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INVARIANT PROBABILITY DISTRIBUTIONS FOR
MEASURE-VALUED DIFFUSIONS1

By Ross G. Pinsky

Technion

We investigate the set of invariant probability distributions for mea-
sure-valued diffusion processes corresponding to semilinear operators of
the form ut = L0u+βu−αu2, where L0 = 1

2
∑d
i� j=1 ai� j

∂2

∂xi∂xj
+∑d

i=1 bi
∂
∂xi

.

1. Introduction and statement of results. In this article, we initiate a
study of invariant probability distributions for spatially dependent measure-
valued diffusions. Let

L0 = 1
2

d∑
i� j=1

ai� j
∂2

∂xi∂xj
+

d∑
i=1
bi
∂

∂xi

be an elliptic operator on an arbitrary domain D ⊂ Rd. It will be convenient
to assume that ai� j ∈ C2�D� and bi ∈ C1�D� so that there will be no problem
defining the adjoint operator. The underlying motion for the measure-valued
process is the diffusion process on D generated by L0 and killed at the bound-
ary of D; that is, it is the solution to the generalized martingale problem [12]
for L0 onD. The branching mechanism is of the form ��x� z� = β�x�z−α�x�z2.
where β is bounded from above, α > 0, and α�β ∈ Cκ�D� for some κ ∈ �0�1�.
The coefficients β and α should be thought of respectively as the mass creation
and variance parameters for the measure-valued process. A σ-finite measure-
valued diffusion X�t� = X�t� ·� is then uniquely defined via the following
log-Laplace equation:

E
(
exp�−
f�X�t��� � X�0� = µ) = exp

(−
uf�·� t�� µ�)�(1.1)

for f ∈ C+
c �D�, the space of compactly supported, nonnegative, continuous

functions on D, and for σ-finite initial measures µ satisfying an appropriate
growth condition (see Proposition 1 below), where uf is the minimal positive
solution to the evolution equation

ut = L0u+ βu− αu2 in D× �0�∞��
u�x�0� = f�x� in D�

(1.2)

In [8, 13], we studied the global behavior of these processes starting from a
finite initial measure µ = X�0�, in which caseX�t� is a finite measure for all t.
An invariant distribution is never supported on the set of finite measures, (see
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Remark 9); thus, for the present study, we must consider the measure-valued
process starting from σ-finite measures rather than finite ones. We require
that the process X�t� take values in the space � �D� of σ-finite measures on
D ⊂ Rd. Let ζt denote the distribution ofX�t�. Then ζt ∈ �1�� �D��, the space
of probability measures on � �D�. The following proposition determines how
large the initial distribution ζ0 may be in light of the σ-finiteness requirement.

Proposition 1. For any t ≥ 0, X�t� will almost surely take values in the
space � �D� of σ-finite measures on D if and only if for each f ∈ C+

c �D�,
the initial distribution ζ0 ∈ �1�� �D�� satisfies the following two equivalent
conditions:

ζ0
({
η ∈ � �D�� 〈uλf�·� t�� η〉 < ∞� for sufficiently small λ > 0

}) = 1�(1.3a)

ζ0

({
η� lim

λ→0

〈
uλf�·� t�� η〉 = 0

}) = 1�(1.3b)

In particular, (1.3) will hold if ζ0��η ∈ � �D� � 
Ttf�η� < ∞�� = 1� where Tt
is the linear semigroup defined below in (1.4).

For the rest of the paper, we will assume that the measure-valued process
is σ-finite; thus, we will assume that (1.3) holds.
Given a probability measure ν ∈ �1�� �D��, we define its mean measure

πν by

πν�·� =
∫
� �D�

η�·�dν�η��

A probability measure ν ∈ �1�� �D�� is an invariant distribution if ζ0 = ν
implies that ζt = ν for all t > 0. Invariant distributions are well understood in
the case of critical super-Brownian motion; that is, the case where L0 = 1

2#�

��x� z� = −cz2, c > 0 and D = Rd. The first results were obtained in [4]
and more refined results appear in [1, 2]. When d = 1�2, there is no invari-
ant measure. More specifically, the following dichotomy holds: depending on
ζ0, either w− limt→∞ ζt = δ0, the distribution concentrated on the 0-measure
in � �Rd�, or else ζt is unstable; that is, for any open set B ⊂ Rd, limM→∞
lim supt→∞ ζt�η� η�B� > M� > 0. On the other hand, when d ≥ 3 there is a
one-parameter family νθ� θ ∈ �0�∞�, of translation invariant, shift ergodic in-
variant measures, with mean measures given by πνθ = θl, where l is Lebesgue
measure. Furthermore, if ζ0 is ergodic and translation invariant and πζ0 = θl,
then w − limt→∞ ζt = νθ. Finally, every invariant measure ν is of the form
ν = ∫∞

0 νθF�dθ�, where F is a probability distribution on �0�∞�. Note that if∫∞
0 θF�dθ� = ∞, then the mean measure will be ∞; that is, πν�B� = ∞ for all
open B ⊂ Rd.
In order to discuss invariant measures for more general measure-valued

diffusions, we need some additional notation. Let � � denote the solution to
the generalized martingale problem for L0 on D, let Y�t� denote a canonical
diffusion path in C��0� t�� D̂�, where D̂ is the one-point compactification of D
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obtained by the addition of a cemetery state, and let τD = inf�t ≥ 0� Y�t� /∈ D�
denote the lifetime of the process. Let

L = L0 + β
denote the linear part of the elliptic operator on the right-hand side of (1.2),
and let Tt denote the semigroup corresponding to the operator L on D. The
Feynman–Kac formula gives

Ttf�x� = �x

(
exp

(∫ t
0
β�Y�s��ds

)
f�Y�t��� τD > t

)
�(1.4)

where �x is the expectation corresponding to �x.
It will be useful to recall a basic definition from the criticality theory of

elliptic operators [12].

Definition 1. The operator L on D is called subcritical if it possesses a
positive Green’s function, in which case the cone CL�D� ≡ �u ∈ C2�D�� u > 0
and Lu = 0� of positive harmonic functions is nonempty. It is called critical if
it does not possess a positive Green’s function but CL�D� is not empty, and it
is called supercritical if CL�D� is empty.
If β = 0, then L = L0 is subcritical or critical according to whether it

corresponds to a transient or a recurrent diffusion. We also note that the
criticality classification of L is inherited by the adjoint operator L̃.
A measure µ ∈ � �D� is invariant for Tt if µTt = µ. If µ is invariant, then it

is absolutely continuous with respect to Lebesgue measure on D and, with an
abuse of notation, we will call this invariant density µ = µ�x�. The density µ
is a positive harmonic function for the adjoint operator L̃; that is, µ ∈ CL̃�D�.
In the sequel, δµ ∈ �1�� �D�� denotes the probability measure which is

concentrated on µ ∈ � �D�, and Poissµ ∈ �1�� �D�� denotes the Poisson
randommeasure with intensity µ. Note that if µ is invariant for the semigroup
Tt, then since

∫
� �D�
Ttf�η�dPoissµ�η� = 
Ttf�µ� = 
f�µ�, it follows from

the final statement of Proposition 1 that (1.3) holds for δµ and Poissµ. Thus, the
super-diffusion X�t� obtained by starting from δµ or Poissµ will take values
in � �D� as required.
We now present a proposition which includes a number of basic results that

will set the framework for our study. Variations of these results, sometimes in
other settings, may be found in the literature (see, e.g., [10, 7]). The proposition
is proved in the next section.

Proposition 2. (i) If ν ∈ �1�� �D�� is an invariant distribution for the
measure-valued diffusion, and its mean measure πν is σ-finite, then πν is an
invariant density for the semigroup Tt.

(ii) Let µ ∈ � �D� be invariant for the semigroup Tt. If ζ0 = δµ, then

ζ
�µ�
∞ ≡ w− lim

t→∞
ζt exists.

Either ζ
�µ�
∞ = δ0, the trivial invariant distribution concentrated on the 0-

measure, or else ζ
�µ�
∞ is a nontrivial invariant distribution for the meas-
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ure-valued process. The distribution ζ
�µ�
∞ is uniquely specified by its Laplace

transform),∫
� �D�

exp
(−
f�η�)dζ�µ�

∞ �η�
(1.5)

= exp
(

−
f�µ� +
∫ ∞

0

αu2f�·� t�� µ�dt

)
for f ∈ C+

c �D��

Under the assumption that limt→∞ supx∈D Ttf�x� = 0, for all f ∈ C+
c �D�, the

above result is also true when the initial distribution is Poissµ.

(iii) Let ζ
�µ�
∞ be the invariant distribution obtained in (ii). Then π

ζ
�µ�
∞

, the

mean measure of ζ
�µ�
∞ , satisfies π

ζ
�µ�
∞

≤ µ [that is, π
ζ

�µ�
∞

�A� ≤ µ�A�, for allA ⊂ D]

and equality holds if and only if

lim
λ→0+

1
λ

∫ ∞

0

〈
αu2λf�·� t�� µ〉dt = 0�(1.6)

for all f ∈ C+
c �D�. A sufficient condition for (1.6) to hold is that∫ ∞

0

α�Ttf�2� µ�dt < ∞�(1.7)

for all f ∈ C+
c �D�.

(iv) Let ζ
�µ�
∞ be the invariant distribution obtained in (ii). Then ζ

�µ�
∞ = δ0

if and only if

lim
t→∞


uf�·� t�� µ� = 0(1.8)

for all f ∈ C+
c �D�.

For any measure µ ∈ � �D� which is invariant for the semigroup Tt of
the underlying motion of the superdiffusion, Proposition 2 gives a recipe for
obtaining an invariant distribution ζ�µ�

∞ for the superprocess. That invariant
distribution will always have mean measure less than or equal to µ. The mean
measure will be equal to 0 and hence the invariant distribution will be equal
to the trivial 0 measure, if and only if condition (1.8) holds, or equivalently
by (1.5), if and only if 
f�µ� = ∫∞

0 
αu2f�·� t�� µ�dt. The mean measure will be
equal to µ if and only if condition (1.6) holds. In general, it is quite difficult
to verify condition (1.6) or (1.8), in particular because these conditions are in
terms of the behavior of a solution to the nonlinear equation.
The aim of the rest of this paper is to study the question of when the

mean measure will be equal to 0, when it will be equal to µ, and when it
will be strictly in between 0 and µ. However, before we embark on this route,
we present in Theorem 1 below a result which describes the precise role of
condition (1.7) in terms of the variance of the invariant distribution ζ�µ�

∞ . The
proof of Theorem 1 leads directly to an interesting asymptotic property of ζ�µ�

∞
which is presented in Theorem 2.
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We define the second moment operator M�2�
ν �·� and the variance operator

Varν�·� of a probability measure ν ∈ �1�� �D�� as follows:
M�2�
ν �f� =

∫
� �D�


f�η�2 dν�η� for f ∈ C+
c �D��

Varν�f� = M�2�
ν �f� − 
f�πν�2 for f ∈ C+

c �D��

Theorem 1. Let µ be an invariant density of Tt and let ζ
�µ�
∞ be the cor-

responding invariant distribution with mean measure denoted by π
ζ

�µ�
∞

. Let

f ∈ C+
c �D�. If

∫∞
0 
α�Ttf�2� µ�dt < ∞, then

Var
ζ

�µ�
∞

�f� = 2
∫ ∞

0

α�Ttf�2� µ�dt�

If
∫∞
0 
α�Ttf�2� π

ζ
�µ�
∞

�dt = ∞, then Var
ζ

�µ�
∞

�f� = ∞.

Remark 1. With regard to Theorem 1, see Problem 3 below.

We need to introduce a little notation for Theorem 2. Let p�t� x� y� denote
the kernel of the semigroup Tt� Although we have used the notation µTt
above, where µ is a density or a measure, for Theorem 2 it will be conve-
nient to consider the dual T∗

t of Tt which operates on � �D�: for η ∈ � �D�,
one defines T∗

tη�dy� = �∫D p�t� x� y�dη�x��dy. Of course, T∗
tη ∈ � �D� if and

only if
∫
D p�t� x� y�dη�x� is in L1

loc�D�. We can also consider T∗
t operating on

�1�� �D��: for ν ∈ �1�� �D��, we define T∗
t ν�A� = ν�T∗

tA�, for measurable
sets A ∈ � �D�. Note that T∗

t ν is a subprobability measure on � �D�. It will
be a probability measure, that is, it will belong to �1�� �D��, if and only if
T∗
t �� �D�� contains the support of ν.
Theorem 2. Assume that

∫∞
0 
α�Ttf�2� µ�dt < ∞, for all f ∈ C+

c �D�. Then

w− lim
t→∞

T∗
t ζ

�µ�
∞ = δµ�

Equivalently, for each f ∈ C+
c �D�, the random variables �
Ttf�η��t≥0 on

�� �D�� ζ�µ�
∞ � satisfy

lim
t→∞


Ttf�η� = 
f�µ� in ζ
�µ�
∞ -probability�

Remark 2. Let St denote the semigroup corresponding to the measure-
valued diffusion X�t�. Its dual, S∗

t operates on �1�� �D��. Recalling that
ζt denotes the distribution of X�t�, we have by definition, S∗

t ζ0 = ζt. Thus,
under the condition

∫∞
0 
α�Ttf�2� µ�dt < ∞, for all f ∈ C+

c �D�, we obtain from
Proposition 2 and Theorem 2 the duality

w− lim
t→∞

S∗
t δµ = ζ�µ�

∞ and w− lim
t→∞

T∗
t ζ

�µ�
∞ = δµ�

We note that Theorem 2 holds for all the invariant distributions that arise
in this paper when considering particular classes of operators—namely, those
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in Theorems 4, 5 and 7. In particular, it holds for the invariant measures
associated with the standard, critical, d-dimensional super Brownian motion,
for d ≥ 3. These measures appear as a particular case of Theorem 4.

Remark 3. It may well be true in complete generality, and it is certainly
true in all but the most pathological cases that the finiteness of

∫∞
0 
α�Ttf�2�

µ�dt for some 0 �= f ∈ C+
c �D� is equivalent to the finiteness of it for all

f ∈ C+
c �D�.

In order to present the rest of our results, we need to recall a few facts
about positive harmonic functions. We noted earlier that if µ is invariant
for the semigroup Tt, then it possesses a density µ = µ�x� ∈ CL̃�D�. On
the other hand, it is not necessarily true that all the elements in CL̃�D� are
invariant densities for Tt (see the second paragraph of Remark 8 below). Let
Cinv
L̃

�D� ⊂ CL̃�D� denote the subcone of invariant densities. We now apply
the Martin boundary theory [12] to this subcone. An element µ ∈ Cinv

L̃
�D� is

called minimal if the relations µ1 ≤ µ and µ1 ∈ Cinv
L̃

�D� imply that µ1 = cµ
for some constant c. By the Martin boundary theory, there exists an index
set 4̃inv0 , which is the part of the minimal Martin boundary corresponding
to the invariant functions, and a collection of minimal elements �µρ�ρ∈4̃inv0

∈
Cinv
L̃

�D� (normalized, say, by µρ�x0� = 1, for some x0 ∈ D), which we shall
term minimal invariant densities, such that every element µ ∈ Cinv

L̃
�D� can

be represented in the form

µ =
∫
4̃inv0

µρmµ�dρ�(1.9)

for a unique finite measure mµ on 4̃
inv
0 . Conversely, every finite measure mµ

gives rise to an element of Cinv
L̃

�D� via the representation in (1.9).
Theorem 3 below gives for each µ ∈ Cinv

L̃
�D� the general structure of the

mean measure πµ corresponding to the invariant distribution ζ
�µ�
∞ .

Theorem 3. (i) For each ρ ∈ 4̃inv0 , there exists a constant cρ = cρ�α� ∈
�0�1� such that the mean measure of ζ

�µρ�
∞ satisfies π

ζ
�µρ�
∞

= cρµρ. Furthermore,

cρ�α� is nonincreasing in α.

(ii) Let µ ∈ Cinv
L̃

�D� with corresponding measure mµ as in (1.9). Then

π
ζ

�µ�
∞

=
∫
4̃inv0

cρµρmµ�dρ��(1.10)

(iii) Let µ1� µ2 ∈ C�inv�
L̃

�D�. Then ζ
�µ1�
∞ = ζ�µ2�

∞ if and only if π
ζ

�µ1�
∞

= π
ζ

�µ2�
∞

.

Let

4̃
inv�α
0 = {

ρ ∈ 4̃inv0 � cρ�α� > 0
}
�
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where cρ is as in Theorem 3(i), and let Cinv� α
L̃

�D� ⊂ Cinv
L̃

�D� be the sub-

cone generated by the elements of 4̃inv� α0 ; that is, analogous to (1.9), µ ∈
C
inv� α
L̃

�D� if and only if there exists a finite measure mµ on 4̃inv� α0 such that
µ = ∫

4̃
inv� α
0
µρmµ�dρ�. The following result is an immediate corollary of Theo-

rem 3.

Corollary 1. The set of nontrivial invariant distributions �ζ�µ�
∞ � µ∈

Cinv
L̃

�D��, which was obtained by the procedure of Proposition 2(ii), is in one-to-
one correspondence with C

inv� α
L̃

�D� via the map µ → π
ζ

�µ�
∞

and is nonincreasing

in its dependence on α.

Remark 4. If we were to set α ≡ 0, then starting from ζ0 = δµ, with µ ∈
� �D�, the measure-valued diffusion would reduce to a deterministic measure-
valued path; namely, ζt = δµTt . Thus, the set of invariant distributions would
be equal to �δµ� µ ∈ Cinv

L̃
�D��.

Theorem 3 shows that for a minimal invariant density kµρ, k > 0, the
mean measure π

ζ
�kµρ�
∞

must always be a multiple of µρ. On the other hand, if
for example, µ = µρ1 +µρ2 with cρ1 > 0 and cρ2 = 0, then the mean measure for

ζ
�µ�
∞ will be cρ1µ1 which is not a multiple of µ. For a class of specific examples,
see Corollary 3(iii).
We conjecture that cρ appearing in Theorem 3(i) can only take two possible

values—0 and 1 (see Problem 2 at the end of this section). If µρ is a minimal
invariant density for Tt and cρ = cρ�α� ∈ �0�1�, then for f ∈ C+

c �D�, it follows
from Theorem 1 that Var

ζ
�µ�
∞

�f� < ∞ if and only if
∫∞
0 < α�Ttf�2� µ > dt < ∞.

Yet, according to Proposition 2(iii), the finiteness of this integral for all f ∈
C+
c �D� guarantees that cρ = 1. This gives the following corollary in the case
cρ ∈ �0�1�.

Corollary 2. Let µρ be a minimal density for Tt, and consider the in-

variant distribution ζ
�µ�
∞ . Let cρ = cρ�α� be as in Theorem 3 and assume that

cρ ∈ �0�1�. Then Var
ζ

�µ�
∞

�f� = ∞, for some 0 �= f ∈ C+
c �D�.

In light of Theorem 3 and Corollary 1, our strategy for the rest of the paper
will be as follows. We fix a linear operator L = L0+β on a domain D ⊂ Rd for
which the cone Cinv

L̃
�D� is nonempty. For each minimal element µρ ∈ Cinv

L̃
�D�,

we wish to find an explicit growth condition on α which holds for sufficiently
small α and such that whenever that condition is satisfied, (1.6) will hold.
It will then follow that the invariant distribution ζ

�µρ�
∞ satisfies π

ζ
�µρ�
∞

= µρ.
Similarly, we wish to find an explicit growth condition on α which holds for
sufficiently large α and such that whenever that condition is satisfied, (1.8)

will hold. It will then follow that ζ
�µρ�
∞ = δ0. The first task is considerably

easier than the second one because in place of (1.6), we may avail ourselves
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of the sufficient condition (1.7) which involves only a solution of the linear
heat equation, whereas condition (1.8) depends on the behavior of a solution
to a nonlinear equation. At least with regard to the case of super-Brownian
motion, the use of (1.7) in place of (1.6) sacrifices little, if any, precision; see
Remark 5 after Theorem 4.
We begin with the case of d-dimensional, critical, super-Brownian motion.

We have L0 = 1
2#� β = 0 and D = Rd. In this case L̃ = L = 1

2# and
Cinv
L̃

�D� = Cinv
�1/2�#�Rd� is the cone of positive constants. Thus, if an invari-

ant distribution has a σ-finite mean measure, that mean measure must be a
multiple of Lebesgue measure.

Theorem 4. Consider critical, super-Brownian motion with a var-
iable variance parameter, corresponding to the semilinear equation ut = 1

2#u−
αu2 on Rd, d ≥ 1. Let l denote Lebesgue measure on Rd.

(i) If

∫ ∞

1

1
td

(∫
Rd
exp

(
−�x�2
t

)
α�x�dx

)
dt < ∞�(1.11)

then the invariant distribution ζ
�l�
∞ satisfies π

ζ
�l�
∞

= l.
In particular, if d ≥ 2 and α�x� ≤ c�1 + �x��γ with γ < d − 2, then (1.11) will
be satisfied.

(ii) If for some k > 0,

∫
�x�<t1/2�log t�k

1
α�x�dx = o�t log t� as t → ∞�(1.12)

then ζ
�l�
∞ = δ0.

In particular, if d ≥ 1 and α�x� ≥ c�1 + �x��γ with γ ≥ d − 2, then (1.12) will
be satisfied.

(iii) If d = 1, then for any α > 0, ζ
�l�
∞ = δ0.

Remark 5. There is no problem defining super-Brownian motion when
α�0. The proof of Theorem 4(iii) actually shows that the result continues
to hold when α�0. Note that for d ≥ 2, the critical exponent for α with re-
gard to the existence of an invariant probability distribution is d−2; however,
for d = 1, there is never an invariant probability distribution even if α is com-
pactly supported. The proof of part (i) of the theorem utilizes the sufficient
condition (1.7) in place of the necessary and sufficient condition (1.6). The fact
that the exact value d − 2 of the critical exponent was obtained shows that
little if any information was lost by this approximation.

We need a few facts about symmetric operators for the next theorem (see
[12], Section 4.10). The underlying diffusion process on D ⊂ Rd is reversible
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when the corresponding operator L0 is symmetric with respect to some refer-
ence density. In this case L0 takes the form

L0 = 1
2∇ · a∇ + a∇Q∇ = 1

2 exp�−2Q�∇ · exp�2Q�a∇�(1.13)

We will assume that ai� j ∈ C1�D� and Q ∈ C2�D�. The operator L = L0 + β
is symmetric with respect to the density

msym = exp�2Q��
We call msym or any of its multiples a reversible density for the operator L.
The adjoint operator (with respect to Lebesgue measure) is L̃ = 1

2∇ · a∇ −
a∇Q∇ − ∇ · �a∇Q� + β. Analogous to an invariant density (i.e., a function
µ satisfying µTt = µ), we define an invariant function to be a function h
satisfying Tth = h. An invariant function is a positive harmonic function for
L on D; that is, h ∈ CL�D�. Let Cinv

L �D� ⊂ CL�D� denote the subcone of
invariant functions. It is easy to check that in the symmetric case, a density µ
is invariant if and only if it is of the form µ = hmsym, where h is an invariant
function; that is,

Cinv
L̃

�D� = {
hmsym� h ∈ Cinv

L �D�}�(1.14)

The next result gives a sufficient condition for ζ�µ�
∞ to have mean measure µ

in the case of symmetric operators.

Theorem 5. Let L = L0 + β be a symmetric operator with L0 as in (1.13)
and assume that L is subcritical. Let hmsym be an invariant density as in
(1.14). If α ≤ c

h
, for some c > 0, then the mean measure of the invariant

distribution ζ
�hmsym�
∞ satisfies π

ζ
�hmsym�
∞

= hmsym.

The next theorem treats certain one-dimensional processes and goes in the
opposite direction to Theorem 5. It gives a sufficient condition for ζ�µ�

∞ to be
equal to δ0. Before we can state the theorem we need to recall some facts ([12],
Section 5.1). If

L0 = 1
2
a
d2

dx2
+ b d

dx

on D = �−∞�∞�, then letting Q�x� = ∫ x
0
b
a

�y�dy − 1
2 log a, one can write

L0 = 1
2 exp�−2Q� d

dx
�exp�2Q�a d

dx
�; thus, L0 is symmetric with respect to the

density

msym�x� = exp
(
2Q�x�) = 1

a�x� exp
(∫ x

0

2b
a

�y�dy
)
�(1.15)

Assume now that L0 corresponds to a transient diffusion; that is, L0 on
�−∞�∞� is subcritical. This is equivalent to the integrability of

exp
(

−
∫ x
0

2b
a

�y�dy
)
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at either +∞ or −∞. The space of all (not necessarily positive) solutions w
of L0w = 0 in R is two-dimensional and is spanned by the functions 1 and∫ x
0 dz exp�− ∫ z

0
2b
a

�y�dy�. From this it is easy to see that in the transient case
the cone CL0

�D� of positive harmonic functions is always two-dimensional,
and it is easy to exhibit its minimal elements. However, we need to consider
two cases separately.

Case 1 �∫∞
−∞ dx exp�− ∫ x

0
2b
a

�y�dy� < ∞�. In this case the minimal ele-
ments of CL0

�D� are

h1�x� =
∫ x

−∞
dz exp

(
−
∫ z
0

2b
a

�y�dy
)
�

h2�x� =
∫ ∞

x
dz exp

(
−
∫ z
0

2b
a

�y�dy
)
�

(1.16)

Case 2 �∫∞
−∞ dx exp�− ∫ x

0
2b
a

�y�dy� = ∞�. In this case wewill assumewith-

out loss of generality that
∫ 0

−∞ dx exp�− ∫ x
0

2b
a

�y�dy� < ∞. Then the minimal
elements of CL0

�D� are

h1�x� =
∫ x

−∞
dz exp

(
−
∫ z
0

2b
a

�y�dy
)
�

h2�x� = 1�
(1.17)

We now make the additional assumption that Cinv
L0

�D� = CL0
�D�. (In case

1 above, this is equivalent to the assumption that the diffusion corresponding
to L0 is conservative, that is, that its semigroup Tt satisfies Tt1 = 1. Thus
the coefficients a and b must satisfy Feller’s well-known integral criterion for
nonexplosion [12]. In Case 2, the diffusion needs to be conservative, but in
addition, a growth condition on the inward drift from +∞ must be assumed.)
From the above discussion and (1.14), it follows that the cone Cinv

L̃0
�D� of

invariant densities for the diffusion process takes the form

Cinv
L̃0

�D� = {�c1h1 + c2h2�msym� c1� c2 ≥ 0� c1 + c2 > 0
}
�(1.18)

where msym is as in (1.15) and h1� h2 are as in (1.16) or (1.17).
For the next theorem, we make the following assumption. (See the remark

following the theorem for a discussion concerning the relaxing of this assump-
tion.)

Assumption 1. (i) a�x� = c1x
l1 for x � 1 and a�x� = c2�x�l2 for x � −1,

where c1� c2 > 0.
(ii) b�x� = d1xk1 for x � 1 and b�x� = −d2�x�k2 for x � −1, where d1� d2 �= 0

and at least one of d1� d2 is positive.
(iii) k1� k2 < 1 and ki > li − 1 for some i for which di > 0.
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Under Assumption 1, L0 corresponds to a transient diffusion and it can be
verified that Cinv

L0
�D� = CL0

�D�; thus Cinv
L̃0

�D� is given by (1.18).

Theorem 6. Let L0 = 1
2a

d2

dx2
+ b d

dx
on D = �−∞�∞� satisfy Assumption 1

and let β = 0. Let h1msym� h2msym be the minimal invariant densities, where
h1� h2 are as in (1.16) or (1.17) and msym is as in (1.15). If α ≥ c

hi
, for some

i ∈ �1�2� and some c > 0, then for j �= i, ζ�hjmsym�
∞ = δ0.

Remark 6. We suspect that the result in Theorem 6 holds in general for
subcritical one-dimensional operators L = L0 +β for which the corresponding
two-dimensional cone CL�D� satisfies CL�D� = Cinv

L �D�. In fact, the proof we
give works in somewhat more generality than is stated in Theorem 6, as will
be pointed out in the remark following the completion of its proof.

Combining Theorems 3, 5 and 6, we have the following corollary.

Corollary 3. Let the underlying motion of the measure-valued diffusion
be given by an operator L0 satisfying Assumption 1 and let β = 0.

(i) If α ≤ Cmin� 1
h1
� 1
h2

�, C > 0, then π
ζ

�µ�
∞

= µ, for any invariant density

µ = �c1h1 + c2h2�msym.

(ii) If α ≥ Cmax� 1
h1
� 1
h2

�, C > 0, then ζ
�µ�
∞ = δ0, for any invariant density

µ = �c1h1 + c2h2�msym.

(iii) If C1
hj

≤ α ≤ C2
hj

, for some j ∈ �1�2� and C1�C2 > 0, then

π
ζ

��c1h1+c2h2�msym�
∞

= cjhjmsym�

Remark 7. Consider Corollary 3 in the case α = 1, so that the correspond-
ing semilinear equation is ut = L0u − u2. If the operator L0 satisfies (1.16),
then case (i) of the corollary holds, whereas if L0 satisfies (1.17), then case (iii)
of the corollary holds with j = 2. In particular then, when (1.17) holds, the
mean measure of any nontrivial invariant distribution ζ�µ�

∞ will be a reversible
density for L0.

In light of Theorems 5 and 6, it is natural to wonder what occurs in general
when the underlying motion is a multidimensional symmetric diffusion, espe-
cially when Cinv

L �D� is more than two-dimensional. That is, if h1 and h2 are
minimal elements in Cinv

L �D� and α = 1
h1
, what can be said about π

ζ
�h2msym�
∞

? We
don’t know the answer in general but the following example is illuminating.
Let L0 = 1

2#+b · ∇ on D = Rd� d ≥ 2, where b is a nonzero constant vector,

and let β = 0. Thenmsym�x� = exp�2b·x� and C�inv�
L �D� = CL�D� = �exp�ν ·x� �

�ν + b� = �b��. Thus, µ is an invariant density if and only if it is of the form
µ�x� = exp��ν + 2b� · x� with ν on the sphere S ≡ �ν ∈ Rd � �ν + b� = �b��.
Let hν�x� = exp�ν · x�, for ν ∈ Rd. By Theorem 5, for ν ∈ S, the invariant
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distribution ζ
�hνmsym�
∞ has mean measure hν�x�msym�x� = exp��ν + 2b� · x� if

α�x� ≤ c
hν�x� = c exp�−ν · x�. What is the mean measure of ζ

�hνmsym�
∞ if α�x� =

c
hη

�x� with η ∈ S and η �= ν? The answer is given by the following theorem.

Theorem 7. Use the notation in the above example and let ν ∈ S.

(i) If η ∈ S− �−ν−2b�, then ζ
�hνmsym�
∞ has mean measure hνmsym whenever

α ≤ c
hη

.

(ii) If η = −ν − 2b and d = 1 or 2, then ζ
�hνmsym�
∞ = δ0 whenever α ≥ c

hη
.

(iii) If η = −ν − 2b and d ≥ 3, then ζ
�hνmsym�
∞ has mean measure hνmsym

whenever α ≤ c
hη

.

(iv) If η = −ν−2b−s�ν+b� for s > 0 (in which case η /∈ S), then ζ
�hνmsym�
∞ = δ0

whenever α ≥ c
hη

.

Having completed the presentation of the results, we now point out in a
series of three remarks a number of significant facts that follow from Propo-
sition 2.

Remark 8. Recall the definition from criticality theory, Definition 1 above,
in the paragraph following (1.4). It follows from Proposition 2(i) that if L is
supercritical or if L is subcritical and none of the functions in CL̃�D� are
invariant, then the measure-valued diffusion does not possess an invariant
distribution with σ-finite mean measure, regardless of the variance parameter
α > 0. [In the critical case, CL̃�D� is one-dimensional and its unique element
(up to constant multiples) is necessarily invariant ([12], Theorem 4.8.6).]
In particular, for example, if L0 on D corresponds to a recurrent diffusion

and β�0, then L on D is supercritical ([12], Theorem 4.6.3). As an example
of subcriticality with no invariant measures, consider L0 = 1

2
d2

dx2
on D = �0�1�

with β = 0. Then CL̃�D� is generated by the functions x and 1 − x and no
element of CL̃�D� is invariant ([12], page 217). The same thing is true for
the multidimensional analog, namely, Brownian motion in the unit ball, in
which case CL̃�D� is generated by the Poisson kernel functions uρ�x� = 1−�x�2

�ρ−x�d ,

indexed by ρ ∈ Sd−1.

Remark 9. The measure-valued process is said to exhibit local extinction
if for every compact set B contained in D, there exists an almost surely fi-
nite random time τB such that P�X�t�B� = 0 for all t > τB� = 1. In �13�8�,
it was shown that starting from a finite measure, the measure-valued diffu-
sion exhibits local extinction if and only if L is not supercritical on D. Recall
from Defintion 1 that L is supercritical on D if and only if CL̃�D� is empty.
Thus, if L is supercritical on D, then Cinv

L̃
�D� is empty. Combining this with

Proposition 2(i), it follows that the exhibition of local extinction when starting
from a finite measure is a necessary condition for the existence of an invariant



1488 R. G. PINSKY

distribution with σ-finite mean measure. In particular, it then follows that the
support of an invariant distribution does not include finite measures. As an
application of this, we point out that if L0 corresponds to a positive recurrent
diffusion and β = 0, then the measure-valued diffusion cannot possess an
invariant distribution with σ-finite mean measure. Indeed, for positive recur-
rent diffusions there is an invariant probability measure, and every invariant
measure is a constant multiple of this probability measure. Thus, it follows
from Proposition 2(i) that if ν were an invariant distribution with σ-finite
mean measure, then its mean measure would have to be a multiple of the in-
variant probability measure for the positive recurrent diffusion. From this it
would follow that the support of ν is contained in the space of finite measures.

Remark 10. From the log-Laplace equation (1.1), it follows easily that

ν =
∫
Cinv
L̃

�D�
ζ

�µ�
∞ Q�dµ�(1.20)

is an invariant distribution for any probability measure Q on Cinv
L̃

�D�. In
particular, it follows that if the collection of invariant distributions in Corollary
1 contains a nonzero element, then there exist invariant distributions whose
mean measures are infinite. Indeed, if cρ�α� > 0, then choosing a probability
distribution F on �0�∞� with infinite expectation, it follows from Theorem 3

that ν ≡ ∫∞
0 ζ

�θµρ�
∞ F�dθ� has mean measure πν = �cρ�α� ∫∞

0 θF�dθ��µρ = ∞�

We now provide a little intuition to explain why for each µ ∈ Cinv
L̃

�D�, the
veracity of the equality π

ζ
�µ�
∞

= µ depends monotonically on α. The proof of
Proposition 2(i) in the next section [see (2.7)] shows that if X�0� = µ a.s.,
that is, the initial distribution is given by ζ0 = δµ, then for all t ∈ �0�∞�, the
mean measure for the distribution ζt of X�t� is equal to µ. Equivalently, for
all f ∈ C+

c �D�,
∫
� �D�


f�η�dζt�η� = 
f�µ� for all t ∈ �0�∞��(1.21)

However, since the functional η → 
f�η� is unbounded, the weak convergence
of ζt to ζ

�µ�
∞ does not guarantee that the mean measure of ζ�µ�

∞ will also be
equal to µ. Defining cutoff functions <N� �0�∞� → �0�∞� by <N�x� = x�
x ∈ �0�N�, <N�x� = N� x > N, the functionals η → <N�
f�η�� are bounded
and continuous on � �D�; thus

lim
t→∞

∫
� �D�

<N�
f�η��dζt�η�
(1.22)

=
∫
� �D�

<N�
f�η��dζ�µ�
∞ �η�� N = 1�2� � � � �
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From (1.21) and (1.22) it follows that if the mean measure of ζ�µ�
∞ is not equal

to µ, then for some f ∈ C+
c �D�, one has

lim
N→∞

lim sup
t→∞

∫
�η� 
f�η�>N�


f�η�ζt�η� > 0�(1.23)

The phenomenon described by (1.23) is known as clustering. By (1.21), mass
must be conserved on the average for every finite time t, but as t → ∞ this
conservation may be achieved by clustering. Clustered mass is lost in the weak
limit; thus if clustering occurs, then the invariant distribution ζ�µ�

∞ will have
mean measure less than µ. Now in the course of the proof of Theorem 1, it is
shown that the variance of 
f�η� under ζt is given by

∫
� �D�


f�η�2 dζt�η� −
(∫

� �D�

f�η�dζt

)2

= 2
∫ t
0


α�Tsf�2� µ�ds�

[Use (2.34) and (1.21).] We see then that this variance is monotonic in α. If
the variance grows sufficiently fast in t, then the average mass preservation
is achieved by clustering, while if it grows sufficiently slowly, then the average
mass preservation is achieved without clustering.
We conclude this section with a number of interesting open problems sug-

gested by the above results.

Problem 1. The construction in Proposition 2(ii) produces the collection
�ζ�µ�

∞ � µ ∈ Cinv
L̃

�D�� of invariant distributions which, by Corollary 1, is in one-

to-one correspondence with the cone Cinv� α
L̃

�D�. This collection of invariant
distributions can be expanded to invariant distributions of the form (1.20).
Show that every invariant distribution for the measure-valued process is of
the form (1.20).

Remark 11. In Remarks 7 and 8 it was noted that for any α > 0, there
is no invariant distribution with σ-finite mean in either of the following two
cases:

(i) Cinv
L̃

�D� is empty, which occurs in particular if L is supercritical.
(ii) The average mass creation parameter β = 0 and L0 corresponds to

a positive recurrent diffusion. Thus, it would follow from Problem 1 that no
invariant distribution, even with infinite mean measure, exists in the above
two cases.

Problem 2. Show that if µρ is a minimal invariant density, then πζ�µρ�
∞

= 0
or µρ. Equivalently, in the notation of Theorem 3, show that cρ�α� = 0 or 1.

Problem 3. Is it true that for certain classes of measure-valued diffusions,
every invariant measure must necessarily have a finite second moment oper-
ator? If such were the case, then by Theorem 1, it would follow that for those
classes of measure-valued diffusions, (1.7) with µ replaced by µρ would be a
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necessary and sufficient condition for ζ
�µρ�
∞ to be nontrivial, and in the non-

trivial case, the mean measure would always be µρ. This would also show that
cρ�α� = 0 or 1 for those classes of measure-valued diffusions. For example, if
it turned out that an invariant measure for critical super-Brownian motion
with a space dependent variance parameter (i.e., the case treated in Theorem
4) must have a finite second moment operator, then (1.11) would turn out to
be the necessary and sufficient condition for ζ�l�

∞ to be a nontrivial invariant
distribution. Indeed, the proof of Theorem 4 shows that (1.11) is a necessary
and sufficient condition for (1.7) to hold with µ replaced by Lebesgue measure.

Problem 4. Show that the result of Theorem 6 holds for general one-
dimensional, subcritical operators L for which Cinv

L̃
�D� is two-dimensional.

Problem 5. In the case that L is critical, Cinv
L̃

�D� = CL̃�D� and is one-
dimensional. If in addition, L is symmetric with respect to the measure msym,
then the unique invariant density (up to constant multiples) will be of the form
hmsym where h is the unique function (up to constant multiples) in CL�D�.
In contrast to Theorem 5 for subcritical operators, show that if a ≥ c

h
, then

ζ
�hmsym�
∞ = δ0.

Remark 12. In the case β = 0 (in which case h = 1) and α bounded be-
tween two positive constants, Problem 5 has been carried out in [9] under
certain assumptions on the semigroup Tt. In that paper, the author treats
the case that the underlying diffusion corresponding to L0 on D is null re-
current. (As Remark 9 shows, for β = 0 and any α > 0, there will never be a
nontrivial invariant distribution with σ-finite mean measure if L0 is positive
recurrent.) Without assuming that L0 is symmetric, but under three regular-
ity conditions on the semigroup Tt, the author proves that if ζ0 = δµ, where
µ is the unique (up to constant multiples) invariant σ-finite measure for the
diffusion corresponding to L0 on D, then ζ

�µ�
∞ ≡ w − lim ζt = δ0. The author,

citing [3], claims that her regularity conditions on the semigroup hold when-
ever L0 is uniformly elliptic with bounded, continuous coefficients. In fact, as
will be discussed momentarily, considerably more stringent restrictions must
be placed on the coefficients to guarantee that her conditions hold. We should
also point out that in the introduction to the same article, the author claims
that in the case that β = 0, α is constant, and L0 is transient, it follows from
[6] that there exists an invariant distribution for the measure-valued process.
However, the result on the existence of invariant distributions in [6] is not
proved in complete generality in the transient case, but rather under the as-
sumption that there exists an invariant measure µ for the semigroup Tt, that
(1.6) holds and that the so-called F-property holds for entrance laws at −∞.
The existence of an invariant distribution in the transient case is probably not
true in complete generality. Indeed, as was shown in Remark 8, if L0 = 1

2
d2

dx2

on D = �0�1� with β = 0, then L0 corresponds to a transient diffusion and
the cone Cinv

L̃
�D�� is empty; thus the recipe of Proposition 2 does not produce
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an invariant distribution for any α > 0. We expect that there are in fact no
invariant distributions in this case. (This would follow from Problem 1.) The
question of whether there will always be an invariant distribution in the tran-
sient case under the assumption that there does exist an invariant measure
and with α constant and β = 0, but without the additional assumption (1.6),
seems to be open.
Returning to the three regularity conditions imposed on the semigroup Tt

in [9], the least complicated of these conditions is that limt→∞
1
h�t�

∫ t
0 Tsφds =∫

D φdµ, for φ ∈ C+
c �D�, where h�t� = tρl�t� for some ρ ∈ �0�1� and l�t� is

slowly varying. Since [3] only gives upper bounds on Tt for symmetric opera-
tors, the above condition on Tt cannot follow from those results. It is not hard
to see, as has been pointed out to me by S. R. S. Varadhan, that if �γn�∞

n=1 is
a sufficiently rapidly increasing sequence of positive numbers and a�x� = 1,
for γ2n−1 + 1 ≤ �x� ≤ γ2n and a�x� = 2 for γ2n + 1 ≤ �x� ≤ γ2n+1, and L = 1

2a
d2

dx2

or L = 1
2
d
dx

�a d
dx

� on �−∞�∞�, then Tt will not satisfy the above condition.

The rest of this paper is organized as follows. In Section 2, we prove Propo-
sitions 1 and 2 and Theorems 1 and 2; in Section 3, we prove Theorems 3
and 5; in Section 4 we prove Theorems 4 and 7; and in Section 5 we prove
Theorem 6.
From now on, we will denote the probability measure and the corresponding

expectation for the measure-valued process starting with initial distribution
ζ0 = ν ∈ �1�� �D�� by Pν and Eν, respectively.

2. Proofs of Propositions 1 and 2 and Theorems 1 and 2.

Proof of Proposition 1. In [8], we proved the existence of a finite meas-
ure-valued process satisfying (1.1) when ν is a finite measure. From (1.1), it
follows that if ν1 and ν2 are finite measures, then the measure-valued process
starting from ν1 + ν2 may be obtained as the independent sum of measure-
valued processes starting from ν1 and from ν2. Since a σ-finite measure ν may
always be expressed in the form ν = ∑∞

i=1 νi, where the νi are finite measures,
a measure-valued process starting from a σ-finite measure ν and satisfying
(1.1) can always be constructed as an independent sum of finite measure-
valued processes. Using the conditional expectation (1.1) then allows for the
construction of a measure-valued process starting from any initial distribution
ζ0 ∈ �1�� �D��. Since Pν�
f�X�t�� < ∞� = limλ→0Eν exp�−
λf�X�t���, it
follows from (1.1) that X�t� will almost surely take values in � �D� if and
only if (1.3b) holds for all f ∈ C+

0 �D�. Clearly, (1.3a) is necessary for (1.3b) to
hold. By the maximum principle, uλf is increasing in λ and uλf ≤ λTtf. Thus,
limλ→0 uλf�·� t� = 0, and it follows from the dominated convergence theorem
that (1.3a) is sufficient for (1.3b) to hold. The final statement of the proposition
follows from the inequality uλf ≤ λTtf. ✷
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Proof of Proposition 2. (i) Let ν ∈ �1�� �D�� be any initial distribution
satisfying (1.3). From (1.1), we have for λ > 0 and f ∈ C+

c �D�,

Eν exp
(−
λf�X�t��) =

∫
� �D�

exp
(−
uλf�·� t�� η�)dν�η��(2.1)

Consider first the left-hand side of (2.1). Since X�t� is almost surely σ-finite,
we have by the mean value theorem and the dominated convergence theorem
that

1
λ

(
1 − exp�−
λf�X�t���) = M(

λ�X�t�)
f�X�t���

where 0 < M�λ�X�t�� < 1 and limλ→0M�λ�X�t�� = 1 a.s. Pν. It then follows
that

lim
λ→0

1
λ

(
1 −Eν exp�−
λf�X�t���) = 
f�πζt��(2.2)

where the right-hand side of (2.2) may be infinite.
Consider now the right-hand side of (2.1). By Taylor’s theorem, 1−exp�−x�

= N�x�x, where limx→0N�x� = 1. Thus, it follows from (1.3) that

1
λ

(
1 − exp�−
uλf�·� t�� η��) = N�λ�η�

〈
uλf�·� t�
λ

�η

〉
�(2.3)

where 0 < N�λ�η� < 1 and limλ→0N�λ�η� = 1 a.s. Pν. The function vλ ≡ uλf
λ

satisfies the equation

vt = L0v+ βv− λαv2 in D× �0�∞��
(2.4)

v�x�0� = f�x� in D�

By the maximum principle, vλ is decreasing in λ. We will show below that

lim
λ→0

vλ�x� t� = Ttf�x��(2.5)

Thus, N�λ�η�
uλf
λ

�·� t�� η� ≤ 
Ttf�η� and limλ→0N�λ�η�
uλf
λ

�·� t�� η�
= 
Ttf�η�. From Fatou’s lemma it then follows that

lim
λ→0

1
λ

(
1 −

∫
� �D�

exp
(−
uλf�·� t�� η�)dν�η�

)
= 
Ttf�πν��(2.6)

where the right-hand side of (2.6) may be infinite. From (2.1), (2.2) and (2.6)
we obtain


f�πζt� = 
Ttf�πν��(2.7)

If ν is an invariant distribution with σ-finite mean measure, then πζt = πζ0 =
πν and 
f�πν� < ∞; thus we obtain from (2.7) that 
f�πν� = 
Ttf�πν� < ∞,
proving that πν is invariant for the semigroup Tt.
We now return to prove (2.5). By the Feynman–Kac formula we have

vλ�x� t� = �x

(
exp

(∫ t
0

�β− λαvλ��Y�r�� t− r�dr
)
f�Y�t��� τD > t

)
�
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By the maximum principle, vλ�x� t� ≤ Ttf�x�. Thus,

�x

(
exp

(∫ t
0

�β− λαTt−rf��Y�r��dr
)
f�Y�t��� τD > t

)
(2.8)

≤ vλ�x� t� ≤ Ttf�x��
Letting λ → 0 in (2.8), and using the dominated convergence theorem and the
Feynman–Kac representation for Tt, we obtain (2.5).
(ii) By standard results on weak convergence, ζt will converge weakly if and

only if limt→∞
∫
� �D� exp�−
f�η��dζt�η� exists for all f ∈ C+

c �D�.
Note that the solution uf to the semilinear evolution equation (1.2) satisfies

the following integral equation:

uf�x� t� = Ttf�x� −
∫ t
0
Tt−s�αu2f�·� s���x�ds�(2.9)

First let ζ0 = δµ. From (1.1), (2.9), and the fact that µ is invariant, we have∫
� �D�

exp�−
f�η��dζt�η�

= Eδµ exp�−
f�X�t��� = exp�−
uf�·� t�� µ��

= exp
(

−
Ttf�µ� +
∫ t
0


Tt−s�αu2f�·� s��� µ�ds
)

= exp
(

−
f�µ� +
∫ t
0


αu2f�·� s�� µ�ds
)
�

It then follows that

lim
t→∞

∫
� �D�

exp
(−
f�η�)dζt�η� = exp

(
−
f�µ� +

∫ ∞

0

αu2f�·� t�� µ�dt

)
�

This proves the weak convergence and gives (1.5).
To show that ζ�µ�

∞ is an invariant distribution, we use the Markov property
to obtain∫

� �D�
exp

(−
f�η�)dζt+s�η� =
∫
� �D�

Eη exp�−
f�X�s���dζt�η��(2.10)

The measure-valued process X�t� is Feller; thus Eη exp�−
f�X�s��� is con-
tinuous in η. Letting t → ∞ in (2.10) gives∫

� �D�
exp�−
f�η��dζ�µ�

∞ �η� =
∫
� �D�

Eη exp�−
f�X�s���dζ�µ�
∞ �η��

which shows that ζ�µ�
∞ is invariant.

Now let ζ0 = Poissµ and assume that limt→∞ supx∈D Ttf�x� = 0. Then

EPoissµ exp�−
f�X�t��� =
∫
� �D�

exp�−
uf�·� t�� η��dPoissµ�η�

= exp
(−
1 − exp�−uf�·� t��� µ�)�
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Since uf ≤ Ttf, it follows that∣∣
1 − exp�−uf�·� t��� µ� − 
uf�·� t�� µ�∣∣
≤ 1

2
u2f�·� t�� µ� ≤ 1
2 sup
x∈D

Ttf�x�
Ttf�µ� = 1
2 sup
x∈D

Ttf�x�
f�µ��

We conclude that limt→∞
1− exp�−uf�·� t��� µ� = limt→∞
uf�·� t�� µ�, and the
rest of the proof is as in the previous case.
(iii) Replacing f by λf in (1.5), and using the type of argument used in the

proof of part (i), one finds that 
f�π
ζ

�µ�
∞

� ≤ 
f�µ� and that equality holds if
and only if (1.6) holds.
We now show that (1.7) implies (1.6). Since uλf ≤ λTtf, we have

α
u2λf

λ
≤ λα�Ttf�2�(2.11)

From (2.11) and two applications of the dominated convergence theorem, it
follows that (1.7) implies (1.6).
(iv) From (1.1) and part (ii), it follows that∫

� �D�
exp

(−
f�η�)dζ�µ�
∞ �η� = lim

t→∞
exp

(−
uf�·� t�� µ�)�
Part (iv) is now immediate. ✷

Proof of Theorem 1. Assume first that
∫∞
0 
α�Ttf�2� µ�dt < ∞. Using

(1.1) and the fact that ζ�µ�
∞ is an invariant distribution, we have for any 0 ≤

f ∈ Cc�D�, λ ≥ 0, and t > 0,∫
� �D�

exp�−
λf�η��dζ�µ�
∞ �η� =

∫
� �D�

Eη exp
(−
λf�X�t���dζ�µ�

∞ �η�

=
∫
� �D�

exp
(−
uλf�·� t�� η�)dζ�µ�

∞ �η��
(2.12)

Substituting λf for f in (1.2), formally differentiating twice and using the no-
tation u = u�x� t�λ� ≡ uλf�x� t�, we obtain the following differential equations
for u�1��x� t�λ� ≡ ∂uλf

∂λ
�x� t� λ� and for u�2��x� t�λ� ≡ ∂2uλf

∂λ2
�x� t� λ�:

u
�1�
t = L0u

�1� + βu�1� − 2αuu�1� in D× �0�∞�
u�1��x�0� = f�x�(2.13)

and

u
�2�
t = L0u

�2� + βu�2� − 2α�u�1��21 − 2αuu�2� in D× �0�∞��
u�2��x�0� = 0�

(2.14)
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In particular, letting p�t� x� y� denote the kernel for the semigroupTt, we have
u�1��x� t�0� = Ttf�x� and

u�2��x� t�0� = −2
∫ t
0
ds

∫
D
p�t− s� x� y�α�y��Tsf�2�y�dy�

(2.15)

We will justify these formal differentiations upon completion of the proof of
the theorem.
By the mean value theorem, we have for λ ≥ 0, λ1 > 0 and λ �= λ1,∫

� �D�
1

λ1 − λ
(
exp�−
λ1f�η�� − exp�−
λf�η��)dζ�µ�

∞ �η�

=
∫
� �D�


f�η� exp(−λ∗�η�
f�η�)dζ�µ�
∞ �η��

where λ∗�η� is between λ and λ1. Using the bounded convergence theorem in
the case λ > 0 and Fatou’s lemma in the case λ = 0, we conclude that

lim
λ1→λ

∫
� �D�

1
λ1 − λ

(
exp�−
λ1f�η�� − exp

(−
λf�η��)dζ�µ�
∞ �η�

=
∫
� �D�


f�η� exp�−
λf�η��dζ�µ�
∞ �η��

(2.16)

A proof similar to that of Proposition 2(i) shows that

lim
λ1→λ

∫
� �D�

1
λ− λ1

(
exp�−
u�·� t� λ�� η�� − exp�−
u�·� t� λ1�� η��)dζ�µ�

∞ �η�

=
∫
� �D�


u�1��·� t� λ�� η� exp�−
u�·� t� λ�� η��dζ�µ�
∞ �η��

(2.17)

From (2.12), (2.16) and (2.17) we conclude that∫
� �D�


f�η� exp�−
λf�η��dζ�µ�
∞ �η�

= ∫
� �D�

〈
u�1��·� t� λ�� η� exp(−
u�·� t� λ�� η�)dζ�µ�

∞ �η��
(2.18)

We now calculate the second derivative at λ = 0 for each side of (2.18).
Varying the left-hand side of (2.18) and using the mean value theorem, we
have for λ > 0,

1
λ

∫
� �D�


f�η��1 − exp�−
λf�η���dζ�µ�
∞ �η�

=
∫
� �D�


f�η�2 exp�−λ�η�
f�η��dζ�µ�
∞ �η��

where λ�η� ∈ �0� λ�. Letting λ → 0 and using Fatou’s lemma shows that

lim
λ→0

1
λ

∫
� �D�


f�η�(1 − exp�−
λf�η��)dζ�µ�
∞ �η�

=
∫
� �D�


f�η�2 dζ�µ�
∞ �η��

(2.19)
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We now vary the right-hand side of (2.18). We write


u�1��·� t�0�� η� − 
u�1��·� t� λ�� η� exp(−
u�·� t� λ�� η�)
= 
u�1��·� t�0�� η� − 
u�1��·� t� λ�� η� + 
u�1��·� t� λ�� η�

× (
1 − exp�−
u�·� t� λ�� η��)�

(2.20)

Recalling that u�·� t�0� ≡ 0, letting λ > 0 and using (2.20), we obtain

1
λ

(∫
� �D�


u�1��·� t�0�� η�dζ�µ�
∞ �η�

−
∫
� �D�


u�1��·� t� λ�� η� exp(−
u�·� t� λ�� η�)dζ�µ�
∞ �η�

)

≥
∫
� �D�

〈
u�1��·� t�0� − u�1��·� t� λ�

λ
�η

〉
dζ

�µ�
∞ �η�

+
∫
� �D�


u�1��·� t� λ�� η�
(
1 − exp

(−
u�·� t� λ�� η��
λ

)
dζµ∞�η��

(2.21)

By (2.13) and the maximum principle, u�1��·� t�0� ≥ u�1��·� t� λ� ≥ 0. Thus, it
follows from Fatou’s lemma that

−
u�2��·� t�0�� η� ≤ lim inf
λ→0

〈
u�1��·� t�0� − u�1��·� t� λ�

λ
�η

〉
�

The proof of Proposition 2(i) showed that

lim
λ→0

1 − exp�−
u�·� t� λ�� η��
λ

= 
Ttf�η��

and (2.15), Fatou’s lemma and the fact that u�1��·� t�0� ≥ u�1��·� t� λ� give
limλ→0
u�1��·� t� λ�� η� = 
Ttf�η�. Using these facts along with (2.21) and ap-
plying Fatou’s lemma again gives

lim inf
λ→0

1
λ

(∫
� �D�


u�1��·� t�0�� η�dζ�µ�
∞ �η�

−
∫
� �D�


u�1��·� t� λ�� η� exp(−
u�·� t� λ�� η�)dζ�µ�
∞ �η�

)

≥ −
∫
� �D�


u�2��·� t�0�� η�dζ�µ�
∞ �η� +

∫
� �D�


Ttf�η�2 dζ�µ�
∞ �η��

(2.22)

By Proposition 2(iii) and the assumption that
∫∞
0 
α�Ttf�2� µ�dt < ∞, if fol-

lows that π
ζ

�µ�
∞

= µ. Using this along with the invariance of µ for the semigroup
Tt, it follows from (2.15) that

−
∫
� �D�

〈
u�2��·� t�0�� η〉dζ�µ�

∞ �η� = 2
∫ t
0


α�Tsf�2� µ�ds�(2.23)
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From (2.18), (2.19), (2.22) and (2.23), we have∫
� �D�


f�η�2 dζ�µ�
∞ �η�

≥ 2
∫ t
0


α�Tsf�2� µ�ds+
∫
� �D�


Ttf�η�2 dζ�µ�
∞ �η��

(2.24)

By Jensen’s inequality and the invariance of µ,∫
� �D�


Ttf�η�2 dζ�µ�
∞ �η� ≥

(∫
� �D�


Ttf�η�dζ�µ�
∞ �η�

)2

= 
f�µ�2�(2.25)

Using (2.25) in (2.24) and letting t → ∞ gives

Var
ζ

�µ�
∞

�f� ≥ 2
∫ ∞

0

α�Ttf�2� µ�dt�(2.26)

We now prove the reverse inequality. By (1.1), we haveEδµ exp�−
λf�X�t���
= exp�−
u�·� t� λ�� µ��. Calculations very similar to those that led from (2.12)
to (2.18) show that

Eδµ
f�X�t�� exp�−
λf�X�t��� = 
u�1��·� t� λ�� µ� exp(−
u�·� t� λ�� µ�)�(2.27)

Varying the left-hand side of (2.27), we obtain similar to (2.19),

lim
λ→0

1
λ
Eµ
f�X�t���1 − exp�−
λf�X�t���� = Eµ
f�X�t��2�(2.28)

Varying the right-hand side of (2.27), we have

1
λ

(
u�1��·� t�0�� µ� − 〈
u�1��·� t� λ�� µ〉 exp(−
u�·� t� λ�� µ��)

=
〈
u�1��·� t�0� − u�1��·� t� λ�

λ
�µ

〉

+ u�1��·� t� λ�� µ >
(
1 − exp�−
u�·� t� λ�� µ��

λ

)
�

(2.29)

From (2.13), it follows that the function w = w�x� t� λ� ≡ u�1��·�t�0�−u�1��·�t�λ�
λ

satisfies the equation

wt = L0w+ βw− 2αu�·� ·�λ�w+ 2αu�·�·�λ�
λ
u�1��·� ·�λ�

w�x�0� λ� = 0�
(2.30)

The function u�·�·�λ�
λ

appearing on the right-hand side of (2.30) satisfies (2.4)
and, by the maximum principle, is decreasing in λ. Since u�·� ·� λ� is increasing
in λ, it follows from (2.13) that u�1��·� ·� λ� is nonnegative and decreasing in
λ. Using all this, we conclude from (2.30) and the maximum principle that
w�·� ·� λ� is nonnegative and decreasing in λ. Thus it follows from the monotone
convergence theorem that

lim
λ→0

〈
u�1��·� t�0� − u�1��·� t� λ�

λ
�µ

〉
= −〈

u�2��·� t�0�� µ〉�
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Using this along with (2.15) and the invariance of µ gives

lim
λ→0

〈
u�1��·� t�0� − u�1��·� t� λ�

λ
�µ

〉
= 2

∫ t
0

〈
α�Tsf�2� µ〉ds�(2.31)

The invariance of µ and the explanation appearing in the next to the last
sentence above (2.22) give

lim
λ→0+


u�1��·� t� λ�� µ� = 
Ttf�µ� = 
f�µ�(2.32)

and

lim
λ→0

1 − exp
(−
u�·� t� λ�� µ�)

λ
= 
Ttf�µ� = 
f�µ��(2.33)

From (2.27)–(2.29) and (2.31)–(2.33) we obtain

Eµ
f�X�t��2 = 2
∫ t
0


α�Tsf�2� µ�ds+ 
f�µ�2�(2.34)

The left-hand side of (2.34) can be written as
∫
� �D�
f�η�2dζt�η�, where ζt is

the distribution ofX�t� under Pδµ . By Proposition 2(ii), ζt converges weakly to
ζ

�µ�
∞ . Thus, it follows from (2.34) and a standard property of weak convergence
that ∫

� �D�

f�η�2dζ�µ�

∞ ≤ 2
∫ ∞

0

α�Ttf�2� µ�dt+ 
f�µ�2�(2.35)

Thus,

Var
ζ

�µ�
∞

�f� ≤ 2
∫ ∞

0

α�Ttf�2� µ�dt�(2.36)

The first statement of the theorem now follows from (2.26) and (2.36).
We now assume that

∫∞
0 
α�Ttf�2� π

ζ
�µ�
∞

�dt = ∞. We follow the above proof
up through (2.22). In the line that follows (2.22), it is noted that π

ζ
�µ�
∞

= µ. In
the present case, noting that by Proposition 2(i), π

ζ
�µ�
∞

is invariant for Tt, we
can simply replace 
α�Ttf�2� µ� by 
α�Ttf�2� π

ζ
�µ�
∞

� on the right hand side of
(2.23), (2.24) and (2.26) and 
f�µ� by 
f�π

ζ
�µ�
∞

� on the right hand side of (2.25).
It then follows that Var

ζ
�µ�
∞

�f� = ∞.
We now justify the formal differentiation which led to (2.13) and (2.14).

The argument for the proof of (2.13) is similar to that used in the proof of
Proposition 2; thus, we will only consider (2.14). Let 0 ≤ λ0 < λ and define
wλ0 = wλ0�x� t�λ� ≡ u�1��x�t�λ�−u�1��x�t�λ0�

λ−λ0 . From (2.13), we obtain

�wλ0�t = Lwλ0 +βwλ0 −2αu�·�·�λ�wλ0 −2α
u�·�·�λ�−u�·�·�λ0�

λ−λ0
u�1��·�·�λ0��

wλ0�x�0�λ� = 0�



DISTRIBUTIONS FOR MEASURE-VALUED DIFFUSIONS 1499

Using the Feynman–Kac formula, we can represent wλ0 as

wλ0�x� t�λ� = −�x

∫ t
0

(
2α�X�s��u�X�s�� t− s�λ� − u�X�s�� t− s�λ0�

λ− λ0
u�1��X�s�� t− s�λ0�

)

× exp
(∫ s

0
�β− 2αu��X�r�� s− r�λ�dr

)
ds�

(2.37)

Since u�1� is decreasing in λ, it follows that for some λ∗�x� t� ∈ �λ0� λ� we have
0 ≤ u�x�t�λ�−u�x�t�λ0�

λ−λ0 = u�1��x� t�λ∗�x� t�� ≤ u�1��x� t�λ0�. Using these facts along
with Fatou’s lemma and the dominated convergence theorem in (2.37) gives

lim
λ→λ+

0

wλ0�x� t�λ�

= −�x

∫ t
0

�2α�u�1��2��X�s�� t− s�λ0�

× exp
(∫ s

0
�β− 2αu��X�r�� s− r�λ0�dr

)
ds�

(2.38)

The corresponding calculation can also be made with λ < λ0; for this case, one
dominates the integrand in (2.37) with λ close to λ0 by 2α�X�s���u�1��2�X�s��
t − s�λ1� exp�∫ s0 �β − 2αu��X�r�� s − r�λ1�dr� for some λ1 < λ0. Thus, we
conclude that (2.38) holds with the left-hand side replaced by u�2��x� t�λ0�,
which is just the integrated form of (2.14). ✷

Proof of Theorem 2. The proof is embedded in the proof of Theorem 1.
Indeed, comparing (2.24) and (2.35), recalling that by assumption

∫∞
0 
α�Ttf�2�

µ�dt < ∞ for f ∈ C+
c �D�, and letting t → ∞ shows that

lim sup
t→∞

∫
� �D�


Ttf�η�2 dζ�µ�
∞ �η� ≤ 
f�µ�2�(2.39)

But then from (2.25) and (2.39) we conclude that

lim
t→∞

∫
� �D�


Ttf�η�2 dζ�µ�
∞ �η� = 
f�µ�2�(2.40)

Using the notation established preceding the statement of Theorem 2, we can
write the term 
Ttf�η� in (2.40) as 
f�T∗

tη�. Since ∫
� �D�
f�T∗

tη�dζ�µ�
∞ �η�

= 
f�µ�, it follows from (2.40) that

lim
t→∞

∫
� �D�

(
f�T∗
tη� − 
f�µ�)2 dζ�µ�

∞ �η� = 0�(2.41)

By the definition of T∗
t ζ

�µ�
∞ , (2.41) can be written as

lim
t→∞

∫
� �D�

(
f�η� − 
f�µ�)2 dT∗
t ζ

�µ�
∞ �η� = 0�(2.42)
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Since (2.42) holds for all f ∈ C+
c �D�, it follows that w− limt→∞T∗

t ζ
�µ�
∞ = δµ. ✷

3. Proofs of Theorems 3 and 5.

Proof of Theorem 3. (i) By Proposition 2(iii), π
ζ

�µρ�
∞

≤ µρ, and by Proposi-
tion 2(i), π

ζ
�µρ�
∞

∈ Cinv
L̃

�D�. Since µρ is minimal in Cinv
L̃

�D�, it follows that there
exists a cρ ∈ �0�1� such that π

ζ
�µρ�
∞

= cρµρ.
We now show that cρ�α� is nonincreasing in α. From (1.1) and the definition

of ζ
�µρ�
∞ , we have∫

� �D�
exp�−
λf�η��dζ�µρ�

∞ �η� = lim
t→∞

exp
(−
uλf�·� t�� µρ�

)
�(3.1)

Denote the right-hand side of of (3.1) by H�λ� α�. By the maximum principle,
uλf is decreasing in its dependence on α; thus H�λ� α� is nondecreasing in its
dependence on α. Similar to the proof of Proposition 2(i), we have


f�π
ζ

�µρ�
∞

� = lim
λ→0

1 −H�λ� α�
λ

�

Thus, π
ζ

�µρ�
∞

is nonincreasing in α. Since π
ζ

�µρ�
∞

= cρ�α�µρ, it follows that cρ�α�
is nonincreasing in its dependence on α.
(ii) Let µ satisfy (1.9). From (1.1) and (2.9) we have

Eδµ exp
(−
f�X�t��)

= exp
(−
uf�·� t�� µ�)

= exp
(

−
〈
uf�·� t��

∫
4̃inv0

µρmµ�dρ�
〉)

= exp
(

−
∫
4̃inv0


uf�·� t�� µρ�mµ�dρ�
)

= exp
(

−
∫
4̃inv0

〈
Ttf−

∫ t
0
Tt−s�αu2f�·� s��ds�µρ

〉
mµ�dρ�

)

= exp
(

−
∫
4̃inv0

〈
f−

∫ t
0
αu2f�·� s�ds�µρ

〉
mµ�dρ���

Thus, ∫
� �D�

exp�−
f�η��dζ�µ�
∞ �η�

= lim
t→∞

Eδµ exp�−
f�X�t���

= exp
(

−
∫
4̃inv0

〈
f−

∫ ∞

0
αu2f�·� s�ds�µρ

〉
mµ�dρ���

(3.2)
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The proof of Proposition 2(iii) showed that


f�πµρ� = 
f�µρ� − lim
λ→0

1
λ

∫ ∞

0

αu2λf�·� t�� µρ�dt�

Combining this with part (i) of the present theorem, we obtain

cρ�α�
f�µρ� = 
f�µρ� − lim
λ→0

1
λ

∫ ∞

0

αu2λf�·� t�� µρ�dt�(3.3)

Thus, substituting (3.3) in the right hand side of (3.2), replacing f by λf in
(3.2), differentiating in λ and setting λ = 0, it follows that (1.10) holds.
(iii) One direction is trivial. For the other direction, assume that π

ζ
�µ1�
∞

=
π
ζ

�µ2�
∞
. By (1.10) and the uniqueness of the Martin representation, it follows

that the Martin measures mµ1
and mµ2

coincide on the set �ρ� cρ > 0�. On the
other hand, if cρ = 0, then by (i), ζ

�µρ�
∞ = δ0 and thus from (1.5),

exp
(

−
〈
f−

∫ ∞

0
αu2f�·� t�dt�µρ

〉)
= 1�

Using these two facts and applying (3.2) to µ1 and µ2 shows that∫
� �D�

exp
(−
f�η�)dζ�µ1�

∞ �η� =
∫
� �D�

exp
(

−
f�η�
)
dζ

�µ2�
∞ �η��

and thus ζ�µ1�
∞ = ζ�µ2�

∞ . ✷

Proof of Theorem 5. Applying (1.7) with α = 1
h
and µ = hmsym, it is

enough to show that ∫ ∞

0

〈�Ttf�2�msym
〉
dt < ∞�

for f ∈ C+
c �D�. Denote the kernel for the semigroup Tt by p�t� x� y�. The sym-

metry assumption gives p�t� x� y�msym�x� = p�t� y� x�msym�y�. By assump-
tion, L on D is subcritical; let G�x�y� ≡ ∫∞

0 p�t� x� y�dt denote its Green’s
function. We have∫ ∞

0

�Ttf�2�msym�dt

=
∫ ∞

0
dt

∫
D
msym�x�dx

∫
D
dy p�t� x� y�f�y�

∫
D
dz p�t� x� z�f�z�

=
∫ ∞

0
dt

∫
D
dx

∫
D
dyp�t� y� x�f�y�msym�y�

∫
D
dz p�t� x� z�f�z�

=
∫ ∞

0
dt

∫
D
dy

∫
D
dzp�2t� y� z�f�y�msym�y�f�z�

= 1
2

∫
D
dy

∫
D
dzG�y� z�f�y�msym�y�f�z� < ∞�

where the last inequality follows from the fact that f is compactly supported.
✷
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4. Proofs of Theorems 4 and 7.

Proof of Theorem 4. (i) Using (1.7), it suffices to prove that if (1.11)
holds, then ∫ ∞

0
dt

∫
Rd
dx α�x��Ttf�2�x� < ∞�

[Actually, we will show that the finiteness of the above integral is equivalent
to (1.11). The equivalence is useful with regard to Problem 3.] We have∫

Rd
α�x��Ttf�2�x�dx

= �2πt�−d
∫
Rd
dx

∫
Rd
dy

∫
Rd
dz exp

(
−�y− x�2 + �z− x�2

2t

)

× f�y�f�z�α�x��

(4.1)

From the inequality 2�x · y� ≤ �x�2
2 + 2�y�2 and the fact that f is compactly

supported, it follows that there exists a C > 0 such that

1
C
exp

(
−�x�2

2t

)
f�y�f�z� ≤ exp

(
−�y− x�2 + �z− x�2

2t

)
f�y�f�z�

≤ C exp
(

−�x�2
2t

)
f�y�f�z��

(4.2)

From (4.1), (4.2) and the fact that f is compactly supported, it follows that
there exists a K > 0, depending on f, such that

1
Ktd

∫
Rd
exp

(
−�x�2

2t

)
α�x�dx

≤
∫
Rd
α�x��Ttf�2�x�dx ≤ K

td

∫
Rd
exp

(
−�x�2

2t

)
α�x�dx�

(4.3)

Integrating both sides of (4.3) in t and making the change of variables s = 2t
on the right-hand side, it follows that

∫∞
0 dt

∫
Rd dx α�x��Ttf�2�x� < ∞ if and

only if (1.11) holds. The final statement of part (i) follows after a standard
calculation using (1.11).
(ii) Using (1.8), it suffices to prove that if (1.12) holds, then

lim
t→∞

∫
Rd
uf�x� t�dx = 0�(4.4)

Integrating (2.9) gives∫
Rd
uf�x� t�dx =

∫
Rd
f�x�dx−

∫ t
0

∫
Rd
α�x�u2f�x� s�dxds�(4.5)

It follows that
∫
Rd uf�x� t�dx is monotone decreasing in t. Thus, to prove (4.4),

it is enough to show that there exists a sequence �tn� satisfying limn→∞ tn = ∞
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and such that

lim
n→∞

∫
Rd
uf�x� tn�dx = 0�(4.6)

Let k > 0 be as in (1.12) and let

r�t� = t1/2�log t�k and D�t� = {
x ∈ Rd� �x� < r�t�}�

Since uf ≤ Ttf, (4.6) will hold if we show that

lim
t→∞

∫
Rd−D�t�

Ttf�x�dx = 0(4.7)

and that

lim
n→∞

∫
D�tn�

uf�x� tn�dx = 0�(4.8)

We begin with (4.7). Again using the inequality 2�x · y� ≤ 1
2 �x�2 + 2�y�2 and

the fact that f is compactly supported, we have∫
Rd−D�t�

Ttf�x�dx

=
∫

�x�≥r�t�

∫
Rd

�2πt�−d/2 exp
(

−�y− x�
2t

)
f�y�dydx

≤ Ct−d/2
∫

�x�≥r�t�
exp

(
−�x�2

4t

)
dx = C1t

−d/2
∫ ∞

r�t�
exp

(
−r

2

4t

)
rd−1 dr

= C1

∫ ∞

t−1/2r�t�
exp

(
−u

2

4

)
ud−1 du�

(4.9)

Since r�t� = t1/2�log t�k, it follows from (4.9) that (4.7) holds.
We now prove (4.8). From (4.5), it follows that

∫∞
0

∫
Rd α�x�u2f�x� t�dxdt <

∞. Thus, there exists a sequence �tn� satisfying limn→∞ tn = ∞ and such that∫
Rd
α�x�u2f�x� tn�dx ≤ 1

tn log tn
�(4.10)

[For otherwise, we would have
∫
Rd α�x�u2f�x� t�dx > 1

t log t , for all large t, and
this would contradict the fact that

∫∞
0

∫
Rd α�x�u2f�x� t�dxdt < ∞.] Using the

Schwarz inequality along with (4.10), we have∫
D�tn�

uf�x� tn�dx ≤
(∫
D�tn�

α�x�u2f�x� tn�dx
)1/2(∫

D�tn�
1
α�x� dx

)1/2

≤
(

1
tn log tn

∫
D�tn�

1
α�x� dx

)1/2

�

(4.11)

Now (4.8) follows from (1.12) and (4.11). The final statement of part (ii) follows
by a straightforward calculation.
(iii) We need to show that (4.4) holds. By the maximum principle, uf is

monotone nonincreasing in its dependence on α. Thus, it is enough to prove
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(4.4) in the case that α is compactly supported. The proof we give is just a
slight variation of the proof of Lemma 2.4.1 in [5] which treats the case of a
single point catalyst; that is, the case that α is a delta-function. Let p�t� x� y� =
�2πt�−1/2 exp

(− �y−x�2
2t

)
. By self-similarity, we have kp�k2t� kx� ky� = p�t� x� y�.

Using this and (2.9), we have

t1/2uf�t1/2x� t� =
∫
R
p�1� x� t−1/2y�f�y�dy

−
∫ t
0
ds

∫
R
dyp

(
1 − s

t
� x� t−1/2y

)
α�y�u2f�y� s��

(4.12)

Replacing x by xt in (4.12) and assuming that limt→∞ xt = x ∈ R, it follows
from the dominated convergence theorem that the first term on the right-hand
side of (4.12) satisfies

lim
t→∞

∫
R
p�1� xt� t−1/2y�f�y�dy = p�1� x�0���f��1�(4.13)

We break the second term on the right-hand side of (4.12) into two parts. Fix
η ∈ �0�1� and note that uf�x� s� ≤ ∫

R p�s� x� y�f�y�dy ≤ �2πηt�− 1
2 ��f��1, for

s ≥ ηt. Using this, we have
∫ t
ηt
ds

∫
R
dyp

(
1 − s

t
� xt� t

−1/2y
)
α�y�u2f�y� s�

≤ �f�21
∫ t
ηt
ds

∫
R
dy

t1/2

�2π�3/2ηt�t− s�1/2α�y�

= 2��f��21��α��1
�2π�3/2

�1 − η�1/2
η

�

(4.14)

On the other hand, from (4.5) we have
∫∞
0 dt

∫
R dy α�y�u2f�y� t� < ∞, and thus

the dominated convergence theorem gives

lim
t→∞

∫ ηt
0
ds

∫
R
dyp

(
1 − s

t
� xt� t

−1/2y
)
α�y�u2f�y� s�

= p�1� x�0�
∫ ∞

0
dt

∫
R
dyα�y�u2f�y� t��

(4.15)

Since the right-hand side of (4.14) goes to 0 as η → 1, we conclude from
(4.12)–(4.15) that

lim
t→∞

t1/2uf�t1/2xt� t� = p�1� x�0�
(

��f��1 −
∫ ∞

0
dt

∫
R
dyα�y�u2f�y� t�

)
�(4.16)

It is easy to check that the above convergence is uniform over all paths �xt�t≥0
which satisfy limt→∞ xt = x. Thus, choosing xt = z

t1/2
, for z ∈ R, squaring both

sides of (4.16), multiplying by α�z� and then integrating over z in R and using
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the fact that α is compactly supported, we obtain

lim
t→∞

t
∫
R
a�z�u2f�z� t�dz

= �α�1p2�1�0�0�
(

��f��1 −
∫ ∞

0
dt

∫
R
dyα�y�u2f�y� t�

)2

�

(4.17)

Since
∫∞
0 dt

∫
R dyα�y�u2f�y� t� < ∞, it follows that lim inf t→∞ t

∫
R α�y� ×

u2f�y� t�dy = 0. [For otherwise, we would have
∫
R α�y�u2f�y� t�dy ≥ c

t
, for

some c > 0 and all large t, and this would contradict the fact that
∫∞
0 dt

∫
R dy

α�y�u2f�y� t� < ∞.] Thus, the right-hand side of (4.17) must equal 0; that is,

�f�1 =
∫ ∞

0
dt

∫
R
dyα�y�u2f�y� t��(4.18)

We now conclude from (4.18) and (4.5) that limt→∞
∫
R uf�x� t�dx = 0. ✷

Proof of Theorem 7. We may dispense with the inequalities on α and
assume that α�x� = 1

hη�x� = exp�−η · x�. Let µ�x� = hν�x�msym�x� = exp��ν +
2b� · x�, where ν ∈ S. To prove the theorem, we will show that (1.7) holds if η
and d are as in part (i) or part (iii) of the proposition, and that (1.8) holds if
η and d are as in part (ii) or part (iv).
We begin with parts (i) and (iii). The diffusion process Y�t� corresponding

to L0 = 1
2#+ b · ∇ can be represented as Y�t� = B�t� + bt, where B�t� is a d-

dimensional Brownian motion. Thus, Ttf�x� = ∫
Rd�2πt�−d/2 exp�− �y−x−bt�2

2t � ×
f�y�dy. We have

∫ ∞

0

α�Ttf�2� µ�dt

=
∫
Rd×Rd

dydzf�y�f�z�
∫ ∞

0
dt

∫
Rd
dx�2πt�−d

× exp
(

−�y− x− bt�2
2t

− �z− x− bt�2
2t

)
× exp

(�ν + 2b− η� · x)�

(4.19)

Simplifying the expression in the exponential above, we have

−�y− x− bt�2
2t

− �z− x− bt�2
2t

+ �ν + 2b− η� · x

= −1
t

∣∣∣∣x−
(
y+ z+ νt− ηt

2

)∣∣∣∣
2

+ �y+ z+ νt− ηt�2
4t

− �y− bt�2
2t

− �z− bt�2
2t

�

(4.20)
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Using (4.20), we have∫
Rd
dx�2πt�−d exp

(
−�y− x− bt�2

2t
− �z− x− bt�2

2t

)
exp��ν + 2b− η� · x�

= 2−d�πt�−d/2 exp
( �y+ z+ νt− ηt�2

4t
− �y− bt�2

2t
− �z− bt�2

2t

)

= 2−d�πt�−d/2 exp
(( �ν − η�2

4
− �b�2

)
t− �y− z�2

4t

+ 1
2

�y+ z� ν − η� + �y+ z� b�
)
�

(4.21)

Since the diameter of S is 2�b�, it follows that if η ∈ S, then �ν−η�2
4 − �b�2 ≤

0 and the inequality is strict if and only if η �= −ν − 2b. Using this fact
along with (4.19), (4.21) and the fact that f has compact support, if follows
that

∫∞
0 
α�Ttf�2� µ�dt < ∞ if the conditions in part (i) or part (iii) of the

proposition hold.
We now turn to parts (ii) and (iv). We use the method and notation employed

above to prove part (ii) of Theorem 4. For any vector w ∈ Rd, define Dw�t� =
D�t� +wt, where D�t� is as defined between (4.6) and (4.7). Analogous to (4.7)
and (4.8), it suffices to show for an appropriate choice of w that

lim
t→∞

∫
Rd−Dw�t�

Ttf�x�hν�x�msym�x�dx = 0(4.22)

and that

lim
n→∞

∫
Dw�tn�

uf�x� tn�hν�x�msym�x�dx = 0�(4.23)

Let p�t� x� y� = �2πt�−d/2 exp
(− �y−x−bt�2

2t

)
denote the transition probability

density for Tt. We have∫
Rd−Dw�t�

Ttf�x�hν�x�msym�x�dx

=
∫
Rd
dy

∫
Rd−Dw�t�

dxp�t� x� y�f�y�hν�x�msym�x�

=
∫
Rd
dy

∫
Rd−Dw�t�

dxp�t� y� x�f�y�hν�x�msym�y�

=
∫
Rd
dy

∫
Rd−Dw�t�

dxphν�t� y� x�f�y�hν�y�msym�y�

=
∫
Rd
dy f�y�hν�y�msym�y�� hν

y �Y�t� ∈ Rd −Dw�t���

(4.24)

where phν�t� x� y� = 1
hν�x�p�t� x� y�hν�y� is the transition probability function

for the h-transformed operator Lhν = L+ ∇hν
hν

·∇ = 1
2#+�b+ν�·∇ and �

hν
y is the

solution to the martingale problem for Lhν . Since the diffusion process Y�t�
corresponding to Lhν can be represented as Y�t� = B�t� + �b+ ν�t, where B�t�
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is a Brownian motion, it follows that � hν

y �Y�t� ∈ Rd −Dw�t�� = � B
y �Y�t� ∈

Rd−Dw−b−ν�t��, where � B
y denotes Wiener measure starting from y. Thus, if

we choose w = b+ ν, then we have from (4.24) that

∫
Rd−Dw�t�

Ttf�x�hν�x�msym�x�dx

=
∫
Rd
dy f�y�hν�y�msym�y�� B

y �Y�t� ∈ Rd −D�t���
(4.25)

Now by symmetry, it follows that the quantity
∫
Rd−D�t�Ttf�x�dx appearing on

the left-hand side of (4.7) can be written as
∫
Rd f�y�� B

y �Y�t� ∈ Rd −D�t��dy.
Using this along with (4.25) and the fact that f has compact support, it follows
that (4.7) and (4.22) are equivalent when w = b+ν. Since we’ve already proved
(4.7), this proves (4.22) with w = b+ ν.
We now show that (4.23) holds for w = b + ν Assume first that (ii) holds

so that d = 1 or 2, η = −ν − 2b and α�x� = exp�−η · x�. [In this case, we
will actually show that (4.23) holds for any w.] Note then that 1

α
hνmsym ≡ 1.

Recall that �Dw�t�� = �D�t�� = c�r�t��d = ct
d
2 �log t�dk. Arguing as in the proof

of Theorem 4, but using hνmsym dx in place of dx, it follows analogous to (4.10)
that there exists a sequence �tn� with limn→∞ tn = ∞ such that

∫
Rd
α�x�u2f�x� tn�hν�x�msym�x�dx ≤ 1

tn log tn
�(4.26)

Using the Schwarz inequality along with (4.26) gives

∫
Dw�t�

uf�x� tn�hν�x�msym�x�dx

≤
(

1
tn log tn

∫
Dw�tn�

1
α�x�hν�x�msym�x�dx

)1/2

=
(

1
tn log tn

�Dw�tn��
)1/2

=
(

c

tn log tn
td/2n �log tn�dk

)1/2

�

(4.27)

The parameter k > 0 is arbitrary; thus choosing k < 1
2 and using the fact that

d ≤ 2, it follows from (4.27) that (4.23) holds.
Now assume that (iv) holds so that η = −ν − 2b − s�ν + b�, for some s > 0

and α�x� = exp�−η · x�. Unlike in the case above, in this case we will need
the fact that w = b + ν. Note that � 1

α
hνmsym��x� = exp�−s�ν + b� · x�. Then
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analogous to (4.27) we have∫
Dw�t�

uf�x� tn�hν�x�msym�x�dx

≤
(

1
tn log tn

∫
Dw�tn�

exp�−s�ν + b� · x�dx
)1/2

=
(

1
tn log tn

exp�−stn�ν + b�2�
∫
D�tn�

exp�−s�ν + b� · x�dx
)1/2

≤
(
c
t
d/2
n �log tn�dk
tn log tn

exp�−stn�ν + b�2� exp�s�ν + b�t1/2n �log tn�k�
)1/2

�

(4.28)

Since ν ∈ S, we have �ν + b� = �b� > 0. Thus, (4.23) follows from (4.28). ✷

5. Proof of Theorem 6. We will prove the theorem under the assumption
that (1.16) holds. Then we will show how to modify it in the case that (1.17)
holds. We will show that ζ

�h1msym�
∞ = δ0 if α ≥ 1

h2
. An identical argument of

course works with the roles of h1 and h2 switched. By (1.8), it is enough to show
that limt→∞

∫∞
−∞ uf�x� t�h1�x�msym�x�dx = 0. Integrating (2.9) against the

invariant measure h1msym gives (4.5) with dx replaced by h1msym dx and thus
shows that

∫∞
−∞ uf�x� t�h1�x�msym�x�dx is decreasing in t. Thus it suffices to

show that limn→∞
∫∞

−∞ uf�x� tn�h1�x�msym�x�dx = 0 for some sequence �tn�
with limn→∞ tn = ∞.
Since uf ≤ Ttf, it suffices to prove that for each ε > 0 there exists a time

dependent interval Iε�t� = �cε�t�� dε�t�� and a sequence �tn� with limn→∞ tn =
∞ such that

lim
n→∞

∫
Iε�tn�

uf�x� tn�h1�x�msym�x�dx = 0(5.1)

and

lim
t→∞

∫
R−Iε�t�

Ttf�x�h1�x�msym�x�dx ≤ ε�(5.2)

We begin by estimating the integral in (5.2). Let p�t� x� y� denote the tran-
sition probability density for the semigroup Tt. We have∫

R−Iε�t�
Ttf�x�h1�x�msym�x�dx

=
∫
R−Iε�t�

dx
∫ ∞

−∞
dy p�t� x� y�f�y�h1�x�msym�x�

=
∫
R−Iε�t�

dx
∫ ∞

−∞
dy p�t� y� x�f�y�h1�x�msym�y�

=
∫
R−Iε�t�

dx
∫ ∞

−∞
dy ph1�t� y� x�f�y�h1�y�msym�y��

(5.3)
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where ph1�t� x� y� = 1
h1�x�p�t� x� y�h1�y� is the transition probability density

corresponding to the h-transformed operator Lh10 = L0 + ah′
1
h1

d
dx

(see [12], Sec-
tion 4.1).
Let � h1. denote the solution to the generalized martingale problem for the

operator Lh10 . Since h1�x� = ∫ x
−∞ dz exp�− ∫ z

0
2b
a

�y�dy� = c�x�limt→∞Y�t� =
∞�, where c = 1

h1�∞� ([12], Section 5.1), it follows ([12], Section 7.2) that

� h1. � � = �.
(∣∣∣ lim

t→∞
Y�t� = ∞

)
�(5.4)

From (5.3) we have∫
R−Iε�t�

Ttf�x�h1�x�msym�x�dx

=
∫ ∞

−∞
f�y�h1�y�msym�y�� h1

y �Y�t� ∈ R− Iε�t��dy�
(5.5)

Let γf = �supp�f�� supy�fh1msym��y�. We want to choose Iε�t� so that

lim
t→∞

� h1
y �Y�t� ∈ Iε�t�� > 1 − ε

γf
� uniformly over supp�f��(5.6)

If (5.6) holds, then (5.2) will follow from (5.5). Since by (5.4); � h1. �limt→∞Y�t�
= ∞� = 1, we may assume that limt→∞ cε�t� = ∞.
Now consider the integral in (5.1). Applying the Schwarz inequality gives∫

Iε�tn�
uf�x� t�h1�x�msym�x�dx

≤
(∫
Iε�tn�

αu2f�x� t�h1�x�msym�x�dx
)1/2

×
(∫
Iε�tn�

1
α�x�h1�x�msym�x�dx

)1/2

�

(5.7)

Arguing as in the proof of Theorem 4, but using h1msym dx in place of dx, it
follows analogous to (4.10) that there exists a sequence �tn� with limn→∞ tn =
∞ such that ∫

R
α�x�u2f�x� tn�h1�x�msym�x�dx ≤ 1

tn log tn
�(5.8)

This gives an upper bound along a sequence �tn� for the first term on the
right-hand side of (5.7). For the second term, we use the bound α ≥ 1

h2
to

obtain ∫
Iε�t�

1
α�x�h1�x�msym�x�dx ≤

∫
Iε�t�

h1�x�h2�x�msym�x�dx

≤ c
∫
Iε�t�

h2�x�msym�x�dx�
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By (1.15) and (1.16), we have

h2�x�msym�x� = 1
a�x� exp

(∫ x
0

2b
a

�y�dy
) ∫ ∞

x
exp

(
−
∫ y
0

2b
a

�z�dz
)
dy�

One can check, using Assumption 1, that

lim
x→∞

�∫∞
x exp�− ∫ y

0
2b
a

�z�dz�dy�′(
a
2b�x� exp�− ∫ x

0
2b
a

�y�dy�
)′ = 1�

thus, by l’Hôpital’s rule,

lim
x→∞2b�x�h2�x�msym�x� = 1�(5.9)

We want to choose Iε�t� so that∫
Iε�t�

1
b�s� ds = o�t log t� as t → ∞�(5.10)

If (5.10) holds, then (5.1) will follow from (5.7)–(5.9) along with the fact that
cε�t�, the left-hand endpoint of R− Iε�t�, satisfies limt→∞ cε�t� = ∞.
Thus, to complete the proof, we must choose Iε�t� such that (5.6) and (5.10)

hold. We use a result in [11] which studies the asymptotic behavior of certain
one-dimensional diffusions. It is here that we make essential use of Assump-
tion 1. We are assuming that (1.16) is in effect; thus, it follows from Assump-
tion 1 that b�x� = d1x

k1 and a�x� = c1x
l1 for x � 1, where l1 − 1 < k1 < 1

and d1� c1 > 0. Choose x0 > 0 such that the above equalities hold for x ≥ x0.
Let µx�t� = �x1−k1 + d1�1 − k1�t�1/�1−k1�, for t ≥ x0 and note that µx solves
the equation µ′�t� = b�µ�t�� and µ�0� = x. Let ψ�t� = ∫ t

x0

a
b3

�x�dx, for t ≥ x0.
Note from Assumption 1 that ψ�∞� < ∞ if and only if l1 − 3k1 + 1 < 0. Under
Assumption 1, the conditions required for Theorem 3-ii-a or 3-ii-b in [11] to
hold are met. This theorem concerns the behavior of the diffusion correspond-
ing to �. on the event �limt→∞Y�t� = ∞�, which by (5.4) is equivalent to the
behavior of the diffusion corresponding to � h1. . Translating this theorem into
our notation, it follows that

if ψ�∞� < ∞� then Y�t�−µx�t�
b�µx�t�� converges a.s. � h1

x as t → ∞
to a nondegenerate limit for each x ≥ x0

(5.11)

and

if ψ�∞� = ∞� then Y�t�−µx�t�
b�µx�t�� = B�ψ�µx�t��� + o�ψ1/2�µx�t���

as t → ∞� in �
h1
x probability, for each x ≥ x0� where B�t�

is a standard Brownian motion�
(5.12)

If (5.11) holds, then for each ε > 0 and each x ≥ x0, there exists an Nε�x�
such that

lim
t→∞

� h1
x

(�Y�t� − µx�t�� ≤ Nε�x�b�µx�t��) ≥ 1 − ε

γf
�
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Let x1 = max�sup�supp�f��� x0�. By the strong Markov property and the fact
that the diffusion is transient to +∞ under � h1. , it then follows that for each
ε > 0 there exists anMε such that

lim
t→∞

� h1
x

(�Y�t� − µx1�t�� ≤ Mεb�µx1�t��) ≥ 1 − ε

γf
for all x ∈ supp�f��(5.13)

If, on the other hand, (5.12) holds, then since the law of the iterated loga-
rithm guarantees that a Brownian motion B�t� almost surely satisfies B�t� ≤
�t log t�1/2 for sufficiently large t, if follows that for each x ≥ x0,

lim
t→∞

� h1
x

(�Y�t� − µx�t�� ≤ b�µx�t��ψ1/2�µx�t�� logψ�µx�t��) = 1�

As above, an application of the strong Markov property allows us to conclude
that for each ε > 0 there exists an mε such that

lim
t→∞

� h1
x

(
�Y�t� − µx1�t�� ≤ mεb�µx1�t��ψ1/2�µx1�t�� logψ�µx1�t��

)

≥ 1 − ε

γf
� for all x ∈ supp�f��

(5.14)

Recall the definitions of a� b�µx and ψ in the paragraph following (5.10).
We have for some A > 0,

(
d1�1 − k1�t

)1/�1−k1�

≤ µx1�t� ≤ �d1�1 − k1�t�1/�1−k1� +Atk1/�1−k1� for t ≥ 1�
(5.15)

Also, for some B1�B2 > 0,

B1t
k1/�1−k1� ≤ b�µx1�t�� ≤ B2t

k1/�1−k1� for t ≥ 1�(5.16)

In the case that ψ�∞� = ∞, we have

ψ�t� =




c1

d31�l1 − 3k1 + 1�
(
tl1−3k1+1 − xl1−3k1+1

0

)
� for l1 − 3k1 + 1 > 0�

c1

d31
log

t

x0
� for l1 − 3k1 + 1 = 0�

Thus, for some C > 0,

ψ�µx1�t�� ≤
{
Ct�l1−3k1+1�/1−k1� if l1 − 3k1 + 1 > 0�

C log t� if l1 − 3k1 + 1 = 0�
(5.17)
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We now prescribe Iε�t�. For t > 3 and some Dε > 0, define

Iε�t�=




{
y� ∣∣�d1�1−k1�t�1/�1−k1� −y∣∣≤Dεtk1/�1−k1�}�

if l1−3k1+1<0�{
y� ∣∣�d1�1−k1�t�1/�1−k1� −y∣∣≤Dεtk1/�1−k1��logt�1/2loglogt}�

if l1−3k1+1=0�{
y� ∣∣�d1�1−k1�t�1/�1−k1� −y∣∣≤Dεt�l1−k1+1�/�2�1−k1�� logt

}
�

if l1−3k1+1>0�

(5.18)

It then follows from (5.13)–(5.18) that if Dε is sufficently large, then (5.6)
holds.
We now show that (5.10) also holds with this choice of Iε. Recall that b�x� =

d1x
k1 for x ≥ x0. Using (5.18) and doing a little calculation, one finds that there

exists a cε > 0 such that for t > 3,

∫
Iε�t�

1
b�s� ds ≤



cε� if l1 − 3k1 + 1 < 0�

cε�log t�1/2 log log t� if l1 − 3k1 + 1 = 0�

cεt
�l1−3k1+1�/�2�1−k1�� log t� if l1 − 3k1 + 1 > 0�

(5.19)

The inequality l1−3k1+1
2�1−k1� < 1 is equivalent to k1 > l1 − 1, and this latter in-

equality is contained in Assumption 1. Thus, (5.10) follows from (5.19).
We now describe the changes to be made in the above proof when (1.17)

is assumed to hold instead of (1.16). There are two cases. In the case that
ζ0 = h2msym and α ≥ 1

h1
, the proof is exactly the same as the above proof

except that the roles of h1 and h2 have to be switched. Now consider the case
that ζ0 = h1msym and α ≥ 1

h2
. One follows the proof as above up through

the paragraph containing (5.10), the only thing to point out being that in
applying l’Hôpital’s rule to get (5.9), the indeterminate form will now be ∞

∞
rather than 0

0 .
At that point in the proof, we appealed to a result in [11]. We noted that the

conditions on the coefficients of the operator L0 met the requirements of a the-
orem in [11] which gives the asymptotic behavior of the diffusion Y�t� under
�. (that is, the diffusion corresponding to L0) on the event �limt→∞Y�t� =
∞�. Since � h1. is related to �. by (5.4) and since in the case treated above
�.�limt→∞Y�t� = ∞� > 0, this theorem then also gave the asymptotic behav-
ior of Y�t� under � h1. , and it is this latter behavior that we needed. In the
present case, �.�limt→∞Y�t� = ∞� = 0. Thus, we must apply the theorem in
[11] directly to the � h1. -diffusion corresponding to the operator Lh10 . We have

L
h1
0 = 1

2
a
d2

dx2
+ b̃ d

dx
where b̃ = b+ ah

′
1

h1
�

Using Assumption 1, one can check that the conditions needed for Theorem
5 in [11] to hold are met for the operator Lh10 . One now needs to calculate
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the quantities µx�t� and ψ�t� for this operator. The l’Hôpital’s rule argument
alluded to above shows that

lim
t→∞

a

2b
�t�h

′
1

h1
�t� = −1�

By Assumption 1, b�x� = d1x
k1 for x � 1 where d1 < 0 [if d1 > 0, then case

(1.16) would hold]. Thus, the operator Lh1 has diffusion coefficient a�x� = c1xl1
for x � 1 and drift coefficient b̃ satisfying limt→∞

b̃�t�
�d1�tk1 = 1. In light of this,

we obtain the same order asymptotics for µx�t� and ψ�t� as in the previous
case and the proof goes through in a similar fashion. ✷

Remark. After some preliminary estimates, the proof of Theorem 6 came
down to finding intervals Iε�t� which satisfy (5.6) and (5.10). We used Theorem
5-ii-a and 3-ii-b in [11] to find appropriate Iε�t�’s so that (5.6) would hold
and then showed that these Iε�t�’s also work for (5.10). Now the conditions
required in [11] for Theorem 3-ii-a and 3-ii-b to hold are considerably more
generic than the conditions in our Assumption 1; thus, with our choice of
Iε�t�’s, (5.6) will hold under the more general conditions in [11]. These more
generic conditions pose a problem, however, when it comes to verifying (5.10).
A Taylor series expansion shows that everything works out nicely up to first-
order terms, but we could not see how to control the second-order terms in
a satisfactory manner unless we assumed that the diffusion coefficent a�x�
and the drift b�x� were asymptotically equivalent to powers of x. Thus, our
proof of Theorem 6 holds when a�x� and b�x� are asymptotically equivalent to
powers of x. In Assumption 1, we have assumed that a�x� and b�x� are exactly
powers of x for large �x� only because this simplifies considerably some of the
calculations.
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