ON THE SPEED OF CONVERGENCE FOR TWO-DIMENSIONAL FIRST PASSAGE ISING PERCOLATION

BY YASUNARI HIGUCHI¹ AND YU ZHANG²

Kobe University and University of Colorado

Consider first passage Ising percolation on Z^2 . Let β denote the reciprocal temperature and let *h* denote an external magnetic field. Denote by β_c the critical temperature and, for $\beta < \beta_c$, let

$$h_c(\beta) = h_c = \sup\{h: \theta(\beta, h) = 0\}$$

where $\theta(\beta, h)$ is the probability that the origin is connected by an infinite (+)-cluster. With these definitions let us consider first passage Ising percolation on Z^2 . Let $a_{0,n}$ denote the first passage time from (0, 0) to (n, 0). It follows from a subadditive argument that

$$\lim_{n\to\infty}\frac{a_{0,n}}{n}=\nu \text{ a.s and in }L_1.$$

It is known that $\nu > 0$ if $\beta < \beta_c$ and $|h| < h_c(\beta)$. Here we will estimate the speed of the convergence,

$$\nu n \leq E a_0 \ _n \leq \nu n + C (n \log^5 n)^{1/2}$$

for some constant C. Define $\mu_{\beta,h}$ to be the unique Gibbs measure for $\beta < \beta_c$. We also prove that there exist $\tilde{C}, \tilde{\alpha} > 0$ such that

$$|u_{eta,h}(|a_{0,n}-Ea_{0,n}|\geq x)\leq ilde{C}\expigg(- ilde{lpha}rac{x^2}{n\log^4 n}igg).$$

In addition to $a_{0,n}$, we shall also discuss other passage times.

1. Introduction to Ising first passage percolation. Consider the Z^2 lattice and the sample space $\Omega = \{+1, -1\}^{Z^2}$ with spin configurations on Z^2 . Given a sample $w \in \Omega$ and $x \in Z^2$, w(x) denotes the spin value at x in the configuration w. For any set $V \subset Z^2$, denote by \mathscr{F}_V the σ -algebra generated by $\{w(x): x \in V\}$, and we simply write \mathscr{F} for \mathscr{F}_{Z^2} . For any finite V, let the Hamiltonian in V be

$$H_V^w(\sigma) = -\frac{1}{2} \sum_{x, y \in V, \|x-y\|=1} \sigma(x)\sigma(y) - \sum_{x \in V} \left[h + \sum_{y \notin V, \|x-y\|=1} w(y)\right]\sigma(x),$$

for $\sigma \in \Omega_V = \{+1, -1\}^V$, where *h* is a real number called the external field, and $\|\cdot\|$ is the L_1 norm. We then define the finite Gibbs measure on *V* by

$$q_{V,\beta,h}^{w}(\sigma) = \left[\sum_{\sigma' \in \Omega_{V}} \exp\{-\beta H_{V}^{w}(\sigma')\}\right]^{-1} \exp\{-\beta H_{V}^{w}(\sigma)\}$$

Received September 1997; revised August 1999.

¹Supported in part by grant-in-aid for scientific research (09440079), ministry of education, science and culture.

²Supported in part by NSF Grant DMS-94-00467 and DMS-96-18128.

AMS 1991 subject classifications. 60K35, 60F05, 83B43.

Key words and phrases. Ising model, first passage percolation, speed of convergence.

Here β is a positive number called the inverse temperature. For each $\beta > 0$ and $h \in \mathbb{R}^1$, a Gibbs measure is a probability measure $\mu_{\beta,h}$ on Ω in the sense of the following DLR equation:

$$\mu_{\beta,h}(\cdot|\mathscr{F}_{V^{C}})(w) = q^{w}_{V,\beta,h},$$

where $V^C = Z^2 \setminus V$. Let β_c be the critical value such that if $\beta < \beta_c$ or $h \neq 0$, the Gibbs measure is unique for (β, h) . Let $E_{\beta, h}$ and $E_{V, \beta, h}^w$ denote the expectations with respect to $\mu_{\beta, h}$ and $q_{V, \beta, h}^w$, respectively. We say that a probability measure μ on (Ω, \mathscr{F}) possesses a mixing property if there exist constants C > 0 and $\alpha > 0$ such that for every pair of finite subsets V and W of Z^2 with $V \subset W$,

$$(1.1) \qquad \sup_{\substack{\omega \in \Omega \\ A \in \mathscr{F}_V}} \left| \mu(A) - \mu(A \mid \mathscr{F}_{W^c})(\omega) \right| \leq C |V| \exp\{-\alpha d(V, W^c)\}.$$

where for $V_1, V_2 \subset Z^2$, $d(V_1, V_2)$ denotes the distance between V_1 and V_2 ; that is,

$$d(V_1, V_2) = \inf\{|x - y|; x \in V_1, y \in V_2\}.$$

This property is often called the "weak mixing property" compared with Dobrushin–Shlosman's strong mixing property (see [13] and [14]). In this paper, we need not be so serious as to distinguish these two mixing properties, and we call the above property simply "the mixing property." It is proved [14] that when $\beta < \beta_c$ or $h \neq 0$, $\mu_{\beta,h}$ has mixing property. Furthermore, let X be a \mathscr{F}_V -measurable random variable for a finite $V \subset Z^2$. If

$$|X| \leq M$$
 for some number M ,

then it follows from (1.1) that

(1.2)
$$\left|E_{\beta,h}X - E_{W,\beta,h}^{w}X\right| \leq CM|V|\exp(-\alpha d(V,W^{c})),$$

since every \mathscr{F}_V -measurable function is a simple function if V is a finite subset of Z^2 . Sometimes we use the mixing property (1.1) in the following form: if $V_1, V_2 \subset Z^2$ are finite sets, $V_1 \cap V_2 = \emptyset$ and A, B are cylinder sets such that $A \in \mathscr{F}_{V_1}$ and $B \in \mathscr{F}_{V_2}$, then

$$(1.3) \ \left| \mu_{\beta, h}(A \cap B) - \mu_{\beta, h}(A) \mu_{\beta, h}(B) \right| \le C |V_1| \exp(-\alpha d(V_1, V_2)) \mu_{\beta, h}(B).$$

Furthermore, as in (1.2), if X is \mathscr{F}_{V_1} -measurable and if $|X| \leq M$, then

$$(1.4) \qquad \left| E_{\beta, h}(X \mid \mathscr{F}_{V_2})(w) - E_{\beta, h}(X) \right| \le CM |V_1| \exp(-\alpha d(V_1, V_2)).$$

We prove (1.4) first. Let $V = V_1$ and $W = \{x \in Z^2; d(x, V_1) < d(V_1, V_2)\}$. Then $W^C \supset V_2$ and $d(V_1, W^C) = d(V_1, V_2)$. By (1.2) we have

$$\begin{split} -CM|V_1|\exp(-\alpha d(V_1,V_2)) &\leq E^w_{W,\,\beta,\,h}(X) - E_{\beta,\,h}(X) \\ &\leq CM|V_1|\exp(-\alpha d(V_1,V_2)). \end{split}$$

Note that $E_{W,\beta,h}^{w}(X)$ is equal to $E_{\beta,h}(X | \mathscr{F}_{W^{c}})(w)$ by the DLR equation. Taking expectation with respect to $\mu_{\beta,h}(\cdot | \mathscr{F}_{V_{2}})(w)$, we obtain

$$\left|E_{\beta,h}(X \mid \mathscr{F}_{V_2})(w) - E_{\beta,h}(X)\right| \le CM|V_1|\exp(-\alpha d(V_1, V_2)),$$

proving (1.4). Now, take 1_A as X in (1.4). Then we obtain that M = 1 and

(1.5)
$$\begin{aligned} -C|V_1|\exp(-\alpha d(V_1, V_2)) &\leq \mu_{\beta, h}(A \mid \mathscr{F}_{V_2})(w) - \mu_{\beta, h}(A) \\ &\leq C|V_1|\exp(-\alpha d(V_1, V_2)). \end{aligned}$$

Integrating every side of (1.5) on the set B with respect to $\mu_{\beta,\,h},$ we obtain

$$egin{aligned} -C|V_1| \exp(-lpha d(V_1,V_2)) \mu_{eta,\,h}(B) &\leq \mu_{eta,\,h}(A\cap B) - \mu_{eta,\,h}(A) \mu_{eta,\,h}(B) \ &\leq C|V_1| \exp(-lpha d(V_1,V_2)) \mu_{eta,\,h}(B), \end{aligned}$$

which proves (1.3).

Let $\mathscr{C}_0^+(\text{resp.},\,\mathscr{C}_0^-)$ be the + cluster (resp., - cluster) in Z^2 containing the origin and

$$\theta(\beta, h) = \mu_{\beta, h}(|\mathscr{C}_0^+| = \infty).$$

Define critical value for each fixed β as

$$h_c(\beta) = \sup\{h: \theta(\beta, h) = 0\}.$$

This $h_c(\beta)$ is equal to zero when $\beta \ge \beta_c$ and is positive when $\beta < \beta_c$ (see [7]). It is proved in [8] that if $\beta < \beta_c$ and $|h| < h_c(\beta)$, then

(1.6)
$$\mu_{\beta,h}(|\mathscr{C}_0^+| \ge n \text{ or } |\mathscr{C}_0^-| \ge n) \le C_1 \exp(-\alpha_1 n)$$

for some positive constants C_1 and α_1 .

Let us consider first passage percolation on Z^2 (see [4] and [3]). Define X(e) to be a random variable such that

(1.7)
$$X(e) = \begin{cases} 0, & \text{if } \sigma(u) = \sigma(v), \\ 1, & \text{if } \sigma(u) \neq \sigma(v), \end{cases}$$

where u, v are two vertices of the bond e in Z^2 . In this paper, we always use e to represent bonds and u, v or x to represent vertices. A path $r = \{x_0, e_1, x_1, \ldots, e_n, x_n\}$ is an alternating sequence of vertices and bonds such that e_i is the bond connecting x_{i-1} and x_i and $\{x_i\}$ are vertices with $d(x_{i-1}, x_i)$ = 1 for $1 \le i \le n$. For each path r define the passage time of r as

$$t(r) = \sum_{e \in r} X(e).$$

For any two sets A and B, define the first passage time from A to B by

$$T(A, B) = \inf\{t(r): r \text{ a path from } A \text{ to } B\}.$$

If we focus on a special configuration w, we denote by T(A, B)(w). In this paper, we would like to study the process

$$a_{0,n} = T((0,0), (n,0)).$$

It follows from a subadditive argument that

(1.8)
$$\lim_{n \to \infty} \frac{a_{0,n}}{n} = \inf_{n} \frac{E_{\beta,h} a_{0,n}}{n} = \nu \text{ a.s. and in } L_{1}.$$

It is proved in [4] that

(1.9)
$$\nu > 0 \text{ if } \beta < \beta_c \quad \text{and} \quad |h| < h_c(\beta).$$

For $|h| > h_c(\beta)$, it is easy to show (see [18]) that $\nu = 0$ since there exists an infinite + cluster when h is positive, and an infinite – cluster when h is negative. For h = 0 and $\beta > \beta_c$ with a positive or negative boundary condition, it is also easy to show that $\nu = 0$ by the same reason. The challenging question is whether $\nu = 0$ when $\beta = \beta_c$ and h = 0. We are unable to show it. If we consider the standard i.i.d. first passage percolation (see [10]), i.e., $\{X(e)\}$ is i.i.d., similar results as (1.8) and (1.9) have been known since 1965 and 1986, respectively (see [6] and [10]). It is of historical interest to find the convergence speed of

(1.10)
$$E_{\beta,h}a_{0,n} - n\nu$$

and the fluctuation of

$$(1.11) a_{0,n} - E_{\beta,h} a_{0,n}$$

For these problems, Kesten developed a remarkable martingale technique (see [11]) which gave nontrivial rates for (1.10) and (1.11). Later, Talagrand investigated (1.11) by a different way [15]. Some other studies for (1.10) can also be found in [1]. However, the methods depend heavily on the independence of $\{X(e)\}$. They do not work on our Ising passage time. Here we use another approach developed by Kesten and Zhang [12] to get the following theorems.

THEOREM 1. If $\beta < \beta_c$ and $|h| < h_c(\beta)$, then there exists a constant $C_2 > 0$ such that

$$n\nu \leq E_{\beta,h}a_{0,n} \leq n\nu + C_2(n\log^5 n)^{1/2}.$$

THEOREM 2. If $\beta < \beta_c$ and $|h| < h_c(\beta)$, then there exist positive constants C_3 and α_2 such that for all sufficiently large n and x with $1 \le x \le \sqrt{n}$,

$$\mu_{eta,\,h}igg(rac{|a_{0,\,n}-E_{eta,\,h}a_{0,\,n}|}{n^{1/2}\log^2 n}\geq xigg)\leq C_3\exp(-lpha_2x^2).$$

Let Q(n) denote the square $[-n, n]^2 \cap Z^2$, and let $\partial Q(n)$ be its inner boundary: set of points in Q(n) such that there is a point y outside Q(n) with ||x - y|| = 1. Another passage time,

$$c_{0,n} = T((0,0), \partial Q(n)),$$

has been considered in the literature (see [12] and [18]) since it is easy to show that there is a path (0,0) to $\partial Q(n)$ contained in Q(n) which possesses the passage time $c_{0,n}$. Here we give the following theorems to deal with $c_{0,n}$.

THEOREM 3. If $\beta < \beta_c$ and $|h| < h_c(\beta)$, then there exist $C_4, C_5 > 0$,

 $n\nu - C_4 (n\log^5 n)^{1/2} \leq E_{\beta,\,h} c_{0,\,n} \leq n\nu + C_5 (n\log^5 n)^{1/2}.$

THEOREM 4. If $\beta < \beta_c$ and $|h| < h_c(\beta)$, then there exist positive constants C_6 and α_3 such that for every x > 0 and for sufficiently large n,

$$\mu_{\beta, h} \bigg(\frac{|c_{0, n} - E_{\beta, h} c_{0, n}|}{n^{1/2} \log^2 n} \ge x \bigg) \le C_6 \exp(-\alpha_3 x^2).$$

COROLLARY 5. If $\beta < \beta_c$ and $|h| < h_c(\beta)$,

$$\lim_{n\to\infty}\frac{c_{0,n}}{n}=\nu \quad a.s \ and \ in \ L_1.$$

REMARK 1. The method of proof also works for i.i.d. standard first passage percolation with 0–1 valued bond on the Z^d lattice. In fact, we only need to change the closed circuits in the following proofs to the closed surfaces (see [9]). Then the same argument of the following proofs can be adapted to show Theorems 1–4 for i.i.d. first passage percolation on Z^d for $d \ge 2$. In fact, for the i.i.d. case, we could show that Theorem 2 holds without the term $\log^2 n$.

REMARK 2. Corollary 5 was proved in [6] for i.i.d. first passage percolation. Here we give a different proof.

REMARK 3. The passage time

 $b_{0,n} = T((0,0))$, the right boundary of Q(n))

is also considered in the literature (see [10]). Since

$$c_{0,n} \leq b_{0,n} \leq a_{0,n},$$

Theorem 3 holds for $b_{0,n}$. On the other hand, we may adapt the same arguments in Section 3 to show that Theorem 4 also holds for $b_{0,n}$.

REMARK 4. Since the knowledge of Ising models for d > 2 is very limited, we do not know whether Theorems 1–4 hold for d > 2.

REMARK 5. We believe that

$$E_{eta,\,h}|a_{0,\,n}-E_{eta,\,h}a_{0,\,n}|=O(n^{1/3})$$

as is conjectured for i.i.d. first passage percolation for d = 2.

REMARK 6. It might be possible to get a better estimate such as

$$\mu_{\beta, h} \bigg(\frac{|\rho_{0, n} - E_{\beta, h} \rho_{0, n}|}{n^{1/2} \log^{1+\delta} n} \ge x \bigg) \le C' \exp(-\alpha' x^2)$$

for some positive constants δ , C' and α' (or even better) where $\rho = a$ or c. However, it is more important to improve the power estimate for n. REMARK 7. As a generalization of $a_{0,n}$, one also considers the vertex-tovertex passage time T((0,0), nu) which is the passage time (0,0) to the nearest vertex on Z^2 to nu, for any unit vector u. If several vertices of Z^2 minimize the distance to nu, then we take T((0,0), nu) = T((0,0), A) with A equal to the set of vertices of Z^2 with minimal distance to nu. The proof of Theorem 2 can be adapted to show

$$\mu_{\beta,h}(|T((0,0),nu) - E_{\beta,h}T((0,0),nu)| \ge x\sqrt{n}\log^2 n) \le \exp(-\alpha''x^2)$$

for some positive constant α'' .

2. Concentrations at means. The bond set $\{e; X(e) = 0\}$ is divided into connected components. We call a connected component of the above set a 0-cluster. The size $|\mathscr{C}|$ of a 0-cluster \mathscr{C} is the number of bonds belonging to \mathscr{C} . Let *n* be a positive integer, and we fix it. We say that a bond *e* in Z^2 is open if:

1. X(e) = 0;

2. *e* does not belong to a 0-cluster with size larger than $\log^2 n$, otherwise we say that *e* is closed.

Strictly speaking, we should use the word "*n*-open" for this notion of open edges. But we are fixing n, and therefore when we simply say that e is "open," it always means that the above two conditions are satisfied for e. Let

$$Z(e) = \begin{cases} 0, & \text{if } e \text{ is open,} \\ 1, & \text{if } e \text{ is closed.} \end{cases}$$

Let

$$T(A, B) = \inf{\{\hat{t}(r): r \text{ a path from } A \text{ to } B\}}$$

and

$$\hat{a}_{0,n} = \widehat{T}((0,0), (n,0)),$$

where

$$\hat{t}(r) = \sum_{e \in r} Z(e).$$

Clearly,

 $T(A, B) \leq \widehat{T}(A, B)$ for any A and B.

By the subadditive argument, we have

$$\lim_{n \to \infty} rac{\hat{a}_{0,n}}{n} = \hat{
u}$$
 a.s. and in L_1 .

A path with each bond open or closed is called an open path or a closed path. Let $\mathscr{C}_n(x)$ be the open cluster containing x on $[-n, n]^2$ with free boundary condition. Namely, we delete all closed edges from $[-n, n]^2$ and we write $\mathscr{C}_n(x)$ for the connected component of the ensuing graph in $[-n, n]^2$, which contains the vertex *x*. Clearly,

(2.1)
$$|\mathscr{C}_n(x)| \le \log^2 n \text{ for each } x \in Q(n).$$

Next we introduce the duality of planar graphs. Define Z^* as the dual graph of Z^2 with vertices $\{v + (1/2, 1/2)\}$ for $v \in Z^2$ and bonds joining all pairs of vertices which are unit distance apart. For any bond set $A \subset Z^2$, we write $A^* \subset Z^*$ for the corresponding bonds of the dual graph of A. We declare each bond $e^* \subset Z^*$ open or closed if e is open or closed. In other words, if e^* crosses an open (closed) bond in Z^2 , then e^* is open (closed). With this definition, we can obtain (see [5] for details) that if there exists a closed dual circuit D^* in $Q(n)^*$ surrounding some set $A \subset Q(n-1)$, then any path on Z^2 from A to $\partial Q(n)$ has to use at least one closed bond in D. If $|h| < h_c(\beta)$, then there is no infinite open cluster so that there are infinitely many closed dual circuits surrounding the origin. Let

$$\Lambda_1^*,\ldots,\Lambda_m^*,\ldots=\{\Lambda_m^*\}.$$

be a sequence of closed dual circuits with

$$\Lambda_i^* \cap \Lambda_i^* = \mathcal{O},$$

such that Λ_1^* is the innermost dual closed circuit surrounding the origin, ..., Λ_m^* is the innermost one surrounding the m – 1th innermost one, where the innermost circuit is in the sense of the area surrounded by the circuit. Each Λ_i^* divides R^2 into two connected parts $A(\Lambda_i^*)$ and $B(\Lambda_i^*)$, where $A(\Lambda_i^*)$ contains the origin and Λ_i^* itself, and $B(\Lambda_i^*) = R^2 \setminus A(\Lambda_i^*)$ contains the infinite part. Then Λ_i^* has two vertex boundaries $\partial A(\Lambda_i^*)$ and $\partial B(\Lambda_i^*)$: the inside boundary and outside boundary such that for each $x \in \partial A(\Lambda_i^*)$ there is a path connecting x to the origin without using any bond of Λ_i , the dual set of which is Λ_i^* , and for each $y \in \partial B(\Lambda_i^*)$ there is a path connecting x to ∞ also without using any bond of Λ_i . It follows from a standard topological discussion (see [2]) that we have the following lemma.

LEMMA 1. For each $x \in \partial A(\Lambda_i^*)$, $i \geq 1$,

$$T((0,0), x) = i - 1,$$

and for each $x \in \partial B(\Lambda_i^*)$,

$$T((0,0),x) = i.$$

Furthermore, we shall give the following more detailed lemma.

LEMMA 2. In the event that $\Lambda_i^* = \Gamma^*$ for some bond set $\Gamma^* \subset Q(n)^*$,

$$\widehat{T}((0,0), \partial Q(n)) = i + \widehat{T}(\partial B(\Lambda_i^*), \partial Q(n)).$$

PROOF. Let path r realize $\widehat{T}((0,0), \partial Q(n))$ (such a path must exist since the bond times are 0-1 valued). Then there exists a vertex x on r with $x \in \partial B(\Gamma^*)$, and

$$\widehat{T}((0,0),\partial Q(n)) = \widehat{T}((0,0),x) + \widehat{T}(x,\partial Q(n)) \ge i + \widehat{T}(\partial B(\Gamma^*),\partial Q(n)).$$

On the other hand, let path r' realize $\widehat{T}(\partial B(\Gamma^*), \partial Q(n))$ and suppose that r' starts at $x \in \partial B(\Gamma^*)$. Then

$$\widehat{T}((0,0),\partial Q(n)) \leq \widehat{T}((0,0),x) + \widehat{T}(x,\partial Q(n)) = i + \widehat{T}(\partial B(\Gamma^*),\partial Q(n)).$$

It follows from Proposition 2.3 in [9] and the definition of Z(e) that we have the following lemma.

LEMMA 3. The event $\{\Lambda_i^* = \Gamma^*\}$ for some fixed $\Gamma^* \subset Q(n)^*$ only depends on w(x) for such x's with dist $(x, A(\Gamma^*)) \leq \log^2 n$, and the random variable $\widehat{T}(\Gamma^*, \partial Q(n))$ only depends on w(y) for such y's with dist $(y, Q(n) \setminus A(\Gamma^*)) \leq \log^2 n$.

It follows from Lemma 2 and the definition of Z(e) again that we have the following.

LEMMA 4. For each $x \in \partial A(\Lambda_i^*)$ there exists $y \in \partial B(\Lambda_{i-1}^*)$ such that $\|x - y\| \leq \log^2 n.$

For p = 1, 2, ..., let

$$\mathscr{F}_p = \sigma$$
-field generated by $Z(e)$ for $e \in A(\Lambda_p^*)$,

where \mathscr{F}_p consists of unions of sets of the form

$$\{\Lambda_p^* = \Gamma^*, (Z(e_1), \dots, Z(e_k)) \in B\}$$

for Γ^* a dual circuit surrounding (0, 0), and $e_1, \ldots, e_k \subset A(\Gamma^*)$, B a k-dimensional Borel set. Here \mathscr{F}_0 is trivial. Clearly,

$$\mathscr{F}_i \subset \mathscr{F}_{i+1}.$$

Note that $Q(n) \subset A(\Lambda_{n+1}^*)$ and that $\widehat{T}((0,0), \partial Q(n))$ is \mathscr{F}_n -measurable, so that with the definition of \mathscr{F}_n ,

(2.2)
$$E_{\beta,h}[\widehat{T}((0,0),\partial Q(n)) - E_{\beta,h}(\widehat{T}((0,0),\partial Q(n)))]|\mathscr{F}_{n}] = \widehat{T}((0,0),\partial Q(n)) - E_{\beta,h}(\widehat{T}((0,0),\partial Q(n))).$$

We first show that there exists a constant $\tilde{\alpha} > 0$ such that

(2.3)
$$\begin{aligned} \mu_{\beta,h}\big(\big|\widehat{T}((0,0),\partial Q(n)) - E_{\beta,h}(\widehat{T}((0,0),\partial Q(n)))\big| \geq x\sqrt{n}\log^2 n\big) \\ \leq 2\exp(-\tilde{\alpha}x^2). \end{aligned}$$

To show this, we apply the Azuma–Hoeffding inequality (see [17]).

AZUMA-HOEFFDING LEMMA. Let $M = (M_i)_{i\geq 0}$ be a martingale defined on some probability space $\{\Omega, P\}$ with $M_0 = 0$ such that, for some positive constants c_i , $i \geq 1$,

$$|M_i - M_{i-1}| \le c_i.$$

Then for any x > 0,

$$P(\sup_{i\leq k} M_i\geq x)\leq \expigg(-rac{x^2}{2\sum_{i=1}^k c_i^2}igg)$$

Let

$$M_i = E_{\beta,h}\{[\widehat{T}((0,0),\partial Q(n)) - E_{\beta,h}(\widehat{T}((0,0),\partial Q(n)))] \mid \mathscr{F}_i\}.$$

Since \mathscr{F}_0 is trivial, obviously $\{M_i\}_{i=0}^{\infty}$ is a martingale sequence with $M_0 = 0$. We now need to bound the martingale increments. Let Δ_i be the martingale increment,

$$\begin{split} \Delta_{i} &= M_{i} - M_{i-1} \\ &= E_{\beta, h} \{ \widehat{T}((0, 0), \partial Q(n)) - E_{\beta, h}(\widehat{T}((0, 0), \partial Q(n))) \mid \mathscr{F}_{i} \} \\ &\quad - E_{\beta, h} \{ \widehat{T}((0, 0), \partial Q(n)) - E_{\beta, h}(\widehat{T}((0, 0), \partial Q(n))) \mid \mathscr{F}_{i-1} \} \\ &= E_{\beta, h} \{ \widehat{T}((0, 0), \partial Q(n)) \mid \mathscr{F}_{i} \} - E_{\beta, h} \{ \widehat{T}((0, 0), \partial Q(n)) \mid \mathscr{F}_{i-1} \}. \end{split}$$

Let E_i be the event $\{\Lambda_i^* \subset [-n, n]^2\}$. For $w \in E_i^C = \Omega \setminus E_i$, there exists a path r inside Λ_i^* such that

$$t(r) = \overline{T}((0,0), \partial Q(n)).$$

Hence, $\widehat{T}((0,0), \partial Q(n))I_{E_i^C}$ is \mathscr{F}_i -measurable so that for $w \in E_i^C$,

(2.4)
$$E_{\beta,h}(\widehat{T}((0,0),\partial Q(n)) \mid \mathscr{F}_i)(w) = \widehat{T}((0,0),\partial Q(n))(w).$$

If $w \in E_{i-1}^C$, then $w \in E_i^C$ since

$$\Lambda_{i-1}^* \subset A(\Lambda_i^*).$$

Therefore, for $w \in E_{i-1}^C$ it follows from (2.4) that

(2.5)
$$\Delta_{i} = E_{\beta,h}(\widehat{T}((0,0),\partial Q(n)) \mid \mathscr{F}_{i})(w)$$
$$-E_{\beta,h}([\widehat{T}((0,0),\partial Q(n))] \mid \mathscr{F}_{i-1})(w) = 0.$$

If $w \in E_{i-1} \cap E_i^C$, then we have that

$$A(\Lambda_i^*(w)) \not\subset [-n, n]^2$$
 and $A(\Lambda_{i-1}^*(w)) \subset [-n, n]^2$.

This means that $\Lambda_{i-1}^*(w)$ is within distance $\log^2 n$ from $\Lambda_i^*(w)$ and hence $\Lambda_{i-1}^*(w)$ is within distance $\log^2 n$ from $\partial Q(n)$. By Lemma 2, it follows that if $w \in E_{i-1}$, then

$$\widehat{T}((0,0),\partial Q(n)) = i - 1 + \widehat{T}(\partial B(\Lambda^*_{i-1}), \ \partial Q(n)) \ge i - 1.$$

In general, if $\Lambda_{i-1}^*(w)$ is within distance $\log^2 n$ from $\partial Q(n)$, then we have

$$\widehat{T}(\partial B(\Lambda^*_{i-1}), \partial Q(n)) \leq \log^2 n$$

Therefore we have for $w \in E_{i-1} \cap E_i^C$,

(2.6)
$$0 \le E_{\beta,h}(\widehat{T}(\partial B(\Lambda_{i-1}^*), \partial Q(n)) \mid \mathscr{F}_{i-1})(w) \le \log^2 n$$

and also

(2.7)
$$i - 1 \leq E_{\beta, h}(T((0, 0), \partial Q(n)) \mid \mathscr{F}_{i})(w)$$
$$= \widehat{T}((0, 0), \partial Q(n))(w)$$
$$\leq i - 1 + \log^{2} n.$$

Combining (2.6) with (2.7), we obtain

(2.8)
$$\begin{aligned} |\Delta_i| &= \left| E_{\beta,h}(\widehat{T}((0,0),\partial Q(n)) \mid \mathscr{F}_{i-1})(w) - E_{\beta,h}(\widehat{T}((0,0),\partial Q(n)) \mid \mathscr{F}_i)(w) \right| \le \log^2 n. \end{aligned}$$

This, together with (2.5), (2.7) implies that $|\Delta_i| \leq \log^2 n$ for $w \in E_{i-1} \cap E_i^C$. Now we focus on the case that $w \in E_i \cap E_{i-1}$. By Lemma 2,

$$E_{\beta,h}(\widehat{T}((0,0),\partial Q(n))|\mathscr{F}_{i})(w) = i + E_{\beta,h}(\widehat{T}(\partial B(\Lambda_{i}^{*}),\partial Q(n))|\mathscr{F}_{i})(w).$$

To estimate $E_{\beta,h}(\widehat{T}(\partial B(\Lambda_i^*), \partial Q(n))|\mathscr{F}_i)(w)$, let $E_i(\Gamma^*)$ be the event,

$$\{w: \Lambda_i^*(w) = \Gamma^*\}$$

for some fixed dual circuit $\Gamma^* \subset [-n, n]^2$ surrounding the origin. Clearly,

$$\bigcup_{\Gamma^*} E_i(\Gamma^*) = E_i$$

where the union is taken over all such Γ^* 's. Note that $E_i(\Gamma^*)$ only depends on $\{Z(e); e \cap A(\Gamma^*) \neq \emptyset\}$. Fix a dual circuit $\Gamma^* \subset [-n, n]^2$. If $w \in E_i(\Gamma^*)$, then

$$E_{\beta,h}(\widehat{T}(\partial B(\Lambda_i^*),\partial Q(n))|\mathscr{F}_i)(w) = E_{\beta,h}(\widehat{T}(\partial B(\Gamma^*),\partial Q(n))|\mathscr{F}_i)(w).$$

Let

$$\mathscr{F}(\Gamma^*) = \sigma\{Z(e) : e \cap A(\Gamma^*) \neq \emptyset\}.$$

Then it is easy to see that for $w \in E_i(\Gamma^*)$,

$$E_{\beta,h}(\widehat{T}(\partial B(\Gamma^*),\partial Q(n))|\mathscr{F}_i)(w) = E_{\beta,h}(\widehat{T}(\partial B(\Gamma^*),\partial Q(n))|\mathscr{F}(\Gamma^*))(w).$$

On $E_i(\Gamma^*),$ we can find a dual circuit κ^* surrounding Γ^* (see Figure 1) such that

$$3\log^2 n \le d(\partial A(\kappa^*), \partial B(\Gamma^*)) \le 4\log^2 n.$$

To show the existence of κ^* , we can find a dual circuit λ^* surrounding Γ^* such

FIG. 1. The dot curve is κ^* and the solid curve is Γ^* .

that

$$3\log^2 n \le \|x - y\|$$
 for $x \in \partial B(\Gamma^*), y \in \partial A(\lambda^*).$

Then we can shrink the area of $A(\lambda^*)$ to achieve the requirements of κ^* . In fact, for a fixed Γ^* , we may choose such κ^* by a unique way. Note that

$$\widehat{T}(\partial B(\Gamma^*), \partial Q(n)) = \widehat{T}(\partial B(\Gamma^*), Z^2 \backslash Q(n-1)),$$

since $\partial Q(n)$ is a subset of $Z^2 \setminus Q(n-1)$, and every path connecting $\partial B(\Gamma^*)$ with $Z^2 \setminus Q(n-1)$ must pass one of the points in $\partial Q(n)$. Note also that

(2.9)
$$\widehat{T}(\partial B(\kappa^*), Z^2 \setminus Q(n-1)) \leq \widehat{T}(\partial B(\Gamma^*), Z^2 \setminus Q(n-1)) \\ \leq \widehat{T}(\partial B(\kappa^*), Z^2 \setminus Q(n-1)) + 4\log^2 n.$$

In fact, (2.9) is clearly true if $\kappa^* \subset [-n, n]^2$. If $\kappa^* \not\subset [-n, n]^2$, then we can find a point *y* in $\partial A(\kappa^*)$ which does not belong to Q(n-1). Then there is a point $x \in \partial B(\Gamma^*)$ such that $||x - y|| \leq 4 \log^2 n$. Let *r* be a shortest path connecting *x*

with y. Then r is also a path connecting $Z^2 \setminus Q(n-1)$ with $\partial B(\Gamma^*)$. Hence,

(2.10)
$$\widehat{T}(\partial B(\Gamma^*), Z^2 \setminus Q(n-1)) \le \widehat{t}(r) \le 4 \log^2 n$$

Since $\partial A(\kappa^*) \cap Z^2 \setminus Q(n-1) \neq \emptyset$, we have $\widehat{T}(\partial A(\kappa^*), Z^2 \setminus Q(n-1)) = 0$. This, together with (2.10) proves (2.9) in the case that $\kappa^* \not \subset [-n, n]^2$.

Now we want to use the mixing property (1.2). The random variable in this case is $\widehat{T}(\partial B(\kappa^*), Z^2 \setminus Q(n-1))$ which depends on the configuration in the set $V = \{x \in Z^2; \ d(x, B(\kappa^*) \cap Q(n)) \le \log^2 n\}$. Note that we have

(2.11)
$$0 \leq \widehat{T}(\partial B(\kappa^*), Z^2 \setminus Q(n-1)) \leq \widehat{T}(\partial B(\Gamma^*), \partial Q(n)) \leq n.$$

Put

$$W = \{x \in B(\Gamma^*) \cap Q(2n); \ d(x, \partial B(\Gamma^*)) \ge \log^2 n\}.$$

Then we have $W \supset V$, $d(V, W^C) \ge \log^2 n$, and $\mathscr{F}(\Gamma^*) \subset \mathscr{F}_{W^C}$. By (1.2) and (2.11) we have for $w \in E_i(\Gamma^*)$,

$$\begin{aligned} & \left| E_{\beta,h} \Big[T(\partial B(\kappa^*), Z^2 \setminus Q(n-1)) \mid \mathscr{F}_{W^c} \Big](w) \\ (2.12) & - E_{\beta,h} \Big[\widehat{T}(\partial B(\kappa^*), Z^2 \setminus Q(n-1)) \Big] \Big| \\ & \leq \operatorname{Const.} \times n \cdot n^2 \exp(-\alpha \log^2 n) = \operatorname{Const.} \times n^3 \exp(-\alpha \log^2 n). \end{aligned} \end{aligned}$$

Taking conditional expectation of (2.12) with respect to $\mu_{\beta, h}(\cdot \mid \mathscr{F}(\Gamma^*))(w)$, we obtain

(2.13)
$$\begin{aligned} & \left| E_{\beta,h} \left[\widehat{T}(\partial B(\kappa^*), Z^2 \setminus Q(n-1)) \mid \mathscr{F}(\Gamma^*) \right](w) \right. \\ & \left. - E_{\beta,h} \left[\widehat{T}(\partial B(\kappa^*), Z^2 \setminus Q(n-1)) \right] \right| \\ & \leq \text{Const.} \times n^3 \exp(-\alpha \log^2 n) \end{aligned}$$

on $E_i(\Gamma^*)$. Therefore, it follows from (2.13) and (2.9) that for $w \in E_i(\Gamma^*)$,

$$\begin{aligned} & \left| E_{\beta,h}[\widehat{T}(\partial B(\Lambda_{i}^{*}),\partial Q(n))|\mathscr{F}_{i}](w) - E_{\beta,h}[\widehat{T}(\partial B(\Gamma^{*}),\partial Q(n))] \right| \\ & \leq \left| E_{\beta,h}[\widehat{T}(\partial B(\kappa^{*}),Z^{2} \setminus Q(n-1))|\mathscr{F}(\Gamma^{*})] \right| \\ & (2.14) \qquad \qquad -E_{\beta,h}[\widehat{T}(\partial B(\kappa^{*}),Z^{2} \setminus Q(n-1))] \right| \\ & + 8\log^{2}n \\ & \leq 8\log^{2}n + \text{Const.} \times n^{3}\exp(-\alpha\log^{2}n). \end{aligned}$$

Since the estimate (2.14) is uniform in Γ^* such that $E_i(\Gamma^*) \neq \emptyset$, we have

(2.15)
$$\begin{aligned} \left| E_{\beta,h}[\widehat{T}(\partial B(\Lambda_{i}^{*}),\partial Q(n))|\mathscr{F}_{i}](w) - \sum_{\Gamma^{*}} E_{\beta,h}[\widehat{T}(\partial B(\Gamma^{*}),\partial Q(n))]\mathbf{1}_{E_{i}(\Gamma^{*})}(w) \right| \\ \leq 8\log^{2}n + Cn^{3}\exp(-\alpha\log^{2}n). \end{aligned}$$

It follows from (2.15) that, for $w \in E_i \cap E_{i-1}$,

$$\begin{split} \left| \Delta_i(w) \right| &\leq \left| i - (i - 1) \right| \\ &+ \sum_{\Gamma_1^*, \, \Gamma_2^*} \left| E_{\beta, \, h}(\widehat{T}(\partial B(\Gamma_1^*), \, \partial Q(n))) - E_{\beta, \, h}(\widehat{T}(\partial B(\Gamma_2^*), \, \partial Q(n))) \right| \\ &\times 1_{E_i(\Gamma_1^*) \cap E_{i-1}(\Gamma_2^*)}(w) \\ &+ 16 \log^2 n + \text{Const.} \times n^3 \exp(-\alpha \log^2 n). \end{split}$$

It follows from Lemma 4 that for $\Gamma_1^*, \Gamma_2^* \subset [-n, n]^2$ with $E_i(\Gamma_1^*) \cap E_{i-1}(\Gamma_2^*) \neq \emptyset$,

$$\begin{split} E_{\beta, h}(\widehat{T}(\partial B(\Gamma_1^*), \partial Q(n))) &\leq E_{\beta, h}(\widehat{T}(\partial B(\Gamma_2^*), \partial Q(n))) \\ &\leq E_{\beta, h}(T(\partial B(\Gamma_1^*), \partial Q(n))) + \log^2 n \end{split}$$

so that for $w \in E_i \cap E_{i-1}$,

(2.16)
$$|\Delta_i(w)| \le 17\log^2 n + 1 + \operatorname{Const.} \times n^3 \exp(-\alpha \log^2 n).$$

It follows from (2.5), (2.8) and (2.16) that there exists C such that

$$(2.17) |\Delta_i| \le C \log^2 n.$$

Finally, it follows from the Azuma-Hoeffding lemma and (2.17) that

$$egin{aligned} &\mu_{eta,\,h}(\widehat{T}((0,\,0),\,\partial Q(n))-E_{eta,\,h}\widehat{T}((0,\,0),\,\partial Q(n))\geq x\sqrt{n}\log^2 n)\ &=\mu_{eta,\,h}(M_n\geq x\sqrt{n}\log^2 n)\ &\leq \mu_{eta,\,h}\left(\sup_{k\leq n}M_k\geq x\sqrt{n}\log^2 n
ight)\ &\leq \expigg(-rac{1}{2}(x\sqrt{n}\log^2 n)^2igg/\sum_{i=1}^nC^2\log^4 nigg)\ &\leq \exp(-x^2/2C^2). \end{aligned}$$

Similarly, we can repeat the same argument to the martingale

$$-M_i = E_{\beta,h} \left[E_{\beta,h} [\widehat{T}((0,0), \partial Q(n))] - \widehat{T}((0,0), \partial Q(n)) \mid \mathscr{F}_i \right]$$

to show

 $\mu_{\beta,h}(E_{\beta,h}[\widehat{T}((0,0),\partial Q(n))] - \widehat{T}((0,0),\partial Q(n)) \ge x\sqrt{n}\log^2 n) \le \exp(-x^2/2C^2),$ proving (2.3). Now we show Theorem 4 from (2.3).

PROOF OF THEOREM 4. First, note that it suffices to prove Theorem 4 for $x \ge 1$. If 0 < x < 1, then choose C_6 in Theorem 4 sufficiently large such that $C_6e^{-1} \ge 1$; then the right-hand side of the desired inequality is always greater than 1, and Theorem 4 is trivially true.

To show Theorem 4, we need to estimate the probability

$$\mu_{\beta,h}(T((0,0),\partial Q(n)) - T((0,0),\partial Q(n)) \ge x\sqrt{n})$$

Note that it follows from the definition of \widehat{T} and T that

 $\widehat{T}((0,0),\partial Q(n)) \ge T((0,0),\partial Q(n)).$

Let $E(v_1, \ldots, v_m)$ be the event

$$\big\{\max\{|\mathscr{C}^-(v_i)|,|\mathscr{C}^+(v_i)|\}\geq \log^2 n \text{ for } 1\leq i\leq m\big\}.$$

Let $\{r_n\}$ denote the paths from (0,0) to $\partial Q(n)$ with passage time $T((0,0), \partial Q(n))$. If

$$\widehat{T}((0,0),\partial Q(n)) - T((0,0),\partial Q(n)) \ge x\sqrt{n},$$

then there are at least $\lfloor x\sqrt{n} \rfloor$ vertices, denoted by $\{v_1, \ldots v_{\lfloor x\sqrt{n} \rfloor}\}$ in each r_n such that $|\mathscr{C}^+(v_i)| \ge \log^2 n$ or $|\mathscr{C}^-(v_i)| \ge \log^2 n$, where for a real number ξ , $\lfloor \xi \rfloor$ stands for the least integer not less than ξ . Then $E(v_1, \ldots, v_m)$ occurs for some $v_1, \ldots v_m$ with $\|v_i - v_j\| \ge 3\log^2 n$ if $i \ne j$, and for

$$m = \left\lfloor \frac{\lfloor x \sqrt{n} \rfloor}{9 \log^4 n} \right\rfloor - 1.$$

This implies that

 $\mu_{\beta,h}(E(v_1,\ldots,v_m))$

(2.18)
$$\mu_{\beta,h}(\widehat{T}((0,0),\partial Q(n)) - T((0,0),\partial Q(n)) \ge x\sqrt{n}) \\ \le \sum_{v_1,\ldots,v_m \in Q(n); \, \|v_i - v_j\| \ge 3\log^2 n \ (i \ne j)} \mu_{\beta,h}(E(v_1,\ldots,v_m)).$$

Let us estimate the right-hand side of (2.18). We use (1.3) for $V_1 = Q(\log^2 n) + v_1$, $V_2 = \bigcup_{2 \le j \le m} \{Q(\log^2 n) + v_j\}$, $A = E(v_1)$ and $B = E(v_2, \ldots, v_m)$. Then by (1.3) and (1.6) we obtain

$$(2.19) \leq \left[\mu_{\beta,h}(E(v_1)) + C(2\log^2 n + 1)^2 \exp(-\alpha \log^2 n)\right] \mu_{\beta,h}(E(v_2, \dots, v_m)) \\ \leq 9\log^4 n \times \left[\exp(-\alpha_1 \log^2 n) + C \exp(-\alpha \log^2 n)\right] \mu_{\beta,h}(E(v_2, \dots, v_m)).$$

If n is sufficiently large, then we can make

 $9(2n+1)^2 \log^4 n \left[\exp(-\alpha_1 \log^2 n) + C \exp(-\alpha \log^2 n) \right] \le 1/2,$

where $(2n+1)^2$ is the number of points in Q(n). Then, summing up both sides of (2.19) over $v_1 \in Q(n)$, we obtain for sufficiently large n,

(2.20)
$$\sum_{\substack{v_1, \dots, v_m \in Q(n); \\ \|v_i - v_j\| \ge 3 \log^2 n \ (i \ne j)}} \mu_{\beta, h}(E(v_1, \dots, v_m)) \\ \le \frac{1}{2} \sum_{\substack{v_2, \dots, v_m \in Q(n); \\ \|v_i - v_j\| \ge 3 \log^2 n \ (i \ne j)}} \mu_{\beta, h}(E(v_2, \dots, v_m)).$$

Iterating (2.20), we have

(2.21)
$$\sum_{\substack{v_1, \dots, v_m \in Q(n); \\ \|v_i - v_j\| \ge 3 \log^2 n \ (i \ne j)}} \mu_{\beta, h}(E(v_1, \dots, v_m)) \le (\frac{1}{2})^m \le (\frac{1}{2})^{\lfloor x \sqrt{n} \rfloor / 9 \log^4 n - 1}.$$

By (2.21) and the fact that

$$T((0,0),\partial Q(n)) - T((0,0),\partial Q(n)) \le n,$$

if *n* is sufficiently large, then taking x = 1, we have

$$egin{aligned} & E(\widehat{T}((0,0),\partial Q(n)) \leq E(T((0,0),\partial Q(n)) + \sqrt{n} + n(rac{1}{2})^{\lfloor \sqrt{n}
floor / 9 \log^4 n - 1} \ & \leq E c_{0,\,n} + 2\sqrt{n}. \end{aligned}$$

Therefore, if we also take n large such that $\log^2 n > 6$, we get by (2.3) and (2.21),

$$\begin{aligned} \mu_{\beta,h}(|c_{0,n} - Ec_{0,n}| &\geq x\sqrt{n}\log^2 n) \\ (2.22) &\leq \mu_{\beta,h}(|T((0,0),\partial Q(n)) - \widehat{T}((0,0),\partial Q(n))| &\geq x\sqrt{n}\log^2 n/3) \\ &+ \mu_{\beta,h}(|\widehat{T}((0,0),\partial Q(n)) - E_{\beta,h}\widehat{T}((0,0),\partial Q(n))| &\geq x\sqrt{n}\log^2 n/3) \\ &\leq \text{Const.} \times \exp(-\widetilde{\alpha}x^2/9) + \left(\frac{1}{2}\right)^{2x\sqrt{n}/(27\log^2 n)} \end{aligned}$$

for some $\tilde{\alpha} > 0$. Therefore, Theorem 4 follows. \Box

REMARK. Equation (2.22) proves a rather stronger statement than Theorem 4. In fact, it is easy to see that the same estimate as Theorem 4 is true if $x = O(\sqrt{n}/\log^2 n)$. However, the type of estimate in Theorem 4 cannot be obtained from (2.22) if $x \gg \sqrt{n}/\log^2 n$, since in this case, the main term is the second term in the right-hand side of (2.22). This is a kind of probability estimate of moderate deviations for $c_{0,n} - E_{\beta,h}(c_{0,n})$.

PROOF OF THEOREM 2. Let

$$J = \min\{j: (n, 0) \in A(\Lambda_i^*)\}.$$

Clearly we have

and by Lemma 2, we know that

$$(2.24) A(\Lambda_J^*) \subset [-n\log^2 n, n\log^2 n].$$

LEMMA 5. There exists a path r with $t(r) = \hat{a}_{0,n}$ such that r is contained inside $A(\Lambda_{J}^{*})$.

PROOF. Let γ realize $\widehat{T}((0,0), (n,0))$ and, for vertices a and b on r, let r(a, b) denote the portion of r connecting a and b. Since there are infinitely many closed dual circuits surrounding the origin, the existence of γ can be seen from the following reason. Suppose, contrary to the lemma, that there exists a vertex x on r outside of Λ_J^* [the first dual circuit surrounding both (0, 0) and (n, 0)]. Then there exists a vertex $a \in \partial B(\Lambda_J^*)$ on r((0, 0), x) and vertex $b \in \partial A(\Lambda_J^*)$ on r(x, (n, 0)) and we have

$$\begin{split} \widehat{T}((0,0),(n,0)) &= \widehat{t}(r((0,0),x)) + \widehat{t}(r(x,(n,0))) \\ &\geq \widehat{T}((0,0),a) + \widehat{T}(b,(n,0)) \\ &= J + \widehat{T}(b,(n,0)) \\ &> J - 1 + \widehat{T}(b,(n,0)) \\ &= \widehat{T}((0,0),b) + \widehat{T}(b,(n,0)) \geq \widehat{T}((0,0),(n,0)), \end{split}$$

a contradiction. \Box

Let

$$S_{i} = E_{\beta, h} \{ [\hat{a}_{0, n} - E_{\beta, h}(\hat{a}_{0, n})] | \mathscr{F}_{i} \}.$$

It follows from Lemma 5 and (2.23) that

(2.25)
$$\Delta_i = S_i - S_{i-1} = 0 \quad \text{if } i \ge n+1.$$

We want to use the Azuma–Hoeffding lemma again for the martingale $\{S_i\}_{i=0}^{\infty}$. To this end, we have to estimate $|\Delta_i|$ for every $i \ge 1$. [By (2.25), we only have to estimate $|\Delta_i|$ for $1 \le i \le n$.] The argument hereafter in this section is similar to that we made to obtain (2.14)–(2.17), but there are some necessary changes. Let us fix i with $1 \le i \le n$ arbitrarily, and let

$$\begin{split} F_1 &= \{i < J\} = \{A(\Lambda_i^*) \not\ni (n,0)\}, \\ F_2 &= \{i = J\} = \{A(\Lambda_{i-1}^*) \not\ni (n,0), A(\Lambda_i^*) \ni (n,0)\}, \\ F_3 &= \{i > J\} = \{A(\Lambda_{i-1}^*) \ni (n,0)\}. \end{split}$$

It is clear that $F_1, F_2, F_3 \in \mathscr{F}_i$ and $F_1 \cup F_2 \cup F_3 = \Omega$.

If $w \in F_3$, then by Lemma 5, there exists a path r in $A(\Lambda_{i-1}^*)$ which realizes $\widehat{T}((0, 0), (n, 0))$. Therefore if $w \in F_3$, then

$$S_{i-1}(w) = S_i(w) = \widehat{T}((0,0), (n,0))(w) - E_{\beta,h}[\widehat{T}((0,0), (n,0))]$$

and $\Delta_i = 0$.

If $w \in F_2$, we know that

$$(n, 0) \in A(\Lambda_i^*) \setminus A(\Lambda_{i-1}^*),$$

and by Lemma 4, the distance between Λ_{i-1}^* and (n, 0) is not larger than $\log^2 n$.

Let *r* be a path consisting of two pieces r' and r'' such that r' connects (n, 0) with some point $x \in \partial B(\Lambda_{i-1}^*)$ which satisfies

$$|x - (n, 0)| = d((n, 0), \partial B(\Lambda_{i-1}^*)),$$

and r'' realizes $\widehat{T}((0,0), y)(w)$, where y is the neighboring point of x in $\partial A(\Lambda_{i-1}^*)$. Then by Lemma 1, if $w \in F_2$, we have

$$i-1\leq \widehat{T}((0,0),(n,0))\leq \widehat{t}(r)\leq i-1+\log^2 n$$

This means that both S_i and S_{i-1} are between i - 1 and $i - 1 + \log^2 n$. Thus we have for $w \in F_2$,

$$|\Delta_i|=|S_i-S_{i-1}|\leq \log^2 n$$

Finally, let us discuss the case that $w \in F_1$. For a dual circuit Γ^* such that $(0, 0) \in A(\Gamma^*)$ and $(n, 0) \notin A(\Gamma^*)$, let

$$E_j(\Gamma^*) = \{\Lambda_j^* = \Gamma^*\}$$

for j = i or i - 1, as before. Note that $w \in E_j(\Gamma^*)$ implies that j < J(w) and therefore Γ^* should lie inside of $[-n \log^2 n, n \log^2 n]$ by (2.24). Let κ^* be a dual circuit surrounding Γ^* such that

(2.26)
$$3\log^2 n \le d(\partial B(\Gamma^*), \partial A(\kappa^*)) \le 4\log^2 n$$

If κ^* surrounds (n, 0), then we argue as in the case that $w \in F_2$ and obtain that $|\Delta_i| \leq 4 \log^2 n$, since the distance between Λ_j^* and (n, 0) does not exceed $4 \log^2 n$ by (2.26), and the assumption that κ^* surrounds (n, 0). So, assume that κ^* does not surround (n, 0), that is, $(n, 0) \in B(\kappa^*)$. In almost the same way as in (2.14), we can show that

(2.27)
$$\begin{aligned} & \left| E_{\beta,h} \Big[\widehat{T}(\partial B(\Lambda_j^*), (n, 0)) \mid \mathscr{F}_j \Big] - E_{\beta,h} \Big[\widehat{T}(\partial B(\Gamma^*), (n, 0)) \Big] \right| \\ & \leq 8 \log^2 n + C((2n+4) \log^2 n + 1)^2 n \log^2 n \exp(-\alpha \log^2 n), \end{aligned}$$

for $w \in E_j(\Gamma^*)$. Here, the factor $((2n+4)\log^2 n+1)^2 n \log^2 n$ is the only change from (2.14), and this comes from the fact that $\widehat{T}(\partial B(\kappa^*), (n, 0)) \leq n \log^2 n$, (2.26) and the fact that Γ^* lies inside of $[-n \log^2 n, n \log^2 n]$. By (2.27), we obtain as before,

$$egin{aligned} |\Delta_i(w)| &= |S_i(w) - S_{i-1}(w)| \ &\leq 17 \log^2 n + 1 + ext{Const.} imes n^3 \log^6 n \exp(-lpha \log^2 n) \ &\leq ext{Const.} imes \log^2 n. \end{aligned}$$

Now we are ready to use Azuma-Hoeffding's lemma to obtain

$$\mu_{\beta,h}\left(\frac{|a_{0,n}-E_{\beta,h}a_{0,n}|}{\sqrt{n}\log^2 n}\geq x\right)\leq\exp(-\alpha_2'x^2)$$

for some constant $\alpha_2' > 0$. Finally, we can use the same argument as in the proof of Theorem 4 to estimate the probability

$$\mu_{\beta, h}(\hat{a}_{0, n} - a_{0, n} \ge x\sqrt{n}),$$

and obtain for sufficiently large *n*, for any $\sqrt{n} \ge x \ge 1$,

(2.28)
$$\mu_{\beta,h}(|a_{0,n} - E_{\beta,h}a_{0,n}| \ge x\sqrt{n} \log^2 n) \le \text{Const.} \times \exp(-\alpha_2' x^2/9) + \left(\frac{1}{2}\right)^{2x\sqrt{n}/(27\log^2 n)}.$$

Therefore, Theorem 2 follows. \Box

3. Concentrations at \nu n. Before we prove Theorems 1 and 3, we need to show the following lemmas. Let E_v be the event that there exists a path r with the last vertex $v \in \partial Q(n)$ starting from (0, 0) such that

$$t(r) = T((0,0), \partial Q(n)).$$

If there are many such v, we pick a v with the smallest x coordinate, then the smallest y coordinate. Clearly,

(3.1)
$$E_{\beta,h}T((0,0),\partial Q(n)) = \sum_{u \in \partial Q(n)} E_{\beta,h}(T((0,0),\partial Q(n)) \mid E_u)\mu_{\beta,h}(E_u)$$

We divide $\partial Q(n)$ into two parts:

$$egin{aligned} &\partial_1 Q(n) = \{ u \in \partial Q(n); \ \mu_{eta, \ h}(E_u) \geq 1/n^2 \}; \ &\partial_2 Q(n) = \{ u \in \partial Q(n); \ \mu_{eta, \ h}(E_u) < 1/n^2 \}. \end{aligned}$$

Since $T((0,0), \partial Q(n)) \leq n$, and the number of points in $\partial Q(n)$ is 8n, we have

(3.2)
$$\sum_{u \in \partial_2 Q(n)} E_{\beta, h} \Big[T((0,0), \partial Q(n)) \mid E_u \Big] \mu_{\beta, h}(E_u) \le 8n \cdot n \frac{1}{n^2} = 8.$$

So, the effect of points in $\partial_2 Q(n)$ in (3.1) is bounded. Assume first that $u \in \partial_1 Q(n)$ is on the right boundary of $\partial Q(n)$. Let E'_u be the reflected event of E_u with respect to the line

$$\{v = (v^1, v^2); \ v^1 = n + \lfloor \log^2 n \rfloor\}.$$

By symmetry, note that we can simply connect u and u' by a path with length $2\lfloor \log^2 n \rfloor$ so that

$$(3.3) \begin{aligned} E_{\beta, h}(a_{0, 2n+2\lfloor \log^2 n \rfloor} \mid E_u \cap E'_u) \\ &\leq E_{\beta, h}(T((0, 0), u) \mid E_u \cap E'_u) \\ &+ E_{\beta, h}(T((2n+2\lfloor \log^2 n \rfloor, 0), u') \mid E_u \cap E'_u) + 2\lfloor \log^2 n \rfloor \\ &= 2E_{\beta, h}(T((0, 0), u) \mid E_u \cap E'_u) + 2\lfloor \log^2 n \rfloor. \end{aligned}$$

Let

$$E_n^+ \coloneqq igg\{ a_{0,\,2n+2\lfloor \log^2 n
floor} \le E_{eta,\,h}(a_{0,\,2n+2\lfloor \log^2 n
floor}) - igg(rac{6}{lpha_2}n\lfloor \log^5 n
floorigg)^{1/2} igg\},$$

where α_2 is the constant given in Theorem 2. Then we have

$$egin{aligned} &E_{eta,\,h}(a_{0,\,2n+2\lfloor \log^2 n
floor};\;(E_n^+)^C\cap E_u\cap E_u')\ &\geq \left[E_{eta,\,h}(a_{0,\,2n+2\lfloor \log^2
floor})-\left(rac{6}{lpha_2}n\log^5 n
ight)^{1/2}
ight] imes \mu_{eta,\,h}ig((E_n^+)^C\cap E_u\cap E_u'), \end{aligned}$$

where $E_{\beta,h}(X; A) = E_{\beta,h}(X1_A)$. Dividing both sides of the above inequality by $\mu_{\beta,h}(E_u \cap E'_u)$, we obtain

$$\begin{array}{c} E_{\beta,\,h}(a_{0,\,2n+2\lfloor \log^2 n \rfloor} \mid E_u \cap E'_u) \\ (3.4) \\ \geq \left[E_{\beta,\,h}(a_{0,\,2n+2\lfloor \log^2 \rfloor}) - \left(\frac{6}{\alpha_2}n\log^5 n\right)^{1/2} \right] \times \left(1 - \mu_{\beta,\,h}(E_n^+ \mid E_u \cap E'_u)\right). \end{array}$$

Now we estimate $\mu_{\beta, h}(E_n^+ | E_u \cap E'_u)$ for $u \in \partial_1 Q(n)$. We put $A = E_u, B = E'_u$, $V_1 = Q(n)$ and $V_2 = Q(n) + (2n + 2\lfloor \log^2 n \rfloor, 0)$, and use (1.3) to obtain

$$(3.5) \quad \mu_{\beta,h}(E_u \cap E'_u) \ge \mu_{\beta,h}(E_u)\mu_{\beta,h}(E'_u) - \operatorname{Const.} \times n^2 \exp(-2\alpha \log^2 n).$$

By symmetry, and since $u \in \partial_1 Q(n)$, $\mu_{\beta,h}(E'_u) = \mu_{\beta,h}(E_u) \ge 1/n^2$. So if n is sufficiently large, then we have from (3.5),

(3.6)
$$\mu_{\beta,h}(E_u \cap E'_u) \ge \frac{1}{2}n^{-4}$$

On the other hand, by Theorem 2 we have

$$\mu_{eta, h}(E_n^+) \le C_3 n^{-6}.$$

Therefore it follows that

$$\mu_{eta,\,h}(E_n^+\mid E_u\cap E_u')\leq C_3n^{-2}$$

for sufficiently large n. This means that in the right-hand side of (3.4), the term

$$\left[E_{\beta,h}(a_{0,2n+2\lfloor \log^2 \rfloor}) - \left(\frac{6}{\alpha_2}n\log^5 n\right)^{1/2}\right] \times \mu_{\beta,h}(E_n^+ \mid E_u \cap E_u')$$

goes to zero as n tends to infinity. Thus, there exists a positive constant \mathbb{C}_7 such that we have

$$(3.7) \quad E_{\beta,h}(a_{0,2n+2\lfloor \log^2 n \rfloor}) \le E_{\beta,h}(a_{0,2n+2\lfloor \log^2 n \rfloor} \mid E_u \cap E'_u) + C_7(n \log^5 n)^{1/2}.$$

By mixing property we have

(3.8)
$$\begin{array}{l} E_{\beta,\,h}(T((0,\,0),\,u)\mid E_u\cap E_u')\\ \leq E_{\beta,\,h}(T((0,\,0),\,u)\mid E_u) + {\rm Const.}\times n^7\exp(-\alpha\log^2 n). \end{array}$$

To see this, first we use (1.4) for $V_1 = Q(n)$, $V_2 = Q(n) + (2n + 2\lfloor \log^2 n \rfloor)$, $X = T((0,0), \partial Q(n)) \mathbf{1}_{E_u}$, and obtain

$$egin{aligned} &E_{eta,\,h}ig(T((0,0),\,\partial Q(n))\mathbf{1}_{E_u} \mid \mathscr{F}_{V_2}ig) \leq E_{eta,\,h}ig(T((0,0),\,\partial Q(n)); \,\, E_uig) \ &+ ext{Const.} imes n^3 \exp(-lpha \log^2 n). \end{aligned}$$

Taking expectation on the set E'_{μ} with respect to $\mu_{\beta,h}$, we obtain

$$E_{\beta, h} \big(T((0, 0), \partial Q(n)); \ E_u \cap E'_u \big) \\ \leq E_{\beta, h} \big(T((0, 0), \partial Q(n)) \mathbf{1}_{E_u} \big) \mu_{\beta, h}(E'_u) + \text{Const.} \times n^3 \exp(-\alpha \log^2 n) \\ = E_{\beta, h} \big(T((0, 0), \partial Q(n)) \mid E_u \big) \mu_{\beta, h}(E_u) \mu_{\beta, h}(E'_u) \\ + \text{Const.} \times n^3 \exp(-\alpha \log^2 n).$$

By (3.5) and the fact that $T((0,0), \partial Q(n)) \leq n$, the right-hand side of (3.9) is not larger than

$$(3.10) \qquad \qquad E_{\beta,h}\big(T((0,0),\partial Q(n)) \mid E_u\big)\mu_{\beta,h}(E_u \cap E'_u) \\ + \text{Const.} \times n^3 \exp(-\alpha \log^2 n).$$

By (3.5), (3.9) and (3.10) it follows that

$$egin{aligned} &E_{eta,\,h}(T((0,0),\partial Q(n))\mid E_u\cap E_u')&\leq E_{eta,\,h}(T((0,0),u)\mid E_u)\ &+ ext{Const.} imes n^7\exp(-lpha\log^2 n), \end{aligned}$$

which proves (3.8). Combining (3.3), (3.7) with (3.8) we have

 $(3.11) \begin{aligned} E_{\beta,h}(a_{0,2n+2\lfloor \log^2 n \rfloor}) \\ &\leq 2E_{\beta,h}\big(T((0,0),u) \mid E_u\big) + C_7(n\log^5 n)^{1/2} + 2\lfloor \log^2 n \rfloor \\ &+ \text{Const.} \times n^7 \exp(-\alpha \log^2 n) \\ &\leq 2E_{\beta,h}\big(T((0,0),u) \mid E_u\big) + C_8(n\log^5 n)^{1/2}. \end{aligned}$

for some constant $C_8 > 0$. Note that $T((0,0), u)(w) = T((0,0), \partial Q(n))(w)$ if $w \in E_u$, and hence

$$(3.12) \quad E_{\beta,h}(a_{0,2n+2\lfloor \log^2 n \rfloor}) \le 2E_{\beta,h}(T((0,0),\partial Q(n)) \mid E_u) + C_8(n\log^5 n)^{1/2}.$$

In the case that $u \in \partial_1 Q(n)$ is not on the right boundary of $\partial Q(n)$, we argue in a similar way as before. For example, if u is on the top side of $\partial Q(n)$, we define E'_u to be the reflected event of E_u with respect to the line

$$\{v = (v^1, v^2); v^2 = n + \lfloor \log^2 n \rfloor\}$$

Then we define

$$E_n^+ = \left\{ T\big((0,0), (0,2n+2\lfloor \log^2 n \rfloor)\big) \le E_{\beta,h}(a_{0,2n+2\lfloor \log^2 n \rfloor}) - \left(\frac{6}{\alpha_2}n\log^5 n\right)^{1/2} \right\}.$$

By the rotation invariance of $\mu_{\beta,h}$, $T((0,0), (0, 2n + 2\lfloor \log^2 n \rfloor))$ has the same distribution as $a_{0,2n+2\lfloor \log^2 n \rfloor}$, and we can argue just as before to obtain (3.12). Thus, from (3.1), (3.2) and (3.12) we obtain

$$egin{aligned} &2E_{eta,\,h}ig(T((0,\,0),\,\partial Q(n)ig)&\geq 2\sum_{u\in\partial_1Q(n)}E_{eta,\,h}ig(T((0,\,0),\,\partial Q(n))\mid E_uig)\mu_{eta,\,h}(E_u)\ &\geq \sum_{u\in\partial_1Q(n)}E_{eta,\,h}(a_{0,\,2n+2\lfloor\log^2n
flog^2n
flog})\mu_{eta,\,h}(E_u)-C_8(n\log^5n)^{1/2}\ &\geq E_{eta,\,h}(a_{0,\,2n+2\lfloor\log^2n
flog})-8-C_8(n\log^5n)^{1/2}\ &\geq E_{eta,\,h}(a_{0,\,2n})-8-C_8(n\log^5n)^{1/2}-2\log^2n. \end{aligned}$$

The last inequality above follows from a subadditive argument. This says that for sufficiently large n, we have

$$(3.13) \quad E_{\beta, h}a_{0, 2n} \leq 2E_{\beta, h}(T((0, 0), \partial Q(n))) + \text{Const.} \times (n \log^5 n)^{1/2}.$$

Note that

$$(3.14) E_{\beta, h} c_{0, n} \le E_{\beta, h} a_{0, n}$$

Clearly, by (1.8), (3.13) and (3.14),

(3.15)
$$\lim_{n\to\infty}\frac{E_{\beta,h}c_{0,n}}{n}=\nu.$$

Let

$$N_n = \min\{|r|: t(r) = a_{0,n}\},\$$

where |r| stands for the length of the path r. We will show the following lemma.

LEMMA 6. If
$$\nu > 0$$
, there exist $C_9 > 0$, $C_{10} > 0$ and $\alpha_4 > 0$ such that

$$\mu_{\beta, h}(N_n \ge C_9 n) \le C_{10} \exp(-\alpha_4 n).$$

PROOF. Lemma 6 for i.i.d. first passage percolation is proved in [10]. Here we show it for Ising first passage percolation. For number γ and a path r, let

$$t_{\gamma}(r) = \sum_{e \in r} [X(e) + \gamma]$$

and

$$T_{\gamma}(A, B) = \inf\{t_{\gamma}(r): r \text{ a self-avoiding path from } A \text{ to } B\}.$$

Clearly, for $\gamma > 0$,

$$a_{0,n} - \gamma N_n \ge T_{-\gamma}((0,0),(n,0))$$

We also know that

 $a_{0,n} \leq n$.

To show Lemma 6 we only need to show that there exists $\gamma > 0$ such that

(3.16)
$$\mu_{\beta,h}(T_{-\gamma}((0,0),(n,0)) < 0) \le \text{Const.} \times \exp(-\alpha_4 n).$$

We use a standard Peierls argument to show (3.16). For a given positive integer k, partition the bonds of Z^2 into some blocks

$$\{[ik, (i+1)k) \times [jk, (j+1)k); i, j \in Z\},\$$

where $[ik, (i+1)k) \times [jk, (j+1)k)$ is a subset of Z^2 which contains the vertices in $[ik, (i+1)k] \times [jk, (j+1)k]$ and the bonds in

$$[ik, (i+1)k] \times [jk, (j+1)k] \setminus \{x = (i+1)k\} \cup \{y = (j+1)k\}.$$

We denote $[ik, (i + 1)k) \times [jk, (j + 1)k)$ by B(i, j). Note that two different blocks do not have an edge in common. Assume that $T_{-\gamma}((0, 0), (n, 0)) < 0$. Then we can find a path r from (0, 0) to (n, 0) such that $t_{-\gamma}(r) < 0$. We take such a path r and fix it. Suppose that there are m blocks which are touched by the path r. Clearly,

$$(3.17) mtextbf{m} \ge \frac{n}{k^2}.$$

We say blocks B_1 and B_2 are connected if B_1 is one of eight neighbors of B_2 . Note that these *m* blocks are connected so that we call these *m* blocks a block animal. Note also that there are at most λ^m block animals which contain B(0,0) and consist of *m* blocks for some positive constant λ . For each block B(i, j) which is touched by *r*, we consider

$$B_1(i, j) = [(i-1)k, (i+2)k] \times [(j-1)k, (j+2)k]$$

We assume that m > 8. Then r has to cross $B_1(i, j) \setminus B(i, j)$. We say that the block $B_1(i, j)$ is *good* if there exist more than one disjoint dual circuits in $B_1(i, j)$ surrounding B(i, j), such that every edge e which crosses one of these dual circuits satisfies X(e) = 1. We call such dual circuits dual 1-circuits. If $B_1(i, j)$ is not good, then we call it *bad*. It follows from (1.6) that for given $\varepsilon > 0$ there exists k such that

(3.18)
$$\mu_{\beta, h}(B_1(0, 0) \text{ is good}) \ge 1 - \varepsilon.$$

Let us take $\gamma = 1/9k^2$. Then, since $t_{-\gamma}(r) < 0$, there are at least m/2 bad blocks on the block animal. For $0 \le a, b \le 3$, let $L_{a,b}$ denote the set of all (i, j)'s such that $(i, j) = (a, b) \mod 4$. Therefore, if $T_{-\gamma}((0, 0), (n, 0)) < 0$, then we can find some a and b such that there are at least $(m/2) \times 1/16$ bad blocks on the block animal in $\{B_1(i, j); (i, j) \in L_{a,b}\}$. If (i, j) and (k, l) are from the same $L_{a,b}$, then $B_1(i, j)$ and $B_1(k, l)$ are squares of side length 3kwhich are in distance not less than k. Thus, taking k sufficiently large, by (1.3) and (3.18) we can make the conditional probability as small as we want;

(3.19)
$$\mu_{\beta,h}(B(i,j) \text{ is bad } | \mathscr{F}_{i,j}) \le 2\varepsilon,$$

where $\mathscr{F}_{i, j}$ is the σ -field generated by

$$\{w(x): d(x, B(i, j)) \ge k\}.$$

It follows from (3.19) that

$$\begin{split} & \mu_{\beta, h}(T_{-\gamma}((0, 0), (n, 0) < 0) \\ & \leq \sum_{\substack{\Gamma: \text{ block animal containing } a, b=0 \\ B(0, 0), |\Gamma| > n/k^2}} \sum_{a, b=0}^{3} \mu_{\beta, h} \Big(\begin{array}{c} \text{there are at least } |\Gamma|/32 \text{ bad blocks} \\ \text{in } L_{a, b} \cap \Gamma \\ & \leq \sum_{m > n/k^2} 16 \times \lambda^m \binom{m}{m/32} (2\varepsilon)^{m/32} \\ & \leq 16 \exp(-\alpha_4 n) \end{split}$$

by taking ε small. Lemma 6 is proved. \Box

With Lemma 6 and the method in [16], we have the following lemma.

LEMMA 7. For each t > 0, if $\nu > 0$, then there exist constants $C_{11}, C_{12} > 0$ and $\alpha_5 > 0$ such that we have for sufficiently large n,

$$\mu_{\beta, h}(a_{0, 4n} \leq 4t) \leq C_{11}n^2(\mu_{\beta, h}(a_{0, 2n} \leq 2t + 2\lfloor \log^2 n \rfloor))^{1/2} + C_{12}\exp(-\alpha_5\log^2 n).$$

PROOF. By Lemma 6, we have

$$\mu_{\beta, h}(a_{0, 4n} \le 4t) \le \mu_{\beta, h}(a_{0, 4n} \le 4t, N_{4n} < 4C_9n) + C_{10}\exp(-4\alpha_4n).$$

Consider a path r from (0, 0) to (4n, 0) with passage time T((0, 0), (4n, 0))and $|r| < 4C_9n$. For $0 \le i \le 4$, consider the first (resp., last) vertex b_i (resp., a_i) on r that has first coordinate equal to in. Clearly, there exists $0 \le i \le 3$ such that the sum of passage time on the bonds of r between a_i and b_{i+1} is at most T((0, 0), (4n, 0))/4. Given two vertices $a = (a^1, a^2)$ and $b = (b^1, b^2)$, let us denote by $H_n(a, b, t)$ the event that there exists a path ρ from a to bwith passage time at most t and $|\rho| < 4C_9n$, such that each vertex visited by ρ except a and b has a first coordinate larger than the first coordinate a^1 of aand smaller than the first coordinate b^1 of b. Then we have

$$\mu_{\beta, h}(a_{0, 4n} \leq 4t, N_{4n} < 4C_9n) \leq \sum_{i=0}^{3} \sum_{\substack{a=(a^1, a^2), a^1=in \\ b=(b^1, b^2), b^1=(i+1)n \\ |a^2|, |b^2| \leq 4C_9n}} \mu_{\beta, h}(H_n(a, b, t)).$$

Therefore, we can find some *a* and *b* with $|a^1 - b^1| = n$ such that

$$(3.20) \ \ \mu_{\beta,\,h}(H_n(a,\,b,\,t))4(8C_9n)^2 + C_{10}\exp(-4\alpha_4n) \ge \mu_{\beta,\,h}(a_{0,\,4n} \le 4t).$$

Take such a and b. Let $H = H_n(a, b, t)$ and H' be its reflected event with respect to the line $\{v = (v^1, v^2); v^1 = b^1 + \lfloor \log^2 n \rfloor/2\}$. Then we have $H \cap H' \subset \{T(a, a + (2n + \lfloor \log^2 n \rfloor, 0)) \leq 2t + \lfloor \log^2 n \rfloor\}$. Note that by definition

 $H = H_n(a, b, t)$ is an event in the rectangle of vertical side length $4C_9n$ and horizontal side length n, centered at (a+b)/2. By (1.3) and invariance of $\mu_{\beta, h}$ with respect to translation and reflection it follows that

(3.21)

$$\mu_{\beta,h}(a_{0,2n} \leq 2t + 2\lfloor \log^2 n \rfloor)$$

$$\geq \mu_{\beta,h}(T((0,0), (2n + \lfloor \log^2 n \rfloor, 0)) \leq 2t + \lfloor \log^2 n \rfloor))$$

$$\geq \mu_{\beta,h}(H_n(a,b,t))^2 - Cn4C_9n \exp(-\alpha \log^2 n).$$

Therefore, Lemma 7 follows from (3.20) and (3.21).

 $\ensuremath{\mathsf{PROOF}}$ of Theorem 1. We follow the method in [16] to show Theorem 1. Let

$$\xi_n = E_{\beta, h} a_{0, n}$$

Let K_0 be a sufficiently large constant, which we will specify later. We take $4t = 2\xi_{2n} - K_0(2n\log^5(2n))^{1/2}$ in Lemma 7 and obtain that

$$egin{aligned} &\mu_{eta,\,h}(a_{0,\,4n}\leq 2\xi_{2n}-K_0(2n\log^5(2n))^{1/2})\ &\leq C_{11}n^2ig[\mu_{eta,\,h}(a_{0,\,2n}\leq\xi_{2n}-(K_0/2)(2n\log^5(2n))^{1/2}+2\lfloor\log^2n
floor)ig]^{1/2}\ &+C_{12}\exp(-lpha_5\log^2n). \end{aligned}$$

If n is large, then $2\lfloor \log^2 n \rfloor < (K_0/4)(2n\log^5(2n))^{1/2},$ and then we apply Theorem 2 to obtain

$$\begin{split} & \left[\mu_{\beta, h}(a_{0, 2n} \leq \xi_{2n} - (K_0/2)(2n\log^5(2n))^{1/2} + 2\lfloor \log^2 n \rfloor) \right]^{1/2} \\ & \leq \text{Const.} \exp \Biggl\{ -\frac{\alpha_2}{2} (K_0/4)^2 \log(2n) \Biggr\} \\ & < \text{Const.} \times n^{-4} \end{split}$$

if $K_0 \ge 8\sqrt{2/\alpha_2}$, where α_2 is the constant in Theorem 2. Therefore if n is sufficiently large, then

$$\mu_{eta,h}(a_{0,4n} \le 2\xi_{2n} - K_0(2n\log^5(2n))^{1/2}) \le ext{Const.} imes n^{-2}.$$

Since $0 \le a_{0,n} \le n$, it follows from this that

$$(3.22) \begin{aligned} \xi_{4n} \geq E_{\beta,h}[a_{0,4n}; a_{0,4n} \geq 2\xi_{2n} - K_0(n\log^5 n)^{1/2}] \\ \geq [2\xi_{2n} - K_0(n\log^5 n)^{1/2}(1 - O(n^{-2}))] \\ = 2\xi_{2n} - K_0(n\log^5 n)^{1/2} + O(n^{-1})] \\ \geq 2\xi_{2n} - (K_0 + 1)(n\log^5 n)^{1/2} \end{aligned}$$

for sufficiently large n. Let $K = K_0 + 1$, and use (3.22) for $2^k n$ rather than n to get

(3.23)
$$\frac{\xi_{2^{k+2}n}}{2^{k+2}n} + (K/2) \left(\frac{\log^5 2^{k+1}n}{2^{k+1}n}\right)^{1/2} \ge \frac{\xi_{2^{k+1}n}}{2^{k+1}n}.$$

Iterating (3.23), we get

(3.24)
$$\frac{\xi_{2n}}{2n} \le \widetilde{K} \left(\frac{\log^5(2n)}{2n}\right)^{1/2} + \frac{\xi_{2^{k+2n}}}{2^{k+2n}}$$

for some constant $\widetilde{K} > 0$. Theorem 1 follows from (1.8) and (3.24) by letting $k \to \infty$. \Box

PROOF OF THEOREM 3. Theorem 3 follows from (3.13),

$$c_{0,n} \le a_{0,n}$$

and Theorem 1. \Box

Acknowledgment. The authors deeply thank the referee for careful reading of this manuscript and for numerous helpful comments. Especially, the referee gave simpler proofs for Lemmas 2 and 5, which are adopted here.

REFERENCES

- ALEXANDER, K. (1993). A note on some rates of convergence in first-passage percolation. Ann Appl. Probab. 3 81–90.
- [2] CHAYES, J., CHAYES, L. and DURRETT, R. (1986). Critical behavior of two dimensional first passage time. J. Statist. Phys. 45 933–951.
- [3] CHAYES, L. and WINFIELD, C. (1993). The density of interfaces: a new first passage problem. J. Appl. Probab. 30 851–862.
- [4] FONTES, L. and NEWMAN, C. (1993). First passage percolation for random colorings of Z^d. Ann. Appl. Probab. 3 746–762.
- [5] GRIMMETT, G. (1989). Percolation. Springer, New York.
- [6] HAMMERSLEY, J. and WELSH, D. (1965). First-passage percolation, subadditive processes, stochastic networks and generalized renewal theory. In *Bernoulli, Bayes, Laplace Ann. Volume* (J. Neyman and L. M. LeCam, eds.) 61–110. Springer, Berlin.
- [7] HIGUCHI, Y. (1993). A sharp transition for the two-dimensional Ising percolation. Probab. Theory Related Fields 97 489-514.
- [8] HIGUCHI, Y. (1996). Mixing conditions and percolation for Ising models. In Proceedings of the Seventh Japan-Russia Symposium on Probabability Theory and Math. Statist. (S. Watanabe, M. Fuknshima, Y. Prohorov and A. N. Shiryaev, eds.) 110–121. World Scientific, Singapore.
- [9] KESTEN, H. (1982). Percolation Theory for Mathematicians. Birkhäuser, Boston.
- [10] KESTEN, H. (1986). Aspect of first passage percolation. Lecture Notes in Math. 1180 125–264. Springer, New York.
- [11] KESTEN, H. (1993). On the speed of convergence in first passage percolation. Ann Appl. Probab. 3 296–338.
- [12] KESTEN, H. and ZHANG, Y. (1997). A central limit theorem for critical first passage percolation in two dimensions. *Probab. Theory Related Fields* 107 137–160.
- [13] Martinelli, F., Olivieri, E. and Schonmann, R. (1994). For 2-D lattice spin systems weak mixing implies strong mixing. Comm. Math. Phys. 165 33–48.

Y. HIGUCHI AND Y. ZHANG

- [14] SCHONMANN, R. and SHLOSMAN, S. B. (1995). Complete analyticity for 2D Ising model completed. Comm. Math. Phys. 170 453–482.
- [15] TALAGRAND, M. (1995). Concentration of measure and isoperimetric inequalities in product spaces. Publ. I.H.E.S. 81 73-205.
- [16] RHEE, W. T. (1995). On rates of convergence for common subsequences and first passage time. Ann. Appl. Probab. 5 44-48.
- [17] WILLIAMS, D. (1991). Probability with Martingales. Cambridge Univ. Press.
- [18] ZHANG, Y. (1995). Supercritical behaviors in first passage percolation. Stochastic Process. Appl. 59 251–266.

DEPARTMENT OF MATHEMATICS KOBE UNIVERSITY ROKKO, KOBE 657-8501 JAPAN DEPARTMENT OF MATHEMATICS UNIVERSITY OF COLORADO COLORADO SPRINGS, COLORADO 80933 E-mail: yzhang@vision.uccs.edu