ON THE SPEED OF CONVERGENCE FOR TWO-DIMENSIONAL FIRST PASSAGE ISING PERCOLATION

By Yasunari Higuchi ${ }^{1}$ and Yu Zhang ${ }^{2}$
Kobe University and University of Colorado

Consider first passage Ising percolation on Z^{2}. Let β denote the reciprocal temperature and let h denote an external magnetic field. Denote by β_{c} the critical temperature and, for $\beta<\beta_{c}$, let

$$
h_{c}(\beta)=h_{c}=\sup \{h: \theta(\beta, h)=0\}
$$

where $\theta(\beta, h)$ is the probability that the origin is connected by an infinite $(+)$-cluster. With these definitions let us consider first passage Ising percolation on Z^{2}. Let $a_{0, n}$ denote the first passage time from $(0,0)$ to $(n, 0)$. It follows from a subadditive argument that

$$
\lim _{n \rightarrow \infty} \frac{a_{0, n}}{n}=\nu \text { a.s and in } L_{1} .
$$

It is known that $\nu>0$ if $\beta<\beta_{c}$ and $|h|<h_{c}(\beta)$. Here we will estimate the speed of the convergence,

$$
\nu n \leq E a_{0, n} \leq \nu n+C\left(n \log ^{5} n\right)^{1 / 2}
$$

for some constant C. Define $\mu_{\beta, h}$ to be the unique Gibbs measure for $\beta<$ β_{c}. We also prove that there exist $\tilde{C}, \tilde{\alpha}>0$ such that

$$
\mu_{\beta, h}\left(\left|a_{0, n}-E a_{0, n}\right| \geq x\right) \leq \tilde{C} \exp \left(-\tilde{\alpha} \frac{x^{2}}{n \log ^{4} n}\right)
$$

In addition to $a_{0, n}$, we shall also discuss other passage times.

1. Introduction to Ising first passage percolation. Consider the Z^{2} lattice and the sample space $\Omega=\{+1,-1\}^{Z^{2}}$ with spin configurations on Z^{2}. Given a sample $w \in \Omega$ and $x \in Z^{2}, w(x)$ denotes the spin value at x in the configuration w. For any set $V \subset Z^{2}$, denote by \mathscr{F}_{V} the σ-algebra generated by $\{w(x): x \in V\}$, and we simply write \mathscr{F} for $\mathscr{F}_{Z^{2}}$. For any finite V, let the Hamiltonian in V be

$$
H_{V}^{w}(\sigma)=-\frac{1}{2} \sum_{x, y \in V,\|x-y\|=1} \sigma(x) \sigma(y)-\sum_{x \in V}\left[h+\sum_{y \notin V,\|x-y\|=1} w(y)\right] \sigma(x),
$$

for $\sigma \in \Omega_{V}=\{+1,-1\}^{V}$, where h is a real number called the external field, and $\|\cdot\|$ is the L_{1} norm. We then define the finite Gibbs measure on V by

$$
q_{V, \beta, h}^{w}(\sigma)=\left[\sum_{\sigma^{\prime} \in \Omega_{V}} \exp \left\{-\beta H_{V}^{w}\left(\sigma^{\prime}\right)\right\}\right]^{-1} \exp \left\{-\beta H_{V}^{w}(\sigma)\right\}
$$

[^0]Here β is a positive number called the inverse temperature. For each $\beta>0$ and $h \in R^{1}$, a Gibbs measure is a probability measure $\mu_{\beta, h}$ on Ω in the sense of the following DLR equation:

$$
\mu_{\beta, h}\left(\cdot \mid \mathscr{F}_{V^{c}}\right)(w)=q_{V, \beta, h}^{w},
$$

where $V^{C}=Z^{2} \backslash V$. Let β_{c} be the critical value such that if $\beta<\beta_{c}$ or $h \neq 0$, the Gibbs measure is unique for (β, h). Let $E_{\beta, h}$ and $E_{V, \beta, h}^{w}$ denote the expectations with respect to $\mu_{\beta, h}$ and $q_{V, \beta, h}^{w}$, respectively. We say that a probability measure μ on (Ω, \mathscr{F}) possesses a mixing property if there exist constants $C>0$ and $\alpha>0$ such that for every pair of finite subsets V and W of Z^{2} with $V \subset W$,

$$
\begin{equation*}
\sup _{\substack{\omega \in \Omega \\ A \in \mathscr{F}_{V}}}\left|\mu(A)-\mu\left(A \mid \mathscr{F}_{W^{c}}\right)(\omega)\right| \leq C|V| \exp \left\{-\alpha d\left(V, W^{c}\right)\right\} \tag{1.1}
\end{equation*}
$$

where for $V_{1}, V_{2} \subset Z^{2}, d\left(V_{1}, V_{2}\right)$ denotes the distance between V_{1} and V_{2}; that is,

$$
d\left(V_{1}, V_{2}\right)=\inf \left\{|x-y| ; x \in V_{1}, \quad y \in V_{2}\right\}
$$

This property is often called the "weak mixing property" compared with Dobrushin-Shlosman's strong mixing property (see [13] and [14]). In this paper, we need not be so serious as to distinguish these two mixing properties, and we call the above property simply "the mixing property." It is proved [14] that when $\beta<\beta_{c}$ or $h \neq 0, \mu_{\beta, h}$ has mixing property. Furthermore, let X be a $\mathscr{\mathscr { V }}_{V}$-measurable random variable for a finite $V \subset Z^{2}$. If

$$
|X| \leq M \text { for some number } M,
$$

then it follows from (1.1) that

$$
\begin{equation*}
\left|E_{\beta, h} X-E_{W, \beta, h}^{w} X\right| \leq C M|V| \exp \left(-\alpha d\left(V, W^{c}\right)\right) \tag{1.2}
\end{equation*}
$$

since every \mathscr{T}_{V}-measurable function is a simple function if V is a finite subset of Z^{2}. Sometimes we use the mixing property (1.1) in the following form: if $V_{1}, V_{2} \subset Z^{2}$ are finite sets, $V_{1} \cap V_{2}=\varnothing$ and A, B are cylinder sets such that $A \in \mathscr{F}_{V_{1}}$ and $B \in \mathscr{F}_{V_{2}}$, then
(1.3) $\left|\mu_{\beta, h}(A \cap B)-\mu_{\beta, h}(A) \mu_{\beta, h}(B)\right| \leq C\left|V_{1}\right| \exp \left(-\alpha d\left(V_{1}, V_{2}\right)\right) \mu_{\beta, h}(B)$.

Furthermore, as in (1.2), if X is $\mathscr{F}_{V_{1}}$-measurable and if $|X| \leq M$, then

$$
\begin{equation*}
\left|E_{\beta, h}\left(X \mid \mathscr{F}_{V_{2}}\right)(w)-E_{\beta, h}(X)\right| \leq C M\left|V_{1}\right| \exp \left(-\alpha d\left(V_{1}, V_{2}\right)\right) \tag{1.4}
\end{equation*}
$$

We prove (1.4) first. Let $V=V_{1}$ and $W=\left\{x \in Z^{2} ; d\left(x, V_{1}\right)<d\left(V_{1}, V_{2}\right)\right\}$. Then $W^{C} \supset V_{2}$ and $d\left(V_{1}, W^{C}\right)=d\left(V_{1}, V_{2}\right)$. By (1.2) we have

$$
\begin{aligned}
-C M\left|V_{1}\right| \exp \left(-\alpha d\left(V_{1}, V_{2}\right)\right) & \leq E_{W, \beta, h}^{w}(X)-E_{\beta, h}(X) \\
& \leq C M\left|V_{1}\right| \exp \left(-\alpha d\left(V_{1}, V_{2}\right)\right)
\end{aligned}
$$

Note that $E_{W, \beta, h}^{w}(X)$ is equal to $E_{\beta, h}\left(X \mid \mathscr{F}_{W^{c}}\right)(w)$ by the DLR equation. Taking expectation with respect to $\mu_{\beta, h}\left(\cdot \mid \mathscr{F}_{V_{2}}\right)(w)$, we obtain

$$
\left|E_{\beta, h}\left(X \mid \mathscr{F}_{V_{2}}\right)(w)-E_{\beta, h}(X)\right| \leq C M\left|V_{1}\right| \exp \left(-\alpha d\left(V_{1}, V_{2}\right)\right)
$$

proving (1.4). Now, take 1_{A} as X in (1.4). Then we obtain that $M=1$ and

$$
\begin{align*}
-C\left|V_{1}\right| \exp \left(-\alpha d\left(V_{1}, V_{2}\right)\right) & \leq \mu_{\beta, h}\left(A \mid \mathscr{F}_{V_{2}}\right)(w)-\mu_{\beta, h}(A) \\
& \leq C\left|V_{1}\right| \exp \left(-\alpha d\left(V_{1}, V_{2}\right)\right) . \tag{1.5}
\end{align*}
$$

Integrating every side of (1.5) on the set B with respect to $\mu_{\beta, h}$, we obtain

$$
\begin{aligned}
-C\left|V_{1}\right| \exp \left(-\alpha d\left(V_{1}, V_{2}\right)\right) \mu_{\beta, h}(B) & \leq \mu_{\beta, h}(A \cap B)-\mu_{\beta, h}(A) \mu_{\beta, h}(B) \\
& \leq C\left|V_{1}\right| \exp \left(-\alpha d\left(V_{1}, V_{2}\right)\right) \mu_{\beta, h}(B)
\end{aligned}
$$

which proves (1.3).
Let \mathscr{C}_{0}^{+}(resp., \mathscr{C}_{0}^{-}) be the + cluster (resp., - cluster) in Z^{2} containing the origin and

$$
\theta(\beta, h)=\mu_{\beta, h}\left(\left|\epsilon_{0}^{+}\right|=\infty\right)
$$

Define critical value for each fixed β as

$$
h_{c}(\beta)=\sup \{h: \theta(\beta, h)=0\}
$$

This $h_{c}(\beta)$ is equal to zero when $\beta \geq \beta_{c}$ and is positive when $\beta<\beta_{c}$ (see [7]). It is proved in [8] that if $\beta<\beta_{c}$ and $|h|<h_{c}(\beta)$, then

$$
\begin{equation*}
\mu_{\beta, h}\left(\left|\mathscr{C}_{0}^{+}\right| \geq n \text { or }\left|\mathscr{C}_{0}^{-}\right| \geq n\right) \leq C_{1} \exp \left(-\alpha_{1} n\right) \tag{1.6}
\end{equation*}
$$

for some positive constants C_{1} and α_{1}.
Let us consider first passage percolation on Z^{2} (see [4] and [3]). Define $X(e)$ to be a random variable such that

$$
X(e)= \begin{cases}0, & \text { if } \sigma(u)=\sigma(v) \tag{1.7}\\ 1, & \text { if } \sigma(u) \neq \sigma(v)\end{cases}
$$

where u, v are two vertices of the bond e in Z^{2}. In this paper, we always use e to represent bonds and u, v or x to represent vertices. A path $r=$ $\left\{x_{0}, e_{1}, x_{1}, \ldots, e_{n}, x_{n}\right\}$ is an alternating sequence of vertices and bonds such that e_{i} is the bond connecting x_{i-1} and x_{i} and $\left\{x_{i}\right\}$ are vertices with $d\left(x_{i-1}, x_{i}\right)$ $=1$ for $1 \leq i \leq n$. For each path r define the passage time of r as

$$
t(r)=\sum_{e \in r} X(e)
$$

For any two sets A and B, define the first passage time from A to B by

$$
T(A, B)=\inf \{t(r): r \text { a path from } A \text { to } B\}
$$

If we focus on a special configuration w, we denote by $T(A, B)(w)$. In this paper, we would like to study the process

$$
a_{0, n}=T((0,0),(n, 0)) .
$$

It follows from a subadditive argument that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{a_{0, n}}{n}=\inf _{n} \frac{E_{\beta, h} a_{0, n}}{n}=\nu \quad \text { a.s. and in } L_{1} . \tag{1.8}
\end{equation*}
$$

It is proved in [4] that

$$
\begin{equation*}
\nu>0 \text { if } \beta<\beta_{c} \quad \text { and } \quad|h|<h_{c}(\beta) . \tag{1.9}
\end{equation*}
$$

For $|h|>h_{c}(\beta)$, it is easy to show (see [18]) that $\nu=0$ since there exists an infinite + cluster when h is positive, and an infinite - cluster when h is negative. For $h=0$ and $\beta>\beta_{c}$ with a positive or negative boundary condition, it is also easy to show that $\nu=0$ by the same reason. The challenging question is whether $\nu=0$ when $\beta=\beta_{c}$ and $h=0$. We are unable to show it. If we consider the standard i.i.d. first passage percolation (see [10]), i.e., $\{X(e)\}$ is i.i.d., similar results as (1.8) and (1.9) have been known since 1965 and 1986, respectively (see [6] and [10]). It is of historical interest to find the convergence speed of

$$
\begin{equation*}
E_{\beta, h} a_{0, n}-n \nu \tag{1.10}
\end{equation*}
$$

and the fluctuation of

$$
\begin{equation*}
a_{0, n}-E_{\beta, h} a_{0, n} \tag{1.11}
\end{equation*}
$$

For these problems, Kesten developed a remarkable martingale technique (see [11]) which gave nontrivial rates for (1.10) and (1.11). Later, Talagrand investigated (1.11) by a different way [15]. Some other studies for (1.10) can also be found in [1]. However, the methods depend heavily on the independence of $\{X(e)\}$. They do not work on our Ising passage time. Here we use another approach developed by Kesten and Zhang [12] to get the following theorems.

Theorem 1. If $\beta<\beta_{c}$ and $|h|<h_{c}(\beta)$, then there exists a constant $C_{2}>0$ such that

$$
n \nu \leq E_{\beta, h} a_{0, n} \leq n \nu+C_{2}\left(n \log ^{5} n\right)^{1 / 2}
$$

THEOREM 2. If $\beta<\beta_{c}$ and $|h|<h_{c}(\beta)$, then there exist positive constants C_{3} and α_{2} such that for all sufficiently large n and x with $1 \leq x \leq \sqrt{n}$,

$$
\mu_{\beta, h}\left(\frac{\left|a_{0, n}-E_{\beta, h} a_{0, n}\right|}{n^{1 / 2} \log ^{2} n} \geq x\right) \leq C_{3} \exp \left(-\alpha_{2} x^{2}\right)
$$

Let $Q(n)$ denote the square $[-n, n]^{2} \cap Z^{2}$, and let $\partial Q(n)$ be its inner boundary: set of points in $Q(n)$ such that there is a point y outside $Q(n)$ with $\|x-y\|=1$. Another passage time,

$$
c_{0, n}=T((0,0), \partial Q(n))
$$

has been considered in the literature (see [12] and [18]) since it is easy to show that there is a path $(0,0)$ to $\partial Q(n)$ contained in $Q(n)$ which possesses the passage time $c_{0, n}$. Here we give the following theorems to deal with $c_{0, n}$.

Theorem 3. If $\beta<\beta_{c}$ and $|h|<h_{c}(\beta)$, then there exist $C_{4}, C_{5}>0$,

$$
n \nu-C_{4}\left(n \log ^{5} n\right)^{1 / 2} \leq E_{\beta, h} c_{0, n} \leq n \nu+C_{5}\left(n \log ^{5} n\right)^{1 / 2} .
$$

THEOREM 4. If $\beta<\beta_{c}$ and $|h|<h_{c}(\beta)$, then there exist positive constants C_{6} and α_{3} such that for every $x>0$ and for sufficiently large n,

$$
\mu_{\beta, h}\left(\frac{\left|c_{0, n}-E_{\beta, h} c_{0, n}\right|}{n^{1 / 2} \log ^{2} n} \geq x\right) \leq C_{6} \exp \left(-\alpha_{3} x^{2}\right) .
$$

Corollary 5. If $\beta<\beta_{c}$ and $|h|<h_{c}(\beta)$,

$$
\lim _{n \rightarrow \infty} \frac{c_{0, n}}{n}=\nu \quad \text { a.s and in } L_{1} .
$$

REMARK 1. The method of proof also works for i.i.d. standard first passage percolation with $0-1$ valued bond on the Z^{d} lattice. In fact, we only need to change the closed circuits in the following proofs to the closed surfaces (see [9]). Then the same argument of the following proofs can be adapted to show Theorems 1-4 for i.i.d. first passage percolation on Z^{d} for $d \geq 2$. In fact, for the i.i.d. case, we could show that Theorem 2 holds without the term $\log ^{2} n$.

REMARK 2. Corollary 5 was proved in [6] for i.i.d. first passage percolation. Here we give a different proof.

Remark 3. The passage time

$$
b_{0, n}=T((0,0), \text { the right boundary of } Q(n))
$$

is also considered in the literature (see [10]). Since

$$
c_{0, n} \leq b_{0, n} \leq a_{0, n},
$$

Theorem 3 holds for $b_{0, n}$. On the other hand, we may adapt the same arguments in Section 3 to show that Theorem 4 also holds for $b_{0, n}$.

Remark 4. Since the knowledge of Ising models for $d>2$ is very limited, we do not know whether Theorems 1-4 hold for $d>2$.

Remark 5. We believe that

$$
E_{\beta, h}\left|a_{0, n}-E_{\beta, h} a_{0, n}\right|=O\left(n^{1 / 3}\right)
$$

as is conjectured for i.i.d. first passage percolation for $d=2$.
Remark 6. It might be possible to get a better estimate such as

$$
\mu_{\beta, h}\left(\frac{\left|\rho_{0, n}-E_{\beta, h} \rho_{0, n}\right|}{n^{1 / 2} \log ^{1+\delta} n} \geq x\right) \leq C^{\prime} \exp \left(-\alpha^{\prime} x^{2}\right)
$$

for some positive constants δ, C^{\prime} and α^{\prime} (or even better) where $\rho=a$ or c. However, it is more important to improve the power estimate for n.

REMARK 7. As a generalization of $a_{0, n}$, one also considers the vertex-tovertex passage time $T((0,0), n u)$ which is the passage time $(0,0)$ to the nearest vertex on Z^{2} to $n u$, for any unit vector u. If several vertices of Z^{2} minimize the distance to $n u$, then we take $T((0,0), n u)=T((0,0), A)$ with A equal to the set of vertices of Z^{2} with minimal distance to $n u$. The proof of Theorem 2 can be adapted to show

$$
\mu_{\beta, h}\left(\left|T((0,0), n u)-E_{\beta, h} T((0,0), n u)\right| \geq x \sqrt{n} \log ^{2} n\right) \leq \exp \left(-\alpha^{\prime \prime} x^{2}\right)
$$

for some positive constant $\alpha^{\prime \prime}$.
2. Concentrations at means. The bond set $\{e ; X(e)=0\}$ is divided into connected components. We call a connected component of the above set a 0 -cluster. The size $|\mathscr{\zeta}|$ of a 0 -cluster \measuredangle is the number of bonds belonging to $\mathscr{6}$. Let n be a positive integer, and we fix it. We say that a bond e in Z^{2} is open if:

1. $X(e)=0$;
2. e does not belong to a 0 -cluster with size larger than $\log ^{2} n$, otherwise we say that e is closed.

Strictly speaking, we should use the word " n-open" for this notion of open edges. But we are fixing n, and therefore when we simply say that e is "open," it always means that the above two conditions are satisfied for e. Let

$$
Z(e)= \begin{cases}0, & \text { if } e \text { is open } \\ 1, & \text { if } e \text { is closed }\end{cases}
$$

Let

$$
\widehat{T}(A, B)=\inf \{\hat{t}(r): r \text { a path from } A \text { to } B\}
$$

and

$$
\hat{a}_{0, n}=\widehat{T}((0,0),(n, 0)),
$$

where

$$
\hat{t}(r)=\sum_{e \in r} Z(e)
$$

Clearly,

$$
T(A, B) \leq \widehat{T}(A, B) \quad \text { for any } A \text { and } B
$$

By the subadditive argument, we have

$$
\lim _{n \rightarrow \infty} \frac{\hat{a}_{0, n}}{n}=\hat{\nu} \quad \text { a.s. and in } L_{1} .
$$

A path with each bond open or closed is called an open path or a closed path. Let $\mathscr{C}_{n}(x)$ be the open cluster containing x on $[-n, n]^{2}$ with free boundary condition. Namely, we delete all closed edges from $[-n, n]^{2}$ and we write $\mathscr{C}_{n}(x)$
for the connected component of the ensuing graph in $[-n, n]^{2}$, which contains the vertex x. Clearly,

$$
\begin{equation*}
\left|\mathscr{C}_{n}(x)\right| \leq \log ^{2} n \quad \text { for each } x \in Q(n) \tag{2.1}
\end{equation*}
$$

Next we introduce the duality of planar graphs. Define Z^{*} as the dual graph of Z^{2} with vertices $\{v+(1 / 2,1 / 2)\}$ for $v \in Z^{2}$ and bonds joining all pairs of vertices which are unit distance apart. For any bond set $A \subset Z^{2}$, we write $A^{*} \subset Z^{*}$ for the corresponding bonds of the dual graph of A. We declare each bond $e^{*} \subset Z^{*}$ open or closed if e is open or closed. In other words, if e^{*} crosses an open (closed) bond in Z^{2}, then e^{*} is open (closed). With this definition, we can obtain (see [5] for details) that if there exists a closed dual circuit D^{*} in $Q(n)^{*}$ surrounding some set $A \subset Q(n-1)$, then any path on Z^{2} from A to $\partial Q(n)$ has to use at least one closed bond in D. If $|h|<h_{c}(\beta)$, then there is no infinite open cluster so that there are infinitely many closed dual circuits surrounding the origin. Let

$$
\Lambda_{1}^{*}, \ldots, \Lambda_{m}^{*}, \ldots=\left\{\Lambda_{m}^{*}\right\}
$$

be a sequence of closed dual circuits with

$$
\Lambda_{i}^{*} \cap \Lambda_{j}^{*}=\varnothing
$$

such that Λ_{1}^{*} is the innermost dual closed circuit surrounding the origin, ..., Λ_{m}^{*} is the innermost one surrounding the $m-1$ th innermost one, where the innermost circuit is in the sense of the area surrounded by the circuit. Each Λ_{i}^{*} divides R^{2} into two connected parts $A\left(\Lambda_{i}^{*}\right)$ and $B\left(\Lambda_{i}^{*}\right)$, where $A\left(\Lambda_{i}^{*}\right)$ contains the origin and Λ_{i}^{*} itself, and $B\left(\Lambda_{i}^{*}\right)=R^{2} \backslash A\left(\Lambda_{i}^{*}\right)$ contains the infinite part. Then Λ_{i}^{*} has two vertex boundaries $\partial A\left(\Lambda_{i}^{*}\right)$ and $\partial B\left(\Lambda_{i}^{*}\right)$: the inside boundary and outside boundary such that for each $x \in \partial A\left(\Lambda_{i}^{*}\right)$ there is a path connecting x to the origin without using any bond of Λ_{i}, the dual set of which is Λ_{i}^{*}, and for each $y \in \partial B\left(\Lambda_{i}^{*}\right)$ there is a path connecting x to ∞ also without using any bond of Λ_{i}. It follows from a standard topological discussion (see [2]) that we have the following lemma.

Lemma 1. For each $x \in \partial A\left(\Lambda_{i}^{*}\right), i \geq 1$,

$$
\widehat{T}((0,0), x)=i-1
$$

and for each $x \in \partial B\left(\Lambda_{i}^{*}\right)$,

$$
\widehat{T}((0,0), x)=i
$$

Furthermore, we shall give the following more detailed lemma.
Lemma 2. In the event that $\Lambda_{i}^{*}=\Gamma^{*}$ for some bond set $\Gamma^{*} \subset Q(n)^{*}$,

$$
\widehat{T}((0,0), \partial Q(n))=i+\widehat{T}\left(\partial B\left(\Lambda_{i}^{*}\right), \partial Q(n)\right)
$$

Proof. Let path r realize $\widehat{T}((0,0), \partial Q(n))$ (such a path must exist since the bond times are $0-1$ valued). Then there exists a vertex x on r with $x \in$ $\partial B\left(\Gamma^{*}\right)$, and

$$
\widehat{T}((0,0), \partial Q(n))=\widehat{T}((0,0), x)+\widehat{T}(x, \partial Q(n)) \geq i+\widehat{T}\left(\partial B\left(\Gamma^{*}\right), \partial Q(n)\right)
$$

On the other hand, let path r^{\prime} realize $\widehat{T}\left(\partial B\left(\Gamma^{*}\right), \partial Q(n)\right)$ and suppose that r^{\prime} starts at $x \in \partial B\left(\Gamma^{*}\right)$. Then

$$
\widehat{T}((0,0), \partial Q(n)) \leq \widehat{T}((0,0), x)+\widehat{T}(x, \partial Q(n))=i+\widehat{T}\left(\partial B\left(\Gamma^{*}\right), \partial Q(n)\right)
$$

It follows from Proposition 2.3 in [9] and the definition of $Z(e)$ that we have the following lemma.

Lemma 3. The event $\left\{\Lambda_{i}^{*}=\Gamma^{*}\right\}$ for some fixed $\Gamma^{*} \subset Q(n)^{*}$ only depends on $w(x)$ for such x 's with $\operatorname{dist}\left(x, A\left(\Gamma^{*}\right)\right) \leq \log ^{2} n$, and the random variable $\widehat{T}\left(\Gamma^{*}, \partial Q(n)\right)$ only depends on $w(y)$ for such y^{\prime} s with $\operatorname{dist}\left(y, Q(n) \backslash A\left(\Gamma^{*}\right)\right) \leq$ $\log ^{2} n$.

It follows from Lemma 2 and the definition of $Z(e)$ again that we have the following.

Lemma 4. For each $x \in \partial A\left(\Lambda_{i}^{*}\right)$ there exists $y \in \partial B\left(\Lambda_{i-1}^{*}\right)$ such that

$$
\|x-y\| \leq \log ^{2} n
$$

For $p=1,2, \ldots$, let

$$
\mathscr{F}_{p}=\sigma \text {-field generated by } Z(e) \text { for } e \in A\left(\Lambda_{p}^{*}\right),
$$

where \mathscr{F}_{p} consists of unions of sets of the form

$$
\left\{\Lambda_{p}^{*}=\Gamma^{*},\left(Z\left(e_{1}\right), \ldots, Z\left(e_{k}\right)\right) \in B\right\}
$$

for Γ^{*} a dual circuit surrounding $(0,0)$, and $e_{1}, \ldots, e_{k} \subset A\left(\Gamma^{*}\right), B$ a k-dimensional Borel set. Here \mathscr{T}_{0} is trivial. Clearly,

$$
\mathscr{T}_{i} \subset \mathscr{F}_{i+1}
$$

Note that $Q(n) \subset A\left(\Lambda_{n+1}^{*}\right)$ and that $\widehat{T}((0,0), \partial Q(n))$ is \mathscr{F}_{n}-measurable, so that with the definition of \mathscr{F}_{n},

$$
\begin{gather*}
\left.E_{\beta, h}\left[\widehat{T}((0,0), \partial Q(n))-E_{\beta, h}(\widehat{T}((0,0), \partial Q(n)))\right] \mid \mathscr{F}_{n}\right] \\
=\widehat{T}((0,0), \partial Q(n))-E_{\beta, h}(\widehat{T}((0,0), \partial Q(n))) \tag{2.2}
\end{gather*}
$$

We first show that there exists a constant $\tilde{\alpha}>0$ such that

$$
\begin{align*}
& \mu_{\beta, h}\left(\left|\widehat{T}((0,0), \partial Q(n))-E_{\beta, h}(\widehat{T}((0,0), \partial Q(n)))\right| \geq x \sqrt{n} \log ^{2} n\right) \tag{2.3}\\
& \quad \leq 2 \exp \left(-\tilde{\alpha} x^{2}\right) .
\end{align*}
$$

To show this, we apply the Azuma-Hoeffding inequality (see [17]).

Azuma-Hoeffding lemma. Let $M=\left(M_{i}\right)_{i \geq 0}$ be a martingale defined on some probability space $\{\Omega, P\}$ with $M_{0}=0$ such that, for some positive constants $c_{i}, i \geq 1$,

$$
\left|M_{i}-M_{i-1}\right| \leq c_{i}
$$

Then for any $x>0$,

$$
P\left(\sup _{i \leq k} M_{i} \geq x\right) \leq \exp \left(-\frac{x^{2}}{2 \sum_{i=1}^{k} c_{i}^{2}}\right)
$$

Let

$$
M_{i}=E_{\beta, h}\left\{\left[\widehat{T}((0,0), \partial Q(n))-E_{\beta, h}(\widehat{T}((0,0), \partial Q(n)))\right] \mid \mathscr{F}_{i}\right\}
$$

Since \mathscr{F}_{0} is trivial, obviously $\left\{M_{i}\right\}_{i=0}^{\infty}$ is a martingale sequence with $M_{0}=0$. We now need to bound the martingale increments. Let Δ_{i} be the martingale increment,

$$
\begin{aligned}
\Delta_{i}= & M_{i}-M_{i-1} \\
= & E_{\beta, h}\left\{\widehat{T}((0,0), \partial Q(n))-E_{\beta, h}(\widehat{T}((0,0), \partial Q(n))) \mid \mathscr{F}_{i}\right\} \\
& \quad-E_{\beta, h}\left\{\widehat{T}((0,0), \partial Q(n))-E_{\beta, h}(\widehat{T}((0,0), \partial Q(n))) \mid \mathscr{F}_{i-1}\right\} \\
= & E_{\beta, h}\left\{\widehat{T}((0,0), \partial Q(n)) \mid \mathscr{F}_{i}\right\}-E_{\beta, h}\left\{\widehat{T}((0,0), \partial Q(n)) \mid \mathscr{F}_{i-1}\right\} .
\end{aligned}
$$

Let E_{i} be the event $\left\{\Lambda_{i}^{*} \subset[-n, n]^{2}\right\}$. For $w \in E_{i}^{C}=\Omega \backslash E_{i}$, there exists a path r inside Λ_{i}^{*} such that

$$
t(r)=\widehat{T}((0,0), \partial Q(n))
$$

Hence, $\widehat{T}((0,0), \partial Q(n)) I_{E_{i}^{C}}$ is \mathscr{F}_{i}-measurable so that for $w \in E_{i}^{C}$,

$$
\begin{equation*}
E_{\beta, h}\left(\widehat{T}((0,0), \partial Q(n)) \mid \mathscr{F}_{i}\right)(w)=\widehat{T}((0,0), \partial Q(n))(w) \tag{2.4}
\end{equation*}
$$

If $w \in E_{i-1}^{C}$, then $w \in E_{i}^{C}$ since

$$
\Lambda_{i-1}^{*} \subset A\left(\Lambda_{i}^{*}\right)
$$

Therefore, for $w \in E_{i-1}^{C}$ it follows from (2.4) that

$$
\begin{align*}
\Delta_{i}= & E_{\beta, h}\left(\widehat{T}((0,0), \partial Q(n)) \mid \mathscr{F}_{i}\right)(w) \tag{2.5}\\
& -E_{\beta, h}\left([\widehat{T}((0,0), \partial Q(n))] \mid \mathscr{F}_{i-1}\right)(w)=0
\end{align*}
$$

If $w \in E_{i-1} \cap E_{i}^{C}$, then we have that

$$
A\left(\Lambda_{i}^{*}(w)\right) \not \subset[-n, n]^{2} \quad \text { and } \quad A\left(\Lambda_{i-1}^{*}(w)\right) \subset[-n, n]^{2}
$$

This means that $\Lambda_{i-1}^{*}(w)$ is within distance $\log ^{2} n$ from $\Lambda_{i}^{*}(w)$ and hence $\Lambda_{i-1}^{*}(w)$ is within distance $\log ^{2} n$ from $\partial Q(n)$. By Lemma 2, it follows that if $w \in E_{i-1}$, then

$$
\widehat{T}((0,0), \partial Q(n))=i-1+\widehat{T}\left(\partial B\left(\Lambda_{i-1}^{*}\right), \partial Q(n)\right) \geq i-1
$$

In general, if $\Lambda_{i-1}^{*}(w)$ is within distance $\log ^{2} n$ from $\partial Q(n)$, then we have

$$
\widehat{T}\left(\partial B\left(\Lambda_{i-1}^{*}\right), \partial Q(n)\right) \leq \log ^{2} n
$$

Therefore we have for $w \in E_{i-1} \cap E_{i}^{C}$,

$$
\begin{equation*}
0 \leq E_{\beta, h}\left(\widehat{T}\left(\partial B\left(\Lambda_{i-1}^{*}\right), \partial Q(n)\right) \mid \mathscr{F}_{i-1}\right)(w) \leq \log ^{2} n \tag{2.6}
\end{equation*}
$$

and also

$$
\begin{align*}
i-1 & \leq E_{\beta, h}\left(\widehat{T}((0,0), \partial Q(n)) \mid \mathscr{F}_{i}\right)(w) \\
& =\widehat{T}((0,0), \partial Q(n))(w) \tag{2.7}\\
& \leq i-1+\log ^{2} n
\end{align*}
$$

Combining (2.6) with (2.7), we obtain

$$
\begin{align*}
\left|\Delta_{i}\right|=\mid & E_{\beta, h}\left(\widehat{T}((0,0), \partial Q(n)) \mid \mathscr{F}_{i-1}\right)(w) \tag{2.8}\\
& \quad-E_{\beta, h}\left(\widehat{T}((0,0), \partial Q(n)) \mid \mathscr{F}_{i}\right)(w) \mid \leq \log ^{2} n .
\end{align*}
$$

This, together with (2.5), (2.7) implies that $\left|\Delta_{i}\right| \leq \log ^{2} n$ for $w \in E_{i-1} \cap E_{i}^{C}$.
Now we focus on the case that $w \in E_{i} \cap E_{i-1}$. By Lemma 2,

$$
E_{\beta, h}\left(\widehat{T}((0,0), \partial Q(n)) \mid \mathscr{F}_{i}\right)(w)=i+E_{\beta, h}\left(\widehat{T}\left(\partial B\left(\Lambda_{i}^{*}\right), \partial Q(n)\right) \mid \mathscr{F}_{i}\right)(w) .
$$

To estimate $E_{\beta, h}\left(\widehat{T}\left(\partial B\left(\Lambda_{i}^{*}\right), \partial Q(n)\right) \mid \mathscr{F _ { i }}\right)(w)$, let $E_{i}\left(\Gamma^{*}\right)$ be the event,

$$
\left\{w: \Lambda_{i}^{*}(w)=\Gamma^{*}\right\}
$$

for some fixed dual circuit $\Gamma^{*} \subset[-n, n]^{2}$ surrounding the origin. Clearly,

$$
\bigcup_{\Gamma^{*}} E_{i}\left(\Gamma^{*}\right)=E_{i},
$$

where the union is taken over all such Γ^{*} 's. Note that $E_{i}\left(\Gamma^{*}\right)$ only depends on $\left\{Z(e) ; e \cap A\left(\Gamma^{*}\right) \neq \varnothing\right\}$. Fix a dual circuit $\Gamma^{*} \subset[-n, n]^{2}$. If $w \in E_{i}\left(\Gamma^{*}\right)$, then

$$
E_{\beta, h}\left(\widehat{T}\left(\partial B\left(\Lambda_{i}^{*}\right), \partial Q(n)\right) \mid \mathscr{F}_{i}\right)(w)=E_{\beta, h}\left(\widehat{T}\left(\partial B\left(\Gamma^{*}\right), \partial Q(n)\right) \mid \mathscr{F}_{i}\right)(w)
$$

Let

$$
\mathscr{F}\left(\Gamma^{*}\right)=\sigma\left\{Z(e): e \cap A\left(\Gamma^{*}\right) \neq \varnothing\right\} .
$$

Then it is easy to see that for $w \in E_{i}\left(\Gamma^{*}\right)$,

$$
E_{\beta, h}\left(\widehat{T}\left(\partial B\left(\Gamma^{*}\right), \partial Q(n)\right) \mid \mathscr{F}_{i}\right)(w)=E_{\beta, h}\left(\widehat{T}\left(\partial B\left(\Gamma^{*}\right), \partial Q(n)\right) \mid \mathscr{\mathscr { F }}\left(\Gamma^{*}\right)\right)(w)
$$

On $E_{i}\left(\Gamma^{*}\right)$, we can find a dual circuit κ^{*} surrounding Γ^{*} (see Figure 1) such that

$$
3 \log ^{2} n \leq d\left(\partial A\left(\kappa^{*}\right), \partial B\left(\Gamma^{*}\right)\right) \leq 4 \log ^{2} n .
$$

To show the existence of κ^{*}, we can find a dual circuit λ^{*} surrounding Γ^{*} such

FIg. 1. The dot curve is κ^{*} and the solid curve is Γ^{*}.
that

$$
3 \log ^{2} n \leq\|x-y\| \quad \text { for } x \in \partial B\left(\Gamma^{*}\right), y \in \partial A\left(\lambda^{*}\right) .
$$

Then we can shrink the area of $A\left(\lambda^{*}\right)$ to achieve the requirements of κ^{*}. In fact, for a fixed Γ^{*}, we may choose such κ^{*} by a unique way. Note that

$$
\widehat{T}\left(\partial B\left(\Gamma^{*}\right), \partial Q(n)\right)=\widehat{T}\left(\partial B\left(\Gamma^{*}\right), Z^{2} \backslash Q(n-1)\right)
$$

since $\partial Q(n)$ is a subset of $Z^{2} \backslash Q(n-1)$, and every path connecting $\partial B\left(\Gamma^{*}\right)$ with $Z^{2} \backslash Q(n-1)$ must pass one of the points in $\partial Q(n)$. Note also that

$$
\begin{align*}
\widehat{T}\left(\partial B\left(\kappa^{*}\right), Z^{2} \backslash Q(n-1)\right) & \leq \widehat{T}\left(\partial B\left(\Gamma^{*}\right), Z^{2} \backslash Q(n-1)\right) \tag{2.9}\\
& \leq \widehat{T}\left(\partial B\left(\kappa^{*}\right), Z^{2} \backslash Q(n-1)\right)+4 \log ^{2} n
\end{align*}
$$

In fact, (2.9) is clearly true if $\kappa^{*} \subset[-n, n]^{2}$. If $\kappa^{*} \not \subset[-n, n]^{2}$, then we can find a point y in $\partial A\left(\kappa^{*}\right)$ which does not belong to $Q(n-1)$. Then there is a point $x \in \partial B\left(\Gamma^{*}\right)$ such that $\|x-y\| \leq 4 \log ^{2} n$. Let r be a shortest path connecting x
with y. Then r is also a path connecting $Z^{2} \backslash Q(n-1)$ with $\partial B\left(\Gamma^{*}\right)$. Hence,

$$
\begin{equation*}
\widehat{T}\left(\partial B\left(\Gamma^{*}\right), Z^{2} \backslash Q(n-1)\right) \leq \hat{t}(r) \leq 4 \log ^{2} n \tag{2.10}
\end{equation*}
$$

Since $\partial A\left(\kappa^{*}\right) \cap Z^{2} \backslash Q(n-1) \neq \varnothing$, we have $\widehat{T}\left(\partial A\left(\kappa^{*}\right), Z^{2} \backslash Q(n-1)\right)=0$. This, together with (2.10) proves (2.9) in the case that $\kappa^{*} \not \subset[-n, n]^{2}$.

Now we want to use the mixing property (1.2). The random variable in this case is $\widehat{T}\left(\partial B\left(\kappa^{*}\right), Z^{2} \backslash Q(n-1)\right)$ which depends on the configuration in the set $V=\left\{x \in Z^{2} ; d\left(x, B\left(\kappa^{*}\right) \cap Q(n)\right) \leq \log ^{2} n\right\}$. Note that we have

$$
\begin{equation*}
0 \leq \widehat{T}\left(\partial B\left(\kappa^{*}\right), Z^{2} \backslash Q(n-1)\right) \leq \widehat{T}\left(\partial B\left(\Gamma^{*}\right), \partial Q(n)\right) \leq n \tag{2.11}
\end{equation*}
$$

Put

$$
W=\left\{x \in B\left(\Gamma^{*}\right) \cap Q(2 n) ; d\left(x, \partial B\left(\Gamma^{*}\right)\right) \geq \log ^{2} n\right\}
$$

Then we have $W \supset V, d\left(V, W^{C}\right) \geq \log ^{2} n$, and $\mathscr{F}\left(\Gamma^{*}\right) \subset \mathscr{F}_{W^{c}}$. By (1.2) and (2.11) we have for $w \in E_{i}\left(\Gamma^{*}\right)$,

$$
\begin{align*}
& \mid E_{\beta, h}\left[\widehat{T}\left(\partial B\left(\kappa^{*}\right), Z^{2} \backslash Q(n-1)\right) \mid \mathscr{F}_{W^{c}}\right](w) \\
& \quad-E_{\beta, h}\left[\widehat{T}\left(\partial B\left(\kappa^{*}\right), Z^{2} \backslash Q(n-1)\right)\right] \mid \tag{2.12}\\
& \quad \leq \text { Const. } \times n \cdot n^{2} \exp \left(-\alpha \log ^{2} n\right)=\text { Const. } \times n^{3} \exp \left(-\alpha \log ^{2} n\right)
\end{align*}
$$

Taking conditional expectation of (2.12) with respect to $\mu_{\beta, h}\left(\cdot \mid \mathscr{F}\left(\Gamma^{*}\right)\right)(w)$, we obtain

$$
\begin{align*}
& \mid E_{\beta, h}\left[\widehat{T}\left(\partial B\left(\kappa^{*}\right), Z^{2} \backslash Q(n-1)\right) \mid \mathscr{F}\left(\Gamma^{*}\right)\right](w) \\
& \quad-E_{\beta, h}\left[\widehat{T}\left(\partial B\left(\kappa^{*}\right), Z^{2} \backslash Q(n-1)\right)\right] \mid \tag{2.13}\\
& \leq \text { Const. } \times n^{3} \exp \left(-\alpha \log ^{2} n\right)
\end{align*}
$$

on $E_{i}\left(\Gamma^{*}\right)$. Therefore, it follows from (2.13) and (2.9) that for $w \in E_{i}\left(\Gamma^{*}\right)$,

$$
\begin{aligned}
& \mid E_{\beta, h}\left.\left|\widehat{T}\left(\partial B\left(\Lambda_{i}^{*}\right), \partial Q(n)\right)\right| \mathscr{F}\right](w)-E_{\beta, h}\left[\widehat{T}\left(\partial B\left(\Gamma^{*}\right), \partial Q(n)\right)\right] \mid \\
& \leq \mid \mid E_{\beta, h}\left[\widehat{T}\left(\partial B\left(\kappa^{*}\right), Z^{2} \backslash Q(n-1)\right) \mid \mathscr{T}\left(\Gamma^{*}\right)\right] \\
& \quad-E_{\beta, h}\left[\widehat{T}\left(\partial B\left(\kappa^{*}\right), Z^{2} \backslash Q(n-1)\right)\right] \mid \\
& \quad+ 8 \log ^{2} n \\
& \leq 8 \log ^{2} n+\text { Const. } \times n^{3} \exp \left(-\alpha \log ^{2} n\right) .
\end{aligned}
$$

Since the estimate (2.14) is uniform in Γ^{*} such that $E_{i}\left(\Gamma^{*}\right) \neq \varnothing$, we have

$$
\begin{align*}
& \mid E_{\beta, h}\left[\widehat{T}\left(\partial B\left(\Lambda_{i}^{*}\right), \partial Q(n)\right) \mid \mathscr{F}_{i}\right](w) \\
& \quad-\sum_{\Gamma^{*}} E_{\beta, h}\left[\widehat{T}\left(\partial B\left(\Gamma^{*}\right), \partial Q(n)\right)\right] 1_{E_{i}\left(\Gamma^{*}\right)}(w) \mid \tag{2.15}\\
& \quad \leq 8 \log ^{2} n+C n^{3} \exp \left(-\alpha \log ^{2} n\right) .
\end{align*}
$$

It follows from (2.15) that, for $w \in E_{i} \cap E_{i-1}$,

$$
\begin{aligned}
\left|\Delta_{i}(w)\right| \leq & |i-(i-1)| \\
& +\sum_{\Gamma_{1}^{*}, \Gamma_{2}^{*}}\left|E_{\beta, h}\left(\widehat{T}\left(\partial B\left(\Gamma_{1}^{*}\right), \partial Q(n)\right)\right)-E_{\beta, h}\left(\widehat{T}\left(\partial B\left(\Gamma_{2}^{*}\right), \partial Q(n)\right)\right)\right| \\
& \quad \times 1_{E_{i}\left(\Gamma_{1}^{*}\right) \cap E_{i-1}\left(\Gamma_{2}^{*}\right)}(w) \\
+ & 16 \log ^{2} n+\text { Const. } \times n^{3} \exp \left(-\alpha \log ^{2} n\right) .
\end{aligned}
$$

It follows from Lemma 4 that for $\Gamma_{1}^{*}, \Gamma_{2}^{*} \subset[-n, n]^{2}$ with $E_{i}\left(\Gamma_{1}^{*}\right) \cap E_{i-1}\left(\Gamma_{2}^{*}\right) \neq \varnothing$,

$$
\begin{aligned}
E_{\beta, h}\left(\widehat{T}\left(\partial B\left(\Gamma_{1}^{*}\right), \partial Q(n)\right)\right) & \leq E_{\beta, h}\left(\widehat{T}\left(\partial B\left(\Gamma_{2}^{*}\right), \partial Q(n)\right)\right) \\
& \leq E_{\beta, h}\left(T\left(\partial B\left(\Gamma_{1}^{*}\right), \partial Q(n)\right)\right)+\log ^{2} n,
\end{aligned}
$$

so that for $w \in E_{i} \cap E_{i-1}$,

$$
\begin{equation*}
\left|\Delta_{i}(w)\right| \leq 17 \log ^{2} n+1+\text { Const. } \times n^{3} \exp \left(-\alpha \log ^{2} n\right) \tag{2.16}
\end{equation*}
$$

It follows from (2.5), (2.8) and (2.16) that there exists C such that

$$
\begin{equation*}
\left|\Delta_{i}\right| \leq C \log ^{2} n \tag{2.17}
\end{equation*}
$$

Finally, it follows from the Azuma-Hoeffding lemma and (2.17) that

$$
\begin{aligned}
& \mu_{\beta, h}\left(\widehat{T}((0,0), \partial Q(n))-E_{\beta, h} \widehat{T}((0,0), \partial Q(n)) \geq x \sqrt{n} \log ^{2} n\right) \\
& \quad=\mu_{\beta, h}\left(M_{n} \geq x \sqrt{n} \log ^{2} n\right) \\
& \quad \leq \mu_{\beta, h}\left(\sup _{k \leq n} M_{k} \geq x \sqrt{n} \log ^{2} n\right) \\
& \quad \leq \exp \left(-\frac{1}{2}\left(x \sqrt{n} \log ^{2} n\right)^{2} / \sum_{i=1}^{n} C^{2} \log ^{4} n\right) \\
& \quad \leq \exp \left(-x^{2} / 2 C^{2}\right)
\end{aligned}
$$

Similarly, we can repeat the same argument to the martingale

$$
-M_{i}=E_{\beta, h}\left[E_{\beta, h}[\widehat{T}((0,0), \partial Q(n))]-\widehat{T}((0,0), \partial Q(n)) \mid \mathscr{F}_{i}\right]
$$

to show
$\mu_{\beta, h}\left(E_{\beta, h}[\widehat{T}((0,0), \partial Q(n))]-\widehat{T}((0,0), \partial Q(n)) \geq x \sqrt{n} \log ^{2} n\right) \leq \exp \left(-x^{2} / 2 C^{2}\right)$, proving (2.3). Now we show Theorem 4 from (2.3).

Proof of Theorem 4. First, note that it suffices to prove Theorem 4 for $x \geq 1$. If $0<x<1$, then choose C_{6} in Theorem 4 sufficiently large such that $C_{6} e^{-1} \geq 1$; then the right-hand side of the desired inequality is always greater than 1 , and Theorem 4 is trivially true.

To show Theorem 4, we need to estimate the probability

$$
\mu_{\beta, h}(\widehat{T}((0,0), \partial Q(n))-T((0,0), \partial Q(n)) \geq x \sqrt{n}) .
$$

Note that it follows from the definition of \widehat{T} and T that

$$
\widehat{T}((0,0), \partial Q(n)) \geq T((0,0), \partial Q(n))
$$

Let $E\left(v_{1}, \ldots, v_{m}\right)$ be the event

$$
\left\{\max \left\{\left|\mathscr{C}^{-}\left(v_{i}\right)\right|,\left|\mathscr{C}^{+}\left(v_{i}\right)\right|\right\} \geq \log ^{2} n \text { for } 1 \leq i \leq m\right\}
$$

Let $\left\{r_{n}\right\}$ denote the paths from $(0,0)$ to $\partial Q(n)$ with passage time $T((0,0)$, $\partial Q(n))$. If

$$
\widehat{T}((0,0), \partial Q(n))-T((0,0), \partial Q(n)) \geq x \sqrt{n}
$$

then there are at least $\lfloor x \sqrt{n}\rfloor$ vertices, denoted by $\left\{v_{1}, \ldots v_{\lfloor x \sqrt{n}\rfloor}\right\}$ in each r_{n} such that $\left|\mathscr{C}^{+}\left(v_{i}\right)\right| \geq \log ^{2} n$ or $\left|\mathscr{C}^{-}\left(v_{i}\right)\right| \geq \log ^{2} n$, where for a real number ξ, $\lfloor\xi\rfloor$ stands for the least integer not less than ξ. Then $E\left(v_{1}, \ldots, v_{m}\right)$ occurs for some $v_{1}, \ldots v_{m}$ with $\left\|v_{i}-v_{j}\right\| \geq 3 \log ^{2} n$ if $i \neq j$, and for

$$
m=\left\lfloor\frac{\lfloor x \sqrt{n}\rfloor}{9 \log ^{4} n}\right\rfloor-1
$$

This implies that

$$
\begin{align*}
& \mu_{\beta, h}(\widehat{T}((0,0), \partial Q(n))-T((0,0), \partial Q(n)) \geq x \sqrt{n}) \\
& \quad \leq \sum_{v_{1}, \ldots v_{m} \in Q(n) ;\left\|v_{i}-v_{j}\right\| \geq 3 \log ^{2} n(i \neq j)} \mu_{\beta, h}\left(E\left(v_{1}, \ldots, v_{m}\right)\right) . \tag{2.18}
\end{align*}
$$

Let us estimate the right-hand side of (2.18). We use (1.3) for $V_{1}=Q\left(\log ^{2} n\right)+$ $v_{1}, V_{2}=\cup_{2 \leq j \leq m}\left\{Q\left(\log ^{2} n\right)+v_{j}\right\}, A=E\left(v_{1}\right)$ and $B=E\left(v_{2}, \ldots, v_{m}\right)$. Then by (1.3) and (1.6) we obtain

$$
\begin{align*}
\mu_{\beta, h} & \left(E\left(v_{1}, \ldots, v_{m}\right)\right) \\
19) & \leq\left[\mu_{\beta, h}\left(E\left(v_{1}\right)\right)+C\left(2 \log ^{2} n+1\right)^{2} \exp \left(-\alpha \log ^{2} n\right)\right] \mu_{\beta, h}\left(E\left(v_{2}, \ldots, v_{m}\right)\right) \tag{2.19}\\
& \leq 9 \log ^{4} n \times\left[\exp \left(-\alpha_{1} \log ^{2} n\right)+C \exp \left(-\alpha \log ^{2} n\right)\right] \mu_{\beta, h}\left(E\left(v_{2}, \ldots, v_{m}\right)\right) .
\end{align*}
$$

If n is sufficiently large, then we can make

$$
9(2 n+1)^{2} \log ^{4} n\left[\exp \left(-\alpha_{1} \log ^{2} n\right)+C \exp \left(-\alpha \log ^{2} n\right)\right] \leq 1 / 2,
$$

where $(2 n+1)^{2}$ is the number of points in $Q(n)$. Then, summing up both sides of (2.19) over $v_{1} \in Q(n)$, we obtain for sufficiently large n,

$$
\begin{align*}
& \sum_{\begin{array}{c}
v_{1}, \ldots v_{m} \in Q(n) ; \\
v_{i}-v_{j} \| \geq 3 \log ^{2} n(i \neq j) \\
\end{array}} \mu_{\beta, h}\left(E\left(v_{1}, \ldots, v_{m}\right)\right) \tag{2.20}\\
& \leq \frac{1}{2} \sum_{\substack{v_{2}, \ldots v_{m} \in Q(n) ; \\
\left\|v_{i}-v_{j}\right\| \geq 3 \log ^{2} n(i \neq j)}} \mu_{\beta, h}\left(E\left(v_{2}, \ldots, v_{m}\right)\right) .
\end{align*}
$$

Iterating (2.20), we have

$$
\begin{equation*}
\sum_{\substack{\left.v_{1}, \ldots v_{m} \in Q(n) ; \\\left\|v_{i}-v_{j}\right\| \geq 3 \log ^{2} n\right)}} \mu_{\beta, h}\left(E\left(v_{1}, \ldots, v_{m}\right)\right) \leq\left(\frac{1}{2}\right)^{m} \leq\left(\frac{1}{2}\right)^{\lfloor x \sqrt{n}\rfloor / 9 \log ^{4} n-1} . \tag{2.21}
\end{equation*}
$$

By (2.21) and the fact that

$$
\widehat{T}((0,0), \partial Q(n))-T((0,0), \partial Q(n)) \leq n
$$

if n is sufficiently large, then taking $x=1$, we have

$$
\begin{aligned}
E(\widehat{T}((0,0), \partial Q(n)) & \leq E\left(T((0,0), \partial Q(n))+\sqrt{n}+n\left(\frac{1}{2}\right)^{\lfloor\sqrt{n}\rfloor / 9 \log ^{4} n-1}\right. \\
& \leq E c_{0, n}+2 \sqrt{n}
\end{aligned}
$$

Therefore, if we also take n large such that $\log ^{2} n>6$, we get by (2.3) and (2.21),

$$
\begin{align*}
& \mu_{\beta, h}\left(\left|c_{0, n}-E c_{0, n}\right| \geq x \sqrt{n} \log ^{2} n\right) \\
& \leq \\
&22) \mu_{\beta, h}\left(|T((0,0), \partial Q(n))-\widehat{T}((0,0), \partial Q(n))| \geq x \sqrt{n} \log ^{2} n / 3\right) \tag{2.22}\\
&+\mu_{\beta, h}\left(\left|\widehat{T}((0,0), \partial Q(n))-E_{\beta, h} \widehat{T}((0,0), \partial Q(n))\right| \geq x \sqrt{n} \log ^{2} n / 3\right) \\
& \leq \text { Const. } \times \exp \left(-\tilde{\alpha} x^{2} / 9\right)+\left(\frac{1}{2}\right)^{2 x \sqrt{n} /\left(27 \log ^{2} n\right)}
\end{align*}
$$

for some $\tilde{\alpha}>0$. Therefore, Theorem 4 follows.
Remark. Equation (2.22) proves a rather stronger statement than Theorem 4. In fact, it is easy to see that the same estimate as Theorem 4 is true if $x=O\left(\sqrt{n} / \log ^{2} n\right)$. However, the type of estimate in Theorem 4 cannot be obtained from (2.22) if $x \gg \sqrt{n} / \log ^{2} n$, since in this case, the main term is the second term in the right-hand side of (2.22). This is a kind of probability estimate of moderate deviations for $c_{0, n}-E_{\beta, h}\left(c_{0, n}\right)$.

Proof of Theorem 2. Let

$$
J=\min \left\{j:(n, 0) \in A\left(\Lambda_{j}^{*}\right)\right\}
$$

Clearly we have

$$
\begin{equation*}
A\left(\Lambda_{J}^{*}\right) \subset A\left(\Lambda_{n+1}^{*}\right) \tag{2.23}
\end{equation*}
$$

and by Lemma 2, we know that

$$
\begin{equation*}
A\left(\Lambda_{J}^{*}\right) \subset\left[-n \log ^{2} n, n \log ^{2} n\right] . \tag{2.24}
\end{equation*}
$$

LEMMA 5. There exists a path r with $t(r)=\hat{a}_{0, n}$ such that r is contained inside $A\left(\Lambda_{J}^{*}\right)$.

Proof. Let γ realize $\widehat{T}((0,0),(n, 0))$ and, for vertices a and b on r, let $r(a, b)$ denote the portion of r connecting a and b. Since there are infinitely many closed dual circuits surrounding the origin, the existence of γ can be seen from the following reason. Suppose, contrary to the lemma, that there exists a vertex x on r outside of Λ_{J}^{*} [the first dual circuit surrounding both $(0,0)$ and $(n, 0)]$. Then there exists a vertex $a \in \partial B\left(\Lambda_{J}^{*}\right)$ on $r((0,0), x)$ and vertex $b \in \partial A\left(\Lambda_{J}^{*}\right)$ on $r(x,(n, 0))$ and we have

$$
\begin{aligned}
\widehat{T}((0,0),(n, 0)) & =\hat{t}(r((0,0), x))+\hat{t}(r(x,(n, 0))) \\
& \geq \widehat{T}((0,0), a)+\widehat{T}(b,(n, 0)) \\
& =J+\widehat{T}(b,(n, 0)) \\
& >J-1+\widehat{T}(b,(n, 0)) \\
& =\widehat{T}((0,0), b)+\widehat{T}(b,(n, 0)) \geq \widehat{T}((0,0),(n, 0))
\end{aligned}
$$

a contradiction.
Let

$$
S_{i}=E_{\beta, h}\left\{\left[\hat{a}_{0, n}-E_{\beta, h}\left(\hat{a}_{0, n}\right)\right] \mid \mathscr{F}_{i}\right\}
$$

It follows from Lemma 5 and (2.23) that

$$
\begin{equation*}
\Delta_{i}=S_{i}-S_{i-1}=0 \quad \text { if } i \geq n+1 \tag{2.25}
\end{equation*}
$$

We want to use the Azuma-Hoeffding lemma again for the martingale $\left\{S_{i}\right\}_{i=0}^{\infty}$. To this end, we have to estimate $\left|\Delta_{i}\right|$ for every $i \geq 1$. [By (2.25), we only have to estimate $\left|\Delta_{i}\right|$ for $1 \leq i \leq n$.] The argument hereafter in this section is similar to that we made to obtain (2.14)-(2.17), but there are some necessary changes. Let us fix i with $1 \leq i \leq n$ arbitrarily, and let

$$
\begin{aligned}
& F_{1}=\{i<J\}=\left\{A\left(\Lambda_{i}^{*}\right) \not \ni(n, 0)\right\}, \\
& F_{2}=\{i=J\}=\left\{A\left(\Lambda_{i-1}^{*}\right) \not \ngtr(n, 0), A\left(\Lambda_{i}^{*}\right) \ni(n, 0)\right\}, \\
& F_{3}=\{i>J\}=\left\{A\left(\Lambda_{i-1}^{*}\right) \ni(n, 0)\right\} .
\end{aligned}
$$

It is clear that $F_{1}, F_{2}, F_{3} \in \mathscr{T}_{i}$ and $F_{1} \cup F_{2} \cup F_{3}=\Omega$.
If $w \in F_{3}$, then by Lemma 5 , there exists a path r in $A\left(\Lambda_{i-1}^{*}\right)$ which realizes $\widehat{T}((0,0),(n, 0))$. Therefore if $w \in F_{3}$, then

$$
S_{i-1}(w)=S_{i}(w)=\widehat{T}((0,0),(n, 0))(w)-E_{\beta, h}[\widehat{T}((0,0),(n, 0))]
$$

and $\Delta_{i}=0$.
If $w \in F_{2}$, we know that

$$
(n, 0) \in A\left(\Lambda_{i}^{*}\right) \backslash A\left(\Lambda_{i-1}^{*}\right),
$$

and by Lemma 4, the distance between Λ_{i-1}^{*} and $(n, 0)$ is not larger than $\log ^{2} n$.

Let r be a path consisting of two pieces r^{\prime} and $r^{\prime \prime}$ such that r^{\prime} connects $(n, 0)$ with some point $x \in \partial B\left(\Lambda_{i-1}^{*}\right)$ which satisfies

$$
|x-(n, 0)|=d\left((n, 0), \partial B\left(\Lambda_{i-1}^{*}\right)\right),
$$

and $r^{\prime \prime}$ realizes $\widehat{T}((0,0), y)(w)$, where y is the neighboring point of x in $\partial A\left(\Lambda_{i-1}^{*}\right)$. Then by Lemma 1 , if $w \in F_{2}$, we have

$$
i-1 \leq \widehat{T}((0,0),(n, 0)) \leq \hat{t}(r) \leq i-1+\log ^{2} n
$$

This means that both S_{i} and S_{i-1} are between $i-1$ and $i-1+\log ^{2} n$. Thus we have for $w \in F_{2}$,

$$
\left|\Delta_{i}\right|=\left|S_{i}-S_{i-1}\right| \leq \log ^{2} n .
$$

Finally, let us discuss the case that $w \in F_{1}$. For a dual circuit Γ^{*} such that $(0,0) \in A\left(\Gamma^{*}\right)$ and $(n, 0) \notin A\left(\Gamma^{*}\right)$, let

$$
E_{j}\left(\Gamma^{*}\right)=\left\{\Lambda_{j}^{*}=\Gamma^{*}\right\}
$$

for $j=i$ or $i-1$, as before. Note that $w \in E_{j}\left(\Gamma^{*}\right)$ implies that $j<J(w)$ and therefore Γ^{*} should lie inside of $\left[-n \log ^{2} n, n \log ^{2} n\right]$ by (2.24). Let κ^{*} be a dual circuit surrounding Γ^{*} such that

$$
\begin{equation*}
3 \log ^{2} n \leq d\left(\partial B\left(\Gamma^{*}\right), \partial A\left(\kappa^{*}\right)\right) \leq 4 \log ^{2} n \tag{2.26}
\end{equation*}
$$

If κ^{*} surrounds $(n, 0)$, then we argue as in the case that $w \in F_{2}$ and obtain that $\left|\Delta_{i}\right| \leq 4 \log ^{2} n$, since the distance between Λ_{j}^{*} and $(n, 0)$ does not exceed $4 \log ^{2} n$ by (2.26), and the assumption that κ^{*} surrounds ($n, 0$). So, assume that κ^{*} does not surround $(n, 0)$, that is, $(n, 0) \in B\left(\kappa^{*}\right)$. In almost the same way as in (2.14), we can show that

$$
\begin{align*}
& \left|E_{\beta, h}\left[\widehat{T}\left(\partial B\left(\Lambda_{j}^{*}\right),(n, 0)\right) \mid \mathscr{F}_{j}\right]-E_{\beta, h}\left[\widehat{T}\left(\partial B\left(\Gamma^{*}\right),(n, 0)\right)\right]\right| \\
& \quad \leq 8 \log ^{2} n+C\left((2 n+4) \log ^{2} n+1\right)^{2} n \log ^{2} n \exp \left(-\alpha \log ^{2} n\right) \tag{2.27}
\end{align*}
$$

for $w \in E_{j}\left(\Gamma^{*}\right)$. Here, the factor $\left((2 n+4) \log ^{2} n+1\right)^{2} n \log ^{2} n$ is the only change from (2.14), and this comes from the fact that $\widehat{T}\left(\partial B\left(\kappa^{*}\right),(n, 0)\right) \leq n \log ^{2} n$, (2.26) and the fact that Γ^{*} lies inside of $\left[-n \log ^{2} n, n \log ^{2} n\right]$. By (2.27), we obtain as before,

$$
\begin{aligned}
\left|\Delta_{i}(w)\right| & =\left|S_{i}(w)-S_{i-1}(w)\right| \\
& \leq 17 \log ^{2} n+1+\text { Const. } \times n^{3} \log ^{6} n \exp \left(-\alpha \log ^{2} n\right) \\
& \leq \text { Const. } \times \log ^{2} n
\end{aligned}
$$

Now we are ready to use Azuma-Hoeffding's lemma to obtain

$$
\mu_{\beta, h}\left(\frac{\left|a_{0, n}-E_{\beta, h} a_{0, n}\right|}{\sqrt{n} \log ^{2} n} \geq x\right) \leq \exp \left(-\alpha_{2}^{\prime} x^{2}\right)
$$

for some constant $\alpha_{2}^{\prime}>0$. Finally, we can use the same argument as in the proof of Theorem 4 to estimate the probability

$$
\mu_{\beta, h}\left(\hat{a}_{0, n}-a_{0, n} \geq x \sqrt{n}\right)
$$

and obtain for sufficiently large n, for any $\sqrt{n} \geq x \geq 1$,

$$
\begin{align*}
& \mu_{\beta, h}\left(\left|a_{0, n}-E_{\beta, h} a_{0, n}\right| \geq x \sqrt{n} \log ^{2} n\right) \\
& \quad \leq \text { Const. } \times \exp \left(-\alpha_{2}^{\prime} x^{2} / 9\right)+\left(\frac{1}{2}\right)^{2 x \sqrt{n} /\left(27 \log ^{2} n\right)} \tag{2.28}
\end{align*}
$$

Therefore, Theorem 2 follows.
3. Concentrations at vn. Before we prove Theorems 1 and 3, we need to show the following lemmas. Let E_{v} be the event that there exists a path r with the last vertex $v \in \partial Q(n)$ starting from $(0,0)$ such that

$$
t(r)=T((0,0), \partial Q(n))
$$

If there are many such v, we pick a v with the smallest x coordinate, then the smallest y coordinate. Clearly,

$$
\begin{equation*}
E_{\beta, h} T((0,0), \partial Q(n))=\sum_{u \in \partial Q(n)} E_{\beta, h}\left(T((0,0), \partial Q(n)) \mid E_{u}\right) \mu_{\beta, h}\left(E_{u}\right) \tag{3.1}
\end{equation*}
$$

We divide $\partial Q(n)$ into two parts:

$$
\begin{aligned}
& \partial_{1} Q(n)=\left\{u \in \partial Q(n) ; \mu_{\beta, h}\left(E_{u}\right) \geq 1 / n^{2}\right\} \\
& \partial_{2} Q(n)=\left\{u \in \partial Q(n) ; \mu_{\beta, h}\left(E_{u}\right)<1 / n^{2}\right\}
\end{aligned}
$$

Since $T((0,0), \partial Q(n)) \leq n$, and the number of points in $\partial Q(n)$ is $8 n$, we have

$$
\begin{equation*}
\sum_{u \in \partial_{2} Q(n)} E_{\beta, h}\left[T((0,0), \partial Q(n)) \mid E_{u}\right] \mu_{\beta, h}\left(E_{u}\right) \leq 8 n \cdot n \frac{1}{n^{2}}=8 \tag{3.2}
\end{equation*}
$$

So, the effect of points in $\partial_{2} Q(n)$ in (3.1) is bounded. Assume first that $u \in$ $\partial_{1} Q(n)$ is on the right boundary of $\partial Q(n)$. Let E_{u}^{\prime} be the reflected event of E_{u} with respect to the line

$$
\left\{v=\left(v^{1}, v^{2}\right) ; v^{1}=n+\left\lfloor\log ^{2} n\right\rfloor\right\}
$$

By symmetry, note that we can simply connect u and u^{\prime} by a path with length $2\left\lfloor\log ^{2} n\right\rfloor$ so that

$$
\begin{align*}
E_{\beta, h} & \left(a_{0,2 n+2\left\lfloor\log ^{2} n\right\rfloor} \mid E_{u} \cap E_{u}^{\prime}\right) \\
\leq & E_{\beta, h}\left(T((0,0), u) \mid E_{u} \cap E_{u}^{\prime}\right) \\
& +E_{\beta, h}\left(T\left(\left(2 n+2\left\lfloor\log ^{2} n\right\rfloor, 0\right), u^{\prime}\right) \mid E_{u} \cap E_{u}^{\prime}\right)+2\left\lfloor\log ^{2} n\right\rfloor \tag{3.3}\\
= & 2 E_{\beta, h}\left(T((0,0), u) \mid E_{u} \cap E_{u}^{\prime}\right)+2\left\lfloor\log ^{2} n\right\rfloor
\end{align*}
$$

Let

$$
E_{n}^{+}:=\left\{a_{0,2 n+2\left\lfloor\log ^{2} n\right\rfloor} \leq E_{\beta, h}\left(a_{0,2 n+2\left\lfloor\log ^{2} n\right\rfloor}\right)-\left(\frac{6}{\alpha_{2}} n\left\lfloor\log ^{5} n\right\rfloor\right)^{1 / 2}\right\}
$$

where α_{2} is the constant given in Theorem 2. Then we have

$$
\begin{aligned}
& E_{\beta, h}\left(a_{0,2 n+2\left\lfloor\log ^{2} n\right\rfloor} ;\left(E_{n}^{+}\right)^{C} \cap E_{u} \cap E_{u}^{\prime}\right) \\
\geq & {\left[E_{\beta, h}\left(a_{0,2 n+2\left\lfloor\log ^{2}\right\rfloor}\right)-\left(\frac{6}{\alpha_{2}} n \log ^{5} n\right)^{1 / 2}\right] \times \mu_{\beta, h}\left(\left(E_{n}^{+}\right)^{C} \cap E_{u} \cap E_{u}^{\prime}\right), }
\end{aligned}
$$

where $E_{\beta, h}(X ; A)=E_{\beta, h}\left(X 1_{A}\right)$. Dividing both sides of the above inequality by $\mu_{\beta, h}\left(E_{u} \cap E_{u}^{\prime}\right)$, we obtain

$$
E_{\beta, h}\left(a_{0,2 n+2\left\lfloor\log ^{2} n\right\rfloor} \mid E_{u} \cap E_{u}^{\prime}\right)
$$

$$
\begin{equation*}
\geq\left[E_{\beta, h}\left(a_{0,2 n+2\left\lfloor\log ^{2}\right\rfloor}\right)-\left(\frac{6}{\alpha_{2}} n \log ^{5} n\right)^{1 / 2}\right] \times\left(1-\mu_{\beta, h}\left(E_{n}^{+} \mid E_{u} \cap E_{u}^{\prime}\right)\right) \tag{3.4}
\end{equation*}
$$

Now we estimate $\mu_{\beta, h}\left(E_{n}^{+} \mid E_{u} \cap E_{u}^{\prime}\right)$ for $u \in \partial_{1} Q(n)$. We put $A=E_{u}, B=E_{u}^{\prime}$, $V_{1}=Q(n)$ and $V_{2}=Q(n)+\left(2 n+2\left\lfloor\log ^{2} n\right\rfloor, 0\right)$, and use (1.3) to obtain

$$
\begin{equation*}
\mu_{\beta, h}\left(E_{u} \cap E_{u}^{\prime}\right) \geq \mu_{\beta, h}\left(E_{u}\right) \mu_{\beta, h}\left(E_{u}^{\prime}\right)-\text { Const. } \times n^{2} \exp \left(-2 \alpha \log ^{2} n\right) \tag{3.5}
\end{equation*}
$$

By symmetry, and since $u \in \partial_{1} Q(n), \mu_{\beta, h}\left(E_{u}^{\prime}\right)=\mu_{\beta, h}\left(E_{u}\right) \geq 1 / n^{2}$. So if n is sufficiently large, then we have from (3.5),

$$
\begin{equation*}
\mu_{\beta, h}\left(E_{u} \cap E_{u}^{\prime}\right) \geq \frac{1}{2} n^{-4} \tag{3.6}
\end{equation*}
$$

On the other hand, by Theorem 2 we have

$$
\mu_{\beta, h}\left(E_{n}^{+}\right) \leq C_{3} n^{-6}
$$

Therefore it follows that

$$
\mu_{\beta, h}\left(E_{n}^{+} \mid E_{u} \cap E_{u}^{\prime}\right) \leq C_{3} n^{-2}
$$

for sufficiently large n. This means that in the right-hand side of (3.4), the term

$$
\left[E_{\beta, h}\left(a_{0,2 n+2\left\lfloor\log ^{2}\right\rfloor}\right)-\left(\frac{6}{\alpha_{2}} n \log ^{5} n\right)^{1 / 2}\right] \times \mu_{\beta, h}\left(E_{n}^{+} \mid E_{u} \cap E_{u}^{\prime}\right)
$$

goes to zero as n tends to infinity. Thus, there exists a positive constant C_{7} such that we have

$$
\begin{equation*}
E_{\beta, h}\left(a_{0,2 n+2\left\lfloor\log ^{2} n\right\rfloor}\right) \leq E_{\beta, h}\left(a_{0,2 n+2\left\lfloor\log ^{2} n\right\rfloor} \mid E_{u} \cap E_{u}^{\prime}\right)+C_{7}\left(n \log ^{5} n\right)^{1 / 2} \tag{3.7}
\end{equation*}
$$

By mixing property we have

$$
\begin{align*}
& E_{\beta, h}\left(T((0,0), u) \mid E_{u} \cap E_{u}^{\prime}\right) \tag{3.8}\\
& \quad \leq E_{\beta, h}\left(T((0,0), u) \mid E_{u}\right)+\text { Const. } \times n^{7} \exp \left(-\alpha \log ^{2} n\right)
\end{align*}
$$

To see this, first we use (1.4) for $V_{1}=Q(n), V_{2}=Q(n)+\left(2 n+2\left\lfloor\log ^{2} n\right\rfloor\right)$, $X=T((0,0), \partial Q(n)) 1_{E_{u}}$, and obtain

$$
\begin{aligned}
& E_{\beta, h}\left(T((0,0), \partial Q(n)) 1_{E_{u}} \mid \mathscr{F}_{V_{2}}\right) \leq E_{\beta, h}\left(T((0,0), \partial Q(n)) ; E_{u}\right) \\
& \quad+\text { Const. } \times n^{3} \exp \left(-\alpha \log ^{2} n\right) .
\end{aligned}
$$

Taking expectation on the set E_{u}^{\prime} with respect to $\mu_{\beta, h}$, we obtain

$$
\begin{align*}
E_{\beta, h} & \left(T((0,0), \partial Q(n)) ; E_{u} \cap E_{u}^{\prime}\right) \\
\leq & E_{\beta, h}\left(T((0,0), \partial Q(n)) 1_{E_{u}}\right) \mu_{\beta, h}\left(E_{u}^{\prime}\right)+\text { Const. } \times n^{3} \exp \left(-\alpha \log ^{2} n\right) \tag{3.9}\\
= & E_{\beta, h}\left(T((0,0), \partial Q(n)) \mid E_{u}\right) \mu_{\beta, h}\left(E_{u}\right) \mu_{\beta, h}\left(E_{u}^{\prime}\right) \\
& \quad+\text { Const. } \times n^{3} \exp \left(-\alpha \log ^{2} n\right) .
\end{align*}
$$

By (3.5) and the fact that $T((0,0), \partial Q(n)) \leq n$, the right-hand side of (3.9) is not larger than

$$
\begin{align*}
& E_{\beta, h}\left(T((0,0), \partial Q(n)) \mid E_{u}\right) \mu_{\beta, h}\left(E_{u} \cap E_{u}^{\prime}\right) \tag{3.10}\\
& \quad+\text { Const. } \times n^{3} \exp \left(-\alpha \log ^{2} n\right)
\end{align*}
$$

By (3.5), (3.9) and (3.10) it follows that

$$
\begin{aligned}
& E_{\beta, h}\left(T((0,0), \partial Q(n)) \mid E_{u} \cap E_{u}^{\prime}\right) \leq E_{\beta, h}\left(T((0,0), u) \mid E_{u}\right) \\
& \quad+\text { Const. } \times n^{7} \exp \left(-\alpha \log ^{2} n\right)
\end{aligned}
$$

which proves (3.8). Combining (3.3), (3.7) with (3.8) we have

$$
\begin{align*}
E_{\beta, h}(& \left.a_{0,2 n+2\left\lfloor\log ^{2} n\right\rfloor}\right) \\
\leq & 2 E_{\beta, h}\left(T((0,0), u) \mid E_{u}\right)+C_{7}\left(n \log ^{5} n\right)^{1 / 2}+2\left\lfloor\log ^{2} n\right\rfloor \tag{3.11}\\
& + \text { Const. } \times n^{7} \exp \left(-\alpha \log ^{2} n\right) \\
\leq & 2 E_{\beta, h}\left(T((0,0), u) \mid E_{u}\right)+C_{8}\left(n \log ^{5} n\right)^{1 / 2} .
\end{align*}
$$

for some constant $C_{8}>0$. Note that $T((0,0), u)(w)=T((0,0), \partial Q(n))(w)$ if $w \in E_{u}$, and hence

$$
\begin{equation*}
E_{\beta, h}\left(a_{0,2 n+2\left\lfloor\log ^{2} n\right\rfloor}\right) \leq 2 E_{\beta, h}\left(T((0,0), \partial Q(n)) \mid E_{u}\right)+C_{8}\left(n \log ^{5} n\right)^{1 / 2} \tag{3.12}
\end{equation*}
$$

In the case that $u \in \partial_{1} Q(n)$ is not on the right boundary of $\partial Q(n)$, we argue in a similar way as before. For example, if u is on the top side of $\partial Q(n)$, we define E_{u}^{\prime} to be the reflected event of E_{u} with respect to the line

$$
\left\{v=\left(v^{1}, v^{2}\right) ; v^{2}=n+\left\lfloor\log ^{2} n\right\rfloor\right\}
$$

Then we define

$$
E_{n}^{+}=\left\{T\left((0,0),\left(0,2 n+2\left\lfloor\log ^{2} n\right\rfloor\right)\right) \leq E_{\beta, h}\left(a_{0,2 n+2\left\lfloor\log ^{2} n\right\rfloor}\right)-\left(\frac{6}{\alpha_{2}} n \log ^{5} n\right)^{1 / 2}\right\}
$$

By the rotation invariance of $\mu_{\beta, h}, T\left((0,0),\left(0,2 n+2\left\lfloor\log ^{2} n\right\rfloor\right)\right)$ has the same distribution as $a_{0,2 n+2\left\lfloor\log ^{2} n\right\rfloor}$, and we can argue just as before to obtain (3.12). Thus, from (3.1), (3.2) and (3.12) we obtain

$$
\begin{aligned}
2 E_{\beta, h}(T((0,0), \partial Q(n)) & \geq 2 \sum_{u \in \partial_{1} Q(n)} E_{\beta, h}\left(T((0,0), \partial Q(n)) \mid E_{u}\right) \mu_{\beta, h}\left(E_{u}\right) \\
& \geq \sum_{u \in \partial_{1} Q(n)} E_{\beta, h}\left(a_{0,2 n+2\left\lfloor\log ^{2} n\right\rfloor}\right) \mu_{\beta, h}\left(E_{u}\right)-C_{8}\left(n \log ^{5} n\right)^{1 / 2} \\
& \geq E_{\beta, h}\left(a_{0,2 n+2\left\lfloor\log ^{2} n\right\rfloor}\right)-8-C_{8}\left(n \log ^{5} n\right)^{1 / 2} \\
& \geq E_{\beta, h}\left(a_{0,2 n}\right)-8-C_{8}\left(n \log ^{5} n\right)^{1 / 2}-2 \log ^{2} n .
\end{aligned}
$$

The last inequality above follows from a subadditive argument. This says that for sufficiently large n, we have

$$
\begin{equation*}
E_{\beta, h} a_{0,2 n} \leq 2 E_{\beta, h}(T((0,0), \partial Q(n)))+\text { Const. } \times\left(n \log ^{5} n\right)^{1 / 2} \tag{3.13}
\end{equation*}
$$

Note that

$$
\begin{equation*}
E_{\beta, h} c_{0, n} \leq E_{\beta, h} a_{0, n} \tag{3.14}
\end{equation*}
$$

Clearly, by (1.8), (3.13) and (3.14),

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{E_{\beta, h} c_{0, n}}{n}=\nu \tag{3.15}
\end{equation*}
$$

Let

$$
N_{n}=\min \left\{|r|: t(r)=a_{0, n}\right\}
$$

where $|r|$ stands for the length of the path r. We will show the following lemma.

Lemma 6. If $\nu>0$, there exist $C_{9}>0, C_{10}>0$ and $\alpha_{4}>0$ such that

$$
\mu_{\beta, h}\left(N_{n} \geq C_{9} n\right) \leq C_{10} \exp \left(-\alpha_{4} n\right) .
$$

Proof. Lemma 6 for i.i.d. first passage percolation is proved in [10]. Here we show it for Ising first passage percolation. For number γ and a path r, let

$$
t_{\gamma}(r)=\sum_{e \in r}[X(e)+\gamma]
$$

and

$$
T_{\gamma}(A, B)=\inf \left\{t_{\gamma}(r): r \text { a self-avoiding path from } A \text { to } B\right\}
$$

Clearly, for $\gamma>0$,

$$
a_{0, n}-\gamma N_{n} \geq T_{-\gamma}((0,0),(n, 0))
$$

We also know that

$$
a_{0, n} \leq n
$$

To show Lemma 6 we only need to show that there exists $\gamma>0$ such that

$$
\begin{equation*}
\mu_{\beta, h}\left(T_{-\gamma}((0,0),(n, 0))<0\right) \leq \text { Const. } \times \exp \left(-\alpha_{4} n\right) \tag{3.16}
\end{equation*}
$$

We use a standard Peierls argument to show (3.16). For a given positive integer k, partition the bonds of Z^{2} into some blocks

$$
\{[i k,(i+1) k) \times[j k,(j+1) k) ; i, j \in Z\}
$$

where $[i k,(i+1) k) \times[j k,(j+1) k)$ is a subset of Z^{2} which contains the vertices in $[i k,(i+1) k] \times[j k,(j+1) k]$ and the bonds in

$$
[i k,(i+1) k] \times[j k,(j+1) k] \backslash\{x=(i+1) k\} \cup\{y=(j+1) k\} .
$$

We denote $[i k,(i+1) k) \times[j k,(j+1) k)$ by $B(i, j)$. Note that two different blocks do not have an edge in common. Assume that $T_{-\gamma}((0,0),(n, 0))<0$. Then we can find a path r from $(0,0)$ to $(n, 0)$ such that $t_{-\gamma}(r)<0$. We take such a path r and fix it. Suppose that there are m blocks which are touched by the path r. Clearly,

$$
\begin{equation*}
m \geq \frac{n}{k^{2}} . \tag{3.17}
\end{equation*}
$$

We say blocks B_{1} and B_{2} are connected if B_{1} is one of eight neighbors of B_{2}. Note that these m blocks are connected so that we call these m blocks a block animal. Note also that there are at most λ^{m} block animals which contain $B(0,0)$ and consist of m blocks for some positive constant λ. For each block $B(i, j)$ which is touched by r, we consider

$$
B_{1}(i, j)=[(i-1) k,(i+2) k] \times[(j-1) k,(j+2) k] .
$$

We assume that $m>8$. Then r has to cross $B_{1}(i, j) \backslash B(i, j)$. We say that the block $B_{1}(i, j)$ is good if there exist more than one disjoint dual circuits in $B_{1}(i, j)$ surrounding $B(i, j)$, such that every edge e which crosses one of these dual circuits satisfies $X(e)=1$. We call such dual circuits dual 1-circuits. If $B_{1}(i, j)$ is not good, then we call it bad. It follows from (1.6) that for given $\varepsilon>0$ there exists k such that

$$
\begin{equation*}
\mu_{\beta, h}\left(B_{1}(0,0) \text { is good }\right) \geq 1-\varepsilon . \tag{3.18}
\end{equation*}
$$

Let us take $\gamma=1 / 9 k^{2}$. Then, since $t_{-\gamma}(r)<0$, there are at least $m / 2 \mathrm{bad}$ blocks on the block animal. For $0 \leq a, b \leq 3$, let $L_{a, b}$ denote the set of all (i, j) 's such that $(i, j)=(a, b) \bmod 4$. Therefore, if $T_{-\gamma}((0,0),(n, 0))<0$, then we can find some a and b such that there are at least $(m / 2) \times 1 / 16 \mathrm{bad}$ blocks on the block animal in $\left\{B_{1}(i, j) ;(i, j) \in L_{a, b}\right\}$. If (i, j) and (k, l) are from the same $L_{a, b}$, then $B_{1}(i, j)$ and $B_{1}(k, l)$ are squares of side length $3 k$ which are in distance not less than k. Thus, taking k sufficiently large, by (1.3) and (3.18) we can make the conditional probability as small as we want;

$$
\begin{equation*}
\mu_{\beta, h}\left(B(i, j) \text { is } \operatorname{bad} \mid \mathscr{F}_{i, j}\right) \leq 2 \varepsilon, \tag{3.19}
\end{equation*}
$$

where $\mathscr{F}_{i, j}$ is the σ-field generated by

$$
\{w(x): d(x, B(i, j)) \geq k\}
$$

It follows from (3.19) that

$$
\begin{aligned}
& \mu_{\beta, h}\left(T_{-\gamma}((0,0),(n, 0)<0)\right. \\
& \quad \leq \sum_{\substack{\text { r:block animal containing } \\
B(0,0),|\Gamma|>n / k^{2}}} \sum_{a, b=0}^{3} \mu_{\beta, h}\binom{\text { there are at least }|\Gamma| / 32 \text { bad blocks }}{\text { in } L_{a, b} \cap \Gamma} \\
& \quad \leq \sum_{m>n / k^{2}} 16 \times \lambda^{m}\binom{m}{m / 32}(2 \varepsilon)^{m / 32} \\
& \quad \leq 16 \exp \left(-\alpha_{4} n\right)
\end{aligned}
$$

by taking ε small. Lemma 6 is proved.
With Lemma 6 and the method in [16], we have the following lemma.
Lemma 7. For each $t>0$, if $\nu>0$, then there exist constants $C_{11}, C_{12}>0$ and $\alpha_{5}>0$ such that we have for sufficiently large n, $\mu_{\beta, h}\left(a_{0,4 n} \leq 4 t\right) \leq C_{11} n^{2}\left(\mu_{\beta, h}\left(a_{0,2 n} \leq 2 t+2\left\lfloor\log ^{2} n\right\rfloor\right)\right)^{1 / 2}+C_{12} \exp \left(-\alpha_{5} \log ^{2} n\right)$.

Proof. By Lemma 6, we have

$$
\mu_{\beta, h}\left(a_{0,4 n} \leq 4 t\right) \leq \mu_{\beta, h}\left(a_{0,4 n} \leq 4 t, N_{4 n}<4 C_{9} n\right)+C_{10} \exp \left(-4 \alpha_{4} n\right) .
$$

Consider a path r from $(0,0)$ to $(4 n, 0)$ with passage time $T((0,0),(4 n, 0))$ and $|r|<4 C_{9} n$. For $0 \leq i \leq 4$, consider the first (resp., last) vertex b_{i} (resp., a_{i}) on r that has first coordinate equal to in. Clearly, there exists $0 \leq i \leq 3$ such that the sum of passage time on the bonds of r between a_{i} and b_{i+1} is at most $T((0,0),(4 n, 0)) / 4$. Given two vertices $a=\left(a^{1}, a^{2}\right)$ and $b=\left(b^{1}, b^{2}\right)$, let us denote by $H_{n}(a, b, t)$ the event that there exists a path ρ from a to b with passage time at most t and $|\rho|<4 C_{9} n$, such that each vertex visited by ρ except a and b has a first coordinate larger than the first coordinate a^{1} of a and smaller than the first coordinate b^{1} of b. Then we have

$$
\mu_{\beta, h}\left(a_{0,4 n} \leq 4 t, N_{4 n}<4 C_{9} n\right) \leq \sum_{i=0}^{3} \sum_{\substack{a=\left(a^{1}, a^{2}\right), a^{1}=i n \\ b=\left(b^{1}, b^{2}\right), b^{1}=(i+1) n \\\left|a^{2}\right|,\left|b^{2}\right| \leq 4 C_{9} n}} \mu_{\beta, h}\left(H_{n}(a, b, t)\right)
$$

Therefore, we can find some a and b with $\left|a^{1}-b^{1}\right|=n$ such that

$$
\begin{equation*}
\mu_{\beta, h}\left(H_{n}(a, b, t)\right) 4\left(8 C_{9} n\right)^{2}+C_{10} \exp \left(-4 \alpha_{4} n\right) \geq \mu_{\beta, h}\left(a_{0,4 n} \leq 4 t\right) \tag{3.20}
\end{equation*}
$$

Take such a and b. Let $H=H_{n}(a, b, t)$ and H^{\prime} be its reflected event with respect to the line $\left\{v=\left(v^{1}, v^{2}\right) ; v^{1}=b^{1}+\left\lfloor\log ^{2} n\right\rfloor / 2\right\}$. Then we have $H \cap$ $H^{\prime} \subset\left\{T\left(a, a+\left(2 n+\left\lfloor\log ^{2} n\right\rfloor, 0\right)\right) \leq 2 t+\left\lfloor\log ^{2} n\right\rfloor\right\}$. Note that by definition
$H=H_{n}(a, b, t)$ is an event in the rectangle of vertical side length $4 C_{9} n$ and horizontal side length n, centered at ($a+b$)/2. By (1.3) and invariance of $\mu_{\beta, h}$ with respect to translation and reflection it follows that

$$
\begin{align*}
& \mu_{\beta, h}\left(a_{0,2 n} \leq 2 t+2\left\lfloor\log ^{2} n\right\rfloor\right) \\
& \quad \geq \mu_{\beta, h}\left(T\left((0,0),\left(2 n+\left\lfloor\log ^{2} n\right\rfloor, 0\right)\right) \leq 2 t+\left\lfloor\log ^{2} n\right\rfloor\right) \tag{3.21}\\
& \quad \geq \mu_{\beta, h}\left(H_{n}(a, b, t)\right)^{2}-C n 4 C_{9} n \exp \left(-\alpha \log ^{2} n\right) .
\end{align*}
$$

Therefore, Lemma 7 follows from (3.20) and (3.21).

Proof of Theorem 1. We follow the method in [16] to show Theorem 1. Let

$$
\xi_{n}=E_{\beta, h} a_{0, n}
$$

Let K_{0} be a sufficiently large constant, which we will specify later. We take $4 t=2 \xi_{2 n}-K_{0}\left(2 n \log ^{5}(2 n)\right)^{1 / 2}$ in Lemma 7 and obtain that

$$
\begin{aligned}
& \mu_{\beta, h}\left(a_{0,4 n} \leq 2 \xi_{2 n}-K_{0}\left(2 n \log ^{5}(2 n)\right)^{1 / 2}\right) \\
& \leq \\
& \quad C_{11} n^{2}\left[\mu_{\beta, h}\left(a_{0,2 n} \leq \xi_{2 n}-\left(K_{0} / 2\right)\left(2 n \log ^{5}(2 n)\right)^{1 / 2}+2\left\lfloor\log ^{2} n\right\rfloor\right)\right]^{1 / 2} \\
& \quad+C_{12} \exp \left(-\alpha_{5} \log ^{2} n\right)
\end{aligned}
$$

If n is large, then $2\left\lfloor\log ^{2} n\right\rfloor<\left(K_{0} / 4\right)\left(2 n \log ^{5}(2 n)\right)^{1 / 2}$, and then we apply Theorem 2 to obtain

$$
\begin{aligned}
& {\left[\mu_{\beta, h}\left(a_{0,2 n} \leq \xi_{2 n}-\left(K_{0} / 2\right)\left(2 n \log ^{5}(2 n)\right)^{1 / 2}+2\left\lfloor\log ^{2} n\right\rfloor\right)\right]^{1 / 2}} \\
& \quad \leq \text { Const. } \exp \left\{-\frac{\alpha_{2}}{2}\left(K_{0} / 4\right)^{2} \log (2 n)\right\} \\
& \quad<\text { Const. } \times n^{-4}
\end{aligned}
$$

if $K_{0} \geq 8 \sqrt{2 / \alpha_{2}}$, where α_{2} is the constant in Theorem 2. Therefore if n is sufficiently large, then

$$
\mu_{\beta, h}\left(a_{0,4 n} \leq 2 \xi_{2 n}-K_{0}\left(2 n \log ^{5}(2 n)\right)^{1 / 2}\right) \leq \text { Const. } \times n^{-2} .
$$

Since $0 \leq a_{0, n} \leq n$, it follows from this that

$$
\begin{align*}
\xi_{4 n} & \geq E_{\beta, h}\left[a_{0,4 n} ; a_{0,4 n} \geq 2 \xi_{2 n}-K_{0}\left(n \log ^{5} n\right)^{1 / 2}\right] \\
& \geq\left[2 \xi_{2 n}-K_{0}\left(n \log ^{5} n\right)^{1 / 2}\left(1-O\left(n^{-2}\right)\right)\right. \tag{3.22}\\
& =2 \xi_{2 n}-K_{0}\left(n \log ^{5} n\right)^{1 / 2}+O\left(n^{-1}\right) \\
& \geq 2 \xi_{2 n}-\left(K_{0}+1\right)\left(n \log ^{5} n\right)^{1 / 2}
\end{align*}
$$

for sufficiently large n. Let $K=K_{0}+1$, and use (3.22) for $2^{k} n$ rather than n to get

$$
\begin{equation*}
\frac{\xi_{2^{k+2} n}}{2^{k+2} n}+(K / 2)\left(\frac{\log ^{5} 2^{k+1} n}{2^{k+1} n}\right)^{1 / 2} \geq \frac{\xi_{2^{k+1} n}}{2^{k+1} n} \tag{3.23}
\end{equation*}
$$

Iterating (3.23), we get

$$
\begin{equation*}
\frac{\xi_{2 n}}{2 n} \leq \tilde{K}\left(\frac{\log ^{5}(2 n)}{2 n}\right)^{1 / 2}+\frac{\xi_{2^{k+2} n}}{2^{k+2} n} \tag{3.24}
\end{equation*}
$$

for some constant $\widetilde{K}>0$. Theorem 1 follows from (1.8) and (3.24) by letting $k \rightarrow \infty$.

Proof of Theorem 3. Theorem 3 follows from (3.13),

$$
c_{0, n} \leq a_{0, n}
$$

and Theorem 1.
Acknowledgment. The authors deeply thank the referee for careful reading of this manuscript and for numerous helpful comments. Especially, the referee gave simpler proofs for Lemmas 2 and 5, which are adopted here.

REFERENCES

[1] Alexander, K. (1993). A note on some rates of convergence in first-passage percolation. Ann Appl. Probab. 3 81-90.
[2] Chayes, J., Chayes, L. and Durrett, R. (1986). Critical behavior of two dimensional first passage time. J. Statist. Phys. 45 933-951.
[3] Chayes, L. and Winfield, C. (1993). The density of interfaces: a new first passage problem. J. Appl. Probab. 30 851-862.
[4] Fontes, L. and Newman, C. (1993). First passage percolation for random colorings of Z^{d}. Ann. Appl. Probab. 3 746-762.
[5] Grimmett, G. (1989). Percolation. Springer, New York.
[6] Hammersley, J. and Welsh, D. (1965). First-passage percolation, subadditive processes, stochastic networks and generalized renewal theory. In Bernoulli, Bayes, Laplace Ann. Volume (J. Neyman and L. M. LeCam, eds.) 61-110. Springer, Berlin.
[7] Higuchi, Y. (1993). A sharp transition for the two-dimensional Ising percolation. Probab. Theory Related Fields 97 489-514.
[8] Higuchi, Y. (1996). Mixing conditions and percolation for Ising models. In Proceedings of the Seventh Japan-Russia Symposium on Probabability Theory and Math. Statist. (S. Watanabe, M. Fuknshima, Y. Prohorov and A. N. Shiryaev, eds.) 110-121. World Scientific, Singapore.
[9] Kesten, H. (1982). Percolation Theory for Mathematicians. Birkhäuser, Boston.
[10] Kesten, H. (1986). Aspect of first passage percolation. Lecture Notes in Math. 1180 125-264. Springer, New York.
[11] Kesten, H. (1993). On the speed of convergence in first passage percolation. Ann Appl. Probab. 3 296-338.
[12] Kesten, H. and Zhang, Y. (1997). A central limit theorem for critical first passage percolation in two dimensions. Probab. Theory Related Fields 107 137-160.
[13] Martinelli, F., Olivieri, E. and Schonmann, R. (1994). For 2-D lattice spin systems weak mixing implies strong mixing. Comm. Math. Phys. 165 33-48.
[14] Schonmann, R. and Shlosman, S. B. (1995). Complete analyticity for 2D Ising model completed. Comm. Math. Phys. 170 453-482.
[15] TALAGRAND, M. (1995). Concentration of measure and isoperimetric inequalities in product spaces. Publ. I.H.E.S. 81 73-205.
[16] Rhee, W. T. (1995). On rates of convergence for common subsequences and first passage time. Ann. Appl. Probab. 5 44-48.
[17] Williams, D. (1991). Probability with Martingales. Cambridge Univ. Press.
[18] Zhang, Y. (1995). Supercritical behaviors in first passage percolation. Stochastic Process. Appl. 59 251-266.

Department of Mathematics
Department of Mathematics
Kobe University
Roкко, Kobe 657-8501
University of Colorado
JAPAN
Colorado Springs, Colorado 80933
E-mail: yzhang@vision.uccs.edu

[^0]: Received September 1997; revised August 1999.
 ${ }^{1}$ Supported in part by grant-in-aid for scientific research (09440079), ministry of education, science and culture.
 ${ }^{2}$ Supported in part by NSF Grant DMS-94-00467 and DMS-96-18128.
 AMS 1991 subject classifications. 60K35, 60F05, 83B43.
 Key words and phrases. Ising model, first passage percolation, speed of convergence.

