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LOCAL TIME FLOW RELATED TO SKEW BROWNIAN MOTION

By Krzysztof Burdzy1 and Zhen-Qing Chen2

University of Washington

We define a local time flow of skew Brownian motions, that is, a family
of solutions to the stochastic differential equation defining the skew Brown-
ian motion, starting from different points but driven by the same Brownian
motion. We prove several results on distributional and path properties of
the flow. Our main result is a version of the Ray–Knight theorem on local
times. In our case, however, the local time process viewed as a function of
the spatial variable is a pure jump Markov process rather than a diffusion.

1. Introduction. We will present some results on a family of local time
processes, including a new Ray–Knight type theorem. The results and tech-
niques are directly inspired by those in a paper of Barlow, Burdzy, Kaspi and
Mandelbaum (2000) on coalescence of skew Brownian motions. They are also
related to an article of Bass and Burdzy (1999) where a family of local times
on different random curves has been analyzed.
Suppose Bt is a Brownian motion with B0 = 0 defined on a probability

space ���� �P� and β ∈ �−1�1� is a fixed constant. Consider the equation
Xx

t = x+Bt + βL̃x
t � t ≥ 0�(1.1)

where L̃x
t is the symmetric local time of X

x
t at 0, that is,

L̃x
t = lim

ε→0

1
2ε

∫ t

0
1	
Xx

s 
≤ε� ds


Note that Xx
0 = x. It is known [Harrison and Shepp (1981)] that for every x ∈

R (1.1) has a strong solution 	Xx
t � t ≥ 0� and the solution is pathwise unique.

It follows that pathwise unique solutionsXx
t can be constructed on a common

probability space ���� �P� for all rational x simultaneously; see Revuz and
Yor (1991) for other equivalent characterizations for skew Brownian motion.
From now on we will assume that 0 < β < 1. The analysis of the other

cases requires no more than an application of symmetry. Let Lx
t = x + βL̃x

t

and for x < y let

U�x�y� = inf	z ≥ y
 Lx
t = L

y
t = z for some t�


It has been proved in Barlow, Burdzy, Kaspi and Mandelbaum (2000) that for
fixed x and y, the local time processes Lx

t and L
y
t meet with probability 1,

that is, U�x�y� < ∞. The pathwise uniqueness of the strong solutions to
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(1.1) implies that the processes Lx
t and L

y
t are equal to each other after the

first time they meet. This, time reversal and Proposition 1.7 below indicate,
although we do not prove it here, that it is impossible to construct strong
solution Xx on a common probability space ���� �P� and still have pathwise
uniqueness for all real x simultaneously.

Theorem 1.1. (i) For every 0 < x < y, the distributions of U�x�y� − x and
U�0� y− x� are identical.
(ii) For every y > 0, the cumulative distribution function of U�0� y�/y is

given by

F�u� =
(
u− 1
u

)�1−β�/2β
� u ≥ 1
(1.2)

Let Q and R denote the sets of all rational and real numbers; we will write
Q+ and R+ to denote their subsets consisting of nonnegative elements. Let
T = inf	t ≥ 0
 L0

t = 1�. Note that the function Q � x �→ Lx
T is monotone

with probability 1. Therefore, it can be extended in a unique way to a right-
continuous function of real x. This definition will be in force whenever we
refer to Lx

T with real x.

Theorem 1.2. (i) The family 	Lx
T� x ∈ R� constitutes a Markov process.

The process 	Lx
T − x� x ∈ R+� is homogeneous and strong Markov.

(ii) For 0 ≤ x < a and 0 < �x < a− x,

P�Lx+�x
T = Lx

T 
 Lx
T = a� =

(
1− �x

a− x

)�1−β�/2β



For fixed β�x and a, and �x → 0, the probability of the complementary event
is asymptotic to

�x

a− x
· 1− β

2β



(iii) The process x → Lx
T−x has a constant negative drift of unit magnitude

and isolated positive jumps. Let x be the “time” of the first jump for x → Lx
T−x

with x ∈ R+. Then

P�Lx
T −Lx−

T ∈ dz 
 Lx−
T − x = a� = 1+ β

2β
a�1+β�/2β�z+ a�−�1+3β�/2β dz�

for a ≥ 0 and z > 0.

The term “homogeneous” in part (i) of Theorem 1.2 refers to a property usu-
ally called “time-homogeneity.” Our statement means that the distributions of
	Lx+y

T − �x+ y�� x > 0 
 Ly
T − y = a� and 	Lx+z

T − �x+ z�� x > 0 
 Lz
T − z = a�

are identical for all a�y� z ∈ R. Using the word “time” may lead to a confusion
since our “time” variable is x, the original space variable. Our result has the
same flavor as the celebrated Ray–Knight theorem for Brownian local times.
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By abuse of the notation, the superscript onX and L will indicate the value
of the parameter β in the following two theorems and a corollary.
For β ∈ �0�1�, let L

β
t = βL̃

β
t , where L̃

β
t is the local time process corre-

sponding to the solution X
β
t of (1.1) with the parameter β and x = 0, that is,

X
β
t = Bt +L

β
t . Unique strong solutions to (1.1) exist for all rational β ∈ �0�1�

simultaneously.

Theorem 1.3. (i) For every fixed t > 0, the process L
β
t is a nondecreasing

function of β ∈ �0�1� ∩Q, a.s.

(ii) Let T = inf	t ≥ 0
 L0
t = 1�. The function β → L

β
T is a Markov process

on �0�1� ∩Q.

Thus the process β → L
β
T can be extended in a unique way to a right

continuous Markov process with the real parameter β ∈ �0� 1�.

Theorem 1.4. Assume that 0 < β1 < β2 < 1.

(i) If β1 < β2/�1+ 2β2� then L
β2
t > L

β1
t for all t > 0, a.s., and

lim
t→∞

(
L

β2
t −L

β1
t

) = ∞


(ii) If β1 = β2/�1+ 2β2� then L
β2
t > L

β1
t for all t > 0, a.s., and

0 = lim inf
t→∞

(
L

β2
t −L

β1
t

)
< lim sup

t→∞

(
L

β2
t −L

β1
t

) = ∞
(1.3)

(iii) If β1 > β2/�1+ 2β2� then a.s. for every t0 < ∞ there exists t > t0 such

that L
β2
t = L

β1
t . Moreover, (1.3) holds.

Let Mt = mins≤t Bs be the running minimum process of Brownian motion.
It is a classical fact that for x = 0 and β = 1, equation (1.1) has a pathwise
unique solution with L1

t = −Mt.

Corollary 1.5. Suppose that β > 1/3. Then L
β
t = −Mt for infinitely many

t → ∞, a.s.

Before we state our next result, we warn the reader that the meaning of
the superscripts is about to change for the second time in this section. We
believe that changing superscript conventions will be less confusing to the
reader than using multiple superscripts.
We will present some results on approximations of the solutions to the

stochastic differential equation (1.1) which has a singular drift by solutions to
stochastic differential equations with smooth drifts. The results are key ingre-
dients in the proof of Theorem 1.3(i). As a by-product, we obtain Proposition
1.7 below.
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Fix some β ∈ �−1�1� and x0 and let X
x0
t be a solution to (1.1) with this β

and X
x0
0 = x0. Let f be a nonnegative smooth and symmetric function on R,

compactly supported on �−1/2� 1/2� with ∫R f�x� dx = 1. Denote 1
2 log��1+β�/

�1 − β�� by γ and let fn�x� = nγ f�nx� for x ∈ R and n ≥ 1. Clearly, fn

converges weakly to γ δ0, where δ0 is Dirac’s delta function. Let Xn be the
unique strong solution to the following stochastic differential equation:

Xn
t = x0 +Bt +

∫ t

0
fn�Xn

s �ds for t ≥ 0
(1.4)

Theorem 1.6. The sequence 	Xn
t � converges in probability toX

x0
t as n → ∞

in C��0�∞��R�, the space of continuous functions on �0�∞� equipped with the
topology of uniform convergence on compact intervals. Moreover, a subsequence
of 	Xn

t � converges to X
x0
t uniformly on compact intervals with probability 1.

Extend the time domain of Brownian motion B to the whole real line; that
is, consider 	Bt� t ∈ R� such that B0 = 0, and the processes 	Bt� t ≥ 0� and
	B−t� t ≥ 0� are independent Brownian motions. We can consider the following
extension of (1.1):

Xx
t = x+Bt + βL̃x

t � t ∈ R
(1.5)

By reversing time, we see that there exists a unique strong solution Xx
t of

(1.5) for t ≤ 0, with the self-evident new measurability property, namely, that
for any fixed t ≤ 0, the random variable Xx

t is measurable with respect to
σ	Bs� t ≤ s ≤ 0�. Having this measurability property in mind, we can combine
solutions to (1.5) for t ≤ 0 and t ≥ 0 into one strong solution 	Xx

t � t ∈ R�. For
t ≤ 0, the value of L̃x

t may be defined by saying that L̃
x
0 − L̃x

t is the amount of
local time accumulated by Xx

s at the 0 level on the interval �t�0�.
We have strong existence and pathwise uniqueness of solutions to (1.5)

for all rational x simultaneously. In view of the fact that U�x�y� < ∞, a.s.,
the topological structure of the processes Lx

t for various values of the initial
conditionXx

0 = x is given in Figure 1. In view of (1.5), the topological structure
ofXx

t is similar. This is completely different from the corresponding structure
for the solutions to (1.4) because nonsingular SDEs have flows that are one-to-
one. Note that each process 	Lx

t � t ∈ R� is increasing (unlike a typical graph
in Figure 1.
Let us further generalize (1.5) by moving the time origin to an arbitrary s;

that is, consider the equation

X
s�x
t = x+ �Bt −Bs� + βL̃

s�x
t � t ∈ R
(1.6)

It is natural to ask whether solutions to various initial value problems (1.6)
are consistent. The following proposition explains the meaning of “consistency”
and gives a positive answer to the question.

Proposition 1.7. With probability 1, for all quadruples �s1� s2� x1� x2� ∈ Q4

simultaneously, either X
s1� x1
t ≤ X

s2� x2
t for all t ∈ R or X

s1� x1
t ≥ X

s2� x2
t for all

t ∈ R.
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Fig. 1. The typical topological structure of the processes t �→ x+ βL̃x
t for various values of x.

The following question arises naturally from Theorems 1.2 and 1.3. The
methods used to prove Theorem 1.2(ii) and (iii) do not seem to yield an answer.

Open Problem 1.8. What is the distribution of the process β → L
β
T in

Theorem 1.3(ii)?

The next three sections contain proofs of our theorems, Section 2 for con-
stant β and Section 4 for variable β. These sections are separated by Section
3 with approximation arguments.

2. Constant skewness parameter. This section contains the proofs of
Theorems 1.1 and 1.2. The proofs will be given in order reflecting the flow of
logic in the proofs.

Proof of Theorem 1.2(i). First we will show that the process x → Lx
T is

Markov, for x ∈ Q. The Markov property automatically extends to the process
indexed by x ∈ R, by right continuity.
Fix some rational 0 < x < y and z < x. The process Xx

t is a skew
Brownian motion. Let � + = 	�s� e+s ��	s∈S� be the Poisson point process of posi-
tive excursions of Xx

t ; that is, the set 	�s� e+s ��	s∈S� is the random collection of
all excursions of Xx

t above 0. Here S is the set of all s ≥ x such that for some
0 < gs < ds < ∞ we have s = Lx

gs
, Xx

gs
= 0 = Xx

ds
,

Xx
v > 0 for v ∈ �gs� ds�

and

e+s = e+s �u� = Xx
u+gs

� u ∈ �0� ds − gs�

We define in an analogous way the Poisson point process � − = 	�s� e−s ��	s∈S�
of negative excursions of Xx

t . The processes � + and � − are independent.
Let �

y
s = �

y�x
s = inf	Ly

t 
 Lx
t > s�. We define � 0

s and � z
s in a similar

way. Note that t → Lx
t increases only when Xx

t = 0, that is, when −Bt = Lx
t .

The inequalities Lx
t ≥ L0

t , L
x
t ≥ Lz

t hold for all t ≥ 0 a.s. On all intervals
where −Bt stays strictly above Lx

t , that is, when Xx
t < 0, we also have −Bt >

L0
t and −Bt > Lz

t , and so the processes Lx
t �L

0
t and Lz

t do not change. This
and the strong existence and pathwise uniqueness of solutions to (1.1) imply
that the processes � z

u and � 0
u are measurable with respect to the filtration
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� +
u = � +�x

u = σ	�s� e+s ��	s∈S� s≤u�. By analogy, the process �
y
u is adapted to

� −
u = σ	�s� e−s ��	s∈S�s≤u�. The random time � = inf	s
 � 0

s ≥ 1� = Lx
T is a

stopping time relative to � +
u . By the independence of �

+ and � −, the random
elements � z

� and e+� are independent of � y
� given the value of � = Lx

T.
However, this can be restated as the independence of Ly

T and Lz
T given Lx

T,
since �

y
� = L

y
T and Lz

T is a function of �
z
� and e+� . This proves the Markov

property for positive x. The proof is analogous for negative x.
Next we prove the homogeneity of the process x → Lx

T − x for x > 0.
Suppose that x�y ∈ Q+. The strong Markov property of Bt applied at the
time Tx = inf	t
 − Bt = Lx

t � = inf	t
 Bt = −x� and translation invariance
of Brownian motion show that the distribution of the Poisson point process
	�s� e−s+x��	s∈S−x� does not depend on x > 0. Recall that �

x+y�x
u is pathwise

determined by � −, in view of the pathwise uniqueness of solutions to (1.1).
From these two observations, it is rather easy to see that the distribution
of 	� x+y�x

u+x − x�u ≥ 0� does not depend on x. Since � − x = Lx
T − x is a

stopping time relative to 	� +�x
u+x �	u≥0� and the point processes � + and � − are

independent, the distribution of � x+y�x
�� −x�+x − x given any value of Lx

T − x is

independent of x. The number y is fixed so the distribution of� x+y�x
�� −x�+x−�x+y�

given Lx
T − x is also independent of x. This can be rephrased by saying that

the distribution of Lx+y
T − �x + y� given Lx

T − x = a is independent of x. We
conclude that the process x → Lx

T − x is homogeneous.
See the proof of Theorem 1.2(iii) for an argument showing that x → Lx

T−x
is strong Markov. ✷

Remark 2.1. We are going to review several results presented in Barlow,
Burdzy, Kaspi andMandelbaum (2000) and needed for the proof of Theorem 1.1.
Let

T0=0�
Sk = inf	t > Tk
 −Bt = Lx

t �� k ≥ 0�

Tk = inf	t > Sk−1
 −Bt = L0
t �� k ≥ 1�

Wk =
Lx

Sk−1
−L0

Sk−1

Lx
Tk−1

−L0
Tk−1

� k ≥ 1�

Vk =
Lx

Tk
−L0

Tk

Lx
Sk−1

−L0
Sk−1

� k ≥ 1�

Mk =Lx
Tk

−L0
Tk

� k ≥ 0


(2.1)

The random variables Wk and Vk, k ≥ 1, are jointly independent, due to
the strong Markov property of Brownian motion and the fact that the skew
Brownian motion Xx

t is pathwise determined by Bt. Note that M0 = x > 0
and Mk = Mk−1VkWk for k ≥ 1.
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Let γ1 = �1−β�/�2β� and γ2 = �1+β�/�2β�. It has been proved in Barlow,
Burdzy, Kaspi and Mandelbaum (2000) that P�Vk > v� = v−γ2 for v ≥ 1, and
P�Wk < w� = wγ1 for w ∈ �0�1�. It follows that Vk�k ≥ 1, are i.i.d. and the
same is true of Wk’s. It was proved in the same paper that 	Mk�k ≥ 0� is a
martingale.
It follows from above that Lx

t and L0
t cannot coalesce before any time

Tk. However, an argument in the proof of Theorem 1.4 shows that T∞ =
limk→∞ Tk is finite and that the two local time processes coalesce at time T∞.

Proof of Theorem 1.1. (i) Note that Lx
t = x for t < τ−x = inf	s
 Bs =

−x�. Part (i) of the theorem follows easily by applying the strong Markov
property to Xx

t at the stopping time τ−x.
(ii) We will show that in order to prove Theorem 1.1(ii), it is enough to

verify that the distribution in (1.2) satisfies a certain identity. Although this
is sufficient for a rigorous proof of our assertion, such an argument provides
no clue as to how one can derive the formula in (1.2). For this reason, we start
with a derivation of (1.2) which gives the formula but fails to prove it for some
values of β.
Consider x�y and z such that 0 < x < x+1 = y = z−δ, for some δ > 0. Let

� +
y and � −

y be the Poisson point processes of positive and negative excursions
of Xy

t , defined in the same way as � + and � − in the proof of Theorem 1.2(i)
above. Let � z

s = inf	Lz
t 
 Ly

t > s� and define � x
s in the same way. Note that

the coalescence time has probability zero of coinciding with the start or end
of an excursion. We have

U�y� z� = inf	s
 � z
s = s�� U�x�y� = inf	s
 � x

s = s�


Hence, the random variablesU�x�y� andU�y� z� are measurable with respect
to the σ-fields generated by � +

y and � −
y , respectively. We conclude thatU�x�y�

and U�y� z� are independent.
Suppose that 0 < v < w. Note that by Brownian scaling, U�δv� δw� has the

same distribution as δU�v�w�.
We have

max�U�x�y��U�y� z�� = U�x� z�

Having in mind the scaling property ofU, we can represent the last formula as
follows. Suppose that Y1 and Y2 are independent and have the same distribu-
tions as U�x�y�−x. Then max�U�x�y��U�y� z�� has the same distribution as

max�Y1 + x� δY2 + y� = max�Y1 + x� δY2 + x+ 1��
while U�x� z� has the same distribution as �1+δ�Y1+x. Hence, the following
random variables have identical distributions:

max�Y1 + x� δY2 + x+ 1� and �1+ δ�Y1 + x�
the same is true for

max�Y1� δY2 + 1� and �1+ δ�Y1
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Let F�u� = P�Y1 ≤ u�. Then
P�max�Y1� δY2 + 1� ≤ u� = P�Y1 ≤ u�P�δY2 + 1 ≤ u� = P��1+ δ�Y1 ≤ u��
and so,

F�u�F��u− 1�/δ� = F�u/�1+ δ��
(2.2)

Let a and b be defined by u = 1/�1 − a� and �u − 1�/δ = 1/�1 − b�. Then
u/�1+ δ� = 1/�1− ab� and so

F

(
1

1− a

)
F

(
1

1− b

)
= F

(
1

1− ab

)



We now let G�a� = F�1/�1− a�� to obtain a functional equation
G�a�G�b� = G�ab�


Further substitutions ã = − log a� b̃ = − log b and G̃�ã� = G�a� yield
G̃�ã�G̃�b̃� = G̃�ã+ b̃�
(2.3)

If we restrict the values of u to �1�∞� and δ to �0� u− 1� then the argument
of the function F takes values in �1�∞� in all three instances in (2.2). For
this range of values of u and δ, the variables a and b can be any pair of
reals in �0�1�2, and so ã and b̃ can be arbitrary positive numbers. Hence, a
bounded function G̃ satisfies (2.3) for any ã� b̃ ∈ �0�∞�. This implies that [see
Billingsley (1986), Corollary in Appendix A20]

G̃�ã� = e−ãc1�

for some c1. Going back to F, we obtain,

F�u� =
(
u− 1
u

)c1

�(2.4)

for u > 1.
We will now determine the value of the constant c1. It will turn out that

c1 = γ1 = 1−β
2β but this part of the argument works only for β > 1/3. Recall

the results reviewed in Remark 2.1. Suppose that Y and W are independent
with distributions given by P�V > v� = v−γ2� v ≥ 1 and P�W < w� = wγ1 for
w ∈ �0�1�. Let T1 be as in (2.1) with x = 1. The distribution of L1

T1
− 1 is

the same as that of VW + �1 −W� − 1 = W�V − 1�. Note that U�0�1� ≥ L1
T1

in view of Remark 2.1. Let Z = V − 1 and Q = W�V − 1� = WZ. Then
P�Z > z� = �z+ 1�−γ2 for z ≥ 0, and

P�U�0�1� < 1+ q� ≤ P�L1
T1

< 1+ q� = P�Q < q�

=
∫ 1
0

∫ q/w

0
fW�w�fZ�z�dzdw

=
∫ 1
0

∫ q/w

0
γ1w

γ1−1γ2�z+ 1�−γ2−1 dzdw(2.5)
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=
∫ 1
0
γ1w

γ1−1�−�z+ 1�−γ2�
q/w0 dw

=
∫ 1
0
γ1w

γ1−1�1− �q/w+ 1�−γ2�dw


After making the substitution w/q = t, we see that the last integral in (2.5)
is equal to∫ 1/q

0
γ1�tq�γ1−1�1− �1/t+ 1�−γ2�q dt

= qγ1

∫ 1/q
0

γ1t
γ1−1�1− �1/t+ 1�−γ2�dt(2.6)

≤ qγ1

(
c2

∫ 1
0
γ1t

γ1−1 dt+
∫ 1/q
1

γ1t
γ1−1�1− �1/t+ 1�−γ2�dt

)



For large t, we have �1− �1/t+ 1�−γ2� ∼ γ2t
−1. If γ1 < 1 then∫ 1/q

1
γ1t

γ1−1�1− �1/t+ 1�−γ2�dt ≤ c3

∫ ∞

1
γ1t

γ1−1γ2t
−1 dt < ∞�

and so, in view of (2.6),

P�U�0�1� < 1+ q� ≤ P�Q < q� ≤ c4q
γ1 
(2.7)

Recall that U�0�1� ≥ L1
T1
. By applying the strong Markov property at time

T1 to the skew Brownian motion and using the scaling property of U� · � · �, we
see that U�0�1� has the same distribution as U�0�1�VW + �1 − W�, assum-
ing U�0�1��V and W are independent. Choose large a ∈ �1�∞� such that
P�U�0�1� < a� > 1/2 and P�V < a� > 1/2. We have

P�U�0�1� < 1+ q�a2 − 1��=P�U�0�1�VW+ �1−W� < 1+ q�a2 − 1��
≥P�W < q�U�0�1� < a�V < a� ≥ qγ1/4


(2.8)

For small δ > 0, according to (2.4),

P�U ≤ 1+ δ� =
(

δ

1+ δ

)c1

∼ δc1 


In view of (2.7) and (2.8), we must have c1 = γ1 = �1 − β�/�2β� in the case
γ1 < 1.
This proves Theorem 1.1(ii) in the case �1 − β�/�2β� < 1, that is, when

β > 1/3. The same argument does not seem to extend to other values of β so
we will have to proceed along different lines.

We have already noticed that the distribution of U def= U�0�1� is the same
as that of 1 −W +VWU�0�1�. Hence, U − 1 and W�VU − 1� have identical
distributions. We will first verify that the distributions are identical if we
assume that c1 = γ1. Then we will argue that for other values of c1, the
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distributions of U − 1 and W�VU − 1� must be different. For typographical
convenience, denote c1 by λ. We have the following formulas for densities:

fV�v� = γ2v
−γ2−1� fW�w� = γ1w

γ1−1�

fU�u� = λ
�u− 1�λ−1

uλ+1 


Let Z = VU. Then

P�Z < z� =
∫ z

1

∫ z/u

1
fU�u�fV�v�dvdu

=
∫ z

1

∫ z/u

1
λ
�u− 1�λ−1

uλ+1 γ2v
−γ2−1 dvdu

=
∫ z

1
λ
�u− 1�λ−1

uλ+1 �−v−γ2�
z/u1 du

=
∫ z

1
λ
�u− 1�λ−1

uλ+1
[
1−

( z
u

)−γ2
]
du

=
∫ z

1
λ
�u− 1�λ−1

uλ+1 du− z−γ2

∫ z

1
λ
�u− 1�λ−1
uλ+1−γ2

du

=
(
u− 1
u

)λ
∣∣∣∣∣
z

1

− z−γ2

∫ z

1
λ
�u− 1�λ−1
uλ+1−γ2

du

=
(
z− 1
z

)λ

− z−γ2

∫ z

1
λ
�u− 1�λ−1
uλ+1−γ2

du


This implies that

fZ�z� = λ
�z− 1�λ−1

zλ+1 + γ2z
−γ2−1

∫ z

1
λ
�u− 1�λ−1
uλ+1−γ2

du− z−γ2λ
�z− 1�λ−1
zλ+1−γ2

= γ2z
−γ2−1

∫ z

1
λ
�u− 1�λ−1
uλ+1−γ2

du


Hence, the density of VU− 1 = Z− 1 is

fVU−1�z� = γ2�z+ 1�−γ2−1
∫ z+1

1
λ
�u− 1�λ−1
uλ+1−γ2

du


We see that

P�W�VU− 1� < y�

=
∫ 1
0

∫ y/w

0
fW�w�fVU−1�z�dzdw

=
∫ 1
0

∫ y/w

0
γ1w

γ1−1γ2�z+ 1�−γ2−1
∫ z+1

1
λ
�u− 1�λ−1
uλ+1−γ2

dudzdw

=
∫ 1
0

∫ y/w

0
γ1w

γ1−1γ2�z+ 1�−γ2−1
∫ z

0
λ

uλ−1

�u+ 1�λ+1−γ2
dudzdw
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We make the substitution z = ty/w to obtain

P�W�VU− 1� < y�

=
∫ 1
0

∫ 1
0
γ1w

γ1−1γ2�ty/w+ 1�−γ2−1
∫ ty/w

0
λ

uλ−1

�u+ 1�λ+1−γ2
dudt

y

w
dw


Another substitution u = sty/w yields

P�W�VU− 1� < y�

=
∫ 1
0

∫ 1
0
γ1w

γ1−1γ2�ty/w+ 1�−γ2−1
∫ 1
0
λ

�sty/w�λ−1
��sty/w� + 1�λ+1−γ2

ds
ty

w
dt

y

w
dw

=
∫ 1
0

∫ 1
0

∫ 1
0
γ1γ2w

γ1−1 ty
2

w2
�ty/w+ 1�−γ2−1λ

�sty/w�λ−1
��sty/w� + 1�λ+1−γ2

dsdtdw


We continue our calculations with γ1 substituted in place of λ. Then

P�W�VU− 1� < y�

=
∫ 1
0

∫ 1
0

∫ 1
0
γ1γ2w

γ1−1 ty
2

w2
�ty/w+ 1�−γ2−1γ1

�sty/w�γ1−1
��sty/w� + 1�γ1+1−γ2

dsdtdw

=
∫ 1
0

∫ 1
0

∫ 1
0
γ1γ2

ty2

w2
�ty/w+ 1�−γ2−1γ1

�sty�γ1−1
��sty/w� + 1�γ1+1−γ2

dsdtdw


We have γ1 + 1 − γ2 = 0 because γ1 = �1 − β�/�2β� and γ2 = �1 + β�/�2β�.
Hence

P�W�VU− 1� < y� =
∫ 1
0

∫ 1
0

∫ 1
0
γ1γ2

ty2

w2
�ty/w+ 1�−γ2−1γ1�sty�γ1−1 dsdtdw

=
∫ 1
0

∫ 1
0
γ1γ2

ty2

w2
�ty/w+ 1�−γ2−1�ty�γ1−1(sγ1 
10)dtdw

=
∫ 1
0

∫ 1
0
γ1γ2

ty2

w2
�ty/w+ 1�−γ2−1�ty�γ1−1 dtdw

=
∫ 1
0
γ1t

γ1−1yγ1

∫ 1
0

[
γ2

ty

w2
�ty/w+ 1�−γ2−1

]
dwdt

=
∫ 1
0
γ1t

γ1−1yγ1
[�ty/w+ 1�−γ2 
10

]
dt

=
∫ 1
0
γ1t

γ1−1yγ1�ty+ 1�−γ2 dt

= yγ1

∫ 1
0
γ1t

γ1−1�ty+ 1�−γ2 dt
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Recall that we have taken λ to be γ1 and note that γ1 = γ2− 1. We proceed to
obtain

P�W�VU− 1� < y� = yγ1

∫ 1
0
�γ2 − 1�tγ2−2�ty+ 1�−γ2 dt

= yγ1

∫ 1
0
�γ2 − 1�t−2�y+ 1/t�−γ2 dt

= yγ1�y+ 1/t�−γ2+1
10
= yγ1�y+ 1�−γ2+1

=
(

y

y+ 1
)γ1

=
(

y

y+ 1
)λ




Since

P�U− 1 < y� =
(

y

y+ 1
)λ

�

we see that taking λ = γ1 gives us the distributional identity for U − 1
and W�VU − 1�, as desired. We will show that no other λ gives the same
identity.
Consider a Markov chain N1�N2� 
 
 
 whose transition mechanism is

described as follows. Given N1�N2� 
 
 
 �Nk, take random variables Vk and
Wk, with the distributions P�Vk > v� = v−γ2� v ≥ 1, and P�Wk < w� =
wγ1�w ∈ �0�1�. Construct Vj’s and Wj’s so that they are all jointly indepen-
dent and so that for every k, the random variables Vk and Wk are indepen-
dent ofN1�N2� 
 
 
 �Nk. LetNk+1 = 1+Wk�VkNk−1�. Our calculations above
showed that this Markov chain has a stationary distribution, namely the dis-
tribution in (2.4) with c1 = γ1. By Theorem 7.16 of Breiman (1968), there is
only one stationary distribution for 	Nk�, and so other values of c1 do not give
the distributional equality we have to have. ✷

Proof of Theorem 1.2(ii). Recall the processes � + and � − from the proof
of Theorem 1.2(i). The event 	Lx

T = a� is measurable with respect to the σ-
field generated by � + because Lx

T = � x
� . Also the event 	U�x� x+�x� ≤ a� is

measurable with respect to � −. By the independence of � + and � −,

P�Lx+�x
T = Lx

T 
 Lx
T = a� = P�U�x� x+ �x� ≤ a 
 Lx

T = a�
= P�U�x� x+ �x� ≤ a�
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Using Theorem 1.1(ii) we obtain

P�U�x� x+ �x� ≤ a� = P�U�0� �x� ≤ a− x�

= P

(
U�0� �x�

�x
≤ a− x

�x

)
= F

(
a− x

�x

)

=
(
1− �x

a− x

)�1−β�/2β



For small �x,

1−
(
1− �x

a− x

)�1−β�/2β
∼ �x

a− x
· 1− β

2β

 ✷

Proof of Theorem 1.2(iii). Fix some a > 0 and consider a sequence of
strictly positive numbers an converging to a. Let us first find the density of
U�x� x+ 1

n
� given 	Lx+1/n

T > Lx
T = x+ an�, for x ≥ 0. Fix some v > x+ a and

consider �a > 0 such that v > x+ an +�a. As in the proof of Theorem 1.2(ii),
we observe that the events 	U�x� x+ 1

n
� > v� and 	Lx

T ∈ �x+an� x+an+�a��
are independent. The same is true if v is replaced in the first event by x+ an

or x+ an + �a. Hence,

P
(
U�x� x+ 1/n� > v 
 Lx+1/n

T > Lx
T� L

x
T ∈ �x+ an� x+ an + �a�)

= P�U�x� x+ 1/n� > v�L
x+1/n
T > Lx

T�L
x
T ∈ �x+ an� x+ an + �a��

P�Lx+1/n
T > Lx

T� L
x
T ∈ �x+ an� x+ an + �a��

= P�U�x� x+ 1/n� > v�Lx
T ∈ �x+ an� x+ an + �a��

P�Lx+1/n
T > Lx

T�L
x
T ∈ �x+ an� x+ an + �a��

≥ P�U�x� x+ 1/n� > v�Lx
T ∈ �x+ an� x+ an + �a��

P�U�x� x+ 1/n� > x+ an�L
x
T ∈ �x+ an� x+ an + �a��

= P�U�x� x+ 1/n� > v�P�Lx
T ∈ �x+ an� x+ an + �a��

P�U�x� x+ 1/n� > x+ an�P�Lx
T ∈ �x+ an� x+ an + �a��

= P�U�x� x+ 1/n� > v�
P�U�x� x+ 1/n� > x+ an�




A similar calculation shows that

P
(
U�x� x+ 1/n� > v 
 Lx+1/n

T > Lx
T�L

x
T ∈ �x+ an� x+ an + �a�)

≤ P�U�x� x+ 1/n� > v�
P�U�x� x+ 1/n� > x+ an + �a� 
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Since an > 0 and �a > 0 are arbitrary numbers satisfying v > x + an + �a,
we conclude that, using Theorem 1.1,

P
(
U�x� x+ 1/n� > v 
 Lx+1/n

T > Lx
T = x+ an

)
= P�U�x� x+ 1/n� > v�

P�U�x� x+ 1/n� > x+ an�

= P�U�0� 1
n
� > v− x�

P�U�0� 1
n
� > an�

= P�nU�0� 1
n
� > n�v− x��

P�nU�0� 1
n
� > nan�

=
[
1−

(
1− 1

n�v− x�
)�1−β�/2β]

·
[
1−

(
1− 1

nan

)�1−β�/2β]−1

→ a/�v− x� as n → ∞


(2.9)

After making the substitution w = v− x− an, we obtain,

lim
n→∞P

(
U�x� x+ 1/n� − x− an ∈ dw 
 Lx+1/n

T > Lx
T = x+ an

)
= a

�w+ a�2 dw�
(2.10)

for w > 0, uniformly on compact sets.
Define Gn�dy� = P�Lx+1/n

T − Lx
T ∈ dy 
 Lx+1/n

T > Lx
T = x + an�. Note that

Gn�dy� is independent of x ≥ 0 since the Markov process x → Lx
T − x is

homogeneous by Theorem 1.2(i). By the strong Markov property applied at
the time T to skew Brownian motion,

P
(
U�x� x+ 1/n� − x− an ∈ dw 
 Lx+1/n

T > Lx
T = x+ an

)
=
∫ w

0
P�U�x+ an� x+ an + y� − x− an ∈ dw�Gn�dy�

=
∫ w

0
P�U�0� y� ∈ dw�Gn�dy�

=
( ∫ w

0

1− β

2β

(
1− y

w

)�1−3β�/2β y

w2
Gn�dy�

)
dw


(2.11)

This and (2.10) yield for w > 0,

lim
n→∞

∫ w

0
�w− y�ryGn �dy� =

awr+2

�r+ 1��w+ a�2 �(2.12)

where r = �1− 3β�/2β. Let

Ĝn�θ� =
∫ ∞

0
e−yθyGn �dy�
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Then, after multiplying (2.12) by e−wθ and integrating, we get by the bounded
convergence theorem,

lim
n→∞ Ĝn�θ�

5�r+ 1�
θr+1 = a

r+ 1
∫ ∞

0
e−wθ wr+2

�w+ a�2 dw

= a

�r+ 1�θr+1

∫ ∞

0
e−u ur+2

�u+ aθ�2 du�

where u = θw. Since
1

�u+ aθ�2 =
∫ ∞

0
ye−y�aθ+u� dy�

we obtain

lim
n→∞ Ĝn�θ�=

a

�r+ 1�5�r+ 1�
∫ ∞

0
ye−yaθ

∫ ∞

0
ur+2e−u�y+1�dudy

= a5�r+ 3�
5�r+ 2�

∫ ∞

0
e−yaθ y

�y+ 1�r+3 dy

=a�r+ 2�
∫ ∞

0
e−yaθ y

�y+ 1�r+3dy

=�r+ 2�
∫ ∞

0
e−θz ar+2z

�z+ a�r+3 dz


(2.13)

For b > 0, by (2.9),

Gn�b�∞� = P�Lx
T > b+ �x+ an� 
 Lx

T > L
x−1/n
T = x+ an�

≤ P�U�x− 1/n� x� > x+ b+ an 
 Lx
T > L

x−1/n
T = x+ an�

→ a

b+ a
as n → ∞


Hence, the family 	Gn�dy��n≥1 of probability measures is tight. Let µ be any
limiting measure for 	Gn�dy��n≥1. By passing to a subsequence, if necessary,
we can assume that the sequenceGn converges weakly to µ. Weak convergence
and (2.13) imply for θ > 0,∫ ∞

0
e−θyyµ�dy� = lim

n→∞

∫ ∞

0
e−θyyGn �dy�

= �r+ 2�
∫ ∞

0
e−θy ar+2y

�y+ a�r+3 dy


By uniqueness of Laplace transforms,

yµ�dy� = �r+ 2�ar+2y
�y+ a�r+3 dy�

that is,

µ�dy� = �r+ 2�ar+2

�y+ a�r+3 dy
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Since the weak limit of every subsequence of 	Gn�dy��n≥1 is ��r+ 2�ar+2�/
��y+ a�r+3�dy, we see that 	Gn�dy��n≥1 converges weakly to ��r+ 2�ar+2�/
��y+ a�r+3�dy as n → ∞. In particular, for any z > 0,

lim
n→∞Gn�z�∞� = µ�z�∞� =

∫ ∞

z

�r+ 2�ar+2

�y+ a�r+3 dy
(2.14)

We will prove that the convergence ofGn�z�∞� is uniform in an appropriate
sense. In order to state this claim in a rigorous way we change the notation
from Gn to G

an
n so that the dependence on an becomes explicit (recall that

G
an
n does not depend on x). Let Ga denote the weak limit of Gan

n , that is, the
measure previously called µ. Fix any interval �â1� â2� with â2 > â1 > 0. We
will show that for any ε > 0 there exists n0 < ∞ such that for all n ≥ n0, z >
y ≥ 0,x ≥ 0,a ∈ �â1� â2� and an such that 
a− an
 < 1/n, we have


Gan
n �y� z� −Ga�y� z�
 ≤ ε
(2.15)

Suppose that this is not true. Then there exist ak, bk,nk,yk and zk such that
nk → ∞, zk > yk ≥ 0, bk ∈ �â1� â2�, 
ak − bk
 < 1/nk and


Gak
nk
�yk� zk� −Gbk�yk� zk�
 > ε
(2.16)

Note that Ga�y�∞� → 0 as y → ∞, uniformly in a ∈ �â1� â2� [see (2.14)].
Hence, the sequence yk is bounded. By compactness we can find a subse-
quence of k along which bk, yk and zk converge, with the possibility that the
subsequence of zk goes to infinity. In order to simplify the notation we will
assume that the original sequences converge. We will call the limit points
b∞,y∞ and z∞. Note that b∞ ∈ �â1� â2�, y∞ ∈ �0�∞� and z∞ ∈ �0�∞�.
We see directly from (2.14) that Gbk�yk� zk� converge to Gb∞�y∞� z∞�. Since

ak converge to b∞, the measures G
ak
nk
converge weakly to Gb∞ . The limiting

measure has a continuous density so G
ak
nk
�yk� zk� → Gb∞�y∞� z∞�. This con-

tradicts (2.16).
We will now show that there exists a process with the distribution

described in Theorem 1.2(ii) and (iii). Fix an arbitrary λ0 and let ξt be the pro-
cess t �→ λ0 − t killed according to a killing measure with intensity
�1− β�/�2β�y. Let ζ be the lifetime of the strong Markov process ξt. It follows
easily from the Feynman–Kac formula that ξζ− > 0 a.s., and for x > 0 and
0 ≤ t < x,

P�ξ > t 
 ξ0 = x� =
(
1− t

x

)�1−β�/2β



The process ξt can be extended beyond ζ by a procedure described in Ikeda,
Nagasawa and Watanabe (1966). Let 9t�ω� = ξt�ω� for t < ζ�ω�. If ξζ− = a,
let 9ζ�ω� be a point y distributed according to the density function �1+ β�/
�2β�a�1+β�/2βy−�1+3β�/2β for y > a. Then glue an independent copy of ξ starting
from 9ζ�ω�. Iterating this procedure, we obtain a strong Markov process 9
on R with right continuous sample paths and initial value λ0 [see Ikeda,
Nagasawa and Watanabe (1966)]. We now change the notation from 9t to 9x
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to be consistent with the rest of the proof. In other words, the “time” for 9 will
be denoted by a superscript x.
To complete the proof, it will suffice to show that the distribution of Lx

T−x is
the same as that of 9x. All we have to show is that the finite dimensional dis-
tributions of both processes are identical. Fix some x1 > x�a > x1� a2 > a1 > 0,
and consider small �x��a > 0. We will estimate the following probability, for
small �x,

P

( �x1−x�/�x⋃
j=1

�a2−a1�/�a⋃
m=0

[
	Lx+j�x

T = Lx
T� ∩ 	Lx+�j+1��x

T �= L
x+j�x
T �

∩ 	Lx+�j+1��x
T −L

x+j�x
T ∈ �a1 +m�a�a1 + �m+ 1��a��(2.17)

∩	Lx1
T = L

x+�j+1��x
T �

]∣∣∣∣Lx
T = a

)



By Theorem 1.2(ii),

P�Lx+j�x
T = Lx

T 
 Lx
T = a� =

(
1− j�x

a− x

)�1−β�/2β
�

and for a number b ∈ �a1 − a� a2 − a�,
P�Lx1

T = L
x+�j+1��x
T 
 Lx+�j+1��x

T = a+ b�

=
(
1− x1 − �x+ �j+ 1��x�

�a+ b� − �x+ �j+ 1��x�
)�1−β�/2β




We have

P
(
L

x+�j+1��x
T �= L

x+j�x
T 
 Lx+j�x

T = a
)

= 1−
(
1− �x

a− �x+ j�x�
)�1−β�/2β




Finally by (2.15), for any given ε > 0, there is a δ > 0 so that when 
�x
 < δ,∣∣P�Lx+�j+1��x
T −L

x+j�x
T ∈ �y� z� 
Lx+�j+1��x

T �= L
x+j�x
T = a�

−Ga−�x+j�x��y� z�∣∣ < ε

for any z > y ≥ 0. Using the Markov property of x → Lx
T, we can multiply

the probabilities of individual events in (2.17), except for the event in the
second line, which needs a conditional probability. The result is a Riemann
sum approximation to∫ x1−x

0

1− β

2β
1

a− x

(
1− y

a− x

)�1−3β�/2β

×
∫ a2

a1

(
1− x1 − �x+ y�

�a+ b� − �x+ y�
)�1−β�/2β

Ga−�x+y��db�dy

(2.18)
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Note that y plays the role of j�x. The expression between the integrals in
(2.18) is the derivative of the probability in Theorem 1.2(ii) with respect to �x
(but y plays here the role of �x).
The quantity in (2.18) is equal to the probability that z → 9z + z makes

only one jump in �x� x1� and 9x1 + x1 ∈ �a+ a1� a+ a2�, assuming 9x + x = a.
The case when a ≤ x1 requires only minor modifications.
One can find an event disjoint from that in (2.17), depending on �x, whose

probability converges, as �x → 0, to the probability that 9z+z makes exactly
two jumps in �x� x1� and 9x1 + x1 ∈ �a+ a1� a+ a2�, given 9x + x = a.
Proceeding in this way and summing over all possible numbers of jumps,

we conclude that

P�Lx1
T ∈ �a+ a1� a+ a2� 
 Lx

T = a�
≥ P9�9x1 + x1 ∈ �a+ a1� a+ a2� 
 9x + x = a�


Since a similar inequality can be proved for arbitrary intervals in the com-
plement of �a + a1� a + a2�, the inequality is in fact an equality. Hence, the
transition probabilities for Lx

T are the same as for 9
x +x. Recall that L0

T = 1.
So if we assume that 90 = 1, then by the Markov property of Lx

T and 9x + x,
we conclude that the finite dimensional distributions of Lx

T and 9x + x are
identical. Since both processes are right continuous, they are identical in dis-
tribution. This implies that Lx

t − x is a homogeneous strong Markov process
and the formula in Theorem 1.2(iii) holds. ✷

3. Convergence of approximations.

Proof of Theorem 1.6. We will first prove weak convergence of Xn
t

to X
x0
t .

Define the scale function [cf. Bass (1998)]

sn�x� =
∫ x

0
exp

(
−2

∫ y

0
fn�t�dt

)
dy for x ∈ R


Clearly,

lim
n→∞ sn�x� = s�x� ≡

{
eγx� if x < 0,
e−γx� if x ≥ 0.

By Itô’s formula,

sn�Xn
t � = sn�x0� +

∫ t

0
s′n�Xn

s �dBs� t ≥ 0


Since sn is a strictly increasing function, its inverse s−1n exists. If let Yn
t =

sn�Xn
t � and σn�x� = s′n ◦ s−1n �x�, then

Yn
t = yn +

∫ t

0
σn�Yn

s �dBs� t ≥ 0�
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where yn = sn�x0�. Note that limn→∞ yn = y ≡ s�x0� and

s′n�x� = exp
(
−2

∫ x

0
fn�t�dt

)
is a monotone function bounded by e−γ and eγ. Thus 	sn�n≥1 are equicontinu-
ous and so are their inverse functions 	s−1n �n≥1. Therefore sn and s−1n converge
uniformly on compact intervals in R to s and s−1, respectively. Define

σ�y� =
{
eγ� for y < 0,
e−γ� for y > 0.

Then limn→∞ σn�y� = σ�y� for y �= 0. Let W be a Brownian motion on R
with W0 = 0. It is proved in Harrison and Shepp (1981) that Xx0 is a strong
solution to (1.1) if and only if Y = s�Xx� satisfies

Yt = s�x0� +
∫ t

0
σ�Ys�dWs
(3.1)

Since the function σ has finite variation, pathwise uniqueness holds for solu-
tions to (3.1), by Nakao (1972). Thus by proof of Theorem B of Kaneko and
Nakao (1988),

lim
n→∞E

[
max
0≤t≤T


Yn
t −Yt
2

]
= 0�(3.2)

for every T > 0. This implies that Yn converge weakly to Y on C��0� ∞�R�.
Since s−1n converge uniformly on compact intervals in R to s−1, we see that
Xn converge weakly on C��0� ∞�R� to Xx0 . It follows from (3.2) that there is
a subsequence nk such that

lim
k→∞

max
0≤t≤T


Ynk

t −Yt
 = 0 a.s.

Hence for each T > 0,

lim
k→∞

max
0≤t≤T


Xnk

t −Xt
 = 0 a.s. ✷

Proof of Theorem 1.3. (i) Consider 0 < β < β1 < 1 and recall the nota-
tion from Theorem 1.6. We will apply that theorem to solutions of (1.4) with
x0 = 0. Let γ1 = 1

2 log��1+ β1��1− β1��. Clearly γ1 > γ > 0. Define f̃n =
c�γ1/γ�fn. Let X̃n be the diffusion determined by (1.4) with f̃n in place of fn.
By Theorem 1.6 and the uniqueness of strong solutions to (1.1), passing to
a subsequence, if necessary, we see that Xn

t and X̃n
t converge uniformly on

compact intervals to X
β
t and X

β1
t , respectively, almost surely (recall that X

β
t

and X
β1
t are solutions to (1.1) starting from 0). Since f̃n ≥ fn, the stochastic

comparison theorem [see Proposition 5.2.18 of Karatzas and Shreve (1994)]
yields

P�X̃n
t ≥ Xn

t for t ≥ 0� = 1
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This implies that P�Xβ1
t ≥ X

β
t for t ≥ 0� = 1. The result follows from this

and (1.1).
(ii) The proof is analogous to the proof of Theorem 1.2(i) and so it is omitted.

✷

Proof of Proposition 1.7. It is enough to prove the result for a single
quadruple since the setQ4 is countable. Hence, fix a quadruple �s1� s2� x1� x2� ∈
Q4, and without loss of generality, assume that 0 ≤ s1 ≤ s2. It suffices to show
the proposition for t ∈ �s1� s2� because outside this interval the arrow of time
points in the same direction for both solutions and the result follows from the
uniqueness of the strong solution to (1.1). Recall functions fn defined in the
Introduction. By Theorem 4.5.1 and the last paragraph on page 115 of Kunita
(1997), for every fixed n, the following stochastic differential equation:

dXn
t = dBt + fn�Xn

t �dt
yields a stochastic flow of homeomorphism φn

st�x�ω� defined on R × �. That
is, there is a P-null set N such that for all ω ∈ Nc:

(i) φst�·�ω� is a continuous homeomorphism from R to R for all s� t ∈ R+,
(ii) φsr�ω� = φst�ω� ◦φtr�ω� for all s� t� r ∈ R+,
(iii) φss�ω� is the identity map of R,
(iv) φst�ω�−1 = φts�ω� and X

n�s�x
t ≡ φst�x� ·� solves

X
n�s� x
t = x+ �Bt −Bs� +

∫ t

s
fn�Xn�s� x

u �du� t� s ∈ R+ 


By property (i) and the continuity of t → X
n�s�x
t , we have

P
(
either Xn�s1�x1

t ≤ X
n�s2�x2
t for t ∈ �s1� s2� or

X
n�s1�x1
t ≥ X

n�s2�x2
t for t ∈ �s1� s2�

) = 1


In view of Theorem 1.6, after letting n → ∞, we get
P
(
either Xs1�x1

t ≤ X
s2�x2
t for t ∈ �s1� s2� or

X
s1�x1
t ≥ X

s2�x2
t for t ∈ �s1� s2�

) = 1
 ✷

4. Variable skewness parameter.

Proof of Theorem 1.4. We start by noting that for β1 �= β2, the processes
L

β1
t and L

β2
t cannot agree on any interval on which one of them (and so both

of them) increase. This is because in such a case, the equality would hold
for the skew Brownian motions X

β1
t and X

β2
t on an interval where the local

time at 0 would increase. On any such interval, the ratio of numbers of small
excursions of skew Brownian motion on both sides of the real axis determines
the skewness parameter β with probability 1. Since β1 �= β2, this leads to a
contradiction. Hence, we can fix a small m0 > 0 and wait until Lβ1

t and L
β2
t

arem0 units apart. By lettingm0 → 0, we will take account of all trajectories.
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We start with a few definitions very similar to those in Remark 2.1. Note
the crucial difference that in the present case we have two parameters β1 and
β2 rather than just β. Let

T0 = inf	t > 0
 
Lβ2
t −L

β1
t 
 = m0��

Sk = inf	t > Tk
 Bt = −L
β2
t �� k ≥ 0�

Tk = inf	t > Sk−1
 Bt = −L
β1
t �� k ≥ 1�

Wk =
L

β2
Sk−1

−L
β1
Sk−1

L
β2
Tk−1

−L
β1
Tk−1

� k ≥ 1�

Vk = L
β2
Tk

−L
β1
Tk

L
β2
Sk−1

−L
β1
Sk−1

� k ≥ 1�

Mk = L
β2
Tk

−L
β1
Tk

� k ≥ 0


As in Remark 2.1, we note that the random variables Wk and Vk, k ≥ 1, are
jointly independent and Mk = Mk−1VkWk for k ≥ 1.
Let γ1 = �1 − β1�/�2β1� and γ2 = �1 + β2�/�2β2�. The derivation of the

cumulative distribution function for Wk given in Barlow, Burdzy Kaspi and
Mandelbaum (2000) does not depend on the fact that the same parameter β is
used in the definition of Vk. Hence, those distributional results apply in the
present case and we see that P�Vk > v� = v−γ2 for v ≥ 1, and P�Wk < w� =
wγ1 for w ∈ �0�1�. It follows that Vk� k ≥ 1, are i.i.d. and the same can be
said about Wk’s.
We have for k ≥ 1,

Mk = M0

k∏
j=1

VjWj�

and so

logMk = logM0 +
k∑

j=1
�logVj + logWj�
(4.1)

The distribution of logVj is exponential with mean 1/γ2 and that of − logWj

is exponential with mean 1/γ1. It follows that logVj + logWj is a random
variable with mean 1/γ2 − 1/γ1 and finite variance.
If 1/γ2 − 1/γ1 > 0, that is; when β1 < β2/�1 + 2β2�, then the sum in (4.1)

goes to infinity a.s. and so Mk goes to infinity. An identical argument shows
that MkWk+1 goes to infinity a.s. Hence, L

β2
Sk

−L
β1
Sk

= MkWk+1 goes to infin-

ity. Note that Lβ2
t − L

β1
t is nondecreasing on intervals of the form �Sk�Tk+1�

and nonincreasing on intervals of the form �Tk�Sk�. This and the unbounded
growth of Lβ2

Sk
−L

β1
Sk
imply that Lβ2

t −L
β1
t goes to infinity without ever taking

the value 0. Part (i) of the theorem has been proved.
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If 1/γ2 − 1/γ1 = 0, that is, when β1 = β2/�1+ 2β2�, the process logMk is a
mean zero random walk so it will oscillate between −∞ and +∞. This implies
that Mk will oscillate strictly between 0 and ∞. It follows that Lβ2

t −L
β1
t has

to oscillate between 0 and ∞, a.s., which implies part (ii) of the theorem.
Next assume that 1/γ2 − 1/γ1 < 0, that is, β1 > β2/�1 + 2β2�. Let T∞ =

limk→∞ Tk. We have using Theorem 1.3(i),

L
β1
Tk+1

= L
β1
Sk

≤ L
β2
Sk

= L
β2
Tk

= Mk +L
β1
Tk

�

so

L
β1
T∞

≤ L
β1
T0

+
∞∑
k=0

Mk


If we can prove that
∑∞

k=0Mk < ∞, then L
β1
T∞

< ∞ and hence T∞ < ∞.
Since 1/γ2 − 1/γ1 < 0, the expectation of logVj + logWj is negative and

we see that a.s., there exists c1 > 0 such that for large k we will have

k∑
j=1

�logVj + logWj� < −c1k


From this inequality and (4.1) we deduce that Mk ≤ c2e
−c1k for large k, and

so
∑∞

k=0Mk < ∞. We conclude that T∞ < ∞ a.s. Combining this with the
observation that Mk → 0, we see that there is some t < ∞ (namely, t = T∞)
such that Lβ2

t = L
β1
t .

It remains to show that lim supt→∞�Lβ2
t −L

β1
t � = ∞. This follows from the

excursion theory. Excursions of the process �Lβ1
t � L

β2
t � from the diagonal can

have arbitrarily large size and sooner or later some of them will exceed any
given level. This completes the proof of the theorem. ✷

Proof of Corollary 1.5. We have dealt only with β < 1 but it is not
hard to see that equation (1.1) defines reflected Brownian motion when we set
β = 1 and then L

β
t is the running minimum of Bt. The arguments given in

the last proof easily extend to β2 = 1 and then the corollary can be obtained
from Theorem 1.4(iii). ✷
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