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SupposeX = �Xx�x∈�d is a white noise process, andH�B�, defined for
finite subsets B of �d, is determined in a stationary way by the restriction
of X to B. Using a martingale approach, we prove a central limit theorem
(CLT) for H as B becomes large, subject to H satisfying a “stabilization”
condition (the effect of changing Xx at a single site needs to be local).
This CLT is then applied to component counts for percolation and Boolean
models, to the size of the big cluster for percolation on a box, and to the
final size of a spatial epidemic.

1. Introduction. The central limit theorem for martingale difference ar-
rays (or Martingale CLT for short) says, loosely speaking, that if �M0�M1�M2�
� � � �Mn� is a discrete-time martingale, normalized so that Var�Mn� = 1 and
satisfying some mild regularity conditions, then Mn −M0 is approximately
standard normal provided the sum of the squares of the successive martin-
gale differencesMi−Mi−1 is close to its mean with high probability, reducing
the problem of normal approximation to proving a law of large numbers. This
result is rather classical (i.e., old); the version used here is from McLeish [22],
and a related result dates back to Lévy [19]; see also Doob [6].
Much more recent is the observation that the Martingale CLT can be used

to prove some previously intractable central limit theorems in spatial proba-
bility. Kesten and Lee [16] used the Martingale CLT to derive a CLT for the
length of the minimal spanning tree on uniform random points in the unit
cube; subsequently Lee [18] adapted the method to the number of vertices of
given degree in this minimal spanning tree. Kesten and Zhang [17] used the
Martingale CLT to find a CLT for first passage percolation, and Zhang [34]
used it to obtain a CLT for the number of clusters of critical bond percolation
on a box, and also for the intersection of the infinite cluster with a box for
supercritical bond percolation.
It seems clear that the Martingale CLT is a powerful tool in spatial proba-

bility. The first aim of this paper is to formulate a general CLT that we hope
is flexible enough to have a wide range of potential applications, but whose
proof is nevertheless fairly simple. As well as the Martingale CLT, the proof
uses another classical result, the Ergodic Theorem, as a simplifying ingredi-
ent. The general CLT and its proof are presented in Section 2. In the three
subsequent sections, some applications are described. These include some as-
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pects of lattice percolation not considered in [34] (Section 3), the final size of a
spatial epidemic (Section 4), and some quantities concerned with the Boolean
model of random sets in �d (Section 5).
While the applications considered here are all somewhat related to perco-

lation, further non-percolative applications concerned with the geometry of
random points in the unit cube are dealt with in Penrose and Yukich [27],
and we anticipate that there will be others. For example, it may be possible
to use these methods to obtain CLTs for various estimators on a planar point
processes in a large window, under a null hypothesis that it is a homoge-
neous Poisson process. See Section 2.7 of [32], or Section 8.2.2 of [5], for an
introduction to these topics.

Notation. Let d ≥ 1 be an integer. By a lattice box we mean a set B ⊂ �d of
the form B = �d ∩∏d

i=1	ai� bi
. Let � be the collection of all lattice boxes in
�d.
Except where stated to the contrary, we always define diameter of sets in

�d via the l∞ norm with �x�∞ given by the maximum absolute value of its
coordinates. Thus, for finite A ⊂ �d, we set diam�A� = supx�y∈A �x−y�∞. Also
let A denote the cardinality of A, and for K > 0, let ∂KA denote the set of
elements of A at an l∞ distance at most K from �d \A; set ∂A = ∂1A.
For t ≥ 0 let �t� denote the largest integer not exceeding t, and let �t�

denote the smallest integer not smaller than t.
For σ > 0, let � �0� σ2� be the normal probability distribution on � with

density f�x� = �2πσ2�−1/2 exp�−x2/�2σ2��. Also, let � �0�0� represent the
degenerate probability distribution on � consisting of a unit point mass at
zero, which we view as a special case of the normal.

2. A central limit theorem. Let �E�� �P0� be an arbitrary probability
space. On a suitable probability space ���� �P�, let X = �Xx�x ∈ �d� be
E-valued white noise with distribution P0; that is, let X = �Xx�x ∈ �d� be a
family of independent identically distributed random elements of E, each Xx

having distribution P0, indexed by the integer lattice. For existence of such
an ���� �P� and X, see, for example, Section 8.7 of Williams [33].
Suppose � is a collection of finite subsets (“regions”) of �d; for example, �

might be the collection of all lattice boxes. Assume � is translation-invariant,
in the sense that if B ∈� then τyB ∈� for all y ∈ �d, where τy denotes trans-
lation by y, so τyB = �x + y � x ∈ B�. By a stationary �-indexed functional
of X, we mean a family �H�X�B��B ∈ �� of real-valued random variables
indexed by all regions in the collection �, with the property that �Xx�x ∈ B�
determines the value of H�X�B�, and does so in a stationary way, meaning
that H�τyX� τyB� =H�X�B� (almost surely) for all y ∈ �d, where τyX is the
family of variables �Xx−y� x ∈ �d�. We shall give a CLT for H�X�B� as the
set B becomes large.
If the variables Xx are real-valued, an example of a stationary �-indexed

functional is is the sum
∑

x∈BXx; in this case the (very) classical CLT applies.
Of more interest to us are cases where the dependence ofH�X�B� on �Xx�x ∈
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B� is more complicated. These will be discussed in more detail later on, but
to give a flavor, we outline some of the possible interesting choices for X�H.

• Site percolation: Set E = 0�1, with Xx = 1�0� representing an open (closed)
site. Let H�X�B� be some function of the subgraph of the integer lattice in-
duced by the open sites in B.

• Bond percolation: Similar to site percolation, but let Xx have 2d possi-
ble values, encoding the open/closed status of the d edges of the integer
lattice having one endpoint at x and the other endpoint lexicographically
preceding x.

• Spatial epidemic with removal: Let d = 2 and let Xx be a quintuple
�Tx� �exy�� with y running through the neighbors of x in �2. Here Tx rep-
resents the time an individual at site x remains infected once it becomes in-
fected, before becoming immune, and exy represents the time from becoming
infected before x has a contact with y.

• Functionals on Poisson processes: LetXx be a homogeneous Poisson process
of intensity λ on the unit cube centred at x (strictly speaking, translated to
the origin to make �Xx�x ∈ �d� an i.i.d. family of Poisson processes). Then
the union of the point processes Xx�x ∈ B, is a homogeneous Poisson process
on the union of unit cubes centred at points in B. Many functionals of this
Poisson process are of interest (see [27]), such as the number of components
of the union of unit balls centred at the points of this Poisson process.

• Boolean models: Similar to the previous example, but with “unit balls” re-
placed by random shapes such as balls of random radius.

We are interested in normal approximation for H�X�Bn� where �Bn�n≥1 is
an �-valued sequence of regions with Bn → ∞ as n → ∞. In many appli-
cations we cannot expect to include all such sequences; instead we consider
some class of such sequences to allow for the imposition of regularity on the
sets Bn.
If �Bn�n≥1 is a sequence of subsets of �d we write lim inf �Bn� for the set

∪n≥1 ∩m≥n Bm. In particular, if lim inf �Bn� = �d, we shall say the sequence
tends to �d. Restricting attention to sequences tending to �d turns out to be
useful. We now give two other regularity conditions. The second of these is
rather technical; some examples are given after the main theorem.

Definition 2.1. A sequence �Bn�n≥1 of regions of �d has vanishing relative
boundary if ∂Bn/Bn → 0 as n→∞.

Observe that if �Bn�n≥1 has vanishing relative boundary, then for any K >
0, we have ∂KBn/Bn → 0 as n→∞. We shall use this fact below without
further comment.
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Definition 2.2. A class � of sequences of regions of �d is strongly transla-
tion-invariant if for any sequence �Bn�n≥1 in � , (i) for any y ∈ �d the sequence
�τyBn�n≥1 is in � , and (ii) for any ε > 0, there is a sequence �B′n�n≥1 such that
(a)B′n ⊆ Bn for each n; (b) B′n ≥ �1−ε�Bn for each n; and (c) for any sequence
�zn�n≥1 with zn ∈ B′n for all n, the sequence of translates �τ−zn�Bn��n≥1 is itself
in � .

Our condition for a CLT to hold is a general formulation of the notion of
stabilization introduced in the context of minimal spanning trees by Lee [18].
It says, roughly, that the effect onH of changing the value ofX at a single site
is local. LetX′ be the processX with the valueX0 at the origin replaced by an
independent copyX∗ ofX0 (that is, anE-valued variableX∗ with distribution
P0, independent of X), but with the values at all other sites the same. Let
"0�B� (the “effect of changingX0”) be the incrementH�X�B�−H�X′�B�. For
x ∈ �d, define "x�B� (the “effect of changing Xx”) similarly; that is, let X′′

be the process X with Xx replaced by X∗, and let "x�X�B� = H�X�B� −
H�X′′�B�.

Definition 2.3. Given a class � of �-valued sequences, the �-indexed
functional �H�X�B��B ∈ �� is defined to stabilize on sequences in � if there
exists a random variable "0�∞� such that for any �-valued sequence �Bn�n≥1
in class � , the variables "0�Bn� converge in probability to "0�∞�.

Definition 2.4. The �-indexed functional �H�X�B��B ∈�� satisfies the
bounded moments condition if there exists γ > 2 such that

sup
B∈�

Ɛ	"0�B�γ
 <∞�(2.1)

For x ∈ �d, let �x be the σ-field generated by �Xy�y � x�, where y � x

means y precedes or equals x in the lexicographic ordering on �d. Write

−→

for convergence in distribution as n→∞. Now we can state our main result.

Theorem 2.1. Let � be a a translation-invariant collection of finite subsets
of �d. Let � be a class of �-valued sequences, such that any sequence in �
tends to �d and has vanishing relative boundary, and such that � is strongly
translation-invariant.

Suppose �H�X�B��B ∈�� is a stationary �-indexed functional of X which
stabilizes on sequences in � and satisfies the bounded moments condition.
Suppose that �Bn�n≥1 is a sequence in class � . Then

lim
n→∞ Bn−1Var�H�X�Bn�� = σ2(2.2)

and

Bn−1/2�H�X�Bn� − ƐH�X�Bn��

−→ � �0� σ2��(2.3)

with σ2 = Ɛ	�Ɛ	"0�∞��0
�2
 .
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Remarks. (i) In practice, for all examples considered here, we take γ = 4
in the bounded moments condition.
(ii) The conclusion of the theorem allows for the possibility that σ2 = 0,

in which case (2.2) implies (2.3). The conclusion is perhaps more interesting
when σ2 > 0. In our examples we check this on a case-by-case basis, either
directly using the definition of σ2 in terms of conditional expectation, or using
(2.2).
(iii) Here are some examples of classes that might be of interest. These

cover all applications of Theorem 2.1 given in this paper.

If � is the collection of all finite subsets of �d, and � is the class of all
�-valued sequences that tend to �d and have vanishing relative boundary,
then � is strongly translation-invariant. Indeed, if �Bn� ∈ � , and ε > 0,
then if we take Kn to be the largest value of k such that ∂kBn ≤ εBn,
then since �Bn� has vanishing relative boundary, Kn → ∞. If we take B′n =
Bn \ ∂Kn

B, then for any sequence of xn ∈ B′n the translate τ−xn
�Bn� includes

the cube 	−Kn�Kn
d, so the sequence �τ−xn
�Bn��n≥1 tends to �d, giving us

strong translation-invariance.
If� is the collection � of all lattice boxes, and � is the class of all �-valued

sequences tending to �d, then each sequence �Bn�n≥1 in � has vanishing rela-
tive boundary. As in the previous example, � is strongly translation-invariant.
The next example formalizes the notion of a sequence of boxes which grow

at the same rate in all directions, for example concentric nested cubes. For
δ > 0, a lattice box B = ∏d

i=1�	ai� bi
 ∩ �� is to be described as δ-comparable
if mini≤d�bi − ai�/maxi≤d�bi − ai� ≥ δ. In words, B is δ-comparable if there
exists a small cube contained in B, and a large cube containing B, with the
ratio between the side length of the small cube and that of the large cube at
least δ. Let �δ denote the collection of all δ-comparable lattice boxes.
Suppose �Bn =

∏d
i=1�	−ai�n� bi�n
 ∩ ���n≥1 is a sequence in �, that tends to

�d. Let us say that the sequence �Bn�n≥1 is comparable if we have

lim inf
n→∞

inf�a1�n� b1�n� a2�n� b2�n� � � � � ad�n� bd�n�
sup�a1�n� b1�n� a2�n� b2�n� � � � � ad�n� bd�n�

> 0�

This condition implies that there exists δ > 0 such that all the boxes Bn are
δ-comparable. It also implies that the origin is not too near the boundaries of
the boxes Bn.
Let δ > 0 and let � = �δ. Suppose � is the class of all comparable

�-valued sequences that tend to �d. Then any sequence �Bn�n≥1 in � has
vanishing relative boundary. Also � is strongly translation-invariant. Indeed,
given �Bn�n≥1 ∈ � , and ε > 0, we can take B′n = Bn \ ∂Kn

Bn with Kn =
��εδ/�2d��diam�Bn��. Then Bn \ B′n is a union of 2d slabs, each of size at
most �ε/�2d��Bn, and hence B′n ≥ �1 − ε�Bn. Also, if xn ∈ B′n for each n,
then the sequence �τ−xn

Bn�n≥1 is comparable because τ−xn
Bn contains the box

�	−Kn�Kn
 ∩ ��d, and tends to �d for the same reason.
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Proof of Theorem 2.1. Let �Bn�n≥1 be a sequence of of regions in class � .
As advertised, the plan is to use the Martingale CLT. To representH�X�Bn�−
ƐH�X�Bn� as a sum of martingale differences, let kn = Bn and define the
filtration ��0��1� � � � ��kn

� as follows: let �0 be the trivial σ-field, label the
elements of Bn in lexicographic order as x1� � � � � xkn

, and let �i = �xi
for

1 ≤ i ≤ kn. Then

H�X�Bn� − ƐH�X�Bn� =
kn∑
i=1

Di

where we set Di = Ɛ	H�X�Bn��i
 − Ɛ	H�X�Bn��i−1
. By orthogonality of
martingale differences,

Var	H�X�Bn�
 = Ɛ
kn∑
i=1

D2i �

By this representation of the variance, along with the Martingale CLT (The-
orem (2.3) of [22]) it suffices to prove the conditions

sup
n≥1

Ɛ

[
max
1≤i≤kn

(
k−1/2n Di

)2]
<∞�(2.4)

k−1/2n max
1≤i≤kn

Di
P−→ 0(2.5)

and

k−1n
kn∑
i=1

D2i
L1−→ σ2�(2.6)

We use the following, easily checked, representation of the martingale differ-
ences:

Di = Ɛ	"xi
�Bn��xi


�(2.7)

It is not hard to check (2.4) and (2.5). Indeed, by (2.7) and the conditional
Jensen’s inequality we have

k−1n Ɛ

[
max
i≤kn

D2i

]
≤ k−1n

kn∑
i=1

Ɛ	D2i 
 ≤ k−1n
kn∑
i=1

Ɛ	"xi
�Bn�2


which is uniformly bounded by the bounded moments assumption (2.1).
For the second condition (2.5), let ε > 0 and use Boole’s and Markov’s

inequalities to obtain

P

[
max
1≤i≤kn

Di ≥ k1/2n ε

]
≤

kn∑
i=1

Ɛ	Diγ

k
γ/2
n εγ

�

which tends to zero, again by (2.1).
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It remains to prove (2.6). Let x ∈ �d. By strong translation-invariance,
the sequence �τ−xBn�n≥1 of translated regions is also in � . By stationarity
of H, the sequence of variables "x�Bn� is almost surely the same as the se-
quence "0�τ−x�Bn��, and therefore by the stabilization assumption, the vari-
ables "x�Bn� converge in probability to a limit, denoted "x�∞�. For x ∈ �d

and B ∈ �, let

Fx�B� = Ɛ	"x�B��x
� Fx = Ɛ	"x�∞��x
�
Then �Fx�x ∈ �d� is a stationary family of random variables, which have finite
second moment because of the bounded moments condition. Also, the σ-field
of translation-invariant σ�X�-measurable events is trivial (see Durrett [8],
Chapter 6, Lemma 4.3). We claim that by the Ergodic Theorem ([8], Chapter
6, Section 2),

k−1n
∑
x∈Bn

F2x
L1−→ Ɛ	F20
 = Ɛ	�Ɛ	"0�∞��0
�2
�(2.8)

This is proved as follows. Let e1 = �1�0� � � � �0� ∈ �d. Given ε > 0, by the
Ergodic Theorem we can choose K > 0 such that for all n ≥ K, the average
of F2e1�F

2
2e1

� � � � �F2ne1 is within an L1 distance at most ε of Ɛ	F20
.
Divide Bn into one-dimensional intervals by which we mean maximal sub-

sets ofBn of the form ��∩	a� b
�×�z2�×· · ·×�zd�, with a� b� z1� � � � � zd in �. Let
B∗n be the union of constituent intervals of length at leastK. Let kn = Bn and
k′n = B∗n. Since �Bn�n≥1 has vanishing relative boundary, limn→∞�k′n/kn� = 1.
Writing � · �1 for the L1-norm of random variables, we have∥∥�k−1n ∑

x∈Bn
F2x� − Ɛ	F20


∥∥
1
≤ k−1n

∥∥�∑x∈B∗n F
2
x� − k′nƐ	F20


∥∥
1

+k−1n
∥∥∥(∑x∈Bn\B∗n F

2
x

)
− �kn − k′n�Ɛ	F20


∥∥∥
1
�

(2.9)

By the choice of K and tranlsation-invariance, for each interval I of length at
leastK the average of F2z� z ∈ I, is within an L1-distance ε of Ɛ	F20
. Therefore
the first term on the right hand side of (2.9) is at most ε, while the second
term tends to zero because �k′n/kn� → 1. Therefore the left side of (2.9) is less
than 2ε for large n, and (2.8) follows.
We need to show that Fx�Bn�2 approximates to F2x. For any B ∈ �, by

Cauchy-Schwarz

Ɛ	F0�B�2 −F20
 ≤ �Ɛ	�F0�B� +F0�2
�1/2�Ɛ	�F0�B� −F0�2
�1/2�
By the definition and the conditional Jensen’s inequality,

Ɛ	�F0�B� +F0�2
 = Ɛ	�Ɛ	"0�B� + "0�∞��0
�2

≤ Ɛ	Ɛ	�"0�B� + "0�∞��2�0


= Ɛ	�"0�B� + "0�∞��2


which is uniformly bounded by the bounded moments condition. Similarly,

Ɛ	�F0�B� −F0�2
 ≤ Ɛ	�"0�B� − "0�∞��2
�
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By the stabilization and bounded moments conditions this is uniformly
bounded, and moreover (see [33], A 13.2(f)), for any sequence �B̃n�n≥1 in class
� , Ɛ	F0�B̃n�2 −F20
 → 0.
Returning to the given sequence �Bn�, we now use the strong translation-

invariance of � . Given ε > 0, let B′n be a sequence of subregions of Bn with
relative size at least 1 − ε and with the property that for any sequence of
xn ∈ B′n, the sequence �τ−xn

Bn�n≥1 is in class � . We claim that
lim
n→∞ supx∈B′n

Ɛ	Fx�Bn�2 −F2x
 = 0�(2.10)

Indeed, if this were untrue we could take a sequence �xn�n≥1 with xn ∈ B′n and
lim supƐ	Fxn

�Bn�2 − F2xn

 > 0. By translation-invariance, this would imply

that lim supƐ	F0�τ−xn
�Bn��2 −F20
 > 0, which contradicts the conclusion of

the previous paragraph.
Using (2.10), the uniform boundedness of Ɛ	Fx�Bn�2 − F2x
, and the fact

that ε can be taken arbitrarily small in the above argument, it is routine to
deduce that

k−1n
∑
x∈Bn

�Fx�Bn�2 −F2x�
L1−→ 0�

and therefore (2.8) remains true with Fx replaced by Fx�Bn�; that is, (2.6)
holds. ✷

3. Percolation. In this section we consider percolation on the usual in-
teger lattice �d, with vertex set �d and edges between all vertex pairs at an
l1-distance of 1, when restricted to a finite box. Theorem 2.1 gives a method
for proving CLTs associated for various quantities associated with the perco-
lation process as the dimensions of the box increase to infinity. Such CLTs are
important in the statistical estimation of percolation parameters, a subject re-
cently studied by Meester and Steif [24]. The quantities we consider here are
the number of clusters, the size of the biggest cluster, and the size of the cluster
at the origin. We state our results for site percolation but the method can be
adapted to bond percolation, as was mentioned in Section 2. For a general
reference on percolation see Grimmett [9].
Throughout this section, we assume d ≥ 2 and takeX = �Xx�x ∈ �d� to be

a family of i.i.d. Bernoulli random variables with parameter p ∈ �0�1�. Sites
x ∈ �d with Xx = 1�0� are denoted open (closed). We denote by open clusters
the connected components of the subgraph of �d induced by the set of open
vertices. Given a region B of �d (e.g., a box), we denote by open clusters in B
the connected components of the subgraph of the integer lattice �d induced by
the set of open vertices lying in B. Thus, for two vertices to lie in the same
open cluster there must be an open path connecting them; for them to lie in
the same open cluster in B there must be an open path within B connecting
them.
Let C0�B� denote the open cluster in B containing the origin, and let C0

be the open cluster containing the origin. By the size of an open cluster or
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an open cluster in B we mean the number of vertices it contains; in standard
graph-theory terminology this would be called the order of the component but
this use of the word ‘size’ is more common (and intuitive) in percolation theory.
The biggest open cluster in B is the one with the greatest size (not necessarily
unique).

Theorem 3.1. Let p ∈ �0�1�. Let H�X�B� be the number of open clusters
in B. Then there exists σ2 > 0 such that for any sequence �Bn�n≥1 of regions of

�d, with vanishing relative boundary, and with lim inf �Bn� = �d, we have

lim
n→∞ Bn−1Var�H�X�B�� = σ2

and

Bn−1/2�H�X�Bn� − ƐH�X�Bn��

−→ � �0� σ2��

This is one of the simplest non-trivial applications of Theorem 2.1, taking� to
consist of all finite subsets of �d, and � to be the class of �-valued sequences
with vanishing relative boundary that tend to �d. The bounded moments con-
dition holds because changing the value of X0 cannot alter the number of
components by more than 2d. Also, the functional H�X�B� stabilizes on se-
quences in � ; for example, if X0 = 0 and X∗ = 1, then "0�∞� is equal to the
number of open clusters of X lying adjacent to the origin, minus 1.
A bond percolation version of this result (for a less general class of sequences

�Bn�n≥1) is in Zhang [34]. In contrast with results of this sort prior to [34],
there is no requirement that p be non-critical. Moreover, there is no need
for the sets Bn to be cubes or even boxes; all we need is vanishing relative
boundary.
Next, consider the size of the biggest cluster. Let pc = pc�d� be the infimum

of all p such that θ�p� > 0, where θ�p� denotes the probability that there is an
infinite component including the origin. It is well-known [9] that pc ∈ �0�1�.
Consider supercritical percolation with pc < p < 1, and suppose �Bn�n ≥ 1�
is a comparable sequence of lattice boxes tending to �d. We look at the biggest
cluster in Bn. This cluster (and more especially its bond percolation analogue)
is a spatial analogue to the “giant component” much studied in random graph
theory (see, e.g., [15]). This analogy has been pursued vigorously by Borgs et
al. [3].
It is known that for site percolation restricted to Bn, given ε > 0, with high

probability the size of the bigest cluster lies in the range �1± ε�θ�p�Bn, and
the size of second biggest cluster is at most εBn. In fact the probability that
this fails to happen decays exponentially in Bn�d−1�/d; see Pisztora [29] or
Penrose and Pisztora [28]. Hence, the size of the biggest cluster, divided by
the size of the box, is a natural (and consistent) statistical estimator for θ�p�,
determined by the behavior of the process inside B. The size of the biggest
cluster is not considered by Zhang [34], who instead looks at the intersection
of the infinite cluster with B, which is not determined by the process inside B.
An intermediate estimator for θ�p� is suggested in [24], based on the number
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of sites in a cube which are connected by open paths to the boundary of a
cube of twice the side-length; this is determined by the configuration inside
the larger of the two cubes. It is possible to apply Theorem 2.1 to get a CLT
for this estimator, too, but here we just concentrate on the biggest cluster.

Theorem 3.2. Let p ∈ �pc�1�, and let H�X�B� be the size of the biggest
open cluster in B. Then there exists σ2 > 0, such that for any comparable
sequence �Bn� of lattice boxes tending to �d, we have limn→∞ Bn−1
Var�H�X�Bn�� = σ2 and

Bn−1/2�H�X�Bn� − ƐH�X�Bn��

−→ � �0� σ2��(3.1)

We shall prove this using Theorem 2.1; first we need some lemmas. The first
one is for the case d = 2; in this case for integers J ≥ K > 0 let ρJ�K be the
probability that there is a path of open sites crossing a given J×K rectangle
from left to right (i.e., the long way).

Lemma 3.1. Suppose d = 2 and p ∈ �pc�1�. Then 1 − ρ3L�L decays expo-
nentially in L, that is,

lim sup
L→∞

L−1 log�1− ρ3L�L� < 0�

Proof. The ingredients of the proof are standard and can be found, for
example, in Durrett [7], Chapter 6; we give a sketch. The proof uses duality:
for site percolation, the dual of �2 is the graph ��2� ∗� with the same vertex
set but with edges between any two vertices that are unit distance apart in
l∞ norm. This graph structure induces a notion of ∗-paths and ∗-connected
subsets of �2.
First, we claim that limL→∞ ρL�L = 1. Suppose this were not true; then

by duality, the probability of there being a closed top-to-bottom ∗-crossing of
an L × L square does not tend to zero as L → ∞. By the RSW theorem
(see (11.70) of [9]) the probability that there is a closed ∗-circuit in the annu-
lus 	−3L�3L
 \ 	−L�L
 does not tend to zero. Hence, there exists an infinite
sequence �An�n≥1 of disjoint annuli of this form, such that the probability of
there being a closed ∗-circuit in An is bounded away from zero. Therefore with
probability 1 there are (infinitely many) closed ∗-circuits around the origin,
contradicting the assumption that p > pc.
By the preceding claim and a further application of the RSW theorem, we

have that limL→∞ ρ2L�L = 1. Also, by (8) of [7], page 138, we have that if
0 < λ < 1 and 1− ρ2L�L ≤ λ/25, then 1− ρ4L�2L ≤ λ2/25. It follows from these
two facts that 1− ρ2L�L decays exponentially in L as L→∞ through powers
of 2. We can fill in the gaps between powers of 2 because if L ≤M < 2L, then

1− ρ2M�M ≤ 1− ρ2M�L ≤ 5�1− ρ2L�L��(3.2)

where the first inequality is trivial and the second comes from (6) of [7], page
137. This gives exponential decay of 1 − ρ2L�L, and a further application of
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the second inequality in (3.2) (taking M = 3L/2) gives exponential decay of
1− ρ3L�L. ✷

Lemma 3.2. Let d ≥ 2, and let δ� α ∈ �0�1�. Then there exists p ∈ �0�1�
such that for site percolation on �d with parameter p, for any z1� z2 in any
δ-comparable box in �d, the probability that there is a path of open sites in the
box from z1 to z2 exceeds α.

Proof. First suppose d = 2. The proof is a variant of the well-known
Peierls argument (see, e.g., [9]), based on the fact that there is a combinatorial
constant κ such that the number of ∗-connected subsets of �2 including the
origin of size k is at most κk.
Given a δ-comparable box B and given z1� z2 ∈ B, choose a deterministic

lattice path γ in �2 from z1 to z2, of minimal length. This path will remain in
B.
If there is no open path in B from z1 to z2, then there must be a closed

∗-path in B that separates z1 from z2. This ∗-path must pass through some
point of γ, and if it passes through a point in γ at a distance at least k (in the
l1 norm) both from z1 and from z2, then the the ∗-path must contain at least
kδ/2 vertices (here we have used δ-comparability). Therefore, with q = 1−p,
the expected number of closed ∗-paths in B separating z1 from z2 is bounded
by

2
∞∑
k=1

∞∑
j=�kδ/2�

κjqj ≤ 2�κq�δ/2
�1− κq��1− �κq�δ/2�

which can be made less than 1− α by making p close enough to 1.
This completes the proof for d = 2. The case for d > 2 can be dealt with by

using the case d = 2 repeatedly, along with the Harris-FKG inequality (see
[7] or [9]). ✷

In the case d ≥ 3, a similar rôle to Lemma 3.1 is played by the follow-
ing “finite slab lemma.” By a “finite slab” we mean a lattice box of the form
�1� � � � �K� × B, or a rotation or tranlation thereof, where K is fixed and B
is arbitrarily large. The finite slab lemma is closely related to a well-known
result of Grimmett and Marstrand [10] on percolation in infinite slabs ((7.2)
of [9]). A weaker version of the finite slab lemma (with a different proof) is in
(7.78) of [9].

Lemma 3.3. Let d ≥ 3, and let p ∈ �pc�1�. Let δ > 0. Then there exists
integer K = K�p� δ� > 0, and δ∗ ∈ �0�1�, such that for any lattice box B of
the form �1�2� � � � �K� × B′, with B′ a δ-comparable lattice box in �d−1, and
any z1� z2 in B, the probability that there is an open path in B from z1 to z2
exceeds δ∗.

Proof. By Lemma 3.2, there exists ε1 > 0 such that for site percolation
on �d−1 with parameter 1− ε1, for any x1� x2 in any �δ/2�-comparable box in
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�d−1, the probability that there is a path of open sites in the box from x1 to
x2 exceeds 1/2.
Let us say that a set A ⊂ �d is occupied if each site in A is open, and set

B�n� = 	−n�n
d. Consider percolation with parameter p′ ∈ �pc�p�. By (7.9)
of [9] one can pick integers 0 < m < n, such that with probability close to
1, there is an open path from the boundary of B�m� to some point on the
boundary of B�n� which is also on the boundary of some occupied translate of
B�m� adjacent to B�n�.
Set N = �n +m + 1�, and let B = 	−2N�2N
 × B′ with B′ an arbitrary

δ-comparable lattice box in �d−1. If any side of B has length less than 8N,
then all sides have length less than 8N/δ, and B ≤ �8N/δ�d. From now on
we assume that all sides of B have length at least 8N.
Consider the grid of vertices �4Nx � x ∈ �0� × �d−1�, and for each such

vertex set Bx = 4Nx + B�N�. The set of vertices x ∈ �0� × �d−1 for which
4Nx+B�2N� lies entirely in the slab B is effectively a �δ/2�-comparable box
B′′ in �d−1.
Going back to percolation with parameter p rather than p′, and arguing as

in the proof of (7.2) of [9], define each successive site x ∈ B′′ to be occupied if
Bx contains an occupied translate of B�m� that is connected by an open path
in B′′ to B�m�, and also to occupied translates of B�m� contained in each of
the neighboring boxes of the form 2Ny +B�N�, y ∈ �d. By the proof of (7.2)
of [9], it is possible to choose n and m, so that the set of occupied sites in the
grid connected to the origin dominates the cluster at the origin for Bernoulli
site percolation with parameter 1− ε1 in B′′.
Suppose z1� z2 are arbitrary vertices in B. Take grid points x1� x2 ∈ B′′

with zi ∈ �4nxi + B�4N�� for i = 1�2. By the above, the probability that
there is an open path in B from B�m� to a translate of B�m� in Bx1

is at
least 1/2, as is the probability that there is an open path in B from B�m�
to a translate of B�m� in Bx2

. Also the probability that B�m� is occupied is
p�2m+1�

d
, while the probability that 4Nx1+B�4N� is occupied is p�8N+1�d , as is

the probability that 4Nx2+B�4N� is occupied. By the Harris-FKG inequality,
the intersection of these five events occurs with probability at least the product
of their probabilities, and if they all occur then there is an open path in B from
z1 to z2. This proves the result with K = 4N+ 1 and

δ∗ = min
(
p�8N/δ�d� �1/4�p�2m+1�d+2�8N+1�d

)
� ✷

We shall use the next lemma to check the stabilization condition in the
setting of Theorem 3.2. For 1 ≤ i ≤ d let the width in the i-direction of a
connected subset of a lattice box B be the cardinality of its projection onto the
ith coordinate. We shall say it crosses B in the i-direction if its width in the
i-direction is the same as that of B, and crosses B in all directions if it crosses
B in the i-direction for i = 1�2� � � � � d.

Lemma 3.4. Let d ≥ 2. Let p ∈ �pc�1�. Let �Bn�n≥1 be a comparable se-

quence of boxes tending to �d, and let bn = �diam�Bn�1/�2d��. Let An be the
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event that there is a unique open cluster in Bn that crosses Bn in all direc-
tions, and that all other open clusters in Bn have diameter less than bn. Then
P	An
 → 1 as n→∞.

Proof. First suppose d = 2. Set b−n = �bn/2�. Let 
n be the collection of
all non-empty rectangles of the form 	rb−n � �r+ 1�b−n 
 × 	sb−n � �s+ 3�b−n 
 ∩Bn or
	rb−n � �r+ 3�b−n 
 × 	sb−n � �s+ 1�b−n 
 ∩Bn, with r� s ∈ �. The cardinality of 
n is
O�b2n�.
By Boole’s inequality and Lemma 3.1, with probability approaching 1 as

n → ∞, each of the rectangles in 
n has an open crossing the long way. If
this occurs, the open crossing paths in overlapping rectangles must cross each
other, so that the union of all such paths is contained in a single open cluster
in Bn, that crosses Bn in all directions. Any other open cluster of diameter at
least bn must cross at least one of these rectangles, and so must be connected
to the union of paths described above. This proves the result for d = 2.
Now suppose d ≥ 3. A bond percolation version of the lemma is essentially

in [29], Theorem 3.1, although the condition there on the Bn is a little stronger
than comparability. For convenience we sketch the argument since much of
[29] is irrelevant here.
First pick K = K�p� δ� as in the statement of Lemma 3.3. Then for large

n, we can divide Bn into a large number of disjoint slabs of the form B∩�	j+
1� j+K
 × �d−1�. For each slab, the probability that there is an open cluster
in the slab that crosses the slab in the 2-direction is bounded away from zero,
so by independence of disjoint slabs the probability that there is at least one
open cluster in Bn that crosses Bn in the 2-direction tends to 1.
By a similar argument to the proof of (8.44) of [9], using Lemma 3.3, for

any i $= j in �1�2� � � � � d� the probability that the open cluster containing x
has width at least bn in the i-direction but does not cross B in the j-direction,
decays exponentially in bn, uniformly over x ∈ Bn. Therefore by an application
of Boole’s inequality, every cluster with diameter at least bn crosses Bn in all
directions, with probability approaching 1.
Choose distinct x and y in Bn, both on the left edge of Bn, that is, both

with minimal 1-coordinate. The probability that the open clusters including
x and including y are distinct but both cross Bn in the 1-direction, decays
exponentially in diam�Bn�, uniformly in x�y, again by an argument similar to
the proof of (8.44) in [9]. Hence by Boole’s inequality, with probabilty tending to
1 there is at most one open cluster crossing Bn in the 1-direction. Combined
with the conclusion of the previous paragraph, this completes the proof for
d ≥ 3. ✷

We shall use the next lemma to check the bounded moments condition in
the setting of Theorem 3.2. Recall that �δ is the set of all δ-comparable lattice
boxes.

Lemma 3.5. Let d ≥ 2. Let p ∈ �pc�1�. Let e1 and e2 be distinct elements
of �d both lying adjacent to the origin. For each box B ∈ � and r > 0, let Cei
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be the open cluster in B containing ei, and let E′�B� r� denote the event

�diam�Ce1
�B�� ≥ r� ∩ �diam�Ce2

�B�� ≥ r� ∩ �e2 /∈ Ce1
�B���

Then for all δ > 0,

lim sup
r→∞

�r−1 sup�logP	E′�B� r�
 � B ∈ �δ� �e1� e2� ⊆ B�� < 0�

Proof. First suppose d = 2. For L > 0, let QL be the square 	−3L�3L
 ×
	−3L�3L
, and let AL be the annulus QL \�−L�L�×�−L�L�. Then AL is the
union of four overlapping rectangles, each of which has dimensions 6L × 2L
or 2L× 6L. We denote these four rectangles AleftL �= 	−3L�−L
 × 	−3L�3L
,
A
up
L �= 	−3L�3L
×	L�3L
, and ArightL , AdownL , defined similarly. Let EL be the
event that there is a long-way open crossing of each of AleftL , A

right
L , AupL and

AdownL .
Suppose r > 0 and B is a δ-comparable lattice box, such that the event

E′�B� r� has non-zero probability. This implies that the box B includes the
origin, and also includes a point at an l∞-distance at least r/2 from the origin;
otherwise eventE′�B� r� is impossible. Then if E�δr/6� occurs, then E′�B� r� does
not, as we shall now show.
Since B includes some point x with �x�∞ ≥ r, by δ-comparability, it must

include at least one of the four corners of Q�δr/6�. We consider only the case
where the top right corner of Q�δr/6� is in B; the other three cases are treated
similarly.
The first possibility is that Q�δr/6� ⊆ B. In this case, it is clear that if E�δr/6�

occurs then there is an open circuit in A�δr/6� in which case the event E′�B� r�
cannot occur. If this first possibility does not happen, then either the left edge
or the lower edge of Q�δr/6�, or both, lies entirely outside B.
A second possibility is that both the left edge and the lower edge of Q�δr/6�

lie entirely outside B (see Figure 1). In this case, the lower end of the rectangle
A
right
�δr/6� is “curtailed” by the lower edge of B; but if there is a long-way (i.e.,
top-bottom) open crossing of the rectangle, then there is also a top-bottom
crossing of its intersection with B. Similarly, if there is a right-left crossing
of Aup�δr/6�, then there is also a right-left crossing of its intersection with B.
Hence if E�δr/6� occurs, the union of the lower and left edges of B, with the

open top-bottom crossing of Aright�δr/6� ∩B and the left-right crossing of Aup�δr/6� ∩B
form a circuit around the origin. This prevents E′�B� r� from occurring.
A third possibility is that the lower edge of Q�δr/6� lies entirely outside B,

but the left edge does not (see Figure 2). In this case Aup�δr/6� lies entirely in B,

while Aleft�δr/6� and A
right
�δr/6� do not. The occurence of E�δr/6� implies that there are

long-way open crossings of Aup�δr/6�, and of A
left
�δr/6� ∩B and Aright�δr/6� ∩B. Together

with the lower edge of B these form a circuit around the origin, preventing
the occrurence of E′�B� r�.
The argument for the remaining fourth possibility is entirely analagous to

that for the third possibility. Thus we have proved the claim that if E�δr/6�
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Fig. 1.

occurs, then E′�B� r� does not. By Lemma 3.1, 1−P	EL
 decays exponentially
inL, so supB P	E′�B� r�
 decays exponentially in r, as required. This completes
the proof for d = 2.
Now suppose d ≥ 3. The proof uses a different annulus construction, loosely

based on Section 5(f) of [10]. By Lemma 3.3, we can (and do) choose K =
K�p� δ� and δ∗ such that the probability of there being an open path between
any two points in �1�2� � � � �K� × B, with B an arbitrary �1/2�-comparable
�d− 1�-dimensional lattice box, is at least δ∗.
For integer i > 0, define the cube Q′

i = 	−iK� iK
 and the annulus A′
i =

Q′
i \Q′

i−1. Each annulus A
′
i is a union of 2d slabs of thicknessK; let us denote

the annulus peculiar if any of these slabs, when extended to infinity, contains
a face of B. At most 2d of the annuli are peculiar.
Suppose r > 0 and B is a δ-comparable lattice box, such that the event

E′�B� r� has non-zero probability. Then the box B includes the origin, and also
includes a point at an l∞-distance at least r/2 from the origin. Therefore by δ-

Fig. 2.



1530 M. D. PENROSE

comparability, it must include at least one of the 2d corners of Q′
i�r�, where we

set i�r� = �δr/�2K��. We consider only the case where �i�r�K� � � � � i�r�K� ∈ B;
the other 2d − 1 cases are treated similarly.
Suppose i ≤ i�r� and the annulus A′

i is not peculiar. We claim that A
′
i ∩B

is a connected union of at most 2d slabs, each of which is the product of
a interval of length K with a �1/2�-comparable set in �d−1. These properties
can be seen from a higher-dimensional generalization of Figures 1 and 2. More
formally, connectivity follows from the fact that if one starts at an element
z of A′

i ∩ B and moves in the direction of the jth coordinate vector ej =
�0� � � � �0�1�0� � � � �0�, as far as the hyperplane ��x1� � � � � xd� � xj = i�r�K�, one
remains inA′

i∩B along the length of this path. Thus by a series of up to d such
straight-line paths one can find a path in A′

i∩B from z to �i�r�K� � � � � i�r�K�.
We leave the reader to verify �1/2�-comparability.
Suppose i ≤ i�r� and A′

i is not peculiar. Then, as a consequence of the
preceding claim and the choice ofK, given that Ce1

�B� and Ce2
�B� both extend

to the boundary of Q′
i−1, the probability that they connect with each other in

the intersection of B with A′
i is at least �δ∗�2d. Therefore, if Fi denotes the

event that Ce1
�B ∩Q′

i� and Ce2
�B ∩Q′

i� are disjoint and both extend to the
boundary of Q′

i, then Fi+1 ⊆ Fi and we have

P	E′�B� r�
 ≤ P	Fi�r�
 ≤
i�r�∏
i=2

P	FiFi−1


≤ �1− �δ∗�2d�i�r�−2d−1 ≤ exp�−�δ∗�2dδ�4K�−1r�
which gives exponential decay for supB P	E′�B� r�
, as required. ✷

Proof of Theorem 3.2. If �Bn�n≥1 is a comparable sequence of
lattice boxes tending to �d, then there exists some δ > 0 such that all the
boxes Bn are δ-comparable. Choose such a δ, and set � = �δ, the collection
of all δ-comparable boxes. Let � be the class of all comparable �-valued se-
quences that tend to �d. With H�X�B� denoting the size of the biggest open
cluster in B, it is clear that �H�X�B��B ∈�� is a stationary �-indexed func-
tional. We need to show that it satisfies the hypotheses of Theorem 2.1. First
we prove stabilization on sequences in � . WithX = �Xx�x ∈ �d� the Bernoulli
process defined at the start of this section, let X′ = �X′

x� x ∈ �d� be obtained
by taking X′

0 to be an independent Bernoulli variable with parameter p, and
X′

x =Xx for all x $= 0. Let C′0 be defined in the same way as C0 but referring
to the process X′.
Define the random variable "0�∞� as follows. IfX0 =X′

0 then set "0�∞� =
0. If X0 = 1 and C0 is finite, or if X′

0 = 1 and C′0 is finite, then set "0�∞� = 0.
If X0 = 1�X′

0 = 0 and C0 is infinite, then removing 0 from C0 splits it into at
least 1 and at most 2d components, and with probability 1, just one of them
is infinite, by the “uniqueness of the infinite cluster” property of percolation
[9]. In this case set "0�∞� to be the total size of the finite components broken
off by removing the origin, plus 1. If X0 = 0�X′

0 = 1, and C′0 is infinite, let
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−"0�∞� be the total size of the finite components broken off by removing the
origin from C′0, plus 1.
Let �Bn�n≥1 be a comparable sequence of boxes tending to �d, and set bn =

�diam�Bn�1/�2d��. Suppose X0 = 1 and X′
0 = 0 (the reverse case being treated

similarly). If C0 is finite, then the change "0�Bn� is equal to zero, for all n large
enough, because in this case the biggest cluster will not involve the origin. If
C0 is infinite, and also event An (defined in Lemma 3.4) occurs, and if n is
large enough so the distance from the origin to ∂Bn exceeds bdn, then C0 ∩Bn

has possibly several components; one of these includes the origin and is the
biggest open cluster in Bn. Removing the origin reduces the size of the biggest
cluster by the total size of the finite broken off pieces, plus 1 for the removed
site at 0, so "0�Bn� = "0�∞�.
By Lemma 3.4 and Borel-Cantelli, for any increasing subsequence of the

natural numbers we can take a sub-subsequence such that An occurs for all
but finitely many n in the sub-subsequence, almost surely. Therefore (see [33],
A 13.2(e)) "0�Bn� → "0�∞� in probability, so that H stabilizes on sequences
in � .
Next we check the bounded moments condition. Again suppose X0 = 1 and

X′
0 = 0. The value of "0�B� is bounded by 2d times the size of the second

largest of the pieces created by removing 0 from C0�B�. Given t > 0, the
probability that this exceeds 2dt is bounded above by the probability that
there are at least two distinct open X′-clusters in the intersection of B with
the cube of side t1/d centered at the origin, each of which have the origin as
a neighbor and have diameter at least �1/2�t1/d. Hence, by Lemma 3.5 there
exists α > 0 such that for large enough t, and all δ-comparable boxes B,

P	"0�B� > t
 ≤ exp�−αt1/d��
and the bounded moments condition follows. Hence, by Theorem 2.1, setting
σ2 = Ɛ	�Ɛ	"0�∞��0
�2
, we have limn→∞ Bn−1Var�H�X�Bn�� = σ2, and also
(3.1) holds.
It remains to prove σ2 > 0. We do this using the definition of σ2 directly. Let

Y be the collection of variables �Xx�x ≺ 0�. Let µX0
and µY be the probability

distributions of X0 and Y respectively. Note that Y and X0 are independent.
Then by definition,

σ2 =
∫
µX0

�dx�
∫
µY�dy��Ɛ	"0�∞�X0 = x�Y = y
�2

≥
∫
µX0

�dx�
(∫

µY�dy�Ɛ	"0�∞�X0 = x�Y = y

)2

=
∫
µX0

�dx��Ɛ	"0�∞�X0 = x
�2�

If X0 = 1 then "0�∞� is non-negative and has a strictly positive probability
of being strictly positive; see the description of "0�∞� earlier on in this proof.
Hence, Ɛ	"0�∞�X0 = 1
 > 0, and since µX0

��1�� > 0 this ensures that σ2 >
0. ✷
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Finally in this section, we derive a CLT for the size C0�B� of the cluster
in B including the origin. Again, this quantity is determined entirely by the
status of sites inside B. Let Cb�B� denote the biggest open cluster in B; if
not unique, select one of the maximal open clusters in B using some pre-
specified deterministic rule. Also, let <�x� = ∫ x

−∞�2π�−1/2 exp�−t2/2�dt, the
distribution function of the standard normal. In effect, the next CLT is for
the conditional distribution of C0�B� given that C0�B� is “big”; the actual
distribution of C0�B�, suitably scaled and centred, converges to a defective
distribution with an atom of size 1−θ�p� at −∞ and with its remaining mass
spread over the real line in a Gaussian way.

Theorem 3.3. Let p ∈ �pc�1�. Let �Bn�n≥1 be a comparable sequence of

lattice boxes tending to �d. Let an = Ɛ	Cb�Bn�
 and let σ2 be the same �strictly
positive� constant as in Theorem 3�2� Then for t ∈ �,

lim
n→∞P

[
C0�Bn� − an

σ
√Bn

> t

]
= θ�p��1−<�t���(3.3)

Proof. For each n set bn = �diam�Bn�1/�2d��. Let Qn = �	−bn� bn
 ∩ ��d.
We start by showing that

lim
n→∞an/Bn = θ�p��(3.4)

Since an =
∑

x∈Bn
P	x ∈ Cb�Bn�
, it suffices to show that P	x ∈ Cb�Bn�
 is

close to θ�p� uniformly for x ∈ Bn at a distance at least bn from the boundary
of Bn. For such x we use the fact that

P	x∈Cb�Bn�
 = P	diamCx�Bn�≥bn
−P	�diamCx�Bn�≥bn�∩�x∈Cb�Bn��c

+P	x∈Cb�Bn�∩�diamCx�Bn�≥bn�c
�

In the right hand side, the first probability tends to θ�p�. The second and third
probabilities both tend to zero because of Lemma 3.4. This proves (3.4).
Let t ∈ � and define the events

F = �C0�Qn� ∩ ∂Qn $= &�
and

Gb =
{
Cb�Bn� − an

σ
√Bn

≥ t

}
� G0 =

{
C0�Bn� − an

σ
√Bn

≥ t

}
�

We shall prove that

lim
n→∞P	GbF
 = 1−<�t��(3.5)

Before proving this let us see why it is useful. If Fc occurs then C0�Bn� ≤
�2bn�d ' Bn. Therefore by (3.4), for large enough n, we have �C0�Bn� −
an�/�σ

√Bn� < t. Moreover, by definition G0 ⊆ Gb, so for large n, we have

P	G0
 = P	G0 ∩F
 = P	Gb ∩F
 −P	�Gb \G0� ∩F
�
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If �Gb \ G0� ∩ F occurs then there are two (or more) disjoint clusters in Bn

of diameter at least bn, and the probability of this occurring tends to zero
by Lemma 3.4. Hence, since limn→∞�P	F
� = θ�p�, the desired result (3.3)
follows from (3.5).
It remains to prove (3.5). Since events F and Gb are both increasing, by the

Harris-FKG inequality we have P	GbF
 ≥ P	Gb
, and by Theorem 3.2,
lim inf
n→∞ P	GbF
 ≥ lim inf

n→∞ P	Gb
 = 1−<�t��

For an inequality the other way, let Q+
n be the cube �	−3bn− 1�3bn+ 1
 ∩��d.

LetU be the event that there is at most a single cluster in the annulusQ+
n \Qn

having nonempty intersection both with ∂Q+
n and with the exterior boundary

of Qn. Then P	U
 → 1 by the same argument as the proof of Lemma 3.5.
Let B−n = Bn \ 	−bn� bn
d. Let Cb�B−n � denote the size of the biggest cluster

in B−n . We assert that

Gb ⊆ �Cb�B−n � ≥ an + tσ
√
Bn − �7bn�d� ∪Uc�

This is because if U occurs, then removing vertices in Qn from Cb�Bn� may
break it into several components, but only one of these extends to the boundary
of Q+

n , so that the others have total size at most �7bn�d. Hence, using the
independence of F and Cb�B−n �, we have

P	Gb ∩F
 ≤ P	Cb�B−n � ≥ an + tσ
√
Bn − �7bn�d
P	F
 +P	Uc


≤ P	Cb�Bn� ≥ an + tσ
√
Bn − �7bn�d
P	F
 +P	Uc
�

Taking n→∞, using Theorem 3.2 and the fact that P	Uc
 → 0, we have

lim sup
n→∞

P	Gb ∩F
 ≤ �1−<�t��θ�p��

completing the proof of (3.5). ✷

4. The final size of a spatial epidemic. In this section we consider a
model for a spatial “Susceptible-Infected-Removed” epidemic. An individual
is initially susceptible to disease, and at some stage may become infected by
an infected neighbor; after being infected for a period of time, the individ-
ual is “removed” from the system, representing either death or recovery with
permanent immunity. The model can also be thought of as representing the
spread of a forest fire. The spatial aspect of the model comes from the placing
of individuals on the lattice �2. This model is the subject of Cox and Durrett
[4] (also Chapter 10 of Durrett [7]) and our description follows notation from
there.
There is one individual at each site of �2. At time 0, the individual at the

origin becomes infected while all the others are susceptible. Once an individ-
ual becomes infected, it remains infected for a nonnegative random period
of time with some specified distribution F that is not a point mass at 0, be-
fore becoming permanently immune. From time to time, an individual makes
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“contacts” with its neighbors; whenever an infected individual makes a con-
tact with a susceptible neighbor, the neighbor becomes infected. We think of
contacts as being directed; let the distribution of the amount of time, subse-
quent to x becoming infected, until the first contact from x to y, be denoted
F′. In [7] it is assumed that F′ is exponential, consistent with contact times
between neighbors occuring as homogeneous Poisson processes, but this is not
essential to the discussion here.
For a formal setup, suppose on some probability space that there exists a

family of independent variables Tx, defined for each x ∈ �2, and ex�y, defined
for each neighbor pair x�y in �2, such that Tx has distribution F and ex�y
has distribution F′. The directed edge �x�y� of the lattice with vertex set �2
and edges between neighboring pairs, is deemed open if ex�y < Tx and closed
if not. By C→0 we mean the union of �0� with the set of sites x ∈ �2 for which
there is a directed path of open directed edges starting at 0 and ending at
x. Then (see [7]) C→0 has the same distribution as the set of individuals ever
infected.
Let θ = θ�F�F′� denote the probability that the epidemic described above

affects an infinite number of individuals, that is, the probability that C→0 is
infinite. We shall give a CLT valid for any pair of distributions �F�F′� such
that 0 < θ < 1; such pairs exist by routine percolation arguments; see [7].
To get a CLT, consider the above model restricted to a lattice box B ⊂

�2, including the origin. Instead of the whole of �2, suppose the population
consists of individuals lying on the sites of a lattice box B containing the
origin. Otherwise, the model is just the same as before. Let C→0 �B� denote the
set of sites x ∈ B for which there is a directed path of open edges, starting at
0 and ending at x, and lying entirely within B. Again, C→0 �B� has the same
distribution as the total number of sites ever infected in the epidemic on B.
By restricting the epidemic to B, we assure ourselves of a finite final size

C→0 �B� of the epidemic. Our result is a CLT for the conditional distribution of
this quantity, given that the epidemic is “large”, as the box grows. There are a
few analogous results in the literature for other epidemic models. For example,
Martin-Löf [20] has a CLT for the final size of a non-spatial epidemic. Ander-
sson and Djehiche [1] prove a law of large numbers, and conjecture a CLT, for
the final size of a different sort of spatial epidemic from that considered here.

Theorem 4.1. Suppose 0 < θ < 1. Let �Bn�n≥1 be a comparable sequence
of lattice boxes tending to �2. Then there is a sequence of constants an and a
constant σ > 0 such that

lim
n→∞P

[
C→0 �Bn� − an

σ
√Bn

> t

]
= �1−<�t��θ�(4.1)

The proof runs along similar lines to that of Theorem 3.3. Note that the
above setup gives a form of locally dependent directed bond percolation on the
lattice �2. We need also to consider the dual lattice, with vertex set given by
translating �2 by the vector �1/2�1/2�, and edges in both directions between
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all nearest neighbor pairs. With each directed edge in the original lattice is
associated a directed edge in the dual lattice, obtained by rotating the first
edge by 90 degrees counterclockwise about its mid-point. We assume that the
open/closed status of each directed edge (bond) in the dual lattice is the same
as that of the associated bond in the original lattice.
The first step toward a proof is a version of RSW theorem for this model.

Given integers J > 0�L > 0, let RJ�K be the probability that there is a right-
to-left crossing of the rectangle 	0�J
 × 	0�K
 by open bonds in the original
directed percolation model (unlike some authors, we allow crossings using
the boundary). Also let R̃J�K be the probability that there is a a right-to-left
crossing of the rectangle 	1/2�J+1/2
× 	1/2�K+1/2
 by closed bonds in the
dual directed percolation model.

Lemma 4.1. For all even L, we have R	3L/2�L
 ≥ �1−�1−RL�L�1/2�3 and

R̃	3L/2�L
 ≥ �1− �1− R̃L�L�1/2�3.

Proof. This result is (2.2) of Cox and Durrett [4]. Here we do not assume
that F′ is an exponential distribution but this does not affect the proof. Since
there is a gap in the proof given in [4] (and also in [7]), we give more details.
Consider the rectangle 	0� �3/2�L
×	0�L
 as being made up of two overlap-

ping squares. Let s be a directed path across the left hand square from right
to left. Adopting the notation of [4] (also used in [7]), we are concerned with
events Es (that s is the lowest right-to-left crossing of the left hand square),
F′

s (that there is a top-to-bottom crossing of the right hand square to the first
part of path s), and H (that there is a right-to-left crossing of the right hand
square which ends at least half way up). We follow the coupling construction
in [4], where a “new” directed percolation process is created by replacing the
configuration of bonds starting at vertices in the left square on or below s by
an independent copy, while leaving the status of other bonds unchanged. The
event F′

s refers to the “new” process, while events Es and H refer to the “old”
one. As explained in [4], if the first visit of path s to the left boundary of the
right square is less than half way up, the occurrence of Es ∩F′

s ∩H ensures
that there is a right-to-left crossing (in the “old” configuration) of the entire
rectangle.
We consider the union over all paths s whose first visit to the left boundary

of the right square is less than half way up. The event G = ∪s�Es ∩F′
s� in [4]

is not increasing so we cannot be sure that P	G ∩H
 ≥ P	G
P	H
, which is
the gap in [4]. Let τ = RL�L, and set Q�τ� = 1− �1− τ�1/2. Then

R�3/2�L�L ≥ P	∪s�Es ∩F′
s ∩H�


=∑
s

∑
σ∈As

P	E′
σ ∩F′

s ∩H


where As is the set of configurations σ of bonds �x�y� with x in the part of
the left square lying on and below s, giving rise to event Es, and E′

σ is the
event that the configuration of “old” bonds starting in the left square on and
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below s is σ . Then

P	F′
s ∩HE′

σ 
 ≥ P	F′
sE′

σ 
P	HE′
σ 
 = P	F′

s
P	HE′
σ 
�

where the inequality follows from a version of the Harris-FKG inequality ((2.1)
of [4]), and the equality comes from the construction of F′

s, which makes it
independent of E′

σ . Hence

R�3/2�L�L ≥
∑
s

∑
σ∈As

P	E′
σ 
P	F′

s
P	HE′
σ 


=∑
s

P	F′
s


∑
σ∈As

P	H ∩E′
σ 


≥∑
s

�Q�τ�� ∑
σ∈As

P	H ∩E′
σ 
�

where the last inequality follows from the square root trick (see [4] or [7]).
Hence,

R�3/2�L�L ≥ Q�τ�P	∪s�Es ∩H�
 = Q�τ�P	�∪sEs� ∩H

≥ Q�τ�P	∪sEs
P	H
 ≥ �Q�τ��3

where the inequalities in the last line come from the Harris-FKG inequality
and the square root trick, respectively.
The proof of the corresponding result for dual crossings is similar: see the

remarks in [4], page 185. ✷

As well as Lemma 4.1 we use the inequalities (see (2.4) and (2.11) of [4])

1−RkL�L ≤ 4�1−R�k+1�L/2�L�� k ≥ 1(4.2)

and

R̃kL�L ≥ �R̃�k+1�L/2�L�4� k ≥ 1�(4.3)

These are proved by observing Figure 2 of [4] and appealing to Boole’s in-
equality in the first case and to the Harris-FKG inequality in the second.

Lemma 4.2. Suppose θ > 0. Then 1−R3L�L decays exponentially in L, that
is,

lim sup
L→∞

L−1 log�1−R3L�L� < 0�(4.4)

Proof. By duality [see (2.9) of [4]], the events that there is an open right-
to-left crossing of 	0�L + 1
 × 	0�L
, and that there is a closed top-to-bottom
crossing in the dual lattice of 	1/2�L+1/2
× 	−1/2�L+1/2
, are complemen-
tary. Hence by rotation-invariance, RL+1�L + R̃L+1�L = 1, so that

RL�L + R̃L�L ≥ 1�(4.5)
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We claim that RL�L → 1 as L→ ∞ through the even integers. Suppose this
claim were false. Then by (4.5), R̃L�L does not tend to zero. By Lemma 4.1,
along with (4.3), R̃3L�L also does not tend to zero. By a further application
of the Harris-FKG inequality, there exists an increasing sequence �Ln�n≥1
such that the probability of there being a closed dual circuit in the annulus
	−3Ln�3Ln
 \ �−Ln�Ln� is bounded away from zero, and these annuli are dis-
joint. Therefore with probability 1 there are (infinitely many) closed dual cir-
cuits around the origin, contradicting the assumption that θ > 0. This proves
the claim.
By a further application of Lemma 4.1, this time for open crossings, along

with (4.2), we have R2L�L → 1 as L → ∞ through the even integers. Also,
if 0 < λ < 1 and 1 − R2L�L ≤ λ/49, then by (2.6) of [4], 1 − R4L�2L ≤ λ2/49.
Hence by iteration, 1−R2L�L decays exponentially in L as L increases through
powers of 2, and then we can deduce (4.4) using (4.2), as in the proof of Lemma
3.1. ✷

Define clusters of the directed bond percolation model on �2 or on B by
setting two vertices x�y to be in the same cluster (the same cluster in B)
if there are open directed paths (directed paths in B) both from x to y and
from y to x. Let C↔b �B� denote the biggest cluster in B, choosing via some
deterministic rule if the biggest cluster is non-unique.

Lemma 4.3. Suppose θ > 0. Let �Bn�n≥1 be a comparable sequence of boxes
tending to �2, and set bn = �diam�Bn�1/4�. Let Hn be the event that C↔b �Bn�
has diameter at least diam�Bn� − bn and that any open directed path in Bn of
diameter at least bn passes through some point in C↔b �Bn�. Then P	Hn
 → 1
as n→∞.

Proof. The proof is the same as that of the case d = 2 of Lemma 3.4,
except that now we consider the event that each of the rectangles in the col-
lection 
n has long-way open crossings by directed paths in both directions.
By Lemma 4.2, the probability of this event tends to 1, and its occurrence
implies Hn, as in the proof of Lemma 3.4. ✷

Proposition 4.1. Suppose 0 < θ < 1. There exists σ > 0 such that for
any δ > 0, if �Bn�n≥1 is a comparable sequence of δ-comparable lattice boxes

tending to �d, we have limn→∞ Bn−1VarC↔b �Bn� = σ2 and

Bn−1/2�C↔b �Bn� − ƐC↔b �Bn��

−→ � �0� σ2��(4.6)

Proof. First note that in the directed percolation model on �2, with prob-
ability 1 there exists an infinite cluster. This follows from Lemma 4.2; see page
234 and Figure 9.4 of [7], or Figure 4 of [4].
By Lemma 4.2, one can take a sequence of disjoint annuli surrounding the

origin, such that there are, almost surely, open circuits surrounding the origin
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in infinitely many of the annuli. See Figure 9.6 of [7] or Figure 5 of [4] for a
picture of such a circuit. Therefore the infinte cluster is almost surely unique;
let it be denoted C↔∞.
The proof of Proposition 4.1 is analogous to that of Theorem 3.2 but we

need to take care over directed paths. Take Xx to be open/closed status of the
four directed bonds emanating from x, x ∈ �2. As usualX denotes the process
�Xx�x ∈ �2� and X′ is the same process with its value at the origin replaced
by an independent copy. Let H�X�B� be C↔b �B�.
We check stabilization only in the case where all of the four bonds emanat-

ing from the origin are closed for X and some of them are open for X′ (it is
not hard to see other cases can be deduced from this one). In this case a finite
number of vertices will be added to C↔∞ by changing from X to X′, namely
those vertices x for which there are X′-open directed paths both from x to
C↔∞ and from C↔∞ to x, but one or both of these paths must pass through the
origin. Set −"0�∞� to be the number of vertices added to C↔∞ in this way.
Now consider the sequence of boxes Bn. Let bn = �diam�Bn�1/4�, and let Bo

n

be the set Bn \ ∂bnBn. If n is large enough, then C↔∞ ∩Bo
n is non-empty. If this

occurs and also event Hn defined in Lemma 4.3 occurs, then

C↔b �Bn� ∩Bo
n = C↔∞ ∩Bo

n

and therefore the number of vertices added to C↔b �Bn� as a result of adding the
open bonds of X′

0 is precisely equal to −"0�∞�. This proves the convergence
in probability of "0�Bn� to "0�∞�.
Next we check the bounded moments condition with γ = 4. As in the proof

of the case d = 2 of Lemma 3.5, we consider the square QL = 	−3L�3L
2
and the annulus QL \ �−L�L�2, made up of four overlapping rectangles AleftL ,
A
right
L , AupL , and AdownL . Modifying the proof of Lemma 3.5, redefine EL to be
the event that each of these four rectangles has long-way open crossings in
both directions. So Figures 1 and 2 should be modified by replacing each path
drawn with two directed paths in opposite directions.
Suppose that 0 ∈ B and one of the corners of QL (e.g., the top right

one) is in B. Suppose that EL occurs. Suppose x and y are two elements of
B\	−3L�3L
2. If there is a directed open path from x to y passing through the
origin, then it must pass through the annulus AL on the way to and from the
origin, and therefore (see, e.g., Figures 1 and 2, modified as described above)
there is also a directed open path from x to y that avoids the origin but instead
uses the open directed paths in AL that exist because of event EL. The same
goes for paths from y to x, and therefore x and y lie in the same cluster in
B for the process X, if and only if they lie in the same cluster for the process
X′.
It follows from the above that if 0 ∈ B and one of the corners of QL lies in

B, and EL occurs, then for any cluster C in B forX, the elements of C\QL are
all in the same cluster in B forX′. Likewise, for any cluster C in B forX′, the
elements of C \QL are all in the same cluster in B for X. Therefore if 0 ∈ B
and one of the corners of QL is in B, and EL occurs, then "0�B� ≤ �6L+1�2�
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If 0 ∈ B but none of the corners of QL lies in B, then by δ-comparability,
diam�B� ≤ �6L + 1�/δ and B ≤ �6L + 1�2/δ, providing an upper bound for
"0�B�. Therefore, for any δ-comparable box B we have

"0�B� ≤ �6L+ 1�2/δ on event EL�(4.7)

By Lemma 4.2, 1−P	EL
 decays exponentially in L. Together with (4.7) this
gives us a bound for E	�"0�B��4
, holding uniformly over δ-comparable boxes
B.
Thus the stabilization and bounded moments conditions hold. We can apply

Theorem 2.1 to get the result, and σ2 is strictly positive by a similar argument
to that used in the proof of Lemma 3.2. ✷

Proof of Theorem 4.1. Using (4.6), the proof of (4.1) proceeds in much
the same way as that of Theorem 3.3, with the rôle of event F in that proof
played by the event that there is a directed path from the origin to ∂Qn. The
rôle of eventU in that proof is played by the event that there is an open circuit
in the annulus Q+

n \Qn. ✷

5. Boolean models. As can be seen from the volumes by Hall [13], by
Meester and Roy [23], by Molchanov [25], and by Stoyan et al. [32], Boolean
models play a central rôle in stochastic geometry and spatial statistics. We
make the following fairly general formulation. Let µS be a shape distribution,
that is, a probability distribution on the space  of all compact sets in �d.
For measure-theoretic details see Matheron [21] page 27. Assume that µS is
concentrated on path-connected sets. Assume also that µS is concentrated on
a uniformly bounded collection of sets, that is, there is a finite constant K
such that

µS��S ∈  � s ≤K ∀s ∈ S�� = 1�(5.1)

Let λ > 0. On a suitable probability space let �ξi� i ≥ 1� be an enumeration
of the points of a homogeneous Poisson process of rate λ on �d, and let �Si� i ≥
1� be a family of random closed sets each with distribution µS, independent of
each other and of the Poisson process. Let C = ∪i≥1�Si + ξi� i ≥ 1�, where the
addition operation +ξi denotes translation of Si by the vector ξi. Following
the literature on this subject, we refer to each Poisson point ξi as a “germ,”
to Si as a “grain” associated with the germ ξi, and to Si + ξi as a random
shape centred at ξi. One is interested in the resulting set C, which we call a
Boolean model with intensity λ and shape distribution µS. In particular, we
consider here the path-connected components of C ∩ B (“occupied clusters in
B”) and of B\C (“vacant clusters in B”), where B is a continuous-space box, or
“window.” In what follows, we write simply “component” for “path-connected
component.”
We are concerned with CLTs as the window B becomes large. Such CLTs

are important in statistical estimation. For “sparse” limiting regimes with λ
becoming small as the window becomes large, Hall ([12], Theorem 3.3, [13],
Theorem 4.9) has proved CLTs for the number of occupied clusters of a given
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order (and also Poisson limit theorems for some sparse regimes). He also ob-
serves in [12], Section 3, that the total number of occupied clusters in the
window satisfies a CLT in the sparse regime. Moreover, Hall [11] obtained a
Poisson limit for the number of vacant clusters in a window for a “dense” lim-
iting regime where λ becomes large as the window grows; see also Molchanov
[26].
In contrast with the above, we are interested here in the “moderate-inten-

sity” limiting regime with λ held constant as the window becomes large. Some
CLTs are already known in this regime. Hall [13], Theorem 3.5, has a CLT for
the total volume of the vacant region in a window (and hence also for the total
occupied volume). Hall [12], Theorem 2.2, has a CLT for the number of occupied
clusters of order 1 in a window, where the order of a cluster denotes the number
of random shapes it comprises. More recently, Heinrich and Molchanov [14]
have obtained a general CLT for measures generated by Boolean models (and
other models). The method we use here complements that of [14]. We apply it
to the number of occupied clusters and to the number of vacant clusters, for
which it is not clear that the method of [14] is applicable; our method should
also work for various other quantities, such as the number of clusters of given
order.

Theorem 5.1. Let C be a Boolean model as described above. Let �Rn�n ≥
1� be a sequence of sets of the form

∏d
i=1	ai−1/2� bi+1/2
, with all ai� bi integer-

valued, with lim inf �Rn� = �d. Let Hn be the number of occupied clusters in
Rn for the Boolean model C. Then with Rn denoting the Lebesgue measure of
Rn,

lim
n→∞ Rn−1Var�Hn� = σ2(5.2)

and

Rn−1/2�Hn − ƐHn�

−→ � �0� σ2��(5.3)

where σ2 is a strictly positive constant that does not depend on the choice of
sequence �Rn�.

Proof. LetX = �Xx�x∈�d be a family of independent Poisson processes on
	− 12 � 12 
d× , each with mean measure λLeb×µS. We view �Xx� as a random
subset of 	− 12 � 12 
d×S with a Poisson-distributed number of elements, each of
them a pair �ξ�S� with ξ ∈ 	− 12 � 12 
d and S ∈  . Assume the Boolean model
C is generated by setting

C = ∪x∈�d�Cx� with Cx = ∪�ξ�S�∈Xx
�S+ �x+ ξ���

Assume without loss of generality that K, given in (5.1), is a strictly positive
integer. Given a lattice box B ∈ �, let R̃�B� be the continuous-space box given
by taking the union of the unit cubes centred at points in B, and let R�B� be
the set of points in R̃�B� at an l∞ distance at least K from the complement
of R̃�B�. Define H�X�B� to be the number of occupied clusters in R�B� of C.
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Clearly �H�X�B��B ∈ �� is a stationary �-indexed functional of X. Also, if
Bn is chosen so that R�Bn� = Rn, then Rn/Bn → 1. Our aim is to apply
Theorem 2.1 to the functionalH defined above, with � being the collection �
of all lattice boxes, and � being the class of all �-valued sequences tending
to �d.
First we show stabilization for this functional. Let C− be the set C \ C0.

Let C′0 be an independent copy of C0. Then "0�B� is the number of occupied
components in B for C− ∪C0, minus the number of occupied components in B
for C− ∪C′0.
Let� be the (almost surely finite) collection of all components of C− which

intersect the set 	−3K�3K
d. The configuration of C0 induces an adjacency
relation on � whereby two components are adjacent if there is a path con-
necting them lying within the set C0. Similarly, C

′
0 induces an adjacency

relation on � in the same way. These two adjacency relations induce two
different graph structures on vertex set � ; let the number of components
be denoted κ for the adjacency induced by C0, κ′ for the adjacency induced
by C′0. Let ζ be the number of components of C contained entirely within
C0, and let ζ ′ be the number of components of C− ∪ C′0 contained entirely
within C′0.
There are only finitely many pairs of random shapes in C− that inter-

sect 	−3K�3K
d. Take R1 big enough so that for every such pair that is
connected by a path in C−, there exists such a path that stays in the set
	−R1�R1
d. Define R2 the same way using the set C rather than C−, and
let R3 be defined the same way using the set C− ∪ C0 rather than C− or
C. Let R4 = max�R1�R2�R3�. Then for any box B that is large enough
to contain 	−R4�R4
d, we have "0�B� = κ + ζ − κ′ − ζ ′; thus H
stabilizes.
Next we check the bounded moments condition (with γ = 4 as usual). The

value of "0�B� is bounded by the number of germs of C in the set 	−3K�3K
d,
plus the number of germs of C′0. This bound has a Poisson distribution with
finite fourth moments. Thus Theorem 2.1 applies, and (5.2) and (5.3) hold for
some σ2 ≥ 0.
Finally, we must show that the limiting variance σ2 is strictly positive. We

shall do this using (5.2), along with an adaptation of the method of Avram
and Bertsimas [2] for finding lower bounds for variance.
The value of σ2 is independent of the choice of sequence �Rn�, and therefore

to show σ2 > 0 using (5.2) we are at liberty to choose any sequence �Rn�. Our
choice is to take Rn = 	−n�2K+1�+ 1

2 � n�2K+1�+ 1
2 
d. Divide Rn into �2n�d

non-overlapping “big cubes” of side �2K + 1�. For each of these “big cubes,”
define an annulus by removing the “small cube” of side 1 centered at the
centre of the big cube.
Let Nn be the number of big cubes for which there are no germs lying in

the corresponding annulus. Then Ɛ	Nn
/Rn is bounded away from zero. Let
� be the σ-field generated by the value ofNn, along with the positions of the
germs not lying in the big cubes contributing to Nn, and the values of their
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associated grains. Then

Var�H�Rn�� = Var�Ɛ	H�Rn�� 
� + Ɛ	Var�H�Rn� ��

≥ Ɛ	Var�H�Rn� ��
�

(5.4)

Suppose we are given the value ofNn and the configuration of random shapes
centred outside the big cubes contributing to Nn. The only remaining vari-
ability is from the random shapes centred inside the inner small cubes corre-
sponding to those big cubes contributing to Nn; because each of these in-
ner cubes is surrounded by a big empty annulus, the shapes with germs
in these inner cubes have no overlap with any of the other shapes. Hence
Var�H�Rn�� � = NnVar�U�� where U is the number of components of C0.
Since P	U = 0
 > 0 and P	U ≥ 1
 > 0, we have Var�U� > 0. It follows that
Var�H�Rn�� ≥ Ɛ	Nn
Var�U�, and this divided by Rn is bounded away from
zero. Hence σ2 > 0 by (5.2). ✷

Vacant clusters. To obtain an analogous result to Theorem 5.1 for vacant
clusters, we need some control over the number of vacant regions within a
finite continuous-space box. One way to do this is to insist that all the shapes
be Euclidean balls of random radius; then we can use the following result of
Meester and Roy [23].

([23], Lemma 4.5) If k d-dimensional Euclidean balls intersect the unit
cube 	0�1
d then the vacant region inside the unit cube has at most cdk

d com-
ponents, where cd is a constant which depends only on the dimension.

If the shape distribution µS is concentrated on Euclidean balls, then without
loss of generality one can assume it is concentrated on balls centred at the
origin (see [12], page 426).
Another way to control the number of vacant clusters in a bounded region

is to assume that d = 2 and all the shapes of the Boolean model are line
segments with random length and random direction. This is the Poisson sticks
model studied previously by Roy [30] (see also [23]). In this case the analogue
to Lemma 5.1 is the following:

Lemma 5.2. Suppose L1� � � � �Lk are line segments in �2 of arbitrary ori-
entations. Then �0�1�2 \ ∪ki=1Li has at most 2k components.

Proof. Each line segment Li, if extended to infinity, divides �2 into two
half-spaces, denoted Fi and Gi. Enumerate as A1� � � � �Aν all the nonempty
sets of the form �0�1�2 ∩ ∩ki=1Hi with each Hi being either Fi or Gi. Then
ν ≤ 2k. Each component of �0�1�2 \ ∪ki=1Li, being open, must have nonempty
intersection with at least one of the sets Aj, and since each Aj is convex so
is connected, it follows that the number of components is at most ν. ✷

The preceding lemmas enable us to prove a CLT for the number of vacant
clusters in the interesting special cases, either of Euclidean balls or of Poisson
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sticks. We conjecture that Lemma 5.2 can be extended from sticks to general
convex shapes in �2, or possibly even in �d; if true, the CLT could be extended
to these. Controlling the number of components of the complement, in general,
seems however to be harder than one might at first think.

Theorem 5.2. Let C be a Boolean model with shape distribution µS con-
centrated on Euclidean balls centred at the origin of uniformly bounded radius.
Let �Rn�n≥1 be a sequence of sets of the form

∏d
i=1	ai − 1/2� bi + 1/2
, with all

ai� bi integer-valued, satisfying lim inf �Rn� = �d. Let Hn be the number of
vacant clusters in Rn of the Boolean model C. Then

lim
n→∞ Rn−1Var�Hn� = σ2(5.5)

and

Rn−1/2�Hn − ƐHn�

−→ � �0� σ2��(5.6)

where σ2 is a strictly positive constant that does not depend on the choice of
sequence �Rn�.

Proof. We assume that C is generated as defined in the proof of Theorem
5.1, and use notation from that proof, except that now we set H�X�B� to be
the number of vacant clusters in R�B� of C. Again, this is a stationary �-
indexed functional of X, and we take � to consist of all �-valued sequences
tending to �d.
The argument for stabillization is similar to that used in proving Theorem

5.1. Let C− be the set ∪x∈�d\�0��Cx�, and let � be the set of all components of
�d \C− which intersect the set 	−3K�3K
d. Then � is a finite set by Lemma
5.1. Let �1 (respectively � ′

1 ), a subset of � , consist of those components
which are obliterated by C0, that is, contained in C0 (respectively C

′
0). Some

of the remaining components comprising � may be split into two or more
pieces by adding C0, incrementing the number of vacant components; let ν
(respectively ν′) be total of such increments caused by C0 (respectively C′0);
this is also finite by Lemma 5.1. Then for any box B large enough to contain
all the bounded components from the collection � , we have "0�X�B� = ν −
ν′ − Card��1� + Card�� ′

1�. This shows stabilization.
Next we check the bounded moments condition. Let N− (respectively N)

be the number of Poisson points in 	−3K�3K
d \ 	−1/2�1/2
d (respectively,
in 	−3K�3K
d). For all B, the number of components obliterated by C0 is
bounded by cdNd

− because of Lemma 5.1, so that its fourth moment is bounded
by c4dƐ	N4d

− 
, and likewise for components obliterated by C′0. Moreover, the in-
crement in the number of vacant components caused by adding C0 is bounded
by cdNd, so its fourth moment is bounded by c4dE	N4d
, and likewise for C′0.
The bounded moments condition now follows from the fact that the Poisson
distribution has a finite �4d�th moment.
Finally we wish to show the limiting variance σ2 is strictly positive. This

time we consider the particular sequence of cubes Rn = 	−6K+ 1
2 �6K+ 1

2 
d,
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and divideRn into �2n�d non-overlapping “big cubes” of side 6K. Also, for each
big cube, take a concentric “small cube” of side 3K, whose removal from the
big cube leaves an annulus. This time, let Nn be the number of these annuli
such that the configuration of shapes centred in the annulus covers the entire
annulus. Let � be the σ-field generated by Nn along with the positions and
associated grain values of all germs except those in small cubes lying inside
the annuli contributing to Nn. Again we use (5.4) (with the new definition
of � ). We have Var�H�Rn�� � =

∑Nn

i=1 Var�Ui�, where Ui is the change in
number of vacant components in the ith small cube when the shapes centred
in that cube are added. Then the variances of the Ui are bounded below, since
there is some chance that there are no germs in the small cube and some
chance the the grains centred in that cube cover it entirely. Then we can use
(2.2) to deduce that σ2 > 0. ✷

Theorem 5.3. Let d = 2. Let C be a Boolean model with shape distribution
µS concentrated on line segments of uniformly bounded length, centered at
the origin with random orientation having a nondegenerate distribution. Let
�Rn�n ≥ 1� be a nondecreasing sequence of sets of the form

∏d
i=1	ai − 1/2� bi +

1/2
, with all ai� bi integer-valued, having union �d. Let Hn be the number of
vacant clusters in Rn of the Boolean model C. Then limn→∞ Rn−1Var�Hn� =
σ2 and

Rn−1/2�Hn − ƐHn�

−→ � �0� σ2��

where σ2 is a strictly positive constant that does not depend on the choice of
sequence �Rn�.

The proof is much the same as for the previous theorem, so we just give a
sketch. This time we use Lemma 5.2 instead of Lemma 5.1, and we use the
fact that the Poisson distribution has finite moment generating function. For
the proof that σ > 0, choose δ > 0 such that the distribution µS, restricted to
sticks of length greater than 3δ, has a nondegenerate distribution. Take Nn

to be the number of small cubes for which the configuration outside the small
cube induces a circuit whose boundary lies entirely within a distance δ of the
boundary of the small cube. Then there is a positive chance that the sticks
centred inside the small cube will cut the interior of this circuit into several
pieces, providing the required lower bound on the conditional variance.

6. Concluding remarks. We have seen here, and see further in [27], that
Theorem 2.1 has a variety of applications, albeit tending to involve a certain
amount of effort in checking the stabilization and bounded moment conditions.
Various extensions to Theorem 2.1 would be of interest. One would involve

relaxing the condition that the stationary functional H�X�B� be determined
entirely by the restriction of X to B, requiring instead some kind of bound
to hold on the effect of �Xx�x/∈B on H�X�B�. There may be some scope for
adapting the proof of Theorem 2.1 to this setting. Such an extension would be
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useful, for example, for studying the intersection of the infinite cluster with
B for percolation, or for studying Boolean models where there is no uniform
bound on the shape radius.
It would also be of interest to relax the condition that the underlying vari-

ablesXx be independent. An extension to cases where the process �Xx�x∈�d is
stationary and has a finite range dependence, or has a spatial Markov prop-
erty, might be useful. Such extensions could be an interesting challenge; one
approach might be to look for coupled process X�X′ conditioned to take dif-
ferent values at 0 but nevertheless differing from each other only on a finite
collection of sites. This is easy for our i.i.d. case; we just replace the value of
X at 0.
Since the first version of this paper, Sheridan [31] has used related methods

to obtain CLTs for percolation and random-cluster models on more general
graphs than �d.
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