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ON THE SPEED OF CONVERGENCE FOR TWO-DIMENSIONAL
FIRST PASSAGE ISING PERCOLATION

By Yasunari Higuchi1 and Yu Zhang2

Kobe University and University of Colorado

Consider first passage Ising percolation on Z2. Let β denote the re-
ciprocal temperature and let h denote an external magnetic field. Denote
by βc the critical temperature and, for β < βc, let

hc�β� = hc = sup�h: θ�β�h� = 0��
where θ�β�h� is the probability that the origin is connected by an infinite
�+�-cluster. With these definitions let us consider first passage Ising per-
colation on Z2. Let a0� n denote the first passage time from �0�0� to �n�0�.
It follows from a subadditive argument that

lim
n→∞

a0� n
n
= ν a.s and in L1�

It is known that ν > 0 if β < βc and 	h	 < hc�β�. Here we will estimate the
speed of the convergence,

νn ≤ Ea0� n ≤ νn+C�n log5 n�1/2

for some constant C. Define µβ�h to be the unique Gibbs measure for β <
βc. We also prove that there exist C̃� α̃ > 0 such that

µβ�h�	a0� n −Ea0� n	 ≥ x� ≤ C̃ exp
(
−α̃ x2

n log4 n

)
�

In addition to a0� n, we shall also discuss other passage times.

1. Introduction to Ising first passage percolation. Consider the Z2

lattice and the sample space � = �+1�−1�Z2 with spin configurations on Z2.
Given a sample w ∈ � and x ∈ Z2, w�x� denotes the spin value at x in the
configuration w. For any set V ⊂ Z2, denote by �V the σ-algebra generated
by �w�x�:x ∈ V�, and we simply write � for �Z2 . For any finite V, let the
Hamiltonian in V be

HwV�σ� = − 12
∑

x�y∈V� �x−y�=1
σ�x�σ�y� − ∑

x∈V

[
h+ ∑

y �∈V� �x−y�=1
w�y�

]
σ�x��

for σ ∈ �V = �+1�−1�V, where h is a real number called the external field,
and � · � is the L1 norm. We then define the finite Gibbs measure on V by

qwV�β�h�σ� =
[ ∑
σ ′∈�V

exp�−βHwV�σ ′��
]−1
exp�−βHwV�σ���
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Here β is a positive number called the inverse temperature. For each β > 0
and h ∈ R1, a Gibbs measure is a probability measure µβ�h on � in the sense
of the following DLR equation:

µβ�h�·	�VC��w� = qwV�β�h�
where VC = Z2 \ V. Let βc be the critical value such that if β < βc or
h �= 0, the Gibbs measure is unique for �β�h�. Let Eβ�h and EwV�β�h denote
the expectations with respect to µβ�h and q

w
V�β�h, respectively. We say that a

probability measure µ on ���� � possesses a mixing property if there exist
constants C > 0 and α > 0 such that for every pair of finite subsets V and W
of Z2 with V ⊂W,

sup
ω∈�
A∈�V

∣∣µ�A� − µ�A 	 �Wc��ω�∣∣ ≤ C	V	 exp�−αd�V�Wc���(1.1)

where for V1�V2 ⊂ Z2, d�V1�V2� denotes the distance between V1 and V2;
that is,

d�V1�V2� = inf�	x− y	� x ∈ V1� y ∈ V2��
This property is often called the “weak mixing property” compared with
Dobrushin–Shlosman’s strong mixing property (see [13] and [14]). In this pa-
per, we need not be so serious as to distinguish these two mixing properties,
and we call the above property simply “the mixing property.” It is proved [14]
that when β < βc or h �= 0, µβ�h has mixing property. Furthermore, let X be
a �V-measurable random variable for a finite V ⊂ Z2. If

	X	 ≤M for some numberM�

then it follows from (1.1) that∣∣Eβ�hX−EwW�β�hX∣∣ ≤ CM	V	 exp�−αd�V�Wc���(1.2)

since every �V-measurable function is a simple function if V is a finite subset
of Z2. Sometimes we use the mixing property (1.1) in the following form: if
V1�V2 ⊂ Z2 are finite sets, V1 ∩V2 = � and A�B are cylinder sets such that
A ∈ �V1 and B ∈ �V2 , then∣∣µβ�h�A ∩B� − µβ�h�A�µβ�h�B�∣∣ ≤ C	V1	 exp�−αd�V1�V2��µβ�h�B��(1.3)

Furthermore, as in (1.2), if X is �V1 -measurable and if 	X	 ≤M, then∣∣Eβ�h�X 	 �V2��w� −Eβ�h�X�∣∣ ≤ CM	V1	 exp�−αd�V1�V2���(1.4)

We prove (1.4) first. Let V = V1 and W = �x ∈ Z2� d�x�V1� < d�V1�V2���
Then WC ⊃ V2 and d�V1�WC� = d�V1�V2�. By (1.2) we have

−CM	V1	 exp�−αd�V1�V2�� ≤ EwW�β�h�X� −Eβ�h�X�
≤ CM	V1	 exp�−αd�V1�V2���
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Note that EwW�β�h�X� is equal to Eβ�h�X 	 �WC��w� by the DLR equation.
Taking expectation with respect to µβ�h�· 	 �V2��w�, we obtain∣∣Eβ�h�X 	 �V2��w� −Eβ�h�X�∣∣ ≤ CM	V1	 exp�−αd�V1�V2���
proving (1.4). Now, take 1A as X in (1.4). Then we obtain thatM = 1 and

−C	V1	 exp�−αd�V1�V2�� ≤ µβ�h�A 	 �V2��w� − µβ�h�A�
≤ C	V1	 exp�−αd�V1�V2���

(1.5)

Integrating every side of (1.5) on the set B with respect to µβ�h, we obtain

−C	V1	 exp�−αd�V1�V2��µβ�h�B� ≤ µβ�h�A ∩B� − µβ�h�A�µβ�h�B�
≤ C	V1	 exp�−αd�V1�V2��µβ�h�B��

which proves (1.3).
Let �+0 (resp., �

−
0 ) be the + cluster (resp., − cluster) in Z2 containing the

origin and

θ�β�h� = µβ�h�	�+0 	 = ∞��
Define critical value for each fixed β as

hc�β� = sup�h: θ�β�h� = 0��
This hc�β� is equal to zero when β ≥ βc and is positive when β < βc (see [7]).
It is proved in [8] that if β < βc and 	h	 < hc�β�, then

µβ�h�	�+0 	 ≥ n or 	�−0 	 ≥ n� ≤ C1 exp�−α1n�(1.6)

for some positive constants C1 and α1.
Let us consider first passage percolation on Z2 (see [4] and [3]). DefineX�e�

to be a random variable such that

X�e� =
{
0� if σ�u� = σ�v�,
1� if σ�u� �= σ�v�,(1.7)

where u� v are two vertices of the bond e in Z2. In this paper, we always
use e to represent bonds and u� v or x to represent vertices. A path r =
�x0� e1� x1� � � � � en� xn� is an alternating sequence of vertices and bonds such
that ei is the bond connecting xi−1 and xi and �xi� are vertices with d�xi−1� xi�
= 1 for 1 ≤ i ≤ n. For each path r define the passage time of r as

t�r� =∑
e∈r
X�e��

For any two sets A and B, define the first passage time from A to B by

T�A�B� = inf�t�r�: r a path from A to B��
If we focus on a special configuration w, we denote by T�A�B��w�. In this
paper, we would like to study the process

a0� n = T��0�0�� �n�0���



356 Y. HIGUCHI AND Y. ZHANG

It follows from a subadditive argument that

lim
n→∞

a0� n
n
= inf

n

Eβ�ha0� n

n
= ν a.s. and in L1�(1.8)

It is proved in [4] that

ν > 0 if β < βc and 	h	 < hc�β��(1.9)

For 	h	 > hc�β�, it is easy to show (see [18]) that ν = 0 since there exists
an infinite + cluster when h is positive, and an infinite − cluster when h is
negative. For h = 0 and β > βc with a positive or negative boundary condition,
it is also easy to show that ν = 0 by the same reason. The challenging question
is whether ν = 0 when β = βc and h = 0. We are unable to show it. If we
consider the standard i.i.d. first passage percolation (see [10]), i.e., �X�e�� is
i.i.d., similar results as (1.8) and (1.9) have been known since 1965 and 1986,
respectively (see [6] and [10]). It is of historical interest to find the convergence
speed of

Eβ�ha0� n − nν(1.10)

and the fluctuation of

a0� n −Eβ�ha0� n�(1.11)

For these problems, Kesten developed a remarkable martingale technique (see
[11]) which gave nontrivial rates for (1.10) and (1.11). Later, Talagrand inves-
tigated (1.11) by a different way [15]. Some other studies for (1.10) can also
be found in [1]. However, the methods depend heavily on the independence
of �X�e��. They do not work on our Ising passage time. Here we use another
approach developed by Kesten and Zhang [12] to get the following theorems.

Theorem 1. If β < βc and 	h	 < hc�β�, then there exists a constant C2 > 0
such that

nν ≤ Eβ�ha0� n ≤ nν +C2�n log5 n�1/2�

Theorem 2. If β < βc and 	h	 < hc�β�, then there exist positive constants
C3 and α2 such that for all sufficiently large n and x with 1 ≤ x ≤ √n,

µβ�h

( 	a0� n −Eβ�ha0� n	
n1/2 log2 n

≥ x
)
≤ C3 exp�−α2x2��

Let Q�n� denote the square �−n�n�2∩Z2, and let ∂Q�n� be its inner bound-
ary: set of points in Q�n� such that there is a point y outside Q�n� with
�x− y� = 1. Another passage time,

c0� n = T��0�0�� ∂Q�n���
has been considered in the literature (see [12] and [18]) since it is easy to
show that there is a path (0,0) to ∂Q�n� contained in Q�n� which possesses
the passage time c0� n. Here we give the following theorems to deal with c0� n.
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Theorem 3. If β < βc and 	h	 < hc�β�, then there exist C4�C5 > 0,

nν −C4�n log5 n�1/2 ≤ Eβ�hc0� n ≤ nν +C5�n log5 n�1/2�

Theorem 4. If β < βc and 	h	 < hc�β�� then there exist positive constants
C6 and α3 such that for every x > 0 and for sufficiently large n,

µβ�h

( 	c0� n −Eβ�hc0� n	
n1/2 log2 n

≥ x
)
≤ C6 exp�−α3x2��

Corollary 5. If β < βc and 	h	 < hc�β�,
lim
n→∞

c0� n
n
= ν a.s and in L1�

Remark 1. The method of proof also works for i.i.d. standard first passage
percolation with 0–1 valued bond on the Zd lattice. In fact, we only need to
change the closed circuits in the following proofs to the closed surfaces (see
[9]). Then the same argument of the following proofs can be adapted to show
Theorems 1–4 for i.i.d. first passage percolation on Zd for d ≥ 2. In fact, for
the i.i.d. case, we could show that Theorem 2 holds without the term log2 n.

Remark 2. Corollary 5 was proved in [6] for i.i.d. first passage percolation.
Here we give a different proof.

Remark 3. The passage time

b0� n = T��0�0�� the right boundary of Q�n��
is also considered in the literature (see [10]). Since

c0� n ≤ b0� n ≤ a0� n�
Theorem 3 holds for b0� n. On the other hand, we may adapt the same argu-
ments in Section 3 to show that Theorem 4 also holds for b0� n.

Remark 4. Since the knowledge of Ising models for d > 2 is very limited,
we do not know whether Theorems 1–4 hold for d > 2.

Remark 5. We believe that

Eβ�h	a0� n −Eβ�ha0� n	 = O�n1/3�
as is conjectured for i.i.d. first passage percolation for d = 2.

Remark 6. It might be possible to get a better estimate such as

µβ�h

( 	ρ0� n −Eβ�hρ0� n	
n1/2 log1+δ n

≥ x
)
≤ C′ exp�−α′x2�

for some positive constants δ�C′ and α′ (or even better) where ρ = a or c.
However, it is more important to improve the power estimate for n.
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Remark 7. As a generalization of a0� n, one also considers the vertex-to-
vertex passage time T��0�0�� nu� which is the passage time �0�0� to the near-
est vertex onZ2 to nu, for any unit vector u. If several vertices ofZ2 minimize
the distance to nu, then we take T��0�0�� nu� = T��0�0��A� with A equal to
the set of vertices of Z2 with minimal distance to nu. The proof of Theorem 2
can be adapted to show

µβ�h
(∣∣T��0�0�� nu� −Eβ�hT��0�0�� nu�∣∣ ≥ x√n log2 n) ≤ exp�−α′′x2�

for some positive constant α′′.

2. Concentrations at means. The bond set �e�X�e� = 0� is divided into
connected components. We call a connected component of the above set a
0-cluster. The size 	� 	 of a 0-cluster � is the number of bonds belonging to
� . Let n be a positive integer, and we fix it. We say that a bond e in Z2 is
open if:

1. X�e� = 0;
2. e does not belong to a 0-cluster with size larger than log2 n, otherwise we
say that e is closed.

Strictly speaking, we should use the word “n-open” for this notion of open
edges. But we are fixing n, and therefore when we simply say that e is “open,”
it always means that the above two conditions are satisfied for e. Let

Z�e� =
{
0� if e is open,
1� if e is closed.

Let

T̂�A�B� = inf�t̂�r�: r a path from A to B�
and

â0� n = T̂��0�0�� �n�0���
where

t̂�r� =∑
e∈r
Z�e��

Clearly,

T�A�B� ≤ T̂�A�B� for any A and B�

By the subadditive argument, we have

lim
n→∞

â0� n
n
= ν̂ a.s. and in L1�

A path with each bond open or closed is called an open path or a closed path.
Let �n�x� be the open cluster containing x on �−n�n�2 with free boundary
condition. Namely, we delete all closed edges from �−n�n�2 and we write �n�x�
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for the connected component of the ensuing graph in �−n�n�2, which contains
the vertex x. Clearly,

	�n�x�	 ≤ log2 n for each x ∈ Q�n��(2.1)

Next we introduce the duality of planar graphs. DefineZ∗ as the dual graph
of Z2 with vertices �v + �1/2�1/2�� for v ∈ Z2 and bonds joining all pairs of
vertices which are unit distance apart. For any bond set A ⊂ Z2, we write
A∗ ⊂ Z∗ for the corresponding bonds of the dual graph of A. We declare each
bond e∗ ⊂ Z∗ open or closed if e is open or closed. In other words, if e∗ crosses
an open (closed) bond in Z2, then e∗ is open (closed). With this definition, we
can obtain (see [5] for details) that if there exists a closed dual circuit D∗ in
Q�n�∗ surrounding some set A ⊂ Q�n − 1�, then any path on Z2 from A to
∂Q�n� has to use at least one closed bond in D. If 	h	 < hc�β�, then there is
no infinite open cluster so that there are infinitely many closed dual circuits
surrounding the origin. Let

1∗1� � � � � 1
∗
m� � � � = �1∗m��

be a sequence of closed dual circuits with

1∗i ∩ 1∗j = ��

such that 1∗1 is the innermost dual closed circuit surrounding the origin, � � �,
1∗m is the innermost one surrounding the m − 1th innermost one, where the
innermost circuit is in the sense of the area surrounded by the circuit. Each 1∗i
divides R2 into two connected parts A�1∗i � and B�1∗i �, where A�1∗i � contains
the origin and 1∗i itself, and B�1∗i � = R2 \ A�1∗i � contains the infinite part.
Then 1∗i has two vertex boundaries ∂A�1∗i � and ∂B�1∗i �: the inside boundary
and outside boundary such that for each x ∈ ∂A�1∗i � there is a path connecting
x to the origin without using any bond of 1i, the dual set of which is 1

∗
i , and

for each y ∈ ∂B�1∗i � there is a path connecting x to ∞ also without using any
bond of 1i. It follows from a standard topological discussion (see [2]) that we
have the following lemma.

Lemma 1. For each x ∈ ∂A�1∗i �, i ≥ 1,

T̂��0�0�� x� = i− 1�
and for each x ∈ ∂B�1∗i �,

T̂��0�0�� x� = i�

Furthermore, we shall give the following more detailed lemma.

Lemma 2. In the event that 1∗i = 4∗ for some bond set 4∗ ⊂ Q�n�∗,

T̂��0�0�� ∂Q�n�� = i+ T̂�∂B�1∗i �� ∂Q�n���
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Proof. Let path r realize T̂��0�0�� ∂Q�n�� (such a path must exist since
the bond times are 0–1 valued). Then there exists a vertex x on r with x ∈
∂B�4∗�, and
T̂��0�0�� ∂Q�n�� = T̂��0�0�� x� + T̂�x� ∂Q�n�� ≥ i+ T̂�∂B�4∗�� ∂Q�n���

On the other hand, let path r′ realize T̂�∂B�4∗�� ∂Q�n�� and suppose that r′
starts at x ∈ ∂B�4∗�. Then
T̂��0�0�� ∂Q�n�� ≤ T̂��0�0�� x� + T̂�x� ∂Q�n�� = i+ T̂�∂B�4∗�� ∂Q�n��� ✷

It follows from Proposition 2.3 in [9] and the definition of Z�e� that we have
the following lemma.

Lemma 3. The event �1∗i = 4∗� for some fixed 4∗ ⊂ Q�n�∗ only depends
on w�x� for such x’s with dist �x�A�4∗�� ≤ log2 n, and the random variable
T̂�4∗� ∂Q�n�� only depends on w�y� for such y’s with dist �y�Q�n� \A�4∗�� ≤
log2 n.

It follows from Lemma 2 and the definition of Z�e� again that we have the
following.

Lemma 4. For each x ∈ ∂A�1∗i � there exists y ∈ ∂B�1∗i−1� such that

�x− y� ≤ log2 n�

For p = 1�2� � � �, let
�p = σ-field generated by Z�e� for e ∈ A�1∗p��

where �p consists of unions of sets of the form

�1∗p = 4∗� �Z�e1�� � � � �Z�ek�� ∈ B�
for 4∗ a dual circuit surrounding �0�0�, and e1� � � � � ek ⊂ A�4∗�� B a k-dimen-
sional Borel set. Here �0 is trivial. Clearly,

�i ⊂ �i+1�

Note thatQ�n� ⊂ A�1∗n+1� and that T̂��0�0�� ∂Q�n�� is �n-measurable, so that
with the definition of �n,

Eβ�h
[
T̂��0�0�� ∂Q�n�� −Eβ�h�T̂��0�0�� ∂Q�n����	�n

]
= T̂��0�0�� ∂Q�n�� −Eβ�h�T̂��0�0�� ∂Q�n����

(2.2)

We first show that there exists a constant α̃ > 0 such that

µβ�h
(∣∣T̂��0�0�� ∂Q�n�� −Eβ�h�T̂��0�0�� ∂Q�n���∣∣ ≥ x√n log2 n)
≤ 2 exp�−α̃x2��

(2.3)

To show this, we apply the Azuma–Hoeffding inequality (see [17]).
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Azuma–Hoeffding lemma. Let M = �Mi�i≥0 be a martingale defined on
some probability space ���P� with M0 = 0 such that, for some positive con-
stants ci, i ≥ 1,

	Mi −Mi−1	 ≤ ci�
Then for any x > 0,

P�sup
i≤k
Mi ≥ x� ≤ exp

(
− x2

2
∑k
i=1 c

2
i

)
�

Let

Mi = Eβ�h��T̂��0�0�� ∂Q�n�� −Eβ�h�T̂��0�0�� ∂Q�n���� 	 �i��
Since �0 is trivial, obviously �Mi�∞i=0 is a martingale sequence with M0 = 0.
We now need to bound the martingale increments. Let 8i be the martingale
increment,

8i=Mi −Mi−1

=Eβ�h�T̂��0�0�� ∂Q�n�� −Eβ�h�T̂��0�0�� ∂Q�n��� 	 �i�
−Eβ�h�T̂��0�0�� ∂Q�n�� −Eβ�h�T̂��0�0�� ∂Q�n��� 	 �i−1�

=Eβ�h�T̂��0�0�� ∂Q�n�� 	 �i� −Eβ�h�T̂��0�0�� ∂Q�n�� 	 �i−1��
Let Ei be the event �1∗i ⊂ �−n�n�2�. For w ∈ ECi = � \Ei, there exists a path
r inside 1∗i such that

t�r� = T̂��0�0�� ∂Q�n���
Hence, T̂��0�0�� ∂Q�n��IECi is �i-measurable so that for w ∈ ECi ,

Eβ�h�T̂��0�0�� ∂Q�n�� 	 �i��w� = T̂��0�0�� ∂Q�n���w��(2.4)

If w ∈ ECi−1, then w ∈ ECi since
1∗i−1 ⊂ A�1∗i ��

Therefore, for w ∈ ECi−1 it follows from (2.4) that
8i = Eβ�h�T̂��0�0�� ∂Q�n�� 	 �i��w�

−Eβ�h��T̂��0�0�� ∂Q�n���	�i−1��w� = 0�
(2.5)

If w ∈ Ei−1 ∩ECi , then we have that
A�1∗i �w�� �⊂ �−n�n�2 and A�1∗i−1�w�� ⊂ �−n�n�2�

This means that 1∗i−1�w� is within distance log2 n from 1∗i �w� and hence
1∗i−1�w� is within distance log2 n from ∂Q�n�. By Lemma 2, it follows that
if w ∈ Ei−1, then

T̂��0�0�� ∂Q�n�� = i− 1+ T̂�∂B�1∗i−1�� ∂Q�n�� ≥ i− 1�
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In general, if 1∗i−1�w� is within distance log2 n from ∂Q�n�, then we have
T̂�∂B�1∗i−1�� ∂Q�n�� ≤ log2 n�

Therefore we have for w ∈ Ei−1 ∩ECi ,
0 ≤ Eβ�h�T̂�∂B�1∗i−1�� ∂Q�n�� 	 �i−1��w� ≤ log2 n(2.6)

and also

i− 1 ≤ Eβ�h�T̂��0�0�� ∂Q�n�� 	 �i��w�
= T̂��0�0�� ∂Q�n���w�
≤ i− 1+ log2 n�

(2.7)

Combining (2.6) with (2.7), we obtain

	8i	 =
∣∣Eβ�h�T̂��0�0�� ∂Q�n�� 	 �i−1��w�
−Eβ�h�T̂��0�0�� ∂Q�n�� 	 �i��w�

∣∣ ≤ log2 n�(2.8)

This, together with (2.5), (2.7) implies that 	8i	 ≤ log2 n for w ∈ Ei−1 ∩ECi .
Now we focus on the case that w ∈ Ei ∩Ei−1. By Lemma 2,
Eβ�h�T̂��0�0�� ∂Q�n��	�i��w� = i+Eβ�h�T̂�∂B�1∗i �� ∂Q�n��	�i��w��

To estimate Eβ�h�T̂�∂B�1∗i �� ∂Q�n��	�i��w�, let Ei�4∗� be the event,
�w:1∗i �w� = 4∗�

for some fixed dual circuit 4∗ ⊂ �−n�n�2 surrounding the origin. Clearly,⋃
4 ∗
Ei�4∗� = Ei�

where the union is taken over all such 4∗’s. Note that Ei�4∗� only depends on
�Z�e�� e ∩A�4∗� �= ��. Fix a dual circuit 4∗ ⊂ �−n�n�2. If w ∈ Ei�4∗�, then

Eβ�h�T̂�∂B�1∗i �� ∂Q�n��	�i��w� = Eβ�h�T̂�∂B�4∗�� ∂Q�n��	�i��w��
Let

� �4∗� = σ�Z�e�: e ∩A�4∗� �= ���
Then it is easy to see that for w ∈ Ei�4∗�,

Eβ�h�T̂�∂B�4∗�� ∂Q�n��	�i��w� = Eβ�h�T̂�∂B�4∗�� ∂Q�n��	� �4∗���w��
On Ei�4∗�, we can find a dual circuit κ∗ surrounding 4∗ (see Figure 1) such
that

3 log2 n ≤ d�∂A�κ∗�� ∂B�4∗�� ≤ 4 log2 n�
To show the existence of κ∗, we can find a dual circuit λ∗ surrounding 4∗ such
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Fig. 1. The dot curve is κ∗ and the solid curve is 4∗.

that

3 log2 n ≤ �x− y� for x ∈ ∂B�4∗�� y ∈ ∂A�λ∗��
Then we can shrink the area of A�λ∗� to achieve the requirements of κ∗. In
fact, for a fixed 4∗, we may choose such κ∗ by a unique way. Note that

T̂�∂B�4∗�� ∂Q�n�� = T̂�∂B�4∗��Z2\Q�n− 1���
since ∂Q�n� is a subset of Z2\Q�n − 1�, and every path connecting ∂B�4∗�
with Z2\Q�n− 1� must pass one of the points in ∂Q�n�. Note also that

T̂�∂B�κ∗��Z2\Q�n− 1��≤ T̂�∂B�4∗��Z2\Q�n− 1��
≤ T̂�∂B�κ∗��Z2\Q�n− 1�� + 4 log2 n�

(2.9)

In fact, (2.9) is clearly true if κ∗ ⊂ �−n�n�2. If κ∗ �⊂ �−n�n�2, then we can find
a point y in ∂A�κ∗� which does not belong to Q�n− 1�. Then there is a point
x ∈ ∂B�4∗� such that �x−y� ≤ 4 log2 n. Let r be a shortest path connecting x
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with y. Then r is also a path connecting Z2\Q�n− 1� with ∂B�4∗�. Hence,
T̂�∂B�4∗��Z2\Q�n− 1�� ≤ t̂�r� ≤ 4 log2 n�(2.10)

Since ∂A�κ∗� ∩Z2\Q�n− 1� �= �, we have T̂�∂A�κ∗��Z2\Q�n− 1�� = 0. This,
together with (2.10) proves (2.9) in the case that κ∗ �⊂ �−n�n�2.
Now we want to use the mixing property (1.2). The random variable in this

case is T̂�∂B�κ∗��Z2\Q�n− 1�� which depends on the configuration in the set
V = �x ∈ Z2� d�x�B�κ∗� ∩Q�n�� ≤ log2 n�. Note that we have

0 ≤ T̂�∂B�κ∗��Z2\Q�n− 1�� ≤ T̂�∂B�4∗�� ∂Q�n�� ≤ n�(2.11)

Put

W = �x ∈ B�4∗� ∩Q�2n�� d�x� ∂B�4∗�� ≥ log2 n��
Then we have W ⊃ V, d�V�WC� ≥ log2 n, and � �4∗� ⊂ �WC . By (1.2) and
(2.11) we have for w ∈ Ei�4∗�,∣∣Eβ�h[T̂�∂B�κ∗��Z2\Q�n− 1�� 	 �WC]�w�

−Eβ�h
[
T̂�∂B�κ∗��Z2\Q�n− 1��]∣∣

≤ Const�× n · n2 exp�−α log2 n� = Const�× n3 exp�−α log2 n��
(2.12)

Taking conditional expectation of (2.12) with respect to µβ�h�· 	 � �4∗���w�, we
obtain ∣∣Eβ�h[T̂�∂B�κ∗��Z2\Q�n− 1�� 	 � �4∗�]�w�

−Eβ�h
[
T̂�∂B�κ∗��Z2\Q�n− 1��]∣∣

≤ Const�× n3 exp�−α log2 n�
(2.13)

on Ei�4∗�. Therefore, it follows from (2.13) and (2.9) that for w ∈ Ei�4∗�,∣∣Eβ�h�T̂�∂B�1∗i �� ∂Q�n��	�i��w� −Eβ�h�T̂�∂B�4∗�� ∂Q�n���∣∣
≤ ∣∣Eβ�h�T̂�∂B�κ∗��Z2\Q�n− 1��	� �4∗��

−Eβ�h�T̂�∂B�κ∗��Z2\Q�n− 1���
∣∣

+8 log2 n
≤ 8 log2 n+ Const�× n3 exp�−α log2 n��

(2.14)

Since the estimate (2.14) is uniform in 4∗ such that Ei�4∗� �= �, we have∣∣Eβ�h�T̂�∂B�1∗i �� ∂Q�n��	�i��w�
−∑
4∗
Eβ�h�T̂�∂B�4∗�� ∂Q�n���1Ei�4∗��w�

∣∣
≤ 8 log2 n+Cn3 exp�−α log2 n��

(2.15)
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It follows from (2.15) that, for w ∈ Ei ∩Ei−1,∣∣8i�w�∣∣≤ ∣∣i− �i− 1�∣∣
+ ∑
4∗1� 4

∗
2

∣∣Eβ�h�T̂�∂B�4∗1�� ∂Q�n��� −Eβ�h�T̂�∂B�4∗2�� ∂Q�n���∣∣
×1Ei�4∗1�∩Ei−1�4∗2��w�

+16 log2 n+ Const�× n3 exp�−α log2 n��
It follows from Lemma 4 that for 4∗1� 4

∗
2 ⊂ �−n�n�2 with Ei�4∗1�∩Ei−1�4∗2� �= �,

Eβ�h�T̂�∂B�4∗1�� ∂Q�n���≤Eβ�h�T̂�∂B�4∗2�� ∂Q�n���
≤Eβ�h�T�∂B�4∗1�� ∂Q�n��� + log2 n�

so that for w ∈ Ei ∩Ei−1,
	8i�w�	 ≤ 17 log2 n+ 1+ Const�× n3 exp�−α log2 n��(2.16)

It follows from (2.5), (2.8) and (2.16) that there exists C such that

	8i	 ≤ C log2 n�(2.17)

Finally, it follows from the Azuma–Hoeffding lemma and (2.17) that

µβ�h�T̂��0�0�� ∂Q�n�� −Eβ�hT̂��0�0�� ∂Q�n�� ≥ x
√
n log2 n�

= µβ�h�Mn ≥ x
√
n log2 n�

≤ µβ�h
(
sup
k≤n
Mk ≥ x

√
n log2 n

)

≤ exp
(
− 12�x

√
n log2 n�2

/ n∑
i=1
C2 log4 n

)
≤ exp�−x2/2C2��

Similarly, we can repeat the same argument to the martingale

−Mi = Eβ�h
[
Eβ�h�T̂��0�0�� ∂Q�n��� − T̂��0�0�� ∂Q�n�� 	 �i

]
to show

µβ�h�Eβ�h�T̂��0�0�� ∂Q�n���−T̂��0�0�� ∂Q�n�� ≥ x
√
n log2 n� ≤ exp�−x2/2C2��

proving (2.3). Now we show Theorem 4 from (2.3).

Proof of Theorem 4. First, note that it suffices to prove Theorem 4 for
x ≥ 1. If 0 < x < 1, then choose C6 in Theorem 4 sufficiently large such that
C6e

−1 ≥ 1; then the right-hand side of the desired inequality is always greater
than 1, and Theorem 4 is trivially true.
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To show Theorem 4, we need to estimate the probability

µβ�h�T̂��0�0�� ∂Q�n�� −T��0�0�� ∂Q�n�� ≥ x
√
n��

Note that it follows from the definition of T̂ and T that

T̂��0�0�� ∂Q�n�� ≥ T��0�0�� ∂Q�n���
Let E�v1� � � � � vm� be the event{

max�	�−�vi�	� 	�+�vi�	� ≥ log2 n for 1 ≤ i ≤m
}
�

Let �rn� denote the paths from �0�0� to ∂Q�n� with passage time T��0�0��
∂Q�n��. If

T̂��0�0�� ∂Q�n�� −T��0�0�� ∂Q�n�� ≥ x√n�
then there are at least �x√n� vertices, denoted by �v1� � � � v�x√n�� in each rn
such that 	�+�vi�	 ≥ log2 n or 	�−�vi�	 ≥ log2 n, where for a real number ξ,
�ξ� stands for the least integer not less than ξ. Then E�v1� � � � � vm� occurs for
some v1� � � � vm with �vi − vj� ≥ 3 log2 n if i �= j, and for

m =
⌊ �x√n�
9 log4 n

⌋
− 1�

This implies that

µβ�h�T̂��0�0�� ∂Q�n�� −T��0�0�� ∂Q�n�� ≥ x
√
n�

≤ ∑
v1� ��� vm∈Q�n�� �vi−vj�≥3 log2 n �i�=j�

µβ�h�E�v1� � � � � vm���(2.18)

Let us estimate the right-hand side of (2.18). We use (1.3) forV1 = Q�log2 n�+
v1, V2 =

⋃
2≤j≤m�Q�log2 n� + vj�, A = E�v1� and B = E�v2� � � � � vm�. Then by

(1.3) and (1.6) we obtain

µβ�h�E�v1� � � � � vm��
≤ [µβ�h�E�v1�� +C�2 log2 n+ 1�2 exp�−α log2 n�]µβ�h�E�v2� � � � � vm��(2.19)

≤ 9 log4 n× [exp�−α1 log2 n� +C exp�−α log2 n�]µβ�h�E�v2� � � � � vm���
If n is sufficiently large, then we can make

9�2n+ 1�2 log4 n[exp�−α1 log2 n� +C exp�−α log2 n�] ≤ 1/2�
where �2n+1�2 is the number of points inQ�n�. Then, summing up both sides
of (2.19) over v1 ∈ Q�n�, we obtain for sufficiently large n,∑

v1� ��� vm∈Q�n��
�vi−vj�≥3 log2 n �i�=j�

µβ�h�E�v1� � � � � vm��

≤ 1
2

∑
v2� ��� vm∈Q�n��

�vi−vj�≥3 log2 n �i�=j�

µβ�h�E�v2� � � � � vm���
(2.20)
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Iterating (2.20), we have∑
v1� ��� vm∈Q�n��

�vi−vj�≥3 log2 n �i�=j�

µβ�h�E�v1� � � � � vm�� ≤ � 12�m ≤ � 12��x
√
n�/9 log4 n−1�(2.21)

By (2.21) and the fact that

T̂��0�0�� ∂Q�n�� −T��0�0�� ∂Q�n�� ≤ n�
if n is sufficiently large, then taking x = 1, we have

E�T̂��0�0�� ∂Q�n��≤E�T��0�0�� ∂Q�n�� + √n+ n� 12��
√
n�/9 log4 n−1

≤Ec0� n + 2
√
n�

Therefore, if we also take n large such that log2 n > 6, we get by (2.3) and
(2.21),

µβ�h�	c0� n −Ec0� n	 ≥ x
√
n log2 n�

≤ µβ�h�	T��0�0�� ∂Q�n�� − T̂��0�0�� ∂Q�n��	 ≥ x
√
n log2 n/3�

+µβ�h�	T̂��0�0�� ∂Q�n�� −Eβ�hT̂��0�0�� ∂Q�n��	 ≥ x
√
n log2 n/3�

≤ Const�× exp�−α̃x2/9� + ( 12)2x√n/�27 log2 n�
(2.22)

for some α̃ > 0. Therefore, Theorem 4 follows. ✷

Remark. Equation (2.22) proves a rather stronger statement than Theo-
rem 4. In fact, it is easy to see that the same estimate as Theorem 4 is true
if x = O�√n/ log2 n�. However, the type of estimate in Theorem 4 cannot be
obtained from (2.22) if x  √n/ log2 n, since in this case, the main term is
the second term in the right-hand side of (2.22). This is a kind of probability
estimate of moderate deviations for c0� n −Eβ�h�c0� n�.

Proof of Theorem 2. Let

J = min�j: �n�0� ∈ A�1∗j���
Clearly we have

A�1∗J� ⊂ A�1∗n+1��(2.23)

and by Lemma 2, we know that

A�1∗J� ⊂ �−n log2 n�n log2 n��(2.24)

Lemma 5. There exists a path r with t�r� = â0� n such that r is contained
inside A�1∗J�.
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Proof. Let γ realize T̂��0�0�� �n�0�� and, for vertices a and b on r, let
r�a� b� denote the portion of r connecting a and b. Since there are infinitely
many closed dual circuits surrounding the origin, the existence of γ can be
seen from the following reason. Suppose, contrary to the lemma, that there
exists a vertex x on r outside of 1∗J [the first dual circuit surrounding both
�0�0� and �n�0�]. Then there exists a vertex a ∈ ∂B�1∗J� on r��0�0�� x� and
vertex b ∈ ∂A�1∗J� on r�x� �n�0�� and we have

T̂��0�0�� �n�0�� = t̂�r��0�0�� x�� + t̂�r�x� �n�0���
≥ T̂��0�0�� a� + T̂�b� �n�0��
= J+ T̂�b� �n�0��
> J− 1+ T̂�b� �n�0��
= T̂��0�0�� b� + T̂�b� �n�0�� ≥ T̂��0�0�� �n�0���

a contradiction. ✷

Let

Si = Eβ�h��â0� n −Eβ�h�â0� n��	�i��
It follows from Lemma 5 and (2.23) that

8i = Si −Si−1 = 0 if i ≥ n+ 1�(2.25)

We want to use the Azuma–Hoeffding lemma again for the martingale �Si�∞i=0.
To this end, we have to estimate 	8i	 for every i ≥ 1. [By (2.25), we only have to
estimate 	8i	 for 1 ≤ i ≤ n.] The argument hereafter in this section is similar
to that we made to obtain (2.14)–(2.17), but there are some necessary changes.
Let us fix i with 1 ≤ i ≤ n arbitrarily, and let

F1=�i < J� = �A�1∗i � �! �n�0���
F2=�i = J� = �A�1∗i−1� �! �n�0��A�1∗i � ! �n�0���
F3=�i > J� = �A�1∗i−1� ! �n�0���

It is clear that F1�F2�F3 ∈ �i and F1 ∪F2 ∪F3 = �.
If w ∈ F3, then by Lemma 5, there exists a path r in A�1∗i−1� which realizes

T̂��0�0�� �n�0��. Therefore if w ∈ F3, then
Si−1�w� = Si�w� = T̂��0�0�� �n�0���w� −Eβ�h�T̂��0�0�� �n�0���

and 8i = 0.
If w ∈ F2, we know that

�n�0� ∈ A�1∗i �\A�1∗i−1��
and by Lemma 4, the distance between 1∗i−1 and �n�0� is not larger than
log2 n.
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Let r be a path consisting of two pieces r′ and r′′ such that r′ connects �n�0�
with some point x ∈ ∂B�1∗i−1� which satisfies

	x− �n�0�	 = d��n�0�� ∂B�1∗i−1���
and r′′ realizes T̂��0�0�� y��w�, where y is the neighboring point of x in
∂A�1∗i−1�. Then by Lemma 1, if w ∈ F2, we have

i− 1 ≤ T̂��0�0�� �n�0�� ≤ t̂�r� ≤ i− 1+ log2 n�
This means that both Si and Si−1 are between i− 1 and i− 1+ log2 n. Thus
we have for w ∈ F2,

	8i	 = 	Si −Si−1	 ≤ log2 n�
Finally, let us discuss the case that w ∈ F1. For a dual circuit 4∗ such that

�0�0� ∈ A�4∗� and �n�0� �∈ A�4∗�, let
Ej�4∗� = �1∗j = 4∗�

for j = i or i− 1, as before. Note that w ∈ Ej�4∗� implies that j < J�w� and
therefore 4∗ should lie inside of �−n log2 n�n log2 n� by (2.24). Let κ∗ be a dual
circuit surrounding 4∗ such that

3 log2 n ≤ d�∂B�4∗�� ∂A�κ∗�� ≤ 4 log2 n�(2.26)

If κ∗ surrounds �n�0�, then we argue as in the case that w ∈ F2 and obtain
that 	8i	 ≤ 4 log2 n, since the distance between 1∗j and �n�0� does not exceed
4 log2 n by (2.26), and the assumption that κ∗ surrounds �n�0�. So, assume
that κ∗ does not surround �n�0�, that is, �n�0� ∈ B�κ∗�. In almost the same
way as in (2.14), we can show that∣∣Eβ�h[T̂�∂B�1∗j�� �n�0�� 	 �j]−Eβ�h[T̂�∂B�4∗�� �n�0��]∣∣

≤ 8 log2 n+C��2n+ 4� log2 n+ 1�2n log2 n exp�−α log2 n��
(2.27)

for w ∈ Ej�4∗�. Here, the factor ��2n+4� log2 n+1�2n log2 n is the only change
from (2.14), and this comes from the fact that T̂�∂B�κ∗�� �n�0�� ≤ n log2 n,
(2.26) and the fact that 4∗ lies inside of �−n log2 n�n log2 n�. By (2.27), we
obtain as before,

	8i�w�	= 	Si�w� −Si−1�w�	
≤ 17 log2 n+ 1+ Const�× n3 log6 n exp�−α log2 n�
≤Const�× log2 n�

Now we are ready to use Azuma–Hoeffding’s lemma to obtain

µβ�h

( 	a0� n −Eβ�ha0� n	√
n log2 n

≥ x
)
≤ exp�−α′2x2�
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for some constant α′2 > 0. Finally, we can use the same argument as in the
proof of Theorem 4 to estimate the probability

µβ�h�â0� n − a0� n ≥ x
√
n��

and obtain for sufficiently large n, for any
√
n ≥ x ≥ 1,

µβ�h�	a0� n −Eβ�ha0� n	 ≥ x
√
n log2 n�

≤ Const�× exp�−α′2x2/9� +
( 1
2

)2x√n/�27 log2 n�
�

(2.28)

Therefore, Theorem 2 follows. ✷

3. Concentrations at �n. Before we prove Theorems 1 and 3, we need
to show the following lemmas. Let Ev be the event that there exists a path r
with the last vertex v ∈ ∂Q�n� starting from �0�0� such that

t�r� = T��0�0�� ∂Q�n���
If there are many such v, we pick a v with the smallest x coordinate, then the
smallest y coordinate. Clearly,

Eβ�hT��0�0�� ∂Q�n�� =
∑

u∈∂Q�n�
Eβ�h�T��0�0�� ∂Q�n�� 	 Eu�µβ�h�Eu��(3.1)

We divide ∂Q�n� into two parts:
∂1Q�n�= �u ∈ ∂Q�n�� µβ�h�Eu� ≥ 1/n2��
∂2Q�n�= �u ∈ ∂Q�n�� µβ�h�Eu� < 1/n2��

Since T��0�0�� ∂Q�n�� ≤ n, and the number of points in ∂Q�n� is 8n, we have∑
u∈∂2Q�n�

Eβ�h
[
T��0�0�� ∂Q�n�� 	 Eu

]
µβ�h�Eu� ≤ 8n · n

1
n2
= 8�(3.2)

So, the effect of points in ∂2Q�n� in (3.1) is bounded. Assume first that u ∈
∂1Q�n� is on the right boundary of ∂Q�n�. Let E′u be the reflected event of Eu
with respect to the line

�v = �v1� v2�� v1 = n+ �log2 n���
By symmetry, note that we can simply connect u and u′ by a path with length
2�log2 n� so that

Eβ�h�a0�2n+2�log2 n� 	 Eu ∩E′u�
≤ Eβ�h�T��0�0�� u� 	 Eu ∩E′u�
+Eβ�h�T��2n+ 2�log2 n��0�� u′� 	 Eu ∩E′u� + 2�log2 n�
= 2Eβ�h�T��0�0�� u� 	 Eu ∩E′u� + 2�log2 n��

(3.3)
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Let

E+n #=
{
a0�2n+2�log2 n� ≤ Eβ�h�a0�2n+2�log2 n�� −

(
6
α2
n�log5 n�

)1/2}
�

where α2 is the constant given in Theorem 2. Then we have

Eβ�h�a0�2n+2�log2 n�� �E+n �C ∩Eu ∩E′u�

≥
[
Eβ�h�a0�2n+2�log2�� −

(
6
α2
n log5 n

)1/2]
× µβ�h

(�E+n �C ∩Eu ∩E′u)�
where Eβ�h�X�A� = Eβ�h�X1A�. Dividing both sides of the above inequality
by µβ�h�Eu ∩E′u�, we obtain

Eβ�h�a0�2n+2�log2 n� 	 Eu ∩E′u�

≥
[
Eβ�h�a0�2n+2�log2�� −

(
6
α2
n log5 n

)1/2]
× (1− µβ�h�E+n 	 Eu ∩E′u�)�(3.4)

Now we estimate µβ�h�E+n 	 Eu∩E′u� for u ∈ ∂1Q�n�. We put A = Eu, B = E′u,
V1 = Q�n� and V2 = Q�n� + �2n+ 2�log2 n��0�, and use (1.3) to obtain

µβ�h�Eu ∩E′u� ≥ µβ�h�Eu�µβ�h�E′u� − Const�× n2 exp�−2α log2 n��(3.5)

By symmetry, and since u ∈ ∂1Q�n�, µβ�h�E′u� = µβ�h�Eu� ≥ 1/n2. So if n is
sufficiently large, then we have from (3.5),

µβ�h�Eu ∩E′u� ≥ 1
2n
−4�(3.6)

On the other hand, by Theorem 2 we have

µβ�h�E+n � ≤ C3n−6�
Therefore it follows that

µβ�h�E+n 	 Eu ∩E′u� ≤ C3n−2

for sufficiently large n. This means that in the right-hand side of (3.4), the
term [

Eβ�h�a0�2n+2�log2�� −
(
6
α2
n log5 n

)1/2]
× µβ�h�E+n 	 Eu ∩E′u�

goes to zero as n tends to infinity. Thus, there exists a positive constant C7
such that we have

Eβ�h�a0�2n+2�log2 n�� ≤ Eβ�h�a0�2n+2�log2 n� 	 Eu ∩E′u� +C7�n log5 n�1/2�(3.7)

By mixing property we have

Eβ�h�T��0�0�� u� 	 Eu ∩E′u�
≤ Eβ�h�T��0�0�� u� 	 Eu� + Const�× n7 exp�−α log2 n��

(3.8)
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To see this, first we use (1.4) for V1 = Q�n�, V2 = Q�n� + �2n + 2�log2 n��,
X = T��0�0�� ∂Q�n��1Eu , and obtain

Eβ�h
(
T��0�0�� ∂Q�n��1Eu 	 �V2

) ≤ Eβ�h(T��0�0�� ∂Q�n��� Eu)
+Const�× n3 exp�−α log2 n��

Taking expectation on the set E′u with respect to µβ�h, we obtain

Eβ�h
(
T��0�0�� ∂Q�n��� Eu ∩E′u�
≤ Eβ�h

(
T��0�0�� ∂Q�n��1Eu

)
µβ�h�E′u� + Const�× n3 exp�−α log2 n�

= Eβ�h
(
T��0�0�� ∂Q�n�� 	 Eu

)
µβ�h�Eu�µβ�h�E′u�

+ Const�× n3 exp�−α log2 n��

(3.9)

By (3.5) and the fact that T��0�0�� ∂Q�n�� ≤ n, the right-hand side of (3.9) is
not larger than

Eβ�h
(
T��0�0�� ∂Q�n�� 	 Eu

)
µβ�h�Eu ∩E′u�

+Const�× n3 exp�−α log2 n��
(3.10)

By (3.5), (3.9) and (3.10) it follows that

Eβ�h�T��0�0�� ∂Q�n�� 	 Eu ∩E′u� ≤ Eβ�h�T��0�0�� u� 	 Eu�
+Const�× n7 exp�−α log2 n��

which proves (3.8). Combining (3.3), (3.7) with (3.8) we have

Eβ�h�a0�2n+2�log2 n��
≤ 2Eβ�h

(
T��0�0�� u� 	 Eu

)+C7�n log5 n�1/2 + 2�log2 n�
+Const�× n7 exp�−α log2 n�

≤ 2Eβ�h
(
T��0�0�� u� 	 Eu

)+C8�n log5 n�1/2�
(3.11)

for some constant C8 > 0. Note that T��0�0�� u��w� = T��0�0�� ∂Q�n���w� if
w ∈ Eu, and hence

Eβ�h�a0�2n+2�log2 n�� ≤ 2Eβ�h
(
T��0�0�� ∂Q�n�� 	 Eu

)+C8�n log5 n�1/2�(3.12)

In the case that u ∈ ∂1Q�n� is not on the right boundary of ∂Q�n�, we argue
in a similar way as before. For example, if u is on the top side of ∂Q�n�, we
define E′u to be the reflected event of Eu with respect to the line

�v = �v1� v2�� v2 = n+ �log2 n���
Then we define

E+n =
{
T
(�0�0�� �0�2n+ 2�log2 n��) ≤ Eβ�h�a0�2n+2�log2 n�� − ( 6α2n log5 n

)1/2}
�
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By the rotation invariance of µβ�h, T��0�0�� �0�2n+ 2�log2 n��� has the same
distribution as a0�2n+2�log2 n�, and we can argue just as before to obtain (3.12).
Thus, from (3.1), (3.2) and (3.12) we obtain

2Eβ�h
(
T��0�0�� ∂Q�n�) ≥ 2 ∑

u∈∂1Q�n�
Eβ�h

(
T��0�0�� ∂Q�n�� 	 Eu

)
µβ�h�Eu�

≥ ∑
u∈∂1Q�n�

Eβ�h�a0�2n+2�log2 n��µβ�h�Eu�−C8�n log5 n�1/2

≥ Eβ�h�a0�2n+2�log2 n�� − 8−C8�n log5 n�1/2

≥ Eβ�h�a0�2n�−8−C8�n log5 n�1/2 − 2 log2 n�
The last inequality above follows from a subadditive argument. This says that
for sufficiently large n, we have

Eβ�ha0�2n ≤ 2Eβ�h�T��0�0�� ∂Q�n��� + Const�× �n log5 n�1/2�(3.13)

Note that

Eβ�hc0� n ≤ Eβ�ha0� n�(3.14)

Clearly, by (1.8), (3.13) and (3.14),

lim
n→∞

Eβ�hc0� n

n
= ν�(3.15)

Let

Nn = min�	r	: t�r� = a0� n��
where 	r	 stands for the length of the path r. We will show the following
lemma.

Lemma 6. If ν > 0, there exist C9 > 0�C10 > 0 and α4 > 0 such that

µβ�h�Nn ≥ C9n� ≤ C10 exp�−α4n��

Proof. Lemma 6 for i.i.d. first passage percolation is proved in [10]. Here
we show it for Ising first passage percolation. For number γ and a path r, let

tγ�r� =
∑
e∈r
�X�e� + γ�

and

Tγ�A�B� = inf�tγ�r�: r a self-avoiding path from A to B��
Clearly, for γ > 0,

a0� n − γNn ≥ T−γ��0�0�� �n�0���
We also know that

a0� n ≤ n�
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To show Lemma 6 we only need to show that there exists γ > 0 such that

µβ�h�T−γ��0�0�� �n�0�� < 0� ≤ Const�× exp�−α4n��(3.16)

We use a standard Peierls argument to show (3.16). For a given positive integer
k, partition the bonds of Z2 into some blocks

��ik� �i+ 1�k� × �jk� �j+ 1�k�� i� j ∈ Z��
where �ik� �i+1�k�×�jk� �j+1�k� is a subset ofZ2 which contains the vertices
in �ik� �i+ 1�k� × �jk� �j+ 1�k� and the bonds in

�ik� �i+ 1�k� × �jk� �j+ 1�k� \ �x = �i+ 1�k� ∪ �y = �j+ 1�k��
We denote �ik� �i + 1�k� × �jk� �j + 1�k� by B�i� j�. Note that two different
blocks do not have an edge in common. Assume that T−γ��0�0�� �n�0�� < 0.
Then we can find a path r from �0�0� to �n�0� such that t−γ�r� < 0. We take
such a path r and fix it. Suppose that there are m blocks which are touched
by the path r. Clearly,

m ≥ n
k2
�(3.17)

We say blocks B1 and B2 are connected if B1 is one of eight neighbors of
B2. Note that these m blocks are connected so that we call these m blocks a
block animal. Note also that there are at most λm block animals which contain
B�0�0� and consist of m blocks for some positive constant λ. For each block
B�i� j� which is touched by r, we consider

B1�i� j� = ��i− 1�k� �i+ 2�k� × ��j− 1�k� �j+ 2�k��
We assume that m > 8. Then r has to cross B1�i� j� \ B�i� j�. We say that
the block B1�i� j� is good if there exist more than one disjoint dual circuits in
B1�i� j� surrounding B�i� j�, such that every edge e which crosses one of these
dual circuits satisfies X�e� = 1. We call such dual circuits dual 1-circuits. If
B1�i� j� is not good, then we call it bad. It follows from (1.6) that for given
ε > 0 there exists k such that

µβ�h�B1�0�0� is good� ≥ 1− ε�(3.18)

Let us take γ = 1/9k2. Then, since t−γ�r� < 0, there are at least m/2 bad
blocks on the block animal. For 0 ≤ a� b ≤ 3, let La�b denote the set of all
�i� j�’s such that �i� j� = �a� b�mod4. Therefore, if T−γ��0�0�� �n�0�� < 0,
then we can find some a and b such that there are at least �m/2� × 1/16 bad
blocks on the block animal in �B1�i� j�� �i� j� ∈ La�b�. If �i� j� and �k� l� are
from the same La�b, then B1�i� j� and B1�k� l� are squares of side length 3k
which are in distance not less than k. Thus, taking k sufficiently large, by
(1.3) and (3.18) we can make the conditional probability as small as we want;

µβ�h�B�i� j� is bad 	 �i� j� ≤ 2ε�(3.19)

where �i� j is the σ-field generated by

�w�x�:d�x�B�i� j�� ≥ k��
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It follows from (3.19) that

µβ�h�T−γ��0�0�� �n�0� < 0�

≤ ∑
4: block animal containing

B�0�0�� 	4	>n/k2

3∑
a� b=0

µβ�h

( there are at least 	4	/32 bad blocks
in La�b ∩ 4

)

≤ ∑
m>n/k2

16× λm
(
m

m/32

)
�2ε�m/32

≤ 16 exp�−α4n�
by taking ε small. Lemma 6 is proved. ✷

With Lemma 6 and the method in [16], we have the following lemma.

Lemma 7. For each t > 0, if ν > 0, then there exist constants C11�C12 > 0
and α5 > 0 such that we have for sufficiently large n,

µβ�h�a0�4n ≤ 4t� ≤ C11n2�µβ�h�a0�2n ≤ 2t+2�log2 n���1/2+C12 exp�−α5 log2 n��

Proof. By Lemma 6, we have

µβ�h�a0�4n ≤ 4t� ≤ µβ�h�a0�4n ≤ 4t�N4n < 4C9n� +C10 exp�−4α4n��
Consider a path r from �0�0� to �4n�0� with passage time T��0�0�� �4n�0��
and 	r	 < 4C9n. For 0 ≤ i ≤ 4, consider the first (resp., last ) vertex bi (resp.,
ai) on r that has first coordinate equal to in. Clearly, there exists 0 ≤ i ≤ 3
such that the sum of passage time on the bonds of r between ai and bi+1 is
at most T��0�0�� �4n�0��/4. Given two vertices a = �a1� a2� and b = �b1� b2�,
let us denote by Hn�a� b� t� the event that there exists a path ρ from a to b
with passage time at most t and 	ρ	 < 4C9n, such that each vertex visited by
ρ except a and b has a first coordinate larger than the first coordinate a1 of a
and smaller than the first coordinate b1 of b. Then we have

µβ�h�a0�4n ≤ 4t�N4n < 4C9n� ≤
3∑
i=0

∑
a=�a1� a2�� a1=in
b=�b1� b2�� b1=�i+1�n
	a2	� 	b2	≤4C9n

µβ�h�Hn�a� b� t���

Therefore, we can find some a and b with 	a1 − b1	 = n such that
µβ�h�Hn�a� b� t��4�8C9n�2 +C10 exp�−4α4n� ≥ µβ�h�a0�4n ≤ 4t��(3.20)

Take such a and b. Let H = Hn�a� b� t� and H′ be its reflected event with
respect to the line �v = �v1� v2�� v1 = b1 + �log2 n�/2�. Then we have H ∩
H′ ⊂ �T�a� a + �2n + �log2 n��0�� ≤ 2t + �log2 n��. Note that by definition
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H = Hn�a� b� t� is an event in the rectangle of vertical side length 4C9n and
horizontal side length n, centered at �a+b�/2. By (1.3) and invariance of µβ�h
with respect to translation and reflection it follows that

µβ�h�a0�2n ≤ 2t+ 2�log2 n��
≥ µβ�h�T��0�0�� �2n+ �log2 n��0�� ≤ 2t+ �log2 n��
≥ µβ�h�Hn�a� b� t��2 −Cn4C9n exp�−α log2 n��

(3.21)

Therefore, Lemma 7 follows from (3.20) and (3.21). ✷

Proof of Theorem 1. We follow the method in [16] to show Theorem 1.
Let

ξn = Eβ�ha0� n�

Let K0 be a sufficiently large constant, which we will specify later. We take
4t = 2ξ2n −K0�2n log5�2n��1/2 in Lemma 7 and obtain that

µβ�h�a0�4n ≤ 2ξ2n −K0�2n log5�2n��1/2�
≤ C11n2

[
µβ�h�a0�2n ≤ ξ2n − �K0/2��2n log5�2n��1/2 + 2�log2 n��

]1/2
+C12 exp�−α5 log2 n��

If n is large, then 2�log2 n� < �K0/4��2n log5�2n��1/2, and then we apply The-
orem 2 to obtain[

µβ�h�a0�2n ≤ ξ2n − �K0/2��2n log5�2n��1/2 + 2�log2 n��
]1/2

≤ Const� exp
{
−α2
2
�K0/4�2 log�2n�

}
< Const�× n−4

if K0 ≥ 8
√
2/α2, where α2 is the constant in Theorem 2. Therefore if n is

sufficiently large, then

µβ�h�a0�4n ≤ 2ξ2n −K0�2n log5�2n��1/2� ≤ Const�× n−2�

Since 0 ≤ a0� n ≤ n, it follows from this that

ξ4n ≥ Eβ�h�a0�4n� a0�4n ≥ 2ξ2n −K0�n log5 n�1/2�
≥ �2ξ2n −K0�n log5 n�1/2�1−O�n−2��
= 2ξ2n −K0�n log5 n�1/2 +O�n−1�
≥ 2ξ2n − �K0 + 1��n log5 n�1/2

(3.22)
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for sufficiently large n. Let K =K0 + 1, and use (3.22) for 2kn rather than n
to get

ξ2k+2n
2k+2n

+ �K/2�
(
log5 2k+1n
2k+1n

)1/2
≥ ξ2k+1n
2k+1n

�(3.23)

Iterating (3.23), we get

ξ2n
2n
≤ K̃

(
log5�2n�
2n

)1/2
+ ξ2k+2n
2k+2n

(3.24)

for some constant K̃ > 0. Theorem 1 follows from (1.8) and (3.24) by letting
k→∞. ✷

Proof of Theorem 3. Theorem 3 follows from (3.13),

c0� n ≤ a0� n
and Theorem 1. ✷
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