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ON THE SPEED OF RANDOM WALKS ON GRAPHS1

By Bálint Virág

University of California, Berkeley

Lyons, Pemantle and Peres asked whether the asymptotic lower speed
in an infinite tree is bounded by the asymptotic speed in the regular tree
with the same average number of branches. In the more general setting of
random walks on graphs, we establish a bound on the expected value of the
exit time from a vertex set in terms of the size and distance from the origin
of its boundary, and prove this conjecture. We give sharp bounds for limiting
speed (or, when applicable, sublinear rate of escape) in terms of growth
properties of the graph. For trees, we get a bound for the speed in terms
of the Hausdorff dimension of the harmonic measure on the boundary. As
a consequence, two conjectures of Lyons, Pemantle and Peres are resolved,
and a new bound is given for the dimension of the harmonic measure
defined by the biased random walk on a Galton–Watson tree.

1. Introduction. Once the transience of a random walk on a graph is
determined, it is natural to ask questions about its rate of escape from the
starting point. This paper studies how linear rate of escape (speed) is related
to the structure of the graph.

Let G = �V�E�w� be a countable, connected, undirected graph with a pos-
itive edge weight function w � E → R. Heuristically, w�e� is the multiplicity
of the edge e in G. The random walk on the weighted graph G starts at a dis-
tinguished vertex (o, the root), and at each step moves to one of the neighbors
of its current position with odds given by the edge weights.

The size of graphs with exponential growth can be measured in many ways.
A simple measure of growth is the lower growth, gr�G�, given by the lim inf
of the nth root of the total weight of edges at distance n from a fixed vertex,
which we will call the root, o. The same quantity can be expressed using the
following size measure for edge sets. For an edge or vertex, let � · � denote its
graph distance from o. For a subset of edges K, we can define a size measure
which exponentially punishes edges that are far from the root:

�K�β = c−1∑
K

w�e�β−�e��(1.1)

where the normalizing constant c equals the total weight on edges adjacent
to o. Let ∂W denote the edge boundary vertex set W. Then the expression

sup
{
β � inf

W
�∂W�β > 0

}
�
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where W ranges over all balls about o, equals gr. If we let W 
 o range over
all finite sets, we get the branching number br of the graph; if we let W 
 o
range over all sets from which the walk started from o exits almost surely, we
get a new quantity called the essential branching number, eb. It is easy to see
that br and eb do not depend on the choice of o. For more intuition behind br
in trees, see Lyons and Peres (1999).

The speed of a random walk �Xk� on a graph is given by the process
��Xk�/k�, where � · � denotes graph distance from the root, which is also the
starting point of the walk. The lower speed S of the random walk can be
defined as the lim inf of the speed process; when this a.s� coincides with
the lim sup, we say that asymptotic speed exists. Our main result is the
following.

Theorem 1.1. S ≤ �eb− 1�/�eb+ 1� ∨ 0 a.s.

Variants of this theorem have been conjectured by Benjamini and Peres
[see Peres (1997)], Lyons, Pemantle and Peres (1997). Specifically, our results
solve two of the questions raised in Lyons, Pemantle and Peres (1997).

An elementary argument using the strong law of large numbers shows that
equality holds for regular trees. The intuitive meaning of this bound is that
among graphs with the same essential branching number, none admits a sim-
ple random walk that is with positive probability faster than the one on the
regular tree.

As a by-product of our results, we get an upper bound for the lim inf sublin-
ear rate of escape for graphs of subexponential growth; the following statement
is a simple corollary of a more comprehensive result.

Theorem 1.2. Let G be a weighted graph satisfying

log �∂W�1 ≤ 2c · dist�o� ∂W�γ

for c > 0� γ ∈ �0�1� fixed, and infinitely many balls W about o. Then the
random walk �Xk� on G satisfies

lim inf �Xk�/k1/�2−γ� ≤ c1/�2−γ��

The proof of these results rely on some finitistic lemmas about the lifetime
of the random walk killed when it exits a vertex setW. Random walks on finite
graphs are used in the theory of randomized algorithms, where the lifetime
of a walk (or running time of an algorithm) is of natural interest [see Sinclair
and Jerrum (1989)]. In Sections 2 and 4 we prove bounds on the lifetime and
exit speed in terms of the size of ∂W and dist�o� ∂W�; the following theorem
contains a summary of some of these results.
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Theorem 1. For β > β′ > 1 there existN, p > 0 so that the following holds.
Let τ be the lifetime of the random walk on a locally finite weighted graph G
started at a vertex o and killed when it exits a setWwith n �= dist�o� ∂W� ≥N.
Suppose that τ <∞ a.s.:

(i) If �∂W�1/n1 ≤ β′, then Eτ/n > α�β�, and P�τ/n > α�β�� > p.
(ii) If �∂W�β′ ≤ 1, then P�τ/�Xτ� > α�β�� > p.

Proposition 2.1 gives a bound on the expected lifetime; the proof uses a
deterministic flow construction on the graph which records the “expected path”
of the random walk. It turns out that the expected lifetime does not always
reflect the typical behavior of the lifetime of the walk. To go from expected
value results to positive probability ones, we will need some known tools such
as the second moment method and Doob transforms, which are introduced in
Section 3. As a high expected lifetime might come from atypical parts of the
graph, we need to use an argument which, roughly, keeps track of which parts
of the graph are visited. This gives the positive probability lifetime bounds of
Proposition 4.1; finally, conditioning on the distance of the exit point from the
root, we gain a positive probability bound on the exit speed (Lemma 4.2).

As expected, these bounds are nearly sharp for balls about o in regular
trees. We thus get an answer to a question of Benjamini and Peres, who
asked which, among all trees with kl vertices at level l, minimizes the ex-
pected hitting time of level l. Lee (1994) considered a special case of this
problem for random walks on spherically symmetric trees and found that the
answer is close to the regular tree, different only because of a slight asymme-
try introduced by starting and stopping the walk. Our results for finite graphs
show that, even in the more general setting, the regular tree is not far from
optimal.

Previously, Peres gave a rough upper bound for the lower speed in trees in
terms of the branching number, using a percolation argument [see Häggström
(1997), Peres (1997)]. It follows from this bound that positive lower speed im-
plies positive branching number. Takacs (1997, 1998) and Takacs and Takacs
(1998) calculated the asymptotic speed for special classes of trees, using walk-
invariant measures on tree-space. Lyons, Pemantle, and Peres (1995) com-
puted the speed explicitly for the simple random walk on Galton–Watson fam-
ily trees. For biased random walks on Galton–Watson trees, a tree-space and
random walk average version of the analogue of Theorem 1.1 was proved by
Chen (1997).

For a tree T, one can define the distance for two rays (infinite self-avoiding
paths starting at the root) with n common edges as e−n. Under this distance,
the set of rays, ∂T, is a compact metric space with Hausdorff dimension log br.
Consider the λ-biased random walk on T. This moves to a neighbor of its
current position with odds λ for the parent and one for each child. If this
walk is transient, then erasing cycles from its path gives us a random ray; the
corresponding probability measure on ∂T is called harmonic measure. The
dimension d�λ� of this measure is related to what portion of the tree the
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random walk could potentially explore; of course, d�λ� ≤ log br. In Section 6
we prove that

S ≤ ed�λ� − λ

ed�λ� + λ
a.s.(1.2)

This was believed to be false for general trees [Lyons, Pemantle, Peres (1997)];
the same paper, as well as Benjamini and Peres (1992), show through several
counterexamples that many other properties, although intuitive, do not hold
for general trees.

The inequality (1.2) can also be thought of as a lower bound for the dimen-
sion of the harmonic measure. From this perspective, our result is related to,
albeit not a proof of, a conjecture of Lyons, Pemantle and Peres (1997) that
the dimension of the harmonic measure on the family tree of a Galton–Watson
branching process is a.s� greater than the dimension of the corresponding
measure for greedier random walk that moves to a uniformly chosen random
offspring of its current position; in short, the greedy walker sees less of the
tree. Such implications of our results to Galton–Watson trees are discussed in
Section 7.

2. A bound on the expected lifetime. This section gives a bound on the
expected lifetime of a random walk killed when it exits a set W in terms of
the size and distance from o of its boundary ∂W. The walk on G killed when
it exits W is defined as the usual random walk on the weighted graph up to
time τ+ 1, where the lifetime τ is defined as the last time before the first exit
from W. After time τ + 1, the walk is undefined.

Proposition 2.1. LetW be a vertex set in a weighted graphG = �V�E�w�,
and let τ be the lifetime of the random walk started at o ∈W and killed when
it exits W. Let gv denote the expected number of visits to the vertex v, and let

α�x� �= �x+ 1�/�x− 1��(2.1)

(i) We have

Eτ/dist�o� ∂W� ≥ α
(
�go�∂W�1�1/dist�o� ∂W�

)
�(2.2)

(ii) For β > β′ > 1, there exists N so that for all G, W satisfying

dist�o� ∂W� > N and �∂W�1/dist�o� ∂W�
1 ≤ β′, we have

Eτ/dist�o� ∂W� ≥ α�β��

Proof. Without loss of generality we may identify all vertices of G outside
W as a single vertex δ, and may assume that G and W are connected.

The difficulty in studying the relation between dist�o� ∂W�� �∂W�1 and
Eτ comes from the fact that the latter quantity is a complicated function of
the weights on the graph. To avoid this problem, a deterministic flow will be
introduced, which allows for a relatively simple expression of all quantities
we want to compare.
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Let E∗ = ��u� v� � �u� v� ∈ E�G�� be the set of directed edges of G. The
random walk on G defines an E∗-valued process �Yk� = ��Xk�Xk+1��. The
random edge function

F�e� �=
τ∑

k=0

1�Yk = e�

can be thought of as a random flow with source o and sink δ. A flow here means
an edge function for which

∑
u F��v�u��−

∑
u F��u� v��, where the sums range

over all neighbors u of v, is nonnegative if v is the source, nonpositive if v is
the sink, and 0 otherwise.

The main idea is to study the deterministic flow

f�e� �= EF�e��
which helps relate Eτ to �∂W�1. Indeed, it is clear that

∑
e f�e� = E�τ + 1�.

Expressing �∂W�1 is slightly more difficult; towards this end, pick an orien-
tation e→ for each edge e ∈ E, and consider the flow f̃ on this set of directed
edges: f̃�e→� = f�e→� − f�e←�. Then, redirect the edges so that f̃ is a nonnegative
function. Denote the set of these directed edges by E

→
, and the set of their

reversal by E
←
. For a directed or undirected edge e we will use the notation e→,

e← for the corresponding edge in E
→
, E

←
, respectively. By the connection between

electrical networks and random walks, f̃ can be thought of as the current flow
on the edges of G when voltage ν and 0 is attached to o and δ, respectively.
Here ν must be equal to the effective resistance between o and δ so that the
strength of the flow indeed equals 1.

It is possible to decompose the current flow as a sum of constant flows along
paths from o to δ such that for all e→ ∈ E→,

f̃�e→� = ∑
ϕ∈(

f̃ϕ�e→��

Here f̃ϕ is a positive flow on E
→

with source o and sink δ. It is supported on
the path ϕ. Denote its strength by sϕ. We can now decompose the flow f as
well. For ϕ ∈ (, define

fϕ�e� �=
f̃ϕ�e→�
f̃�e→�

× f�e��

and then for all edges e ∈ E∗ for which f̃�e→� �= 0 we have
∑

ϕ∈( fϕ�e� = f�e�.
Let ϕ∗ denote the path ϕ truncated after its first n �= dist�o� ∂W� edges. The

following inequalities, to be proved later, give the relatively simple connection
between Eτ� �∂W�1 and the flow f and its decomposition,

Eτ ≥ α

(∑
fϕ�e→�∑
fϕ�e←�

)
× n�(2.3)

where the sums on the right range over ϕ ∈ ( and edges e ∈ ϕ∗. Also,

go�∂W�1 ≥
∑
ϕ∈(

sϕ
∏
e∈ϕ∗

fϕ�e→�
fϕ�e←�

�(2.4)
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The above two inequalities reduce our problem to an inequality about num-
bers. For simple reference, the result we need is stated in the language of
flows, but flows are not used in its proof.

Lemma 2.2. Let ( be a countable collection of “paths” each containing n
“edges,” and let s be a positive function on ( which sums to 1. For each ϕ ∈ (,
let e �→ fϕ�e→�� e �→ fϕ�e←� be positive functions of the edges e ∈ ϕ satisfying
fϕ�e→� − fϕ�e←� = sϕ. Then

∑
ϕ∈(

sϕ
∏
e∈ϕ

f�e→�
f�e←� ≥

(∑
fϕ�e→�∑
fϕ�e←�

)n
�(2.5)

where the sums on the right range over paths ϕ ∈ ( and edges e ∈ ϕ.

Combining the formulas (2.3), (2.4) and Lemma 2.2 applied to the collection
of paths �ϕ∗ � ϕ ∈ (� yields the first claim (2.2) of the proposition.

For the second claim, observe that if it were false, then there would be a
sequence of graphs, vertex sets Wi, and increasing ni = dist�oi� ∂Wi�, with
�∂Wi�1/ni1 < β′ so that go�i ≤ Eτi + 1 ≤ Eτi < α�β�ni + 1. Thus by (2.2),

Eτi/ni ≥ α
(�niα�β� + 1�1/ni�β′�) �

and the right-hand side converges to α�β′� > α�β� as i→∞, a contradiction.

Proof of (2.3). It follows from the definitions that

Eτ + 1 = ∑
e∈E

�f�e→� + f�e←�� ≥ ∑
ϕ∈(� e∈ϕ

(
fϕ�e→� + fϕ�e←�

)
≥ ∑

ϕ∈(� e∈ϕ∗

(
fϕ�e→� + fϕ�e←�

)+ 1�
(2.6)

The constant 1 appears because summing over the truncated flows means
leaving out the sum of the values of the flow on ∂W, which equals 1. Since the
total strength of the current flows is 1, and each ϕ∗ is of length n,∑

ϕ∈(� e∈ϕ∗
fϕ�e→� − fϕ�e←� = n�

The claim (2.3) follows from this and (2.6).

Proof of (2.4). Let ϕ ∈ (, and let ϕi, ϕ
→
i, ϕ

←
i denote the ith edge in the path

undirected, directed forward (in the path or, equivalently, in E
→
), or directed

backward, respectively. Let l denote the number of edges (the length) of the
path ϕ, and let w�Eo� denote the total weight on edges adjacent to o. Then ϕl
is in ∂W, and we can write

w�ϕl�
w�Eo�

= w�ϕ1�
w�Eo�

l−1∏
i=1

w�ϕi+1�
w�ϕi�

�(2.7)
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since the product telescopes. Let p��u� v�� denote the transition kernel of the
walk, and recall the notation gv for the expected number of hits to a vertex v
up to time τ. Then by the definition of p, (2.7) equals

p�ϕ→1�
l−1∏
i=1

p�ϕ→i+1�
p�ϕ←i�

= f�ϕ→1�
go

l−1∏
i=1

f�ϕ→i+1�
f�ϕ←i�

= f�ϕ→l�
go

l−1∏
i=1

f�ϕ→i�
f�ϕ←i�

�(2.8)

For the first equality, note that f��u� v�� = p��u� v��gu for all �u� v� ∈ E∗,
and the second one is just a rearrangement. Since f�e→�/f�e←� = fϕ�e→�/fϕ�e←�,
we can replace the former by the latter in the last formula. It follows that∏l�ϕ�−1
i=1 fϕ�ϕ→i�/fϕ�ϕ←i� is constant over paths ϕ with the same final edge, and

so for e ∈ ∂W,

w�e�
w�Eo�

=∑
ϕ
e

sϕ
go

l�ϕ�−1∏
i=1

fϕ�ϕ→i�
fϕ�ϕ←i�

�

Note that each factor in the product is greater than 1. Leaving out all but the
first n factors and summing over e ∈ ∂W yields (2.4). ✷

Proof of Lemma 2.2. Inequality (2.5) can be reduced to two simple cases.
The parallel inequality. Suppose that n = 1. Let aϕ �= fϕ�ϕ←1� and let A �=∑
aϕ, then (2.5) reduces to

∑
ϕ∈(

sϕ
aϕ + sϕ
aϕ

≥ A+ 1
A

�

This simplifies to A
∑
s2ϕ/aϕ ≥ 1, which follows from Cauchy–Schwarz. Equal-

ity holds iff aϕ/sϕ is constant, that is, fϕ�ϕ→1�/fϕ�ϕ←1� is the same for all ϕ.
The series inequality. Consider a graph consisting of a single path. Dropping

the path index we get

∏
e

f�e→�
f�e←� = exp

∑
e

log
s+ f�e←�
f�e←�

≥ exp
(
n log

s+∑e f�e←�/n∑
e f�e←�/n

)
=
(∑

e f�e→�∑
e f�e←�

)n
�

The inequality uses that the function x �→ log��s + x�/x� is convex. Equality
holds iff f�e→�/f�e←� is constant over the edges.

By the series inequality the left-hand side of (2.5) is at least

∑
ϕ∈(

sϕ

(∑
e∈ϕ fϕ�e→�∑
e∈ϕ fϕ�e←�

)n
≥
(∑
ϕ∈(

sϕ

∑
e∈ϕ fϕ�e→�∑
e∈ϕ fϕ�e←�

)n
≥
(∑

fϕ�e→�∑
fϕ�e←�

)n
�

where the sums on the right-hand side range over ϕ ∈ ( and edges e ∈ ϕ.
The first inequality follows from the convexity of x �→ xn, the second, from the
parallel inequality. ✷



386 B. VIRÁG

3. Tools for probability bounds. The tools introduced in this section
will be useful in converting the expected value bounds of the previous section
to positive probability ones.

Lemma 3.1 (Second moment method). Let W be a subset of vertices in a
weighted graph G = �V�E�w�, and let Pv, τ denote the distribution and the
lifetime of the random walk started at a vertex v ∈W and killed when it exits
W. Suppose there is a vertex v ∈W where v �→ Evτ takes its maximum. Then
for p ∈ �0�1� we have

Pv�τ > �1− p�Evτ − p� ≥ p2/2�(3.1)

Proof. The Markov property of �Xk� can be used to show that the second
moment of τ′ �= τ + 1 is bounded by twice the first moment squared,

Evτ
′2 = Ev

∑
u�w∈W
k� l≥0

1�Xk = u�1�Xl = w� ≤ 2Ev

∑
u�w∈W
k�d≥0

1�Xk = u�1�Xk+d = w�

≤ 2Evτ
′ sup
u∈W

Euτ
′ = 2�Evτ

′�2�

For any random variable Z with EZ ≥ 0 and EZ2 ≤ 1 and for 0 < p ≤ 1 we
have

β �= P�Z > −p� ≥ 1
1+ p−2

≥ p2/2�(3.2)

and with the choice Z �= �τ′ − Evτ
′�/Evτ

′, the inequality (3.1) follows. To see
(3.2), let Z− and Z+ be random variables distributed as Z given that it is at
most −p, and greater than −p, respectively. The assumptions can be written
as

�1− β�EZ− + βEZ+ ≥ 0� �1− β�EZ2
− + βEZ2

+ ≤ 1�(3.3)

If we replace Z− by −p and Z+ by its expectation γ, (3.3) still holds, and it
becomes a system of inequalities in two unknowns β� γ. Solving these for β,
one gets (3.2). ✷

The second tool, Doob transform from random walks on graphs, describes
how the law of random walk changes when we condition on simple future
events [Doob (1959)]. It is valid for a larger class of events than stated here.

Lemma 3.2 (Doob transform). Let W be a subset of vertices in a weighted
graphG = �V�E�w�, and let τ be the lifetime of the random walk �Xk� started
at o ∈W and killed when it exits W. Let A be an event that G never (not even
at the time of its death) hits another set of vertices V. Let G′ be the reweighting
of G determined by the edge weights

w′��u� v�� = w��u� v��PuAPvA�
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and let �X′
k� be random walk on G′ killed when it exits the set W′ �=W in G′.

Then �Xk� given A and �X′
k� have the same distribution. Moreover, we have

�∂W′�β ≤ �PoA�−2�∂W�β.

Proof. By summing over paths it is easily checked that �Xk� conditioned
on A is a Markov chain with stationary transition probabilities given by

P�Xk = v�Xk−1 = u�A� = Pu�X1 = v�PvA

PuA
�(3.4)

But �X′
k� has exactly these transition probabilities. If Eo is the set of vertices

adjacent to o, then w′�Eo� can be written as∑
v∼o

w��o� v��PoAPvA = PoA
∑
v∼o

w�Eo�Po�X1 = v�PvA = �PoA�2w�Eo��

The second statement follows from substituting this into (1.1) as a normalizing
constant. ✷

4. Probability bounds for lifetime and speed. We now have all the
ingredients to prove a positive probability bound on the lifetime of a walk
killed when it exits a set.

Proposition 4.1. Let W be a subset of vertices in a locally finite weighted
graph G = �V�E�w�, and let τ be the lifetime of the random walk started at
o ∈W and killed when it exits W. Let gv denote the expected number of visits
to the vertex v, and let α�x� �= �x+ 1�/�x− 1�.

(i) For all p ∈ �0�1� the event

�τ + p�/dist�o� ∂W� ≥ α
(
�8go�∂W�1�1/dist�o� ∂W�

)
�1− p��(4.1)

has probability at least p2/8.
(ii) For β > β′ > 1, there exists N�p > 0 so that for all G, W satisfying

dist�o� ∂W� > N and �∂W�1/dist�o� ∂W�
1 ≤ β′, we have

P�τ/dist�o� ∂W� ≥ α�β�� > p�(4.2)

Proof. We will define recursively a finite sequence of vertex sets �Vi�,
which exclude more and more of the atypically slow parts of the graph. Here
Bi will denote the event that the walk on G stays in the set Vi. To reduce
the analysis to finite graphs, let V0 be a finite connected subset of W so that
PB0 ≥ 3/4.

If PoBi > 0, then define recursively vi as a vertex Vi where v �→ Ev�τ�Bi�
takes its maximum. Set Vi+1 to be the (possibly empty) connected component
of o in Vi \ �vi�.

This recursive definition terminates when PoBi = 0. The events Bi are
decreasing in i, so for some m we have PoBm ≥ 1/2 > PoBm+1. Let t be some
constant, and let A denote the event �τ ≥ t�. Set Ci �= Bi \ Bi+1; roughly
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speaking, the event Ci means that the walk reaches certain slow parts of the
graph but avoids others,

PoA ≥
m∑
i=0

Po�A�Ci�PoCi

≥ inf
i=0�����m

Po�A�Ci�
m∑
i=0

PoCi ≥ inf
i=0�����m

Pvi
�A�Bi�/4�

(4.3)

For the last inequality, note that last sum equals Po�B0 \ Bm+1� ≥ 1/4, and
that

Po�A�Ci� ≥ Pvi
�A�Ci� = Pvi

�A�Bi��
Lemma 3.2 implies that the Doob transform of G�Vi corresponding to Bi

is Gi�Vi with

�∂Vi�1 ≤ �∂Vi�1�PoBi�−2 ≤ 4�β′�dist�o�∂V��(4.4)

If we have bounds Ei
oτ ≥ t in Gi, then necessarily Ei

vτ ≥ t for v = vi,
where this expected value takes its maximum. Lemma 3.1 applied to G′ gives
Pvi

�τ ≥ t�1− p��Bi� ≥ p2/2, and this together with (4.3) implies

Po�τ ≥ t�1− p�� ≥ p2/8�(4.5)

Since PBi ≥ 1/2, we have that the expected number of hits to the root given
Bi satisfies go� i ≤ 2go. Using this, (4.4), and Proposition 2.1, we get a possible
value for the bound t on Eiτ. Claim (4.1) then follows from (4.5).

For the second claim, pick β′′′ < β′′ in �β′� β�, and let N be large so that
4β′N < β′′′N. For large N, (4.4) and Proposition 2.1 then allow us to set t =
α�β′′�dist�o� ∂W� and, for a small enough p, (4.2) follows from (4.5). ✷

If the edges in ∂W have about equal distance from the root, then the above
result gives a reasonable bound on the exit speed. If this is not the case, we
need to condition on where the walk exits from W, as in the proof of the
following proposition.

Proposition 4.2. Let 1 < β′ < β, then there exist N, p > 0 so that the
following holds. Let τ be the lifetime of the random walk on a weighted graph
G started at a vertex o and killed when it exits a set W with dist�o� ∂W� ≥N.
If �∂W�β′ ≤ 1, and τ <∞ a.s., then the event

A �= �τ/�Xτ� > α�β��
has probability at least p.

Proof. Assume that �∂V�β′ ≤ 1. In order to get a bound on the exit speed,
we will have to condition on the distance of the exit point from the root o. Let

Bl �= ��Xτ� = l��
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Consider those events Bl which have relatively high probability: for γ > 1, let
L = �l� PBl > γ−l�� Decomposing A we get

PA ≥ ∑
l∈L

P�A�Bl�P�Bl� ≥ inf
l∈L

P�A�Bl�
∑
l∈L

P�Bl��(4.6)

Let Gl denote the Doob transform of G with respect to the event Bl. Given
Bl, each edge adjacent to Xτ has graph distance at most l from o, so for l ∈ L,
Lemma 3.2 implies that

γ−2l�β′�−l�∂Vl�1 ≤ γ−2l�∂Vl�β′ ≤ �∂V�β′ ≤ 1�

For a small choice of γ we have β′′ �= β′γ2 < β. Then �∂Vl�1 ≤ β′′l, and the
second part of Proposition 4�1 in Gl implies that there is N0 = N0�β′′� β�, so
that for l > N0 we have P�A�Bl� > 2p. Now note that

∑
l∈L

PBl = 1−∑
l/∈L

PBl > 1−
∞∑
l=N

γ−l�

If N > N0 is large, then this is more than 1
2 , hence by (4.6) PA > p, as

claimed. ✷

5. Rate of escape. Our main results, presented here, are relatively sim-
ple consequences of the positive probability bounds of the previous section.

Theorem 1.1. The lower speed S = lim inf �Xk�/k of the random walk on
an infinite weighted graph and the essential branching number eb satisfy the
inequality S ≤ �eb− 1�/�eb+ 1� ∨ 0 a.s.

Remark. Since eb ≤ br ≤ gr, we can replace eb in Theorem 1.1 by any of
these quantities. Note that when br ≤ 1, this statement means that S = 0. A
nice proof of br = 1 ⇒ S = 0 in trees using percolation is due to Peres; see
Häggström (1997) and Peres (1997).

Proof of Theorem 1.1. Let β > β′ > eb. Then there are sets W from
which the walk exits almost surely with arbitrary small size �∂W�β′ . In
particular, given i, we can find such a set Wi satisfying �∂Wi�β′ ≤ 1 and
dist�o� ∂Wi� > i. Let τi be the time spent in Wi before the first exit. Each
time is a first exit time for only finitely many of these sets, and therefore the
lim inf speed is bounded above by the lim inf of the speed at the times τi.

By Proposition 4.2 there is a positive p so that with α�x� �= �x+ 1�/�x− 1�
we have

P
[
τi/�Xτi

� > α�β�] > p�

and, taking limits, we get

P
[
lim sup τi/�Xτi

� ≥ α�β�] ≥ lim sup P
[
τi/�Xτi

� > α�β�] ≥ p�
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Using that S−1 ≥ lim sup τi/�Xτi
�, we get

P
[
S−1 ≥ α�β�

]
≥ p�(5.1)

Here p depends only on β and β′, but not on the graph G. Since labeling an-
other vertex v as root does not change lim supk/�Xk� nor the essential branch-
ing number, (5.1) holds for the random walk started at any vertex. Hence by
the Markov property we have

P
[
S−1 ≥ α�β��X1�X2� � � � �Xk

]
≥ p�

The σ-field generated byX1�X2� � � � �Xk increases to one containing the event
on the left. Thus the probability above converges to the indicator of this event
by Lévy’s 0–1 law. Therefore lim sup k/�Xk� ≥ α�β� a.s�, and since β > eb is
arbitrary, the theorem follows. ✷

The following proposition bounds sublinear lim inf rate of escape of the
random walks in graphs of subexponential growth. A more concrete bound is
given in Theorem 1.2.

Proposition 5.1. Suppose that G is a weighted graph with subexponential
growth, in the sense that for some increasing sequence of balls Wi about o with

radii li we have lim �∂Wi�1/li1 ≤ 1. Let r � R≥0 → R be a concave increasing
function satisfying

r�2l2i / log �∂Wi�1� ≥ li(5.2)

for all i. Then the random walk �Xk� on G satisfies lim inf �Xk�/r�k� ≤ 1.

Proof. Let ai �= �∂Wi�1. We can assume that lim ai = ∞, since otherwise
�Xk� is recurrent by standard arguments and the claim follows trivially. Thus
lim a

1/li
i = 1. Similarly, we can assume that the expected number of hits to

each vertex is finite.
We will prove that for each p ∈ �0�1� and vertex v ∈ V,

Pv �lim sup r�k�/�Xk� ≥ 1− 2p� ≥ p2/8�(5.3)

This implies the proposition by a 0–1 argument identical to the one in the
previous proof.

Let ni = dist�v� ∂Wi�. Note that li − �v� ≤ ni ≤ li + �v�. For large i, we have
v ∈ Wi; let τi denote the time the walk started at v spends in Wi before the
first exit. By Proposition 4.1, there exists a constant c so that, for all p ∈ �0�1�,
each event

τi + p ≥ α
(�cai�1/ni)ni�1− p�

has probability at least p2/8. Dividing both sides by 2l2i / log ai we get

τi + p

2l2i / log ai
≥ �cai�1/ni + 1
��cai�1/ni − 1�2li/ log ai

ni
li
�1− p��(5.4)
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Since

�cai�1/ni − 1 = exp �log�cai�/ni� − 1 ≈ log�cai�/ni ≈ log ai/li�

the right-hand side of (5.4) converges to 1−p, and therefore with probability
at least p2/8 the following hold. First,

τi ≥ 2�l2i / log ai��1− 2p�
for infinitely many i, and so, since r is increasing and concave,

r �τi� ≥ r
(
2�l2i / log ai��1− 2p�)

≥ r�0� · 2p+ r�2l2i / log ai��1− 2p� ≥ 2pr�0� + li�1− 2p�
for infinitely many i, giving 1 − 2p ≤ lim sup r�τi�/li ≤ lim sup r�k�/�Xk�.
This proves (5.3). ✷

As a corollary of this result we get the following proof.

Proof of Theorem 1.2. Set r�k� = �ck�1/�2−γ� and apply the proposition.
✷

6. Trees and harmonic measure. Let T be a weighted infinite tree sat-
isfying

w�e�/w�e∗� ≤ γ(6.1)

for some positive γ and all edges, where e∗ is the edge adjacent to e closest
to the root. A ray in T is an infinite self-avoiding path starting from the root.
The quantities br� eb are related to dimension properties of the set of rays of T
called the boundary, ∂T. For two rays ϕ�ψ, we denote the edge farthest from
the root in their intersection by ϕ ∧ ψ. For trees satisfying (6.1), the distance

distance�ϕ�ψ� = w�ϕ ∧ ψ�γ−�ϕ∧ψ�(6.2)

can be easily checked to satisfy the triangle inequality. Moreover, the boundary
∂T under this distance is compact. Also, any open or closed ball about a ray ϕ
is given by the set of all rays that eventually stay in a descendant subtree of
a vertex in ϕ. Using this fact, it is easy to check that the Hausdorff dimension
of the boundary satisfies γdimγ ∂T = br�T�.

If the random walk is transient on T, then its loop-erased path is a random
element of ∂T. The corresponding measure µ is called the harmonic measure
on ∂T. The Hausdorff dimension dimγ µ of µ is defined as the infimum of
Hausdorff dimensions of Borel sets with full µ-measure. It satisfies

γdimγ µ ≥ eb�T��(6.3)

To check this, note that if d > dimγ µ, then there is a set of full measure with
dimension less than d; there are covers where the sum of the dth powers of
the diameters is arbitrarily small, so there are sets W which the walk exits
almost surely with �∂W�γd arbitrarily small.
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Inequality (6.3) can be strict. Consider an infinite ternary tree, with binary
trees of depth h��v�� attached to each vertex for some rapidly growing function
h. Consider the vertex sets Wi whose boundary of all the leaves of the binary
trees starting at level n1� n2� � � � for some infinite sequence. For any β > 2, we
can find a sequence n1� n2� � � � so that the corresponding set has arbitrarily
small boundary size �∂W�β. Hence such a tree has 3 = γdimγ µ > eb�T� = 2.
The harmonic measure ignores detours of the walk—the essential branching
number takes them into account.

The λ-biased random walk in a tree moves to a random one of the neighbors
of its current position, with odds λ for the parent and 1 for each child. We then
have the following corollary to Theorem 1.1.

Corollary 6.1. Consider a transient λ-biased random walk on an infinite
unweighted tree T. Let d�λ� denote the dimension of the harmonic measure on
∂T with respect to this walk and the metric e−�a∧b�, and let Sλ denote the lower
speed. Then

Sλ ≤
ed�λ� − λ

ed�λ� + λ
∨ 0 a.s.

Proof. The λ-biased random walk on T has the same law as the one in
the weighted tree T′ that has the same graph structure as T, but with edge
weights w�e� = λ−�e�. Denote the harmonic measure by µ, and let γ > λ−1.
Denote dimγ, dim

′
γ Hausdorff dimension with respect to the distance (6.2) in

T and T′, respectively. Then from the definitions we get dim′
γ µ = logγ λ−1 +

dimγ µ, and that d�λ� = dime µ = ln γ dimγ µ. Combining these with (6.3),
we get eb�T′� ≤ ed�λ�/λ. The result now follows from Theorem 1.1 applied
to T′. ✷

Remark. Lyons, Pemantle and Peres (1997) show that, for transient biased
walks, ed�λ� ≥ λ, so we can remove the “∨0” from the statement of Corollary 6.1.

7. Galton–Watson trees. Let T be the family tree of a Galton–Watson
branching process with offspring distribution Z, and suppose that Z ≥ 1, that
is, each parent has at least one child, and that Z is nonconstant. Consider a
transient λ-biased random walk on T. It is known that the asymptotic speed sλ
exists and is constant a.s.

Let dim ∂T denote the Hausdorff dimension of the boundary. Hawkes (1981)
and Lyons (1990) showed that dim ∂T = log EZ a.s. The dimension d�λ� of
the harmonic measure is also known to be constant for each λ a.s.

Transience implies log λ ≤ dim ∂T [Lyons (1990)]. Lyons, Pemantle and
Peres (1996) proved that when log λ �= dim ∂T, the dimension d�λ� is strictly
less than dim ∂T if EZ log Z <∞. A conjecture of the same authors (1997)
follows from Corollary 6.1 (note the strict inequality).

Corollary 7.1. For the asymptotic speed sλ of the λ-biased random walk
on Galton–Watson trees with nonconstant offspring distribution Z satisfying
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EZ > λ we have

sλ <
EZ− λ

EZ+ λ
�

The dimension of the harmonic measure d�λ� gauges the size of the subtree
of T the random walk can potentially explore. Heuristically, as λ increases,
the random walk tends to backtrack more, and thus explores more of the tree,
so one expects that d�λ� is an increasing function of λ. Counterexamples to
this heuristic are given for general deterministic trees and for family trees
of multi-type branching processes in Lyons, Pemantle, Peres (1997). However,
for simple Galton–Watson trees it is still unknown whether d�λ� is monotone.
In the case λ = 0 the walk always moves away from the root; the resulting
harmonic measure is called visibility measure. Lyons, Pemantle and Peres
(1995) showed that d�0� = E log Z a.s.

Corollary 6.1 can be used to give a lower bound for general d�λ�. We have

1/EZ−1 − λ

1/EZ−1 + λ
< sλ ≤

ed�λ� − λ

ed�λ� + λ
�

where the first inequality is due to Chen (1997). For λ = 1, Lyons, Pemantle
and Peres (1996) proved that s1 = E��Z−1�/�Z+1�� a.s. Putting these results
together, we get the corollary.

Corollary 7.2. With α as in (2.1), the dimension d�λ� of the harmonic
measure of the biased random walk on a Galton–Watson tree satisfies

d�λ� > − log E�Z−1�� d�1� ≥ log α
(
E�α�Z�−1�) �

To summarize what is known about the dimension d�λ�, note the following
consequence of Jensen’s inequality:

− log E�Z−1� ≤ log α
(
E�α�Z�−1�) ≤ E log Z ≤ log EZ�(7.1)

The first and second expressions are the lower bounds for d�λ� for general λ
and λ = 1. The third is the exact value of d�0�, the last is the dimension of the
boundary. Our corollary is not sufficient to establish monotonicity properties;
however, it provides the first known lower bound for d�λ� [apart from the
simple inequality d�λ� ≥ log λ; see the remark to Corollary 6.1].
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