wt� for any increasing sequence
1 ≤ bt = O�at�. The role of the normalizing constants is not as critical for
A∞�Wt/at� as it is for Af�Wt/at� in this case.
If the sequence at is not linear, for example at = tβL�t� for some 0 <

β �= 1 and L slowly varying, then the known results seem to support the
assertion that the sets A�F	at� cannot have a very complicated structure. In
one dimension, for example, and β �= 1	1/2, then A�β� is either a ray �−∞	 b�
or �b	∞�, the entire line, a singleton, or a set containing one or more of the
points 0	−∞	+∞. [Also A�1/2� must contain at least a ray if the finite part
is nonempty.] See Kesten (1970) and Erickson and Kesten (1974). The results
in higher dimensional spaces are not as complete but seem to support the
assertion that the possible geometric structures for A�β�	 β �= 1 are limited.
Much more interesting is the linear case at = t with E�W1� = ∞. Kesten

(1970) for d = 1, and Erickson (1976) for d > 1, show that given any nonempty
closed subset of Rd, there is a distribution F for which the set of finite points
Af�F	1� coincides with that given set. Moreover, given any closed subset of
the sphere at infinity, it is quite easy to construct a distribution for which
A�F	1� = A∞�F	1� coincides with the given closed set. See the last section
of this paper.
A problem arises when it is required that A�1� contain both finite and

infinite points. In this case there may be a restriction on the possible structures
of the closed set of infinite limit points A∞�1�. What form the restriction will
take is not completely clear. Kesten (1970) shows that, in one dimension, if
there is more than one point in A�1�, then both +∞ and −∞ must be in A�1�.
From this result one can show that for d > 1, if E�W1� = ∞ and if A�1� has
a finite point, then the limit points at infinity, identified with a set of unit
vectors, is nonempty and cannot be contained in an open half-space of the
form �x� x · v > 0� for some nonzero vector v. (This was first pointed out by
S. Kalikov.)
Given any C ⊂ Rd provided only that the infinite part of C contains a pair

of antipodal points ±e · ∞, we show how to construct a random walk �Wt�
such that A�F	1� coincides with C. This construction extends and greatly
simplifies (and corrects a slight error in) the example of Erickson (1976).
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Our method was inspired by Harry Kesten (1970) in his proof of his Theo-
rem 7, 1196–1205.
The requirement that C contains a pair of antipodal points at infinity in

the construction described here may be unnecessary. We leave the reader with
the following conjecture: given any closed subset C of the extended Euclidean
space which contains at least one finite point and the infinite part is not
contained in a half-space, then there is a distribution F such that A�F	1�
coincides with C.

2. Construction of a random walk. Let �pk� denote a probability dis-
tribution on the nonnegative integers and �ϑi�, a sequence of independent
nonnegative integer valued random variables each having the distribution
�pk�. Next, let �rk� be an increasing sequence of positive integers and let
�Yks � be a doubly indexed sequence of totally independent random variables
(and independent of the sequence �ϑn�) such that Yks has a symmetric Biono-
mial distribution on the set of integers −rk	−rk + 1	 
 
 
 	 rk. This distribution
assigns mass

( 2rk
rk−j

)
2−2rk to j and has characteristic function E exp�iθYks � =

cos2rk�θ/2�.
Let �bk� be a sequence of vectors in Rd such that b0 = 0, but otherwise

arbitrary, and let �ak� be any rapidly increasing positive numbers. Put Xks =
akY

k
se+ bk, where e = �1	0	 
 
 
 	0) and

Xs = Xϑss =
∞∑
k=0
JksX

k
s 	 Jks = I�ϑs = k� =

{
1	 if ϑs = k,
0	 if ϑs �= k.

Finally, the random walk we seek is

Wt =
∑
s≤t
Xs for t ≥ 1	 W0 = 0


Note that the step distribution of the walk (the common distribution of the
Xs) has the form

F =
∞∑
k=0
pk
[
Fk × δbk�2� × δbk�3� × · · · × δbk�d�

]
	(2.1)

whereFk is the distribution of akYks+bk�1� and δbk�·� is the distribution which
puts unit mass at the point bk�·� on the real axis. The notation b�i� denotes
the ith coordinate of the vector b. (Note that F is a weighted sum of product
distributions; it is not a product distribution unless all of the vectors bk are
the same).
To better understand the structure of the walk, consider the following aux-

iliary random walks in Rd and R1, respectively:

Zkt =
∑
s≤t

(
bkJ

k
s +

∑
j≤k−1

JjsX
j
s

)
	(2.2)

Skt =
∑
s≤t
JksY

k
s 	 t ≥ 1	(2.3)
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and Zk0 = 0, Sk0 = 0. Note that c0 = 0,

ck≡�1/t�E�Zkt � = E�Zk1� =
k∑
j=0
pjbj	

bk=p−1
k �ck − ck−1�


(2.4)

For each k and m ≥ 2 define

Tk = T1
k = min�t:ϑt = k�


If the pk decrease to 0 fast enough, then, w.p.1,

Tk < Tk+1 for all k sufficiently large

and when this occurs we get

t−1Wt − ck =
(
t−1Zkt − ck

)+ akt−1Skt e	 t ∈ �Tk	Tk+1�
(2.5)

This decomposition is crucial to the proof of the main result.
It is time to choose the parameters. Let us suppose now that �ck� is a given

sequence of points in Rd such that

c0 = 0 < �ck� ≤ k for all k ≥ 1
(2.6)

We will define the parameters ofW inductively. We also introduce some auxil-
iary parameters �mk�, �πk� and �qk� which are useful in the proofs and help
reduce the notational clutter.
Let a0 = a1 = 1, r0 = r1 = 1, m0 = m1 = 1, p1 = 1/8, p2 = 1/16. Let

b0 = 0, b1 = p−1
1 �c1 − c0� as at (2.4). For any j put

πj = pj
(
rja

2
j + �bj�2

)

(2.7)

Suppose that for some k ≥ 2, the parameters bj	mj	 rj	 aj and pj+1 have
been defined for j up to k− 1. Then we define bk by (2.4) and

mk = [k3pkπk−1]+ 1	(2.8a)

qk =mk + k12m3
k	(2.8b)

rk = k4mk	(2.8c)

pk+1 =
pk

�k+ 1�2qk

(k−1∑
j=1
πj

)−1
	(2.8d)

ak =
4k3

pk+1

(2.8e)

Finally we set p0 = 1−∑pk. (That p0 is positive follows from the inductively
verified estimate: pk ≤ 4−k, for all k ≥ 1.) One can easily establish that these
inductive formulas define the parameters for all k.
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Theorem 1. Let �Wt� be the walk constructed as in the previous section
with the parameters �bk�, �ak� and �rk� defined as above. Then⋂

n≥1
�Wt/t� t ≥ n� = A�F	1� = ⋂

n≥1
�ck	:k ≥ n� ∪ �±e · ∞� a
s


where the overbar denotes closure in Rd.

Given a closed subset C of Rd containing the antipodal pair ±e · ∞, it is
always possible to find a sequence �ck� of distinct points in Rd which satisfies
(2.6) and whose limit points in the extended sense equals C. It is also clear by
using an appropriate orthogonal transformation that ±e · ∞ can be replaced
by any other antipodal pair at ∞. We leave these details to the reader.

3. Outline of the Proof of Theorem 1. Put

Tmk = Tmk = min�t > Tm−1
k � ϑt = k� =mth occurrence of k in �ϑt�	

+′
k = �Tk	Tmkk �	 +′′

k = �Tmkk 	Tk+1� �mk at (2.8a)�	
+k = �Tk	Tk+1�


The +’s are, of course, random time intervals and +′′
k and +k are empty with

positive probability, +′
k is always nonempty.

The heart of the proof consists in verifying that the complement of each of
the following events has probability O�1/kβ� for some β > 1:

1
k2pk

< Tk <
k

pk
and Tk <

mk
2pk

< T
mk
k <

2mk
pk

< Tk+1	(3.1)

which implies +′′
k �= �	 +k = +′

k ∪ +′′
k�

Skt �= 0 for all t ∈ +′
k�(3.2)

Skt = 0 for some t ∈ +′′
k�(3.3)

min
{ �Wt�1��

t
: Skt �= 0	 t ∈ +k

}
≥ k2�(3.4)

max
{∣∣∣∣Wtt − ck

∣∣∣∣: t ∈ +k	 Skt = 0
}
≤ 1
k1/4

�(3.5)

max
{ �Wt�l��
�Wt�1��

: Skt �= 0	 t ∈ +k	 l = 2	3	 
 
 
 	 d
}
≤ 1
k1/4


(3.6)

If the complements of these events have probabilities O�1/kβ� for some
β > 1 as claimed, then the Borel–Cantelli lemma implies that, w.p.1. every
one of the events holds for all k ≥ K where K is a finite random integer.
Though there is more work to be done, one can see from (3.3) and (3.5) that
A�F	1� must include the set of extended-sense limit points of �ck�. Moreover
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(3.2), (3.4) and (3.6) show that A�F	1� cannot contain any other points of Rd
except possibly ±e · ∞.
It is clear from (3.2), (3.4) (3.6) and the 0–1 law for tail events that A�F	1�

does indeed contain at least one of ±e · ∞. That both of the points ±e · ∞ are
in A�F	1� follows (with a little work) from recurrence properties of the walks
Sk. (The symmetry of their distributions simplifies the proof.)
Here is what is going on: the recurrent director walk, �akSkt e�, enters the

structure of W for the first time at t = Tk and plays its biggest role during
the special interval +k. After that time its influence on the averages �Wt/t�
rapidly diminishes due to the large denominators, t � ak. During its special
time interval, the director’s effect completely vanishes [at the zeros of �Skt �]
and this is what allows the averages Wt/t to approach the currently appro-
priate centering vector ck; see (2.5). However, these vanishing times must
not come too soon because at the beginning of the interval the influence of
the preceding director, which has not completely subsided, must be prevented
from affecting the averages in an unpredictable fashion. The main effect of
the director during its special interval at times when it does not vanish is to
drag the ratios Wt/t out toward ±e · ∞. (Recall that Sk is integer valued so
ak�Skt � ≥ ak when Skt �= 0.)

4. Some details of the proof of Theorem 1. In what follows we will
derive O�1/kβ� estimates using inequalities derived inductively from (2.8).
These inequalities are only claimed to be valid for k “sufficiently large.” How-
ever, it seems that these inequalities are actually valid for k ≥ 5, but the proof
is left to the interested reader.
Let us also note that in some of the estimates, terms such as P�+k = �� or

P�+′′
k = �� logically ought to be included on the right-hand sides of some of

the derivations. [See (4.4) and (4.5), for example.] No harm is done in omitting
them (to help reduce the clutter) for they are all O�1/k2� as may be seen from
the very next step.

4.1. Proof that 1 − P�events in �3
1�� = O�1/k2�. First let us note some
useful inequalities. The random variable T = Tk has a geomtric distribution
with mean 1/p�p = pk� and variance �1 − p�/p2, and Tν = Tνk is a sum of ν
independent copies of T. So, for p ≤ 1/2, ν ≥ k2, and k ≥ 2,

1−P
[

1
x2p

< T <
x

p

]
= P

[
T ≤ 1

x2p

]
+P

[
T ≥ x

p

]
(4.1a)

≤ 1− �1− p�1/�x2p� + 2
x2

≤ 4
x2
	

1−P
[
ν

2p
< Tν <

2ν
p

]
≤ P

[∣∣∣Tν − ν

p

∣∣∣ ≥ ν

2p

]
≤ 8
k2

(4.1b)
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The probability of the complement of (3.1) is dominated by the sum

1 − P
[

1
k2pk

< Tk <
k

pk

]
+P

[
Tk ≥

mk
2pk

]
+ 1−P

[
mk
2pk

< T
mk
k <

2mk
pk

]
+P

[
Tk+1 ≤

2mk
pk

]



Taking first x = k and then x = mk/2 in �4
1a�k we see that the first term
is bounded by 4/k2 and the second term by 16/m2

k. The latter is clearly
O�1/k2� by (4.2). (See below). Next the third term is bounded by 8/k2 by
�4
1b�k with ν = mk. Finally, the fourth term is O�1/k2� by �4
1a�k+1 with
x2 = pk�2mkpk+1�−1. [The latter is bigger than �k + 1�2 by (4.2).] This com-
pletes the proof that 1−P��3
1�� is O�1/k2�.
In the preceding we have used (and will use again, implicitly) the important

inequality

k13 ≤mk ≤
1
2pk

�k+ 1�2pk+1
	(4.2)

for all k sufficiently large.
For a proof of (4.2), note first that because mk ≥ 1, for k sufficiently large,

(2.8b) implies qk > 2mk. Also
∑
j≤k−1 πj ≥ 1, k sufficiently large. Hence

by (2.8d),

pk+1 ≤
pk

�k+ 1�2qk
≤

1
2pk

�k+ 1�2mk
	

and this yields the right-hand side of (4.2).
From (2.8a), (2.7), (2.8c), (2.8e) and the monotonicity of �pk� (more or less

in that order),

mk+1 ≥ �k+ 1�3pk+1πk ≥ k3pk+1pkrka2k
= k7mk�pk+1ak��pkak� ≥ 4k10pkakmk ≥ 4k10pk+1akmk ≥ 16k13mk


Since mk−1 ≥ 1, the last inequality implies mk ≥ 16�k − 1�13 > k13 for all k
sufficiently large. This is the left-hand side of (4.2). ✷

Remark. Iterating the inequality mk+1/mk ≥ 16k13 yields the fantastic:
mk+1 ≥ 24k�k!�13, for all large k.

4.2. Proof that 1−P��3
2�� = O�1/k2�. (To reduce clutter we suppress the
ks when possible). Because YtJt = 0 for Tj−1 < t < Tj, j ≥ 1, it follows that
St is constant on these intervals. This and the independence of the Tjks and
Yks, implies that

1−P��3
2�� = P[St = 0 for some t ∈ +′
k

]
= P

[∑
j≤n
YTj = 0 for some n ∈ �1	m�

]
= P[Ŝn = 0 for some n ∈ �1	m�]	
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where Ŝn =∑nj=1Ykj, Ŝ0 = 0. The random variable Ŝn has a symmetric biono-
mial distribution on the integers in �−rn	 rn�. Hence, by refined Stirling’s
inequalities,

P
[
Ŝn = 0 for some n ∈ �1	m�] ≤ m∑

n=1
P
[
Ŝn = 0

] = m∑
n=1

(
2rn
rn

)
2−2rn

≤
m∑
n=1

�πrn�−1/2 ≤ 2�m/r�1/2


Taking m = mk and r = rk and noting (2.8c), one sees that the last written
quantity is O�1/k2�. ✷

4.3. Proof that 1−P��3
3�� = O�1/k2�. Let Gm�x	y� denote the expected
number of visits by Ŝ to y during �0	m� starting at x, and let τ = min�n ≥
0� Ŝn = 0�. Then Gm�z	0� = ∑mn=0P�τ = n�Ŝ0 = z�Gm−n�0	0� ≤ Gm�0	0� −
Gm�0	0�P�τ > m � Ŝ0 = z�. Hence

P�τ > m � Ŝ0 = z� ≤ [Gm�0	0� −Gm�z	0�]/Gm�0	0�
= [Gm�0	0� −Gm�z	0�]

[
m∑
n=0

(
2rn
rn

)
2−2rn

]−1
≤ 2
[
Gm�0	0� −Gm�z	0�

]√
r/m	

by another application of Stirling’s inequalities. Also

Gm�0	0� −Gm�z	0� =
1
2π

∫ π
−π

�1− eizθ�
m∑
j=0

{
E exp�iθYk1�

}j
dθ

= 1
2π

∫ π
−π

�1− cos zθ��1− cos2r�m+1��θ/2��
1− cos2r�θ/2� dθ

≤ 2
π

∫ π
0

(
sin zθ/2
sin θ/2

)2
dθ ≤ π

∫ ∞

0

(
sin zt
t

)2
dt = π

2�z�
2



Consequently P�τ > m�Ŝ0 = z� ≤ 10�z�√r/m and

P
[
Skt �= 0 for all t ∈ �Tm	Tq�] = P[Ŝn �= 0 for all n ∈ �m	q�]

=
+mr∑
z=−mr

P�τ > q−m � Ŝ = z�P[Ŝm = z]
≤ 10

( r

q−m
)1/2
E�Ŝm� ≤

(50r2m
q−m

)1/2
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(The variable Ŝm has mean 0 and variance mr/2.) Hence,

1−P��3
3�� = P[Skt �= 0 ∀ t ∈ +′′
k

]
≤ P[Ŝn �= 0 ∀ n ∈ �mk	qk�

]+P[Tqkk > Tk+1](4.3)

≤
( 50r2kmk
qk −mk

)1/2
+P[Tk+1 < 2qk

/
pk
]+P[Tqkk > 2qk

/
pk
]



The first term in the last line is O�1/k2� by (2.8). The second term is also
O�1/k3� by �4
1a�k+1 with T = Tk+1, p = pk+1 and

x =
√
pk
/
2qkpk+1 ≥ �k+ 1�

(
π1 + π2 + · · ·πk−1

2

)1/2



This implies 1/x = O�k3/2�. [See (2.8d) and note that the πj are bounded away
from 0.] The last probability term in (4.3) is O�1/k2� by (4.1b) with ν = qk.
That ν � k2 (for all large k) as required in (4.1b) is clear from (4.2) because
qk > mk by (2.8b). ✷

4.4. Proof that 1 − P��3
4�� = O�1/k2�. For t ≤ �k + 1�p−1
k+1, we have

1
2ak − t�ck� ≥ 1

2ak − 2k2p−1
k+1 ≥ 1

4ak; see (2.8e). Also mk/�pkpk+1a2k� ≤ 1/k5, by
(2.8a) and (2.8e), and

σ2
(
Zk1
) = E∣∣∣k−1∑

j=1

(
J
j
1X

j
1 − pjbj

)∣∣∣2 + �bk�2E
(
Jk1 − pk

)2
+2

k−1∑
j=1
E
[�Jj1Xj1 − pjbj�bk�Jk1 − pk�

]
= O

(
k
k−1∑
j=1
πj + k2

/
pk

)
= O

(
k
k−2∑
j=1
πj + kπk−1 + k2

/
pk

)

= O(�1+mk/k2 + k2�/pk
) = O�mk/k2pk

)
	

as the reader can verify, though perhaps not willingly. [Keep in mind (2.8a),
and �2
8d�k−1 and (4.2).] Therefore, by Kolomogorov’s inequality, [and (4.1a)
with k replaced by k+ 1],

P

[
�Zkt � >

1
2
ak for some t ∈ +k

]
≤ P

[
�Zkt − tck� >

1
4
ak for some t ≤

k+ 1
pk+1

]
+P

[
Tk+1 >

k+ 1
pk+1

]

= O
(
kσ2

(
Zk1
)

pk+1a
2
k

+ 1
k2

)
= O

(
mk

kpkpk+1a
2
k

+ 1
k2

)
= O

(
1
k2

)





LIMIT POINTS OF AVERAGES 507

However, �Wt�1��/t ≥ �ak�Skt � − �Zkt ��/Tk+1 ≥ 1
2akpk+1/�k + 1� ≥ k2, whenever

Skt �= 0 and both �Zkt � ≤ 1
2ak and Tk+1 ≤ �k+ 1�/pk+1 hold. Thus

1−P[�3
4�] ≤ P[�Zkt � > 1
2
ak for some t ∈ +k �= �

]
+O

(
1
k2

)
= O

(
1
k2

)

 ✷

4.5. Proof that 1−P��3
5�� = O�1/k3/2�.

1−P[�3
5�] ≤ P[∣∣∣Wt
t

− ck
∣∣∣ > k−1/4 and Skt = 0 for some t ∈ +′′

k

]
+P[Skt = 0 for some t ∈ +′

k

]
≤ P

[
T
mk
k ≤ mk

2pk

]
+P[Tk+1 ≤ Tmkk ](4.4)

+P
[∣∣∣Zkt
t

− ck
∣∣∣ > k−1/4 for some t ≥ mk

2pk

]
+O

(√
mk
rk

)

= P
[∣∣∣Zkt
t

− ck
∣∣∣ > k−1/4 for some t ≥ mk

2pk

]
+O

(
1
k2

)
See (2.5) and Sections 4.1 and 4.2 and (2.8c). To complete the proof we can
use the Hájek–Rényi inequality. Set β = greatest integer in mk/�2pk�, then,

P

[∣∣∣Zkt
t

− ck
∣∣∣ > k−1/4 for some t ≥ β] ≤ σ2(Zk1)

k−1/2

(
1
β

+ ∑
t≥1+β

1
t2

)
= O

( 1
k3/2

)



4.6. Proof that 1 − P��3
6�� = O�1/k3/2�. Note that when (2.5) holds and
Tk ≤ t < Tk+1, and Skt �= 0, then �Skt � ≥ 1 �Skt is an integer), and �Wt�l�� =
�Zkt �l�� ≤ �Zkt � for l = 2	3	 
 
 
 	 d and �Wt� = �Zkt + akSkt e� ≥

∣∣ak − �Zkt �
∣∣. So

1−P[�3
6�]≤P[ �Zkt �∣∣ak−�Zkt �
∣∣ ≥ k−1/4 for some t ∈ +′

k

]

+P
[ �Zkt �∣∣ak − �Zkt �

∣∣ ≥ k−1/4	 ∣∣∣Zktt − ck
∣∣∣ ≤ k−1/4

for some t ∈ +′′
k �= �

]
+P

[∣∣∣Zktt − ck
∣∣∣ > k−1/4 for some t ≥ mk

2pk

]
+P

[
T
mk
k <

mk
2pk

]



(4.5)

The sum of the last three terms is O�1/k3/2� as in (4.4).
To estimate the first term of the right of (4.5), we assume that k ≥ 4. Then

1
2k

−1/4ak − 2mk�ck�/pk ≥ mk� 12k−1/4k2 − 2k�/pk ≥ k7/4mk/4pk by (2.8e) and
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�ck� ≤ k. Hence

P

[ �Zkt �∣∣ak − �Zkt �
∣∣ > k−1/4 for some t ∈ +′

k

]

≤ P
[

max
t≤2mk/pk

�Zkt � ≥
k−1/4ak
1+ k−1/4

]
+O

(
1
k2

)
≤ P

[
max

t≤2mk/pk
�Zkt − tck� ≥

ak
2k1/4

− 2mk�ck�
pk

]
+O

(
1
k2

)
≤ P

[
max

t≤2mk/pk
�Zkt − tck� ≥

k7/4mk
4pk

]
+O

(
1
k2

)

= O
(

σ2
(
Zk1
)

k7/2�mk/pk�
)
+O

(
1
k2

)
= O

(
1
k2

)
	

because the variance term is O�1/k11/4�.
It remains to estimate the second term on the right-hand side of (4.5):

P

[ ∣∣Zkt ∣∣∣∣ak − �Zkt �
∣∣ ≥ k−1/4	 ∣∣∣Zktt − ck

∣∣∣ ≤ k−1/4 for some t ∈ +′′
k

]

≤ P
[
ak

2k1/4
≤ ∣∣Zkt ∣∣ < t�k+ 1� for some t ∈ +′′

k

]

≤ P
[
ak

2k1/4
≤ ∣∣Zkt ∣∣ ≤ �k+ 1�2

pk+1
for some t ≤ k+ 1

pk+1

]

+P
[
Tk+1 >

k+ 1
pk+1

]

≤ P
[
ak

2k1/4
≤ ∣∣Zkt ∣∣ ≤ akk for any t ≥ 1

]
+O

(
1
k2

)
= O

(
1
k2

)
	

as soon as k ≥ 2 because the last written probability term is then 0.
The preceding estimates yield 1−P��3
6�� = O�1/k3/2 + 1/k2� = O�1/k3/2�

as promised.

5. An example for infinite limit points. As mentioned in the introduc-
tion, any closed subset of Sd−1∞ can be the set of infinite limit points of some
sequence of averages �Wt/t�. However, if the given set is contained in an open
half-space (at infinity), then �Wt/t� cannot have finite limit points. In an ear-
lier version of this paper, a distribution was constructed for which A∞�F	1�
was any given closed convex subset of the unit sphere at infinity. An anony-
mous referee suggested a modification that would produce a distribution that
could be made to yield any closed subset of Sd−1 · ∞, convex or not. Here are
the details.
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LetD·∞ be the given closed set whereD is a closed subset of the unit sphere
Sd−1 in Rd. Let �Ri� and ��i� be two sequences of independent identically
distributed random variables and independent of each other such that the Ri
are real valued and positive and the �i take values in Sd−1. Put

Xi = Ri�i	 Wt =
∑
i≤t
Xi	 t ≥ 1


Theorem 2. If

lim
t

maxi≤t Ri
R1 +R2 + · · · +Rt

= 1 a
s
(5.1)

and the support of the common distribution of the �i equals D, then

A��Wt/t�� = D · ∞


Here is the proof of the theorem. LetMt = maxi≤t Ri. Then (5.1) implies

lim
t

∑
i≤t Ri −Mt

Mt

= 0 a.s.

Moreover (5.1) also implies E�R1� = ∞ so that

lim
t

R1 + · · · +Rt
t

= lim
t

Mt

t
= ∞ a.s.

Thus any limit points of �Wt/t� must be infinite limit points. See (1.4). If
σ�t� denotes the smallest index of the maximal term among R1	 
 
 
Rt, so
Mt = Rσ�t�, then as t ↑ ∞, Wt = Rσ�t��σ�t� + o�Rσ�t�� and

Wt
�Wt�

= Rσ�t��σ�t� + o�Rσ�t��
Rσ�t� + o�Rσ�t��

= �σ�t� + o�1�
(5.2)

The sequence of random integers �σ�t��t≥1 is totally independent of the se-
quence ��t�t≥1 and σ�t� → ∞. Therefore, by standard 0–1 laws, for every
z ∈ Sd−11 we have

P
[
lim inf

t
��σ�t� − z� = 0

] = 1 or 0

according as z is in D or not. This and (5.2) imply the conclusion of the theo-
rem.

Example. Consider an i.i.d. sequence �Ri� with a common distribution
which satisfies

P�R1 > r� =
1
ln r

for r ≥ e	
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and P�R1 ≤ r� = 0 for r ≤ e. That �Ri� satisfies (5.1) follows from a result
of Pruitt (1987) and the easily verified consequence of the above form for the
tail of the distribution of the Ri,∑

k

(
P�2k < R1 ≤ 2k+1�R1 > 2k�)2 <∞


(The convergence of this series is the main hypothesis of the Pruitt result.)
We leave it to the reader to solve the problem of constructing an i.i.d. se-

quence �i with a common distribution having support exactly equal to a given
closed subset of the unit sphere in Rd.
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