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OPTIMIZATION OF SHAPE IN CONTINUUM PERCOLATION

By Johan Jonasson

Chalmers University of Technology

We consider a version of the Boolean (or Poisson blob) continuum per-
colation model where, at each point of a Poisson point process in the Eu-
clidean plane with intensity λ, a copy of a given compact convex set A with
fixed rotation is placed. To eachA we associate a critical value λc�A� which
is the infimum of intensities λ for which the occupied component contains
an unbounded connected component. It is shown that min�λc�A� � A con-
vex of area a� is attained if A is any triangle of area a and max�λc�A� � A
convex of area a� is attained for some centrally symmetric convex set A of
area a.

It turns out that the key result, which is also of independent inter-
est, is a strong version of the difference-body inequality for convex sets
in the plane. In the plane, the difference-body inequality states that for
any compact convex set A, 4µ�A� ≤ µ�A ⊕ Ǎ� ≤ 6µ�A� with equality to
the left iff A is centrally symmetric and with equality to the right iff A
is a triangle. Here µ denotes area and A⊕ Ǎ is the difference-body of A.
We strengthen this to the following result: For any compact convex set A
there exist a centrally symmetric convex set C and a triangle T such that
µ�C� = µ�T� = µ�A� and C⊕ Č ⊆ A⊕ Ǎ ⊆ T⊕ Ť with equality to the left
iff A is centrally symmetric and to the right iff A is a triangle.

1. Introduction. We begin by introducing the necessary basics on con-
tinuum percolation and start by pointing out the book of Meester and Roy
[1] as general reference. A continuum percolation model is classically defined
by a pair �X	F�, where X is some random point process and F is a distri-
bution function for some random variable with support in �0	∞�. This is to
be interpreted in the following way: Given X, let �xj�∞j=1 be the points of X,
that is, the set of points u ∈ R2 such that X�u� = 1. To each xj we associate
a ball Sj centered at the origin and the Sj’s are given independent random
radii distributed according to F. (There are some mathematical details hidden
here and we refer to [1] for those.) The occupied component is defined as the
set S = ⋃∞

j=1��xj�⊕Sj�. The fundamental question in continuum percolation
theory is whether S contains some unbounded connected component.

The most well-known and well-studied continuum percolation model is the
Poisson Boolean model (or the Poisson blob model) where X is a (spatially
homogeneous) Poisson process with some intensity λ. Here we are only going
to consider the simplest possible Poisson Boolean model, namely the model
�X	1�, that is, the model where Sj = B�0	1�, the unit ball, for all j. For this
model it is known that there exists a critical intensity λc such that if λ < λc
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then S will a.s. contain no unbounded connected component and if λ > λc then
S will a.s. contain an unbounded connected component. (Such a component is
also a.s. unique; see [1], Theorem 4.6.) Also, by [1], Theorem 3.10, we have

0�174 < λc < 0�843�

The question we shall ask ourselves is: If we replace the unit ball B�0	1� by
some other convex set A of the same area, how will this change the probability
for an unbounded connected component? More specifically:

(Q) What choice of A maximizes (or minimizes) the probability for an un-
bounded connected component?

As we shall see, it turns out that the key to answering this question is a
strengthened version of the so called difference-body inequality for compact
convex sets in the Euclidean plane R2. To make this more precise we need a
few definitions.

Definition 1.1. For two setsA and B in C�� �R2��, the family of compact
convex sets in the plane, the Minkowski sum is defined as

A⊕B = �a+ b � a ∈ A	b ∈ B��
The set rA, r ∈ R, is given by rA = �ra � a ∈ A�. The reflected set of A is the
set Ǎ = −1A.

The difference-body of a set A ∈ C�� �R2�� is defined as the set A⊕ Ǎ.

The classical difference-body inequality, first established by Rogers and
Shephard in 1957 (see [3]), states that for any compact convex set A in the
plane

4µ�A� ≤ µ�A⊕ Ǎ� ≤ 6µ�A�	
with equality to the left iff A is centrally symmetric (i.e., if Ǎ = A⊕ �x� for
some x ∈ R2) and equality to the right iff A is a triangle. Here µ denotes area,
that is, Lebesgue measure on ��R2�. (Indeed the difference-body inequality
gives a corresponding statement for arbitrary dimension, not only for the R2-
case. See a later remark for the general formulation.) A proof is found in [4],
Section 7.3.

Our key result, which is also of independent interest, is the following
strengthening of the above.

Theorem 1.2. For any A ∈ C�� �R2�� there exist a centrally symmetric
convex set C and a triangle T such that µ�C� = µ�T� = µ�A� and

C⊕ Č ⊆ A⊕ Ǎ ⊆ T⊕ Ť	
with equality to the left iff A is centrally symmetric and to the right iff A is a
triangle.
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We note at once that the last part of the theorem will follow automatically
from the inclusion part combined with the “ordinary” difference-body inequal-
ity.

Clearly Theorem 1.2 is stronger than the ordinary difference-body inequal-
ity on R2. Therefore one could refer to it as a “strong difference-body inequal-
ity.”

Remark. The ordinary difference-body inequality is, as noted above, not
concerned with R2 only. In general it states for a compact convex set A ⊆ Rn,
n ≥ 1, that

2nµn�A� ≤ µn�A⊕ Ǎ� ≤
(
2n
n

)
µn�A�	

(where µn is n-dimensional volume) with equality to the left iff A is centrally
symmetric and to the right iff A is a simplex. It is natural to ask if Theorem
1.2 could be generalized in a corresponding way. However, as reading through
Section 2 will reveal, trying to use the present methods to give more than a
partial proof of such a generalization seems intractable.

Let us now turn back to question (Q) above. To answer that we start by
making an extension of the model �X	1� to a class of models �X	A� where A
can be any compact convex set with area π. The occupied component is then
defined as SA = ⋃∞

j=1��xj�⊕A�. (Thus �X	1� is now the model �X	B�0	1��.)
Figure 1 illustrates the models �X	B�0	1�� and �X	Te�, where Te is the
equilateral triangle with area π, for λ = 1/4. [Note that Te satisfies Theorem
1.2 with A = B�0	1�.]

Define �A to be the set of locally finite counting measures γ = ∑∞
i=1 δyi on

R2 such that
⋃∞
i=1��yi� ⊕ A� contains an unbounded connected component.

Our question now is: What choice of A maximizes (minimizes) Pλ�X ∈ �A�?
However with Theorem 1.2 at our disposal this question is simple to answer:
The probability in question is maximized for some triangle and minimized for
some centrally symmetric set. This follows from simply combining Theorem
1.2 with the fact that ��xi� ⊕A� ∩ ��xj� ⊕A� �= ∅ iff xj − xi ∈ A ⊕ Ǎ. This
implies that for any A there is a centrally symmetric convex set C and a
triangle T both with area π such that C does worse than A and T does better
than A. (Note that we automatically also get that this holds uniformly over
all distributions of X.)

To each A we can now associate a critical intensity λc�A� with the obvious
interpretation. An immediate consequence of what we just observed is that
for any A with µ�A� = π there exist a centrally symmetric convex set C and
a triangle T with µ�C� = µ�T� = π and

λc�T� ≤ λc�A� ≤ λc�C��
So far we have assumed thatX is a Poisson process, but, as noted in brack-

ets a few lines above, nothing in the argument proving the optimality of some
triangle and some centrally symmetric set used any particular feature of X,
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Fig. 1. A typical outcome of the models �X	B�0	1�� and �X	Te� with λ = 1/4. Note the higher
connectivity for the triangles; as soon as two circles intersect, the corresponding two triangles also
intersect, but the converse often fails.

that is, this optimality holds in complete generality as far as X is concerned.
However, for general X, the form of a triangle may be crucial, but for exam-
ple in the Poisson process case the probability P�X ∈ �T� will be the same
regardless of what triangle T we consider. What we need to require from X
in order for this to hold is that X is invariant under all affine area-preserving
transformations, f, of the plane, that is, that P�X ∈ � � = P�f�X� ∈ � � for
all measurable sets � in the space of locally finite counting measures on R2

and all affine f such that µ�B� = µ�f�B�� for all Borel sets B ⊆ R2. Clearly a
Poisson process has this property, but also any convex combination of Poisson
processes with different intensities. The reason that this suffices is that if T
and T′ are any two triangles with the same area, then there exists some affine
area-preserving transformation taking T to T′ and since the same transforma-
tion takesX to someX′ having the same probabilistic behavior asX, no prob-
abilities have changed. In particular P�X ∈ �T� = P�X′ ∈ �T′ � = P�X ∈ �T′ �.

Now, summing up what we have done thus far we have proved the following.

Theorem 1.3. Let the models �X	A� and the set �A be defined as above.
Then for any A ∈ C�� �R2�� there exist a centrally symmetric set C and a
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triangle T such that µ�C� = µ�T� = µ�A� and
P�X ∈ �C� ≤ P�X ∈ �A� ≤ P�X ∈ �T�

uniformly over all distributions of X. Moreover, if X is invariant under affine
area-preserving transformations then P�X ∈ �T� = P�X ∈ �T′ � for any two
triangles T and T′ of the same area and so in particular any triangle of the
same area as A will do for the above inequality.

Section 2 contains the proof of Theorem 1.2.
Let us conclude this section with a few remarks.

(i) Note that it is not only the case that triangles and centrally symmetric
sets are optimal in the class of convex sets of some given area for the existence
of an unbounded connected component, they are optimal for all increasing
connectivity properties. For example if we define SMA = ⋃

j�xj∈�−M	M�2��xj�⊕A�,
A ∈ C�� �R2��, and let NMA be the number of connected components of SMA ,
then for any A there exist C and T with the same area as A such thatNMT ≤d
NMA ≤d NMC .

(ii) Even ifX is invariant under affine area-preserving transformations we
cannot say that P�X ∈ �C� is the same for all centrally symmetric convex sets
of the same area as we did for triangles; there is not always an affine trans-
formation taking one centrally symmetric convex set to another. Consider, for
example, a circle and a square.

(iii) What we have proved so far implies, for example, that λc�T� ≤ λc
�B�0	1�� for any triangleTwith area π, in particular ifT isTe, the equilateral
triangle with that area π. Since T ⊕ Ť then actually turns out to contain
B�0	 π1/231/4� ⊇ B�0	2�3� it is easily shown that λc�T� is strictly smaller than
λc�B�0	1��. However in general it is not the case that if A is not a triangle,
then there exist a triangle T and an ε > 0 such that T ⊕ Ť ⊇ �1 + ε�A ⊕ Ǎ;
consider, for example, the case when A is a square. Therefore we cannot say
without further ado that for general non-triangles A there exists a triangle T
with the same area having a critical intensity which is strictly lower.

(iv) In a model like �X	A� it would be natural to also add random rota-
tions of the A’s of the occupied component and one can then ask if the same
kind of optimality of triangles still holds. However such a question does not
make sense in this case as any fixed area for the A’s allows for arbitrarily
long “sticks” and such can produce arbitrarily low critical intensities. Perhaps
interesting results could be achieved for the model with random rotations with
further or other restrictions on the A’s.

(v) Neither the problem addressed in this section nor anything similar to
it has, to the very best of my knowledge, been studied before. However, the
paper by Meester, Roy and Sarkar [2] may perhaps be thought of as somewhat
“similar in spirit.” In that paper it is shown for the model �XF	F�, whereXF
is a Poisson process with exactly the critical intensity λc�F� for unbounded
connected components, that the fraction of volume covered by the occupied
component is not independent of F. In particular it is shown that for some
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intensity λ > λc�1��= λc�B�0	1�� one can find a two-point distribution F such
that if X is a Poisson process with intensity λ, then �X	F� covers the same
fraction of volume as �X	1� but is still subcritical.

2. Proof of the strong difference-body inequality. As in the previous
section we say that the affine transformation f � R2 → R2, writing f�x� =
a +Mx for some a ∈ R2 and some 2 × 2-matrix M, is area-preserving if
for all B ∈ ��R2� we have µ�f�B�� = µ�B�. As is well known this could
equivalently have been defined by requiring that �detM� = 1. The class of
affine area-preserving transformations is generated by the following four types
of transformations (writingM = �mij�1≤i	j≤2):
• Translations, that is, whenM = I2.
• Rotations, that is, when a = 0 andM is orthogonal.
• Tilts, that is, when a = 0, m11 =m22 = 1 and either m12 = 0 or m21 = 0.
• Anisotropic dilations, that is, when a =m12 =m21 = 0 and m11 =m−1

22 .

Using these types of transformations we shall shape the set A under con-
sideration so as to always make the situation as convenient as possible. When
doing so we will not explicitly state the particular sequence of these transfor-
mations we have used; it is easily reconstructed by the reader.

Let us now start proving the theorem. We begin with the easy part which
is the left inclusion: The set A ⊕ Ǎ is itself a centrally symmetric set and
µ�A ⊕ Ǎ� = αµ�A� for some α ∈ �4	6�. Now set C = α−1/2�A ⊕ Ǎ�. Then
µ�C� = α−1µ�A⊕ Ǎ� = µ�A� and C⊕ Č = 2α−1/2�A⊕ Ǎ� ⊆ A⊕ Ǎ as desired.

The right inclusion will take considerably more work. First observe that in
order to prove the existence of a triangle T with the same area as A such that
A⊕Ǎ ⊆ T⊕Ť it suffices to show that one can find some affine transformation
f and some triangle T′ with the same area as fA such that fA⊕ ˇfA ⊆ T′⊕Ť′.
Having done so we simply put T = f−1T′ observing that since T is a triangle
and since the difference-body operation commutes with linear transformations
and disregards translations we have found the T we were looking for.

For the following argument the reader is urged to look at Figure 2 where
all important steps are illustrated.

By the compactness of A there exists a triangle L ⊆ A such that µ�L� =
sup�µ�T� � T triangle	T ⊆ A�. By making a suitable affine transformation we
may assume that L is the triangle �0	0��0	1��1	0�. Then by the maximality of
L we have that A ⊆ U = �−1	1��1	1��1	−1�. Now let H ⊆ U be the hexagon
�−x	1��y	1��1	 y��1	−z��z	−z��−x	 x� where the numbers x	y	 z ∈ �0	1� are
chosen so that the line segments �−x	 x��−x	1�, �y	1��1	 y� and �1	−z��z	−z�
are parallel to the sides of L and tangent to A. Thus A ⊆ H so that also
A ⊕ Ǎ ⊆ H ⊕ Ȟ and if we can prove the existence of a triangle T with
µ�T� ≤ µ�A� such that H ⊕ Ȟ ⊆ T ⊕ Ť, then we are done. Unfortunateley
such a T does not exist for all A, but at least it does exist for a fairly large
class of A’s, namely for those A for which µ�L� ≥ 1

2µ�A�. To see this assume
without loss of generality that x ≥ z ≥ y. (If this is not the case then we can
just do another affine transformation to set things right.)
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Fig. 2. (a) The sets L ⊆ A ⊆ H ⊆ U. (b) The set H ⊕ Ȟ. (c) The sets H′ ⊕ Ȟ′ and T ⊕ Ť, the
latter with its six copies of T inscribed.

We have that H ⊕ Ȟ is the centrally symmetric hexagon specified by the
three corners �−x−1	 x−y�, �−x−1	 z+1� and �y−z	 z+1�. For convenience
we tilt the plane so that two of the corners of H ⊕ Ȟ end up on the x-axis,
that is, we transform H ⊕ Ȟ into the centrally symmetric hexagon H′ ⊕ Ȟ′
specified by the corners �−x− 1	0�, �−x− 1	1+y+ z− x� and �y− z	 z+ 1−
�z− y��x− y�/�x+ 1��.

Now clearly H′ ⊕ Ȟ′ is contained in T⊕ Ť for the triangle T = �0	0��0	 z+
1− �z− y��x− y�/�x+ 1���x+ 1	0� and we have that

µ�T� = 1
2
�x+ 1��z+ 1− �z− y��x− y�

x+ 1
� = 1

2
�1+ x+ z+ y�x+ z� − y2��

However by the convexity of A, µ�A� ≥ 1
2�1+ x+ y+ z� so for the inequality

µ�T� ≤ µ�A� to be satisfied we need that y�x + z� − y2 ≤ y which holds as
soon as x+ z ≤ 1, in particular if µ�L� ≥ 1

2µ�A� as claimed.
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Fig. 3. (a) The sets Q ⊆ A ⊆ O. (b) The set O⊕ Ǒ with the tangent lines and their intersections
with �−∞	1��∞	1� marked with bullets. The first coordinates of these are ξ1 = �1−b−ax/c�/�c+
u�−1, ξ2 = −ax/c−du/b, ξ3 = �1−a−b�/�x+u�−1, η1 = by/c+az/d, η2 = 1−�1−a−by/c�/�c+z�
and η3 = 1− �1− a− b�/�y+ z�.

To take care of the cases that were not covered by the above argument
we shall, instead of making use of a largest triangle inside A, make use of a
largest quadrilateralQ insideA, that is, we letQ be a quadrilateral contained
in A such that µ�Q� = sup�µ�B� � B quadrilateral	B ⊆ A�. The steps in the
argument that now follow are illustrated in Figure 3 and again the reader is
urged to take a look at that to facilitate reading.

We assume that µ�A� = 1/2 and by an affine area-preserving transforma-
tion we make sure thatQ = �−a	0��0	 c��b	0��0	−d� for a	 b	 c	 d ∈ �0	1� such
that c+d = 1, a+b ≤ 1, a ≤ b, d ≤ c and d/c ≤ a/b. By the maximality of µ�Q�,
A is contained in the rectangle R = �−a	 c��b	 c��b	−d��−a	−d�. Let O ⊆
R be the octagon �−ax/c	 c��by/c	 c��b	 y��b	−u��bu/d	−d��−az/d	−d��−a	−z�
�−a	 x�, where x	y	 z	 u (x	y ∈ �0	 c�, z	u ∈ �0	 d�) are chosen so that the
four line segments �−a	 x��−ax/c	 c�, �by/c	 c��b	 y�, �b	−u��bu/d	−d� and
�−az/d	−d��−a	−z� are parallel to the sides of Q and tangent to A. (If d = 0
then z = u = 0. We then decide, here and in the sequel, to interpret z/d and
u/d as being 1, so that the corresponding line segments vanish.) By the con-
vexity of A we have that 1

2 = µ�A� ≥ 1
2�a + b + a�x + z� + b�z + y��, which

imposes the extra condition a�x+ z� + b�y+ u� ≤ 1− a− b on x, y, z and u.
Now in analogy with what we did above we will prove (for A’s not covered

there) that O⊕ Ǒ ⊆ T⊕ Ť for some triangle T with µ�T� ≤ 1/2. To be specific
we will have T = �0	0��t	1��1	0� for some t ∈ �0	1�. Then T ⊕ Ť is the
centrally symmetric hexagon specified by the three corners �−1	0�, �t− 1	1�
and �t	1� while O⊕ Ǒ is the centrally symmetric 12-gon specified by the six
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corners �−a−b	 x+u�, �−b−ax/c	 c+u�, �−ax/c−bu/d	1�, �az/d+by/c	1�,
�a+ by/c	 c+ z� and �a+ b	 z+y�. In order to reach our goal we need to show
that if �r	1� is the intersection point of the line �−∞	1��∞	1� with the line
through �1	0� tangent to O⊕ Ǒ in the upper right quadrant of the plane and
�l	1� is the intersection point of the same line with the line through �−1	0�
tangent to O ⊕ Ǒ in the upper left quadrant, then r − l ≤ 1. Since each
of the two tangent lines in question can lean onto any of the three corners
of the quadrant corresponding to it, we have that the pair �r	 l� may be any of
the nine possible pairs of intersection points each corresponding to a pair of
corners. Thus showing that r− l ≤ 1 boils down to checking that the following
nine expressions are all non-negative:

(i)
1− a− b
x+ u + 1− a− b

z+ y − 1,

(ii)
1− a− b
x+ u + 1− a− by/c

c+ z − 1,

(iii)
1− a− b
x+ u − by/c− az/d,

(iv)
1− b− ax/c
c+ u + 1− a− b

z+ y − 1,

(v)
1− b− ax/c
c+ u + 1− a− by/c

c+ z − 1,

(vi)
1− b− ax/c
c+ u − by/c− az/d,

(vii)
1− a− b
z+ y − ax/c− bu/d,

(viii)
1− a− by/c
c+ z − ax/c− bu/d,

(ix) 1− ax/c− bu/d− by/c− az/d,
under the conditions

• d/c ≤ a/b,
• 0 ≤ d ≤ 1

2 ≤ c ≤ 1,
• c+ d = 1,
• 0 ≤ a ≤ b ≤ 1

2 ,
• 1

2 ≤ a+ b ≤ 1,
• 0 ≤ x	y ≤ c,
• 0 ≤ z	u ≤ d,
• a�x+ z� + b�y+ u� = 1− a− b.

These conditions were all mentioned above except that the inequality in the
last one has been replaced with an equality, which is clearly no less general,
and that we demand that b ≤ 1/2. That we are free to do so follows from the
observation that if b ≥ 1/2, then the triangle �0	 c��b	0��0	−d� is contained
in A and has at least half the area of A, that is, this represents a situation
which falls under what was proved earlier. It is fortunate that we can impose
this restriction on b; consider, for example, the case c = 7/8, d = 1/8, a = 1/8,
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b = 27/32, y = u = 0 and x = z = 1/8. Then (i) begets the value 1/4 + 1/4 −
1 = −1/2. This shows that neither the present part nor the first part of the
proof is enough in itself. Luckily they cover up for each other as we now shall
see.

To verify the non-negativity of (i)–(ix) may look as an overwhelming task,
but fortunately it is not as bad as it looks. The expressions are non-linear but
they are “linear enough” to be handled fairly easily by ad hoc arguments.

First we note that with all other parameters fixed, the expressions are
linear in a and b. Changing b keeping all parameters but a fixed and keeping
the conditions satisfied, a will change linearly along with it. By this we can
conclude that each expression is minimized either when a = b or when b = 1/2
(or when a + b = 1/2 or a + b = 1 which are trivial cases). The cases a = b
can be handled in a unified way: If a = b, set a′ = a, b′ = b, d′ = z′ = u′ = 0,
c′ = 1, x′ = x + u and y′ = y + z. Since a = b all conditions are satisfied
for the primed quantities. These however correspond to an O′ for which it is
readily seen that O ⊕ Ǒ ⊆ O′ ⊕ Ǒ′, a fact which follows from the facts that
O′ ⊕ Ǒ′ is an octagon for which four corners lie on the lines �1	−∞��1	∞�
and �−1	−∞��−1	∞� and coincide with four corners of O ⊕ Ǒ and that the
slopes of the line segments connecting these to the corners on �−∞	1��∞	1�
and �−∞	−1��∞	−1� are 1/a to the left and 1/b to the right compared to c/a
and d/b to the left and c/b and d/a (d/a ≤ c/b) to the right for O ⊕ Ǒ. See
Figure 4 for an example. Thus, for a = b (i)-(ix) reduce to four expressions,
(i), (iii), (vii) and (ix) (remember that z/d and u/d are interpreted as 1 here)
in only the three parameters a, x and y which immediately reduce to two
from the condition a�x + y� = 1 − 2a. Moreover, since a = b, the parameters
x and y are interchangeable and so non-negativity of (iii) is equivalent to
non-negativity of (vii). Now (ix) becomes 1 − 2a − a�x + y� = 0, (i) becomes
�1 − 2a�/x + �1 − 2a�/y − 1 which is minimal if x = y = �1 − 2a�/�2a� and
then begets the value 4a− 1 ≥ 0 (as a = b implies 1/4 ≤ a ≤ 1/2) and finally
(vii) is non-negative iff 1− 2a− ay− axy is non-negative which holds true as
1− 2a− ay− axy ≥ 1− 2a− a�x+ y� = 0, finishing the proof for a = b.

Note that the previous argument works even if a < b as soon as z ≤ u since
then a′�x′ + z′� + b′�y′ + u′� = a�x + u� + b�y + z� ≤ a�x + z� + b�y + u� =
1− a− b = 1− a′ − b′. This allows to assume from now on that z ≥ u.

Next we observe that we may assume that z = d: Consider the setO′′ corre-
sponding to double-primed quantities in the same way as O correspond to its
parameters. Let the double-primed parameters coincide with the coorespond-
ing unprimed ones with the exception that d′′ = z and c′′ = 1− z. Since z ≥ u
this gives us a set of parameters satisfying the conditions. Then since O′′ ⊕Ǒ′′
has the same corners on �1	−∞��1	∞� and �−1	−∞� and �−1	∞� as O⊕ Ǒ
and c′′ ≥ c it follows from copying the arguments used above, to take care of
the cases a = b, that O⊕ Ǒ ⊆ O′′ ⊕ Ǒ′′.

That we may assume that z = d is good news not only in that we get rid of
another parameter, but also in that two of the three corners of O⊕Ǒ coincide,
making, for example, (ii), (v) and (viii) redundant.
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Fig. 4. The sets O, O′, O⊕Ǒ and O′ ⊕Ǒ′ for a = b = 3/8, d = 1/4, c = 3/4, x = z = 1/8, z = 1/8
and u = 1/6. The primed sets are drawn with thick lines and the unprimed sets are drawn with
thin lines.

From now on we thus work under the assumptions that b = 1/2 and z = d.
Doing this we keep in mind that the last of these two assumptions impose
the new restriction da ≤ 1/2 − a. From now on we also drop the restriction
d/c ≤ a/b; it will no longer be needed. Of course we can also get rid of c by
simply writing c = 1 − d, but despite the simplifications we have made thus
far, we are still left with six non-linear optimization problems in five variables.
Going through this means hard work which does not make exciting reading.
To give the reader a feeling for how this can be done, we will do (i) here. For
the reader who wants to see the remaining five inequalities properly checked
we refer to an extended version of the present paper which can be found at
http://www.math.chalmers.se/∼jonasson/recent.html.

With b = 1/2 and z = d, proving that (i) is at least 0 is equivalent to proving
the non-negativity of

� 12 − a��x+ y+ u+ d� − �x+ u��y+ d�

under the given conditions. By inspection of (i) and since we have the condition
ax+�y+u�/2 = 1/2−a−ad, we find that when keeping all parameters but x
and u fixed, the worst case is when x is maximized at the expense of u. Thus
we must take care of two possible scenarios separately:

1� u = 0, ax+ y/2 = 1/2− a− ad:
Here we want to show that

� 12 − a��x+ y+ d� − x�y+ d�
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is non-negative. For fixed x and a this expression is linear in y and d and by
considering the original expression for (i) we see that to get the worst case we
should maximize d at the expense of y as we must see to that y/2 + ad =
1/2−a−ax. Doing so gives either y = 0 and d = �1/2−a−ax�/a or d = 1/2
and y = 1− 3a− 2ax. If the first alternative occurs then we get on insertion

1
a

((
1
2
− a

)2

− x
(
1
2
− a− ax

))
≥ 1
a

(
1− 1

4a

)(
1
2
− a

)2

≥ 0	

where the first inequality follows on minimizing for x and the second follows
on observing that y = 0 implies a ≥ 4. For the second alternative, note that
d = 1/2 implies that x	y ≤ 1/2 and so it follows that in order to get a minimal
value, x should be maximized at the expense of y. This either means that y = 0
and x = �1−3a�/�2a� and our expression then begets the value a−1/4 ≥ 0, or
x = 1/2 and y = 1−4a in which case our expression becomes �1/2−2a�2 ≥ 0.

2� x = 1− d, �y+ u�/2 = 1/2− 2a:
The expression under consideration now takes the form

� 12 − a��1+ y+ u� − �u+ 1− d��y+ d��
Substituting y = 1− 4a− u we get

� 12 − a��2− 4a� − �u+ 1− d��1+ d− 4a− u��
Minimizing for u reveals a minimum at u = d − 2a and substituting, the
expression becomes

� 12 − a��2− 4a� − �1− 2a�2 = 0�
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