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POWER-LAW CORRECTIONS TO EXPONENTIAL DECAY OF
CONNECTIVITES AND CORRELATIONS IN LATTICE MODELS1

By Kenneth S. Alexander

University of Southern California

Consider a translation-invariant bond percolation model on the in-
teger lattice which has exponential decay of connectivities, that is, the
probability of a connection 0 ↔ x by a path of open bonds decreases like
exp�−m�θ��x�� for some positive constant m�θ� which may depend on the
direction θ = x/�x�. In two and three dimensions, it is shown that if the
model has an appropriate mixing property and satisfies a special case of
the FKG property, then there is at most a power-law correction to the ex-
ponential decay—there exist A and C such that exp�−m�θ��x�� ≥ P�0 ↔
x� ≥ A�x�−C exp�−m�θ��x�� for all nonzero x. In four or more dimensions, a
similar bound holds with �x�−C replaced by exp�−C�log �x��2�. In particular
the power-law lower bound holds for the Fortuin-Kasteleyn random cluster
model in two dimensions whenever the connectivity decays exponentially,
since the mixing property is known to hold in that case. Consequently a
similar bound holds for correlations in the Potts model at supercritical
temperatures.

1. Introduction and statement of results. Many quantities encoun-
tered in statistical mechanics decay at an approximately exponential rate as
a function of distance. Typical finite-range spin systems have exponential de-
cay of correlations at sufficiently high temperatures and many standard per-
colation models, such as the Fortuin-Kastelyn random cluster model [13], are
known or believed to have exponential decay of connectivities for those pa-
rameter values (other than critical points) at which there is no percolation.
For the modified correlation function

ρ�0	 x� = q2

q− 1
cov�δ
σ0=i�	 δ
σx=i��

of the (free-boundary) q-state Potts model, or for the connectivity function

ρ�0	 x� = P�0↔ x�
of a translation-invariant percolation model having the FKG property, super-
multiplicativity holds:

ρ�0	 x+ y� ≥ ρ�0	 x�ρ�0	 y�	
so − log ρ�0	 x� is a subadditive function of x. (Here 
0↔ x� denotes the event
that 0 is connected to x by a path of open bonds and σx denotes the spin at
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site x.) From standard properties of subadditive sequences, this implies that
the limit

m =m�x/�x�� = lim
n→∞

1
n�x� log ρ�0	 nx�(1.1)

exists and the exponential approximation is an upper bound for the actual
correlation or connectivity function:

ρ�0	 x� ≤ e−m�x�	 x ∈ �d�

It is therefore of interest to find lower bounds, establishing results of the form

ρ�0	 x� ≥ f�x�e−m�x�	 x ∈ �d	(1.2)

where ρ is the correlation or connectivity function, f decays subexponentially
and � · � is the Euclidean norm.

Ornstein and Zernike [20] predicted for certain models that the analog of
the correlation should behave like

�x�−�d−1�/2e−m�x�(1.3)

as �x� → ∞, for some constantm. This was verified for a wide class of models at
very high temperatures by Bricmont and Fröhlich [9], for self-avoiding random
walk with x “near an axis” by Chayes and Chayes [12] and then for general
x by Ioffe [17], and for Bernoulli percolation at arbitrary subcritical densities
with x “near an axis” by Campanino, Chayes and Chayes [10] and then for
general x by Campanino and Ioffe [11]. For the two-dimensional Ising model
at supercritical temperatures, (1.3) can be obtained from the exact solution
(see [19] or Section 7 of [21].) [An exception to (1.3) is found for the two-
dimensional Ising model at subcritical temperatures under “plus” or under
“minus” boundary conditions, where the correct exponent on �x� is 2, not 1/2;
see [19]. The heuristics for this are discussed in [9].] In the case of connectivity
functions, the heuristic for (1.3) in general is as follows; see, for example, [10]
or [17] for more. For simplicity take x on an axis and letHx be the hyperplane
orthogonal to the axis at x. The sum of P�0↔ y� over sites y in Hx should be
approximately e−m�x� with nearly no correction. Given that there is a path from
0 to Hx, it should reach only a few close-together sites in Hx and from the
central limit theorem, since the transverse fluctuations of different segments
of the path are approximately independent, the location of these sites in Hx

should be approximately Gaussian distributed with variance of order �x�. This
Gaussian distribution accounts for the factor �x�−�d−1�/2. (Note that constants
have been omitted in this heuristic.)

Thus the form we should seek for the function f�x� in (1.2) is an inverse
power of �x�, that is, a power-law correction to exponential decay. We will not
attempt to obtain the optimal power �d− 1�/2. We will instead obtain results
of form (1.2) with f�x� an inverse power of �x� when d = 2 or 3 and with
f�x� = exp�−C�log �x��2� for some constant C when d ≥ 4. Analogous results
for Bernoulli percolation at arbitrary subcritical densities are in [2] and [4].
Our results have suboptimal powes of �x� for two reasons. First, we wish to
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work with quite general models and at arbitrary supercritical temperatures,
which likely makes rigorous proof of precise behavior as in (1.3) a particularly
difficult problem. Second, interesting applications of (1.2) do not always re-
quire the optimal power �d− 1�/2. For example, power-law correction results
from [2] are applied in [3] to study boundary fluctuations in the Wulff con-
struction for Bernoulli percolation and Pfister and Velenik [21] use only the
existence of a power-law correction (obtained from the exact solution) for cor-
relations in the two-dimensional Ising model in their study of the continuum
limit of that model.

For simplicity we restrict attention to the integer lattice, but our results
apply to more general lattices. For � ⊂ �d let ���� denote the set of all
nearest-neighbor bonds �xy� with x	y ∈ � and let ���� denote the set of
all nearest-neighbor lattice bonds �xy� with x or y in �. A bond percolation
model on �d is a measure P on �0	1����d�. We consider here only translation-
invariant models. A bond configuration is an element ω ∈ �0	1����d�; when
convenient we view ω as a subset of ���d�. A bond e is open in a configuration
ω if ωe = 1 and closed if ωe = 0. The configuration �ωe � e ∈ �� restricted to
a set � of bonds is denoted ω� . P has positive connection correlations if

P�0↔ x+ y� ≥ P�0↔ x�P�x↔ x+ y� for all x	y�
this is a special case of the standard FKG property. We write P�	ρ for P�· �
ω���c� = ρ���c��; we assume the latter is given by a regular conditional mea-
sure. Let �� denote the σ-algebra generated by �ωe � e ∈ �����. P has the
weak mixing property if for some C	λ > 0, for all finite sets �	� with � ⊂ �,

sup
{
Var�P�	ρ�ω���� ∈ ·�	P�	ρ′ �ω���� ∈ ·�� � ρ	 ρ′ ∈ �0	1����

c�
}

≤ C ∑
x∈�	y∈�c

exp�−λ�x− y��	

where Var�·	 ·� denotes total variation distance between measures. Roughly,
the influence of the boundary condition on a finite region decays exponentially
with distance from that region. Equivalently, for some C	λ > 0, for all sets
�	� ⊂ �d,

sup��P�E � F� −P�E�� � E ∈ ��	F ∈ ��	P�F� > 0�
≤ C ∑

x∈�	y∈�
e−λ�x−y��(1.4)

P has the ratio weak mixing property if for someC	λ > 0, for all sets �	� ⊂ �d,

sup
{∣∣∣∣ P�E ∩F�P�E�P�F� − 1

∣∣∣∣ � E ∈ ��	F ∈ ��	P�E�P�F� > 0
}

≤ C ∑
x∈�	y∈�

e−λ�x−y�	
(1.5)

whenever the right side of (1.5) is less than 1. For � ⊂ �d finite, ρ ∈ �0	1����c�
and � ⊂ �c finite, we call ���� a controlling region for ���� and ρ if for every
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ρ′ ∈ �0	1����c� such that ρ = ρ′ on ����, we have P�	ρ = P�	ρ′ . We say P
has exponentially bounded controlling regions if there exist constants C	λ > 0
such that for every choice of disjoint finite sets � and �,

P��ρ ∈ �0	1����c� � ���� is not a controlling region for ���� and ρ��
≤ C ∑

x∈�	y∈�c\�
e−λ�x−y��

Note that when P�E� is much smaller than the right side of (1.4), the weak
mixing condition (1.4) allows P�E � F� to be many times larger than P�E�,
but the ratio weak mixing condition (1.5) does not allow this. Nonetheless, it
is proved in [6] that if P has exponentially bounded controlling regions and
the weak mixing property, then P has the ratio weak mixing property. We say
P has exponential decay of connectivities if there exist C	λ > 0 such that for
all x and y,

P�x↔ y� ≤ Ce−λ�x−y��
Writing θ for x/�x�, when the limit

lim
n→∞

1
n�x� logP�0↔ nx�

exists for all x ∈ �d, is finite and depends only on θ (as, e.g., when P has
positive connection correlations), we denote this limit by m�θ� and say P is
nondegenerate.

Here is the main result of this paper.

Theorem 1.1. Suppose:

P is a nondegenerate translation-invariant bond percola-
tion model on �d which has positive connection correlations,
exponential decay of connectivities and the ratio weak mix-
ing property.

(1.6)

(i) If d = 2 or 3, then there exist positive finite A	C and m�θ� such that

exp�−m�θ��x�� ≥ P�0↔ x� ≥ A

�x�C exp�−m�θ��x��

for all nonzero x ∈ �d	

(1.7)

where θ = x/�x�.
(ii) If d ≥ 4, then there exist positive finite C and m�θ� such that

exp�−m�θ��x�� ≥ P�0↔ x� ≥ exp �−C�log �x��2� exp�−m�θ��x��
for all nonzero x ∈ �d	

(1.8)

where θ = x/�x�.
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The proof will be given in Sections 2 and 3. Theorem 1.1 applies to site
percolation models as well; we restrict attention to bond percolation to keep
the exposition simple.

The only obstacle to proving the superior result (i), instead of (ii), in di-
mension d ≥ 4 is the purely geometric Proposition 2.7 of [4], which is proved
only for d = 2 and 3; we believe this Proposition is true in all dimensions and
certainly we expect that (1.7) is true in all dimensions.

The Fortuin-Kasteleyn random cluster model (or simply, the FK model) with
parameters �q	p� and free boundary, on a finite subgraph ��	����� of the
lattice �d, is the percolation model with probabilities given by the weights

p�ω��1− p�������−�ω�qK�ω�	 ω ∈ �0	1�����	
where �ω� denotes the number of open bonds in ω and K�ω� denotes the
number of connected components in ω. Here q > 0 and p ∈ 
0	1�. Taking
the limit � ↗ �d yields the FK model, with free boundary, on the full lattice
(see [14].) This model was introduced in [13]; see also [1] and [14] for basic
properties. For the q-state Potts model at a supercritical temperature T, for
β = 1/T	p = 1− e−β and the FK model at �p	q�, the covariance in the Potts
model and the connectivity in the FK model are related by

q2 cov�δ
σ0=i�	 δ
σx=i�� = �q− 1�P�0↔ x�	 i = 1	 � � � 	 q�(1.9)

see [1] or [15]. Thus exponential decay of connectivities in the FK model is
equivalent to exponential decay of correlations in the corresponding Potts
model. Further, the critical inverse temperature βc�q	d� of the Potts model
and the percolation critical point pc�q	d� of the FK model are related by

pc�q	d� = 1− exp�−βc�q	d���
again see [1] or [14]. For q ≥ 1, the FK model has the FKG property [13]
and hence has positive connection correlations. For the two-dimensional FK
model, the following facts are known. For q = 1	 q = 2	 and q ≥ 25�72, we
have pc�q	2� =

√
q

1+√q [18] and the connectivity decays exponentially for all
p < pc�q	2� [15]. This is believed to be true for all q; for 2 < q < 25�72 the

connectivity is known to decay exponentially at least for all p <
√
q−1

1+
√
q−1

[5].

For general q ≥ 1 and p < pc�q	2�, if the connectivity decays exponentially
then the model has the ratio weak mixing property [6]. With Theorem 1.1 and
(1.9), these facts yield the following results.

Theorem 1.2. Suppose that the FK model on �2 with parameters �q	p�,
with q ≥ 1 and p < pc�q	2�, has exponential decay of connectivities. Then
there exist positive finite A	C and m�θ�, depending on p and q, such that

e−m�θ��x� ≥ P�0↔ x� ≥ A

�x�C e
−m�θ��x� for all x ∈ �2	(1.10)
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where θ = x/�x�. In particular (1.10) holds for all p < pc�q	2� =
√
q

1+√q if q = 2

or q ≥ 25�72 and (1.10) holds for all p <
√
q−1

1+
√
q−1

if 2 < q < 25�72.

Corollary 1.3. Suppose that the q-state Potts model on �2 at inverse
temperature β < βc�q	2� has exponential decay of correlations. Then there
exist positive finite A	C and m�θ�, depending on β and q, such that

e−m�θ��x� ≥ cov�δ
σ0=i�	 δ
σx=i�� ≥
A

�x�C e
−m�θ��x� for all x ∈ �2	 i ≤ q	(1.11)

where θ = x/�x�.

For the FK model in general dimension, exponential decay of connectivities
implies exponentially bounded controlling regions (see [6]), so that weak mix-
ing and exponential decay of connectivities together imply ratio weak mixing.
It is believed that weak mixing and exponential decay of connectivities hold
whenever p < pc�q	d�, in which case Theorem 1.1 gives a power-law correc-
tion for all subcritical p, for d = 3 and q ≥ 1 and a correction as in (1.8) for
all subcritical p, for d ≥ 4 and q ≥ 1.

It is of interest in certain contexts (see, e.g., Lemma 4.3 and Theorem 4.1
of [3]) to have an analog of Theorem 1.1 for connections in halfspaces; this is
our next result.

Theorem 1.4. Assume �1�6�� Let H be the intersection with �d of a closed
halfspace in �d containing 0�

(i) If d = 2 or 3	 then there exist positive finite A	C and m�θ� such that

e−m�θ��x� ≥ P�0↔ x in ��H�� ≥ A

�x�C e
−m�θ��x� for all nonzero x ∈H	(1.12)

where θ = x/�x�.
(ii) If d ≥ 4	 then there exist positive finite C and m�θ� such that

exp�−m�θ��x�� ≥ P�0↔ x in ��H��
≥ exp�−C�log �x��2� exp�−m�θ��x��

for all nonzero x ∈H	
(1.13)

where θ = x/�x�.

2. Proof of Theorem 1.1 (ii). Throughout the paper, C1	C2	 � � � and
c1	 c2	 � � � denote constants which may depend on the model P, but not on
x. Additional parameters on which these constants may depend are listed
in parentheses after the constant, for example, C9�C	K�. Phrases such as
“sufficiently large” or “small enough” implicitly mean “larger/smaller than a
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constant depending only on P,” unless otherwise specified. Throughout the pa-
per we tacitly assume in proofs that �x� and C are sufficiently large, in this
sense, and assume (1.6). To facilitate bookkeeping we will use Ci for constants
appearing in statements of results and ci for constants which appear only in
the course of proofs.

Define

h�x� = − logP�0↔ x�	 x ∈ �d	

so that, by positive connection correlation, h is subadditive:

h�x+ y� ≤ h�x� + h�y��
In particular �h�nx� � n ≥ 1� is a subadditive sequence, so by standard meth-
ods the limit

m�x� = lim
n→∞

h�nx�
n

(2.1)

exists, extending the definition (1.1) and for all x ∈ �d,

m�x� ≤ h�x��(2.2)

In fact for x ∈ �d, if we restrict n to those values for which nx ∈ �d, then the
limit in (2.1) exists, som�·� extends to �d. By exponential decay of correlations,
m�x� is strictly positive for all x �= 0. Further, from subadditivity, m�x� is
finite if and only if x is in the linear span of �ei � P�ω�0ei� = 1� > 0�, where ei
denotes the ith unit coordinate vector. Under positive connection correlations,
nondegeneracy of P is equivalent to

P�ω�0ei� = 1� > 0 for all i�(2.3)

By the arguments in [7], m is uniformly continuous and m extends to a func-
tion on �d which is continuous, convex and positive-homogeneous of order 1.
In particular,

m�x� =m�θ��x�	
where θ = x/�x�. Let

m0 = min
i
m�ei�	 M0 = max

i
m�ei��

It follows from convexity that

m0�x�∞ ≤m�x� ≤M0�x�1	(2.4)

where � · �r denotes the lr norm. We suppress the r in the notation for the
Euclidean norm, r = 2.

Observe that (1.8) may be rewritten as

m�x� ≤ h�x� ≤m�x� +C�log �x��2 for all x ∈ �d with �x� > 1	

which in the terminology of [4] is the general approximation property, or GAP,
with exponent 0 and correction factor �log �x��2, for the subadditive function
h. It is proved in [4] that to establish this property, it is sufficient to establish
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what is called the convex-hull approximation property, or CHAP, with expo-
nent 0 and correction factor log �x�. So we give now a description of CHAP.

Let B1 = �x ∈ �d � m�x� ≤ 1�. For x ∈ �d let Tx denote a hyperplane tan-
gent to ∂�m�x�B1� at x; note that if ∂B1 is not smooth, there is not necessarily
a unique choice of Tx. Let T0

x denote the hyperplane through 0 parallel to Tx.
There is a unique linear functional mx on �d satisfying

mx�y� = 0 for all y ∈ T0
x	 mx�x� =m�x��

The functional mx is a linear approximation to m, for vectors nearly parallel
to x. By convexity and symmetry of m we have

�mx�y�� ≤m�y� for all y ∈ �d�(2.5)

For y ∈ �d	mx�y� is the m-length of a projection of y onto the line through 0
and x. The valuemx�y�may therefore be thought of as the amount of progress
(measured in the norm m) toward x made by a vector increment of y. Then
for fixed x,

sx�y� = h�y� −mx�y�
is a measure of the error or inefficiency associated with an increment of y
within a path from 0 to x. For x ∈ �d and C > 1 we define a set of vector
increments for which this “error” is of order at most log �x�:

Qx�C� = �y ∈ �d �mx�y� ≤m�x�	 sx�y� ≤ C log �x���
Note that sx is nonnegative and subadditive, by (2.2) and (2.5). ForM> 0 and
C	 t > 1, we say that h satsfies CHAP(M	C	 t) [with exponent 0 and correction
factor log�·�] if

x

α
∈ Co�Qx�C�� for some α ∈ 
1	 t�	 for all x ∈ �d with �x� ≥M	

where Co�·� denotes the convex hull. Roughly this says that, up to a bounded
constant, every x is in the convex hull of some sites satisfying the desired
power-law lower bound, except thatm is replaced by the linear approximation
mx.

Remark 2.1. In [4] the definition of Qx�·� requires in addition, for some
constant K, that �y� ≤ K�x�. No such requirement is needed here because of
Lemma 2.4(i) below.

From ([4], Lemma 1.6), one way to establish CHAP(M	C	 t) is to find a
lattice path γ from 0 to nx for some n which can be cut up into at most tn
increments, each in Qx�C�. That is, there must exist sites 0 = u0	 u1	 ��	 uk =
nx in γ such that k ≤ tn and ui − ui−1 ∈ Qx�C� for all i ≤ k. This was
the approach taken in [2] and our approach here is based somewhat on the
methods employed there. Loosely the idea is to show that for large n, the
probability that 0 is connected to nx by a path of open bonds which fails to
have this “cutting-up” property is strictly less than P�0↔ nx�.
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By a path we always implicitly mean a self-avoiding lattice path, that is, a
sequence x0	 �x0x1�	 x1	 �x1x2�	 x2	 ��	 xn of alternating sites and bonds, with
all xi distinct. An open path is a path in which all bonds are open. Define

Gx = �y ∈ �d �mx�y� ≤m�x���
For D ⊂ �d and y ∈ �d we let D+ y denote the translate of the set D by the
vector y. Let d�·	 ·� denote Euclidean distance, d�D	E� = inf�d�z	w� � z ∈
D	w ∈ E� and d�z	D� = d��z�	D�. For D ⊂ �d let

∂D = �x ∈ Dc � x adjacent to D�	 D = D ∪ ∂D	 ∂inD = ∂�Dc��
For D ⊂ �d and y ∈ D∩�d let ��y	D� denote the union of �y� and all sites in
open paths in ��D� which contain y; if y /∈ D we define ��y	D� to be empty.
Note that


��y	D� = R� ∈ �R for all y	D and R�(2.6)

Given x and C, we say a path γ is �x	C�-clean (or just clean if confusion is
unlikely) if for every pair of sites u	 v in γ with u preceding v, we have sx�v−
u� < C log �x�. For sites y	 z ∈ G ⊂ �d we say z is �x	C�-cleanly reachable from
y inside G if there exists an �x	C�-clean path (not necessarily open!) from y to
z having all sites inG. Note that clean reachability is a deterministic property,
not dependent on the bond configuration. If z is �x	C�-cleanly reachable from
y inside G, but is adjacent to some site in G which is not cleanly reachable
from y inside G, we say z is barely �x	C�-cleanly reachable from y inside G.
Define

Q̃x�C� = �y ∈ �d � y is cleanly reachable from 0 inside Gx�
and observe that

Q̃x�C� ⊂ Qx�C��(2.7)

Finally, define

�x	C�y	D� = � z ∈ �
(
y	 �y+ Q̃x�C�� ∩D

) ∩ ∂in�y+ Q̃x�C�� �
�zw� is open for some w ∈ �y+Gx�\�y+ Q̃x�C����

Note that every site in �x	C�y	D� is connected to y by an open path (not
necessarily clean!) with all sites in �y + Q̃x�C�� ∩ D and is barely cleanly
reachable from y inside y+Gx.

Remark 2.2. Let u0	 � � � 	 un be sites of �d. For Bernoulli bond percolation,
from the FKG-Harris [16] and van den Berg-Kesten [8] inequalities one has

P�u0 ↔ u1 ↔ ·· ↔ un� ≥
n∏
i=1

P�ui−1 ↔ ui�(2.8)

and

P�u0 ↔ u1 ↔ ·· ↔ un via disjoint paths� ≤
n∏
i=1

P�ui−1 ↔ ui�	(2.9)
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which together, roughly speaking, allow one to treat distinct segments of a
path from u0 to un as independent. Recall that such independence underlies
the central limit theorem heuristic for Ornstein-Zernike behavior as in (1.3).
The near-independence given by (2.8) and (2.9) was strongly exploited in [2],
though not in the context of the central limit theorem, and the lack of an analog
of (2.9) is perhaps the major difficulty in adapting the methods of [2] to other
models. The ratio weak mixing property substitutes in part for (2.9), but its
application requires in effect that one specify nonrandom disjoint sets of bonds
on which the two events of interest are going to occur, which is not always
feasible for pairs of events like 
ui−1 ↔ ui� and 
uj−1 ↔ uj� in the contexts
we would like. Our solution, again roughly speaking, involves expressing an
event 
u ↔ v� as a union ∪R 
��u	D� = R� for an appropriate choice of D,
where the union is over an appropriate collection of sets R containing u and
v. This is helpful because the event 
��u	D� = R� necessarily takes place on
the set of bonds ��R� [cf. (2.6)].

For D ⊂ �d and r ≥ 0 we define

Dr = �x ∈ �d � d�x	D� ≤ r��

Definition 2.3. For y and z sites in a path γ with y preceding z, we
let γ
y	 z� denote the segment of γ from y to z. Suppose there is a path γ of
open bonds in ω from 0 to z for some z. For C > 1	 x ∈ �d and r > 0, we can
then define the gapped �C	 r	 x�-skeleton derived from γ in ω, a finite sequence
��ui	 vi	 v′i	wi�	0 ≤ i ≤ k� of tuples of sites in γ, iteratively as follows. Let
u0 = 0 and D0 = �d. Having defined u0	 ��	 ui	 v0	 ��	 vi−1	 v

′
0	 ��	 v

′
i−1	w0	 ��	

wi−1	D0	 ��	Di, �0	 ��	 �i−1 and R0	 ��	Ri−1, let

�i = ��ui	 �ui + Q̃x�C�� ∩Di�	
Ri = ��i�r log �x�	

Di+1 = �R0 ∪ · · ∪Ri�c�
Then let v′i be the first site of γ
ui	 z� which is not in �i, if such v′i exists.
If there is no such v′i, then z ∈ �i and we let v′i = vi = wi = z and end
the construction; otherwise let vi be the site in γ immediately preceding v′i.
Next let ui+1 be the first site of γ after vi with the property that γ
ui+1	 z� is
contained in Di+1, if such ui+1 exists. If no such ui+1 exists then z ∈ Ri\�i
and we let v′i = vi = wi = z and end the construction. Let wi be the closest
site to ui+1 in �i. Note that v′k = vk = wk = z. See Figures 1 and 2.

From the definition of ui+1, the site u′i+1 immediately preceding ui+1 in γ
must be in ∪ij=0Rj. Since γ
ui	 z� does not intersect Rj for j < i, we must in
fact have u′i+1 ∈ Ri. Therefore

r log �x� ≤ �ui+1 −wi� ≤ 1+ r log �x��(2.10)
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Fig. 1. A short increment� vi ∈ �x	C�ui	Di�� The site v′i is not cleanly reachable from ui� The
path γ is the heavy line� lighter lines represent other paths in �i and boundaries of regions�

The gapped �C	 r	 x�-skeleton then has the following properties:

For each i there exist both an open path ψi from ui to wi,
and the open path γ
ui	 vi� from ui to vi, each having all
sites in Di and all sites cleanly reachable from ui inside
ui +Gx.

(2.11)

For i �= j, the clusters �i and �j are separated by a distance
of at least r log �x�.(2.12)

For each i ≤ k− 1	 vi ∈ �ui + ∂inGx� ∪ �x	C�ui	Di�.(2.13)

Note that the paths ψi are not necessarily segments of the path γ and we
need not have wi ∈ γ. For fixed C, from (2.13) we divide the indices into two
classes, corresponding to “short” and “long” increments vi−ui, as follows (see
Figures 1 and 2):

S
(�ui	 vi	 v′i	wi�i≤k) = �i � 0 ≤ i ≤ k− 1	 vi ∈ �x	C�ui	Di�\�ui + ∂inGx��	
L
(�ui	 vi	 v′i	wi�i≤k) = �i � 0 ≤ i ≤ k− 1	 vi ∈ ui + ∂inGx��

Set

p = min
i
P�ω�0ei� = 1�	

so p > 0 by (2.3) and note that by positive connection correlations,

P�0↔ x� ≥ p�x�1 for all x�(2.14)

The next lemma summarizes some basic properties of the quantities we have
defined.
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Fig. 2. A long increment� vi ∈ ui + ∂inGx� The path γ stays in the cleanly reachable region all
the way to ui + ∂Gx�

Lemma 2.4. (i) Given C > 1 there exists a constant C1�C� such that if
y ∈ Qx�C� and �x� ≥ C1�C� then

m�y� ≤ 2m�x� and �y� ≤ 2dM0�x�/m0�

(ii) For all y ∈ �d	0 ≤ sx�y� ≤ 2�y�1 log 1
p
.

(iii) If y ∈ ∂inGx then mx�y� ≥m�x� −M0.

Proof. (i) Supposem�y� > 2m�x� andmx�y� ≤m�x�. Then from (2.2) and
(2.5),

2m�x� < m�y� ≤ h�y� =mx�y� + sx�y� ≤m�x� + sx�y�	
so from (2.4), sx�y� > m�x� > C log �x�, provided �x� is large (depending on C.)
Thus y /∈ Qx�C� and the first inequality in (i) follows. The second inequality
then follows from (2.4).

(ii) The fact that sx is nonnegative has already been noted. From (2.2),
(2.5) and (2.14) we have

sx�y� ≤ h�y� + �mx�y�� ≤ 2h�y� ≤ 2�y�1 log
1
p
�

(iii) We have z = y ± ei for some z /∈ Gx and i ≤ d. Therefore using (2.5)
we have mx�y� =mx�z� −mx�±ei� ≥m�x� −M0. ✷

Let diam�B� denote the d-diameter of a set B. The following is immediate
from the definition of ratio weak mixing.

Lemma 2.5. Let P be a bond percolation model on �d with the ratio weak
mixing property. There exists a constant C2 as follows. Suppose s > 3 and
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U	V ⊂ �d with diam�U� ≤ s and d�U	V� ≥ C2 log s. Then forD ∈ �U	E ∈ �V
we have P�D ∩E� ≤ 2P�D�P�E�.

For y ∈ �d and r > 0, define B�y	 r� = �z ∈ �d � �z− y� ≤ r�.

Lemma 2.6. Assume �1�6�� There exists C3 such that for r ≥ C3,

P�0↔ ∂B�0	 r�� ≤ exp�−m0r/2d��

Proof. For y ∈ ∂B�0	 r� we have m�y� > m0r/d by (2.4), so P�0 ↔ y� ≤
exp�−m0r/d�. The result follows easily. ✷

We say there is an r-near connection from y to z in the configuration ω if
there exist u	 v such that �u− v� ≤ r	 y↔ u in ω and v↔ z in ω.

Lemma 2.7. Assume �1�6�� There exist C4 and C5 such that if �y� > 1	 x �= 0
and r ≥ C4 log �y� then

P�there is an r-near connection from 0 to y� ≤ exp�−mx�y� +C5r��

Proof. By Lemma 2.6, (2.4) and (2.5) there exists c1 such that

P�0↔ ∂B�0	 c1�y��� ≤ exp�−mx�y���(2.15)

Therefore we need only consider r-near connections in ��B�0	 c1�y���. Let E =
B�0	 c1�y�� and �0 = ��0	E\B�y	 r��, and for R ⊂ �d let F�R� = �Rr�c ∩E, so


�0 = R� ∈ �R	 diam�F�R�� ≤ diam�E� ≤ 2c1�y�
and d�R	F�R�� ≥ C4 log �y� − 1�

(2.16)

If there is an r-near connection, but not a connection, from 0 to y in ��E�
in a configuration ω, let v�ω� be the closest site to �0 which has an open
path to y in ��F��0��, and let u�ω� be the closest site to v�ω� in �0; ties
are broken arbitrarily. The existence of the r-near connection implies that
r ≤ �u�ω� − v�ω�� ≤ r+ 1. Note that

mx�v− u� ≤ c2r�
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Using this, along with (2.16) and Lemma 2.5, we obtain

P�there is an r− near connection from 0 to y in ��E��
≤ P�0↔ y� + ∑

R	u	v

P
(
�0 = R	u�ω� = u	 v�ω� = v

)
≤ P�0↔ y� + ∑

R	u	v

P
(
�0 = R	v↔ y in ��F�R��)

≤ P�0↔ y� + ∑
R	u	v

2P
(
�0 = R�P�v↔ y�

≤ P�0↔ y� +∑
u	v

2P�0↔ u�P�v↔ y�

≤ exp�−mx�y�� +
∑
u	v

2 exp�−mx�u� −mx�y− v��

= exp�−mx�y�� +
∑
u	v

2 exp�−mx�y� +mx�v− u��

≤ exp�−mx�y�� + 2�E�2 exp�−mx�y� + c2r�
≤ exp�−mx�y� + c3r�	

(2.17)

where the sums are over all u	 v ∈ E with r ≤ �v − u� ≤ r + 1 and over
all possible values R of �0 containing u. Together (2.15) and (2.17) yield the
lemma. ✷

From (2.2) and (2.5), the probability of an open path 0 ↔ y is at most
exp�−mx�y��. Consider for some C an �x	C�-unclean open path 0↔ u↔ v↔
y with sx�v−u� ≥ C log �x�. One can ask whether the cost of such a path (mea-
sured by the negative log of the probability) is increased by an amount of order
C log �x�, meaning that the probability is at most exp�−mx�y�−cC log �x��. For
Bernoulli percolation the van den Berg-Kesten inequality [8] can be used to
show there is always such a cost increase. But for dependent percolation the
situation is more complex. Consider the situation in which u and v are ap-
proximately on the straight line 
0	 y�, with v closer to 0, so that the path
of interest “doubles back” from u to v on the way to y. If the doubling back
occurs in a narrow enough tube around the straight line 
0	 y�, then the three
near-parallel segments of the path between approximately v and u are not
far enough apart for (ratio) weak mixing to ensure that there is any extra
cost. The next lemma, however, shows that if after doubling back from u to v
(or otherwise traversing an expensive segment) the path does not return to a
neighborhood of u, then an extra cost is indeed paid.

Lemma 2.8. Assume �1�6�� There exists C6 with the following property: For
every a ≥ 1 and 0 < b < C6, there exist C7�a	 b�	C8�a	 b� and C9�a	 b� such
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that if C ≥ C7	 �x� ≥ C8 and �y� ≤ a�x�, then
P(for some u	 v ∈ �d with sx�v− u� ≥ C log �x�	0↔ y via
a path γ which visits u before v and does not return to
B�u	 bC log �x�� after visiting v�
≤ exp�−mx�y� −C9C log �x��.

(2.18)

Proof. By Lemma 2.6, (2.4) and (2.5), there exists c4�a� such that for
E = B�0	 c4��x� +C log �x���, we have

P�0↔ ∂E� ≤ exp�−mx�y� −C log �x�� for all �y� ≤ a�x�	(2.19)

so it is sufficient to consider paths γ within ��E�.
For u	 v ∈ �d let

Bu = B�u	 bC log �x��	 B̃u = B�u	 1
2bC log �x��	

Sv = B�v	4dc6C log �x��	 S̃v = B�v	2dc6C log �x��	
where 0 < b < c5; here c5 < c6 are constants to be specified later. Provided c6
is small enough, we obtain using Lemma 2.4 that for some c7 < 1/8, for all
u	 v with sx�v− u� ≥ C log �x�,

m�w− t� ≥ 2c7C log �x� and sx�w− t� ≥
C

2
log �x�

for every t ∈ Bu	w ∈ Sv
(2.20)

so that in particular Bu and Sv are disjoint. Further, again provided c6 is
small enough, we have

�mx�q− r�� ≤ c7C log �x� for all q	 r ∈ S0(2.21)

and if also c5 is small enough relative to c6,

�mx�t− s�� <
m0

4
c6C log �x� < c7C log �x� for all s	 t ∈ B0�(2.22)

Fix y ∈ �d. For u	 v with sx�v−u� ≥ C log �x�, let A�u	 v� be the event that
there exists an open path γ from 0 to y in ��E� which visits u before v and
does not return to Bu after reaching v.

Case 1. 0	 y /∈ Bu∪Sv. We can then further decompose A�u	 v� as follows:
for s	 t ∈ ∂Bu and w	z ∈ ∂Sv, let A�u	 v� s	 t	w	 z� be the event that there
exists γ as above which first reaches ∂Bu at s, which last exits Bu via a step
to t, which has γ
t	 y� first enter Sv at w and which last exits Sv via a step to
z.

Ideally, when A�u	 v� s	 t	w	 z� occurs we would like the three segments
γ
0	 s� from 0 to ∂Bu	 γ
t	w� from ∂Bu to ∂Sv and γ
z	 y� from ∂Sv to y to be
well-separated from one another, so that Lemma 2.5 can be applied, but in
fact there may be various unwanted connections or near-connections outside
Bu and/or Sv which we must handle. Depending on the presence of these near-
connections, the source of the extra cost C9C log �x� exhibited in (2.18) is either
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the expensive segment from u to v, or the connection from u to ∂B̃u inside Bu,
or the connection from v to ∂S̃v inside Sv.

For q	 r∈A⊂�d, letN�q	 r	A� be the event that there is a �2+c8bC log �x��-
near connection from q to r in ��A�, where c8 is a (small) constant to be
specified.

Note that the distance 2 + c8bC log �x� quantifying “near-connections” is
much less than the diameter of Bu; Bu, in turn, is much smaller than Sv.

First consider A�u	 v� ∩N�0	 y	E\Bu�. When this event occurs we have a
near-connection from 0 to y outside Bu, and a connection from u to ∂B̃u. If
c8 is sufficiently small (depending on C5) and C and x are sufficiently large
(depending on a	 b), then Lemmas 2.5, 2.6 and 2.7 give for some c9	

P�A�u	 v� ∩N�0	 y	E\Bu��
≤ P�
u↔ ∂B̃u� ∩N�0	 y	E\Bu��
≤ 2P�u↔ ∂B̃u�P�N�0	 y	�d��
≤ 2 exp�−mx�y� +C5c8bC log �x� −m0bC�log �x��/4d�
≤ 2 exp�−mx�y� − c9bC log �x���

(2.23)

Second, consider A�u	 v� s	 t	w	 z� ∩N�0	 y	E\Bu�c ∩N�t	 y	E\�Bu ∪ Sv��c.
When this occurs we have clusters ��0	E\Bu� containing the sites of γ
0	 s�	
��t	E\�Bu∪Sv�� containing the sites of γ
t	w�, and ��y	E\�Bu∪Sv�� contain-
ing the sites of γ
z	 y�, these clusters being separated from each other by at
least 2+ c8bC log �x�. Therefore using Lemma 2.5, (2.6), (2.20) and (2.21), if C
is sufficiently large (depending on b) and if �x� is sufficiently large (depending
on a	 b), we obtain that for some c10,

P�A�u	 v� s	 t	w	 z� ∩N�0	 y	E\Bu�c ∩N�t	 y	E\�Bu ∪Sv��c�
≤ ∑
I	J	K

P
(
��0	E\Bu� = I	 ��t	E\�Bu ∪Sv�� = J	

��y	E\�Bu ∪Sv�� =K
)

≤ ∑
I	J	K

4P
(
��0	E\Bu� = I

)
×P(��t	E\�Bu ∪Sv�� = J)P(��y	E\�Bu ∪Sv�� =K)

≤ 4P�0↔ s�P�t↔ w�P�z↔ y�
≤ 4 exp�−
mx�s� +mx�w− t� + sx�w− t� +mx�y− z���
= 4 exp�−
mx�y� −mx�t− s� −mx�z−w� + sx�w− t���

≤ 4 exp
{
−mx�y� + 2c7C log �x� − C

4
log �x�

}

≤ exp�−mx�y� − c10C log �x��

(2.24)
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where the sums are over all I	J	K ⊂ E with 0	 s ∈ I	 t	w ∈ J	z	y ∈ K and
min�d�I	J�, d�I	K�	 d�J	K�� > 2+ c8bC log �x��

Third, consider A�u	 v� s	 t	w	 z� ∩N�0	 y	E\Bu�c ∩N�0	 s	E\�Bu ∪Sv��c.
When this occurs and ��0	E\�Bu∪Sv�� = I	 ��s	E\�Bu∪Sv�� = J	��0	E\Bu�
= K, ��y	E\�Bu ∪ Sv�� = L for some I	J	K	L, we must have I ∪ J ⊂ K	
d�I	J� > 2+c8bC log �x� and d�K	L� > 2+c8bC log �x�; I contains the sites of
an open path from 0 to ∂Sv, J contains the sites of an open path from ∂Sv to
s and L contains the sites of γ
z	 y�. (Here we do not make use of the cluster
containing t and w.) Therefore, using Lemma 2.5, (2.6), (2.20) and (2.21), if C
and x are sufficiently large (depending on a	 b), we obtain that for some c11,

P
(
A�u	 v� s	 t	w	 z� ∩N�0	 y	E\Bu�c ∩N�0	 s	E\�Bu ∪Sv��c

)
≤ ∑
I	J	L

P
(
��0	E\�Bu ∪Sv�� = I	 ��s	E\�Bu ∪Sv�� = J	

��y	E\Bu� = L
)

≤ ∑
I	J	L

4P
(
��0	E\�Bu ∪Sv�� = I

)
P
(
��s	E\�Bu ∪Sv�� = J

)
×P(��y	E\Bu� = L)

≤ 4P�0↔ ∂Sv�P�∂Sv ↔ s�P�z↔ y�
≤ 4

∑
q	r∈∂Sv

P�0↔ q�P�r↔ s�P�z↔ y�

≤ 4
∑

q	r∈∂Sv
exp�−
mx�q� +m�s− r� +mx�y− z���

= 4
∑

q	r∈∂Sv
exp�−mx�y� +mx�z− q� −m�s− r��

≤ �∂Sv�2 exp�−mx�y� − c7C log �x��
≤ exp�−mx�y� − c11C log �x��

(2.25)

where the sum is over I	J	L ⊂ E with 0 ∈ I	 I ∩ ∂Sv �= φ	 s ∈ J	J ∩ ∂Sv �=
φ	y	 z ∈ L and min�d�I	J�	 d�I	L�	 d�J	L�� > 2+ c8bC log �x�.

Fourth, consider

A�u	 v� s	 t	w	 z�∩N�0	 y	E\Bu�c∩N�0	 s	E\�Bu∪Sv��∩N�t	 y	E\�Bu∪Sv���

When this occurs and ��0	E\�Bu∪Sv��∪��s	E\�Bu∪Sv�� = I	 ��0	E\Bu� =
J	��t	E\�Bu ∪ Sv�� ∪ ��y	E\�Bu ∪ Sv�� = K and ��y	E\Bu� = L for some
I	J	K	L, we must have I ⊂ J	K ⊂ L and d�J	L� ≥ 2 + c8bC log �x�; I
contains the sites of a near-connection from 0 to s and K contains the sites
of a near-connection from t to y. There is also an open path from v to ∂S̃v.
Therefore assuming b is small enough relative to c6, using Lemmas 2.5 - 2.7,
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(2.6) and (2.22), if C and x are sufficiently large (depending on a	 b), we obtain

P
(
A�u	 v� s	 t	w	 z� ∩N�0	 y	E\Bu�c ∩N�0	 s	E\�Bu ∪Sv��

∩N�t	 y	E\�Bu ∪Sv��
)

≤ ∑
I	K

P
(
��0	E\�Bu ∪Sv�� ∪ ��s	E\�Bu ∪Sv�� = I	

��t	E\�Bu ∪Sv�� ∪ ��y	E\�Bu ∪Sv�� =K	v↔ ∂S̃v
)

≤ ∑
I	K

4P
(
��0	E\�Bu ∪Sv�� ∪ ��s	E\�Bu ∪Sv�� = I

)
×P(��y	E\�Bu ∪Sv�� ∪ ��t	E\�Bu ∪Sv�� =K)
×P�v↔ ∂S̃v�

≤ 4P�N�0	 s	�d��P�N�t	 y	�d��P�v↔ ∂S̃v�
≤ 4 exp�−mx�s� −mx�y− t� + 2C5c8bC log �x� −m0c6C log �x��
≤ exp�−mx�y� +mx�t− s� − 1

2m0c6C log �x��
≤ exp�−mx�y� − 1

4m0c6C log �x���

(2.26)

where the sum is over those I ! 0	 s and K ! t	 y consistent with the event
appearing in the first sum in (2.26), with d�I	K� ≥ 2+c8bC log �x�. Combining
(2.23), (2.24), (2.25) and (2.26) and summing over s	 t	w	 z, provided C and x
are sufficiently large (depending on a	 b), we obtain

P�A�u	 v�� ≤ exp�−mx�y� − c12bC log �x���(2.27)

It remains to consider cases with 0 and/or y in Bu ∪ Sv. Note that when
A�u	 v� occurs we cannot have y ∈ Bu. Also, the bound (2.23) is valid regard-
less of the locations of u and v (the left side is 0 if 0 ∈ Bu.)

Case 2. 0 ∈ Bu	 y /∈ Bu ∪ Sv. Here there is no longer a site s but we
can define t	w	 z and A�u	 v� t	w	 v� similarly to Case 1. Similarly to (2.24)
we obtain

P
(
A�u	 v	 t	w	 z� ∩N�0	 y	E\Bu�c ∩N�t	 y	E\�Bu ∪Sv��c

)
≤ 2P�t↔ w�P�z↔ y�
≤ 2 exp�−
mx�w− t� + sx�w− t� +mx�y− z���
= 2 exp�−
mx�y� −mx�t� −mx�z−w� + sx�w− t���

≤ 2 exp
{
−mx�y� + 2c7C log �x� − C

4
log �x�

}

≤ exp�−mx�y� − c10C log �x��	

(2.28)
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while similarly to (2.26) we obtain

P
(
A�u	 v� t	w	 z� ∩N�0	 y	E\Bu�c ∩N�t	 y	E\�Bu ∪Sv��

)
≤ 2P�N�t	 y	�d��P�v↔ ∂S̃v�
≤ 4 exp�−mx�y− t� +C5c8bC log �x� −m0c6C log �x��
≤ exp�−mx�y� +mx�t� − 1

2m0c6C log �x��
≤ exp�−mx�y� − c12C log �x���

(2.29)

Summing these over t	w	 z and combining with (2.23) yields (2.27).

Case 3. 0 ∈ Sv	y /∈ Bu ∪ Sv. Similarly to (2.25), using (2.20) and (2.21)
we obtain

P
(
A�u	 v� s	 t	w	 z� ∩N�0	 y	E\Bu�c

)
≤ 2P�0↔ s�P�z↔ y�
≤ 2 exp�−
m�s� +mx�y− z���

≤ exp
{
−C

2
log �x� −mx�y� + c7C log �x�

}

≤ exp
{
−mx�y� −

C

4
log �x�

}
�

(2.30)

Summing over s	 t	w	 z and combining with (2.23) again yields (2.27).

Case 4. 0 /∈ Bu ∪ Sv	y ∈ Sv. This time there is no longer a site z but we
can define s	 t	w and A�u	 v� s	 t	w� similarly to Case 1. Similarly to (2.24)
we obtain

P
(
A�u	 v� s	 t	w� ∩N�0	 y	E\Bu�c

)
≤ 2P�0↔ s�P�t↔ w�
≤ 2 exp�−
mx�s� +mx�w− t� + sx�w− t���
= 2 exp�−
mx�y� −mx�t− s� −mx�y−w� + sx�w− t���

≤ 2 exp
{
−mx�y� + 2c7C log �x� − C

4
log �x�

}

≤ exp�−mx�y� − c10C log �x���

(2.31)

Once again, summing over s	 t	w and combining with (2.23) yields (2.27).
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Case 5. 0 ∈ Bu	y ∈ Sv. Here

P�A�u	 v�� ≤ P�u↔ v�
≤ exp�−
mx�v− u� + sx�v− u���
= exp�−
mx�y� −mx�y− v� −mx�u� + sx�v− u���
≤ exp�−mx�y� + 2c7C log �x� −C log �x��

≤ exp
{
−mx�y� −

C

2
log �x�

}
	

(2.32)

so again (2.27) is valid.

Case 6. 0	 y ∈ Sv. Here, from (2.20) and (2.21),

P�A�u	 v�� ≤ P�0↔ u�
≤ exp�−m�u��
≤ exp�−2c7C log �x��
≤ exp�−mx�y� − c7C log �x��	

(2.33)

so once more (2.27) is valid.
Thus (2.27) is valid for all u	 v ∈ E with sx�v − u� ≥ C log �x�. Summing

over such u	 v and combining with (2.19) yields (2.18). ✷

As discussed in the remarks preceding Lemma 2.8, an unclean open path
from 0 to some y need not cost more than a clean one, outside of the circum-
stances of (2.18). The next lemma shows that when all paths to y, open or
not, are unclean, then every open path to y must be as in (2.18), so an extra
cost is always paid. The lemma is valid for more general G than stated, but
we only need the halfspace case.

Lemma 2.9. Assume �1�6�� There exist Ci such that if G is either �d or the
intersection of a halfspace with �d, if C ≥ C11	 �x� ≥ C12 and y ∈ Qx�C� is not
�x	C�-cleanly reachable from 0 inside G, then

P�0↔ y in ��G�� ≤ e−mx�y�−C10C log �x��

Proof. Suppose y is not �x	C�-cleanly reachable from 0 but 0 ↔ y via
some path γ of open bonds in ��G�. (If there is more than one such γ, we can
choose one arbitrarily.) Define 0 = w0	w1	 ��	wm = y inductively as follows:
wi+1 is the first site in γ after wi for which γ
wi+1	 z� ⊂ B�wi	C15C log �x��c,
where C15 is a constant to be specified; if there is no such wi+1 for some
value i =m− 1, then y ∈ B�wi	 c13C log �x�� and we end the construction. Let
Bi = B�wi	 c13C log �x��.

Since wi+1 ∈ ∂Bi, it is easy to see that there exists a lattice path α from 0
to y in ��G� contained in ∪mi=0Bi, and α can be chosen so that once α leaves
any of the balls Bi, it does not return to ∪j≤iBj. (Since G ∩Bi is “connected”
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for each i, one need only ensure that when α exits any ball Bi, it exits into
the ball Bj of maximal index j for which Bj ∩ Bi �= φ. Informally speaking,
α is approximately γ with doublebacks erased.) Since y is not �x	C�-cleanly
reachable from 0 inside G, there must exist sites u	 v in α with u preceding
v such that sx�v − u� ≥ C log �x�. Let k and l be such that u ∈ Bk	 v ∈ Bl.
Provided c13 is small enough, we have by Lemma 2.4(ii):

�sx�u−wk�� ≤ 1
4C log �x�	 �sx�v−wl�� ≤ 1

4C log �x�

and therefore

sx�wl −wk� ≥ 1
2C log �x�	(2.34)

which by Lemma 2.4(ii) implies �wl −wk� > 2c13C log �x�. Thus Bk and Bl are
disjoint. Since α visits u before v and does not visit ∪j≤kBj after leaving Bk, it
follows that k < l and so wk precedes wl in γ. But now we are in the situation
of Lemma 2.8 (with b = c13, a = 2dM0/m0 obtained from Lemma 2.4(i) and
C/2 in place of C): we have an open path γ from 0 to y which visits wk, then
wl, after which it does not return to Bk and (2.34) holds; provided c13 is small
enough, the lemma follows. ✷

Let m+
x �·� = max�mx�·�	0�.

Lemma 2.10. Assume �1�6�� There exist constants Ci such that if D ⊂
�d	C ≥ 1	 �x� ≥ C14�C� and v	w ∈ Q̃x�C�, then

P�v ∈ �x	C�0	D� and 0↔ w� ≤ e−m+
x �w�−C13C log �x��(2.35)

Note that, in contrast to (2.35), from (2.2) and (2.5) one obtains that the
probability of the event 0↔ w alone can be bounded above by exp�−m�w�� or
exp�−m+

x �w��. The significance of Lemma 2.10 is that because v ∈ �x	C�0	D�,
so that v is barely cleanly reachable from 0, the additional presence of a path
0↔ v introduces an extra cost of C13C log �x�, even though the two paths need
not be disjoint.

Proof of Lemma 2.10. There exist C16�C� and c15 such that �x� ≥ C16 and
w ∈ Q̃x�C� imply �w� ≤ c15�x�. Hence as in (2.19), we have for some c16

P�0↔ ∂B�0	 c16�x��� ≤ exp�−mx�w� −C log �x���(2.36)

Let 0 < c17 < c18 be constants to be specified later, let

E = B�0	 c16�x��	 Bv = B�v	4dc18C log �x��	 B̃v = B�v	2dc18C log �x��	

and let N denote the event that there is a �c17C log �x��-near connection from
0 to w in ��E\Bv�. If c17 is sufficiently small relative to c18, and �x� and C
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are sufficiently large, then by Lemmas 2.5, 2.6 and 2.7 we have

P
(
v ∈ �x	C�0	D�� ∩N)

≤ P�
v↔ ∂B̃v� ∩N�
≤ 2P�v↔ ∂B̃v�P�N�
≤ 2 exp�−m0c18C log �x�� exp�−mx�w� +C5c17C log �x��
≤ 2 exp�−mx�w� − c19C log �x���

(2.37)

Next, we suppose first that w /∈ Bv. Using Lemma 2.5, again assuming �x� and
C are sufficiently large,

P
( 
v ∈ �x	C�0	D�� ∩ 
0↔ w� ∩Nc

)
≤ P�0↔ ∂E� +∑

I	J

P
(
��0	E\Bv� = I	 ��w	E\Bv� = J

)
≤ P�0↔ ∂E� +∑

I	J

2P
(
��0	E\Bv� = I

)
P
(
��w	E\Bv� = J

)
≤ P�0↔ ∂E� + 2P

(
0↔ ∂Bv in ��Q̃x�C��

)
P�∂Bv ↔ w�	

(2.38)

where the sum is over all I	J with 0 ∈ I	w ∈ J	J ∩ ∂Bv �= φ	d�I	J� >
c17C log �x� and with I containing the sites of a path from 0 to ∂Bv in ��Q̃x�C��.
Presuming c18 is sufficiently small we have sx�u − z� ≤ �C log �x��/4 for all
u	 z ∈ Bv. Since v is barely �x	C�-cleanly reachable from 0 insideGx, it follows
readily that no y ∈ ∂Bv is �x	C/2�-cleanly reachable from 0 inside Gx. Hence
by Lemma 2.9, for some c20 < 1,

P
(
0↔ y in ��Q̃x�C��

)
≤ exp�−mx�y� − 5c20C log �x�� for all y ∈ ∂Bv�

(2.39)

Further, if �x� is large and c18 is chosen sufficiently small, for y ∈ Bv we have
from (2.5) and (2.4):

�mx�y� −mx�v�� ≤ c20C log �x��(2.40)

Therefore if �x� is sufficiently large, (2.39) yields

2P
(
0↔ ∂Bv in ��Q̃x�C��

) ≤ 2�∂Bv� exp�−mx�v� − 4c20C log �x��
≤ exp�−mx�v� − 3c20C log �x��

(2.41)

and similarly

P�∂Bv ↔ w� ≤ exp�−mx�w− v� + 2c20C log �x���(2.42)

Ifw ∈ Bv, the same argument applies withP�∂Bv ↔ w� replaced by 1 through-
out, by (2.40). Combining (2.36), (2.38), (2.41) and (2.42) shows that

P
(
v ∈ �x	C�0	D�� ∩ 
0↔ w� ∩Nc

) ≤ 3 exp�−mx�w� − c20C log �x��	
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which with (2.37) proves (2.35) with mx in place of m+
x . But since v is barely

�x	C�-cleanly reachable from 0 inside Gx, for some c21 and c22 we must have
�v� ≥ c21C log �x� and hence the left side of (2.35) is bounded by

P�0↔ v� ≤ exp�−c22C log �x��	
so we can replace mx with m+

x in (2.35). ✷

Let � �C	 r	 x� denote the set of all gapped �C	 r	 x�-skeletons derived from
all paths γ (starting from 0) in all configurations ω and

�jl�C	 r	 x� = ��ui	 vi	 v′i	wi�i≤k ∈ � �C	 r	 x� � vk = z	
�S��ui	 vi	 v′i	wi�i≤k�� = j	 �L��ui	 vi	 v′i	wi�i≤k�� = l��

The next result is the analog of Lemma 2.3 of [2].

Lemma 2.11. Assume �1�6�� There exist constants Ci > 3 such that if
C ≥ C15	 r ≥ C16 and �x� ≥ C17�C�, then for n sufficiently large, there exist
a configuration ω and a path γ from 0 to nx for which the gapped �C	 r	 x�-
skeleton consists of at most 3n tuples.

Proof. Fix x ∈ �d and C > 1. The conclusion will follow if we can show
that

P �0↔ nx via a path γ for which the gapped

�C	 r	 x�–skeleton consists of more than 3n tuples�(2.43)

< P�0↔ nx� for n large�

From the definition of m�x� we have

P�0↔ nx� ≥ 2−ne−nm�x� for n large�(2.44)

Fix j	 l and U = �ui	 vi	 v′i	wi�i≤k ∈ �jl�C	 r	 x	 z�� Let �i	0 ≤ i ≤ k, be
subsets of ���d� which are possible values of the clusters ��ui	 �ui+Q̃x�C��∩
Di�, subject to (2.12) and satisfying vi	wi ∈ �i whenever �i �= φ, where
Di = �d\ ∪j<i ��j�r log �x� as in Definition 2.3. That is, we suppose there exists
a configuation ω for which vi	wi ∈ �i whenever �i �= φ, and ��ui	 �ui +
Q̃x�C�� ∩Di	ω� = �i for all i ≤ k and (2.10) holds. (Note that we can have
�i = φ only for i = k.) We call such sequences of sets �i	0 ≤ i ≤ k, allowable.
Then

P
(
0↔ nx via a path γ with gapped �C	 r	 x�–skeleton U

and ��ui	 �ui + Q̃x�C�� ∩Di� = �i for all i ≤ k)(2.45)

≤ P(��ui	 �ui + Q̃x�C�� ∩Di� = �i and �viv′i� is open for all i ≤ k)�
Here, for convenience of notation, we define the event “�vkv′k� is open” to be
the full probability space �0	1����d�, since vk = v′k = z. If �x� ≥ C1�C� then by
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(2.7) and Lemma 2.4(i),

diam��i� ≤ diam�Qx�C�� + 2 ≤ c23�x��(2.46)

Since the event 
��ui	 �ui + Q̃x�C�� ∩Di� = �i and �viv′i� is open� ∈ ��i , if �x�
and r are sufficiently large then from (2.12), (2.46) and Lemma 2.5 it follows
that

P
(
� �ui	 �ui + Q̃x�C�� ∩Di� = �i and �viv′i� is open for all i ≤ k)
≤ 2k

∏
i≤k
P
(
��ui	 �ui + Q̃x�C�� ∩Di� = �i and �viv′i� is open

)
�

(2.47)

From (2.7) and Lemma 2.4(i), for a given value of ui there are at most c24�x�d
choices for each of vi	 v

′
i and wi, for some c24�C�. Therefore for some c25, if

�x� ≥ C1�C� then

��jl�C	 r	 x	 nx�� ≤ exp�c25�j+ l� log �x���(2.48)

If C is large enough and �x� ≥ c26�C� then by (2.7), (2.45), (2.46), Lemma 2.10
and Lemma 2.4(iii), summing (2.47) over all allowable sequences ��i	0 ≤ i ≤
k� gives

P
(
0 ↔ nx via a path γ with gapped �C	 r	 x� − skeleton U

)
≤ 2k

∏
i≤k
P
(
vi ∈ �x	C�ui	Di� ∪ �ui + ∂inGx��

ui ↔ vi and ui ↔ wi both in ��ui + Q̃x�C���

≤ 2k exp

(
− ∑
i∈S�U�

m+
x �wi − ui� −C13C�S�U�� log �x�

)

× exp

(
−max

[ ∑
i/∈S�U�

mx�wi − ui�	
∑

i∈L�U�
mx�vi − ui�

])

≤ 2j+l exp

(
− ∑
i∈S�U�

m+
x �wi − ui� −C13Cj log �x�

)

× exp

(
−max

[ ∑
i/∈S�U�

mx�wi − ui�	 l�m�x� −M0�
])
�

(2.49)

The remainder of the proof follows that of Lemma 2.3 of [2]. (It should be
noted at this point that there is a significant misprint in that proof, corrected
in Remark 2.13 below.) Choose C such that C13C ≥ 4c25+6dM0r. We consider
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first l ≥ 3n. If �x� is large, then using (2.49), (2.48) and (2.44),

∑
l≥3n

∑
j≥0

P
(
0↔ nx via a path γ

with gapped �C	 r	 x� − skeleton in �jl�C	 r	 x	 nx�
)

≤ ∑
l≥3n

∑
j≥0

2j+l exp�c25�j+ l� log �x�� exp�−C13Cj log �x��

× exp�−l�m�x� −M0��
≤ 2 exp�−3n
m�x� −M0 − c25 log �x� − log 2��
≤ exp�−2nm�x��
= o�P�0↔ nx�� as n→∞�

(2.50)

Next we consider n ≤ l < 3n. Again from (2.49), (2.48) and (2.44), for �x� large,

∑
n≤l<3n

∑
j≥3n−l

P
(
0↔ nx via a path γ with gapped

�C	 r	 x� − skeleton in �jl�C	 r	 x	 nx�
)

≤ ∑
n≤l<3n

∑
j≥3n−l

2j+l exp�c25�j+ l� log �x�� exp�−C13Cj log �x��

× exp�−l�m�x� −M0��
≤ 2 exp�−2C13Cn log �x��∑

l≥n
exp�−l�m�x� −M0 − 4c25 log �x���

≤ 2 exp�−nm�x� − n�C13C log �x� −M0��
= o�P�0↔ nx�� as n→∞�

(2.51)

Finally we consider l < n. From (2.5), (2.4) and (2.10) we have

mx�ui+1 −wi� ≤ 2dM0r log �x�

so

∑
i≤k
mx�wi − ui� =mx�nx� −

∑
i≤k−1

mx�ui+1 −wi� ≥ nm�x� − 2kdM0r log �x��
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With (2.49), (2.48) and (2.44) this shows∑
0≤l<n

∑
j≥3n−l

P
(
0↔ nx via a path γ with gapped

�C	 r	 x� − skeleton in �jl�C	 r	 x	 nx�
)

≤ ∑
0≤l<n

∑
j≥3n−l

2j+l exp�c25�j+ l� log �x��

× exp

{
−∑
i≤k
mx�wi − ui� −C12Cj log �x�

}

≤ ∑
0≤l<n

∑
j≥3n−l

2j+l exp�c25�j+ l� log �x��

× exp�−nm�x� + 2�j+ l�dM0r log �x� −C13Cj log �x��
≤ 2n · 23n exp�3nc25 log �x� − nm�x�

+6ndM0r log �x� − 2C13Cn log �x��
≤ exp�−nm�x� −C13Cn log �x��
= o�P�0↔ nx�� as n→∞�

(2.52)

Statement (2.43) now follows from (2.50), (2.51) and (2.52). ✷

Theorem 1.1(ii) is an immediate consequence of Theorem 1.9 of [4] and the
next Proposition, which proves slightly more than CHAP for the function h.

Proposition 2.12. Assume �1�6�� There exist C andM such that

x

α
∈ Co�Q̃x�C�� for some α ∈ 
2	6�	 for all x ∈ �d with x ≥M�(2.53)

Proof. In the notation of Lemma 2.11, let C	 r satisfy C ≥ C15 and C16 ≤
r ≤ c27C, where c27 is a constant to be specified later and suppose �x� ≥ C17�C�.
By Lemma 2.11 there exist n and a gapped �C	 r	 x�-skeleton �ui	 vi	 v′i	wi�i≤k
corresponding to some path from 0 to nx, with k < 3n. From (2.11) we have
wi − ui ∈ Q̃x�C�. For each i < k there is a path ϕi from wi to ui+1 of length
�ui+1−wi�1. If z	 y are vertices of ϕi then by Lemma 2.4(ii) and (2.10), provided
c27 is chosen small enough,

sx�z− y� ≤ 2�z− y�1 log
1
p
≤ 4dr�log�x�� log

1
p
≤ C log �x�

and by (2.5) and (2.4), if �x� ≥ c28�C�,

mx�z− y� ≤ 2M0�ui+1 −wi�1 log
1
p
≤ 4drM0�log �x�� log

1
p
≤m�x��
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If follows that ui+1 −wi ∈ Q̃x�C�. Thus we have

nx =
k∑
i=0

�wi − ui� +
k−1∑
i=0

�ui+1 −wi� =
∑

y∈Q̃x�C�
n�y�y	(2.54)

where n�y� is the number of times y appears in the first two sums in (2.54).
Since ∑

y∈Q̃x�C�
n�y� = 2k+ 1 ∈ 
2n	6n�	

the conclusion (2.53) is obtained by dividing (2.54) by
∑
y∈Q̃x�C� n�y�. ✷

Remark 2.13. In the proof of [2], Lemma 2.3, the top three lines on page
1554 should read as follows:

First, for ��x�� ≥ some c10, by (2.12) and Lemma 2.2(ii),

∑
k≥3n

∑
j≥0

∑
�vi�∈�xjk�nx�

( ∏
i/∈L��vi��

exp
−sx�vi+1 − vi� − σgx�vi+1 − vi��
)

×
( ∏
i∈L��vi��

exp
−σgx�vi+1 − vi��
)
�

3. Proof of Theorem 1.1(i). Theorem 1.1(i) is a consequence of Proposi-
tion 2.12 above, together with some results from [2] (Lemmas 2.6, 2.8, 2.9 and
Proposition 2.7) modified only slightly. Therefore we will give only a sketch of
the proof.

We say that a path γ x-backtracks by t if there exist sites u	 v in γ with u
preceding v but mx�v− u� ≤ −t. Since 0 ≤ h�v− u� = mx�v− u� + sx�v− u�,
this implies sx�v − u� ≥ t. Thus an �x	C�-clean path cannot x-backtrack by
more than C log x.

By Proposition 2.12, there exists C such that for �x� ≥M we can express x
as

x =
d+1∑
i=1

αiyi with αi ≥ 0	 2 ≤
d+1∑
i=1

αi ≤ 6 and yi ∈ Q̃x�C��

In fact, since we can have yi = yj for i �= j, we have a similar statement with
αi ≤ 1 for all i:

x =
d+6∑
i=1

αiyi with 0 ≤ αi ≤ 1 and yi ∈ Q̃x�C��(3.1)

For each yi, there is an �x	C�-clean path from 0 to yi and consequently
sx�yi� ≤ C log x. We would like to find a constant b, depending only on P,
such that

sx�αiyi� ≤ bC log �x� for all i�(3.2)
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Of course αiyi need not be in �d, in which case sx�αiyi� is not defined, but
we can replace αiyi with an “adjacent” lattice site at the expense of an easily
manageable error. If we can establish (3.2), then (3.1) and subadditivity of sx
give

sx�x� ≤
d+6∑
i=1

αiyi ≤ �d+ 6�bC log �x��(3.3)

Since mx�x� = m�x� = m�θ��x�, we have P�0 ↔ x� = exp�−m�θ��x� − sx�x��,
so (3.3) yields the desired conclusion (1.7). Thus it is enough to prove the
following:

there exists b such that if y ∈ Q̃x�C� and 0 ≤ α ≤ 1, then
sx�αy� ≤ bC log �x�.(3.4)

(Again, αy should be interpreted as an adjacent lattice site if αy is not itself a
lattice site.) To prove (3.4), let y ∈ Q̃x�C� and 0 ≤ α ≤ 1 and let γ � 
0	1� → �d

be an �x	C�-clean lattice path from 0 to y. Since γ does not x-backtrack by
C log �x� or more, we can approximate γ to within C log �x� (measured in the
norm m�·�) by a curve γ̃ (not necessarily a lattice path) from 0 to y which
does not x-backtrack at all; in fact we can have mx�γ̃�t�� strictly increasing.
Proposition 2.7 of [2] then states that there exist kd, depending only on the
dimension d = 2 or 3 and a collection of kd subintervals 
sj	 tj�	 j = 1	 ��	 kd,
of [0,1], such that

αy =
kd∑
i=1

�γ̃�tj� − γ̃�sj��

=
kd∑
i=1


�γ̃�tj� − γ�tj�� + �γ�tj� − γ�sj�� + �γ�sj� − γ̃�sj����

(3.5)

(The intervals 
sj	 tj� may depend on γ here and may overlap.) Let us as-
sume all the points appearing in (3.5) are lattice sites; otherwise we again
approximate them by adjacent lattice sites. Since γ is �x	C�-clean, we have

sx�γ�tj� − γ�sj�� ≤ C log �x��

From (2.4) and Lemma 2.4(ii), for some c29 depending only on P,

sx�γ̃�tj� − γ�tj�� ≤ c29m�γ̃�tj� − γ�tj�� ≤ c29C log �x�

and similarly for sx�γ̃�sj� − γ�sj��. Together with (3.5), these bounds yield

sx�αy� ≤ kd�4c29 + 1�C log �x�	

so (3.4) is proved. ✷
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4. Proof of Theorem 1.4. We will adapt the techniques of [2], Lemma
4.3, to our present context.

We may assume that 0 ∈ ∂H. Let n denote the outward unit normal to H.
Given ω in which 0 ↔ x, let γω be an open path in ω from 0 to x (chosen
arbitrarily if there is more than one such path) and let X�ω� be a site in γω
which maximizes n · y over y ∈ γω (the first such site, say, if there is more
than one). Note that if the segment of γω from 0 to X�ω� and the segment
from X�ω� to x are interchanged, the result is a path from 0 to x in H. To
make such an interchange possible, in a sense, we must show that the two
segments are nearly independent.

By Lemma 2.7, provided �x� is large and c30 ≥ C4, the event

N = �ω � there is a �c30 log �x��-near connection from 0 to x in ω�
satisfies

P�N� ≤ exp�−m�x� + c30C5 log �x���(4.1)

By Lemma 2.6 and Theorem 1.1, there exists c31 such that forB0 = B�0	 c31�x��
the event

U = �ω � 0↔ ∂B0�
satisfies

P�U� ≤ 1
2P�0↔ x��(4.2)

Therefore there exist z ∈ B0 and c32 such that, lettingHz denote the translate
of H with z ∈ ∂Hz,

P�0↔ z↔ x in ��Hz ∩B0�� ≥ P�0↔ x	X = z	Uc� ≥ c32

�x�dP�0↔ x��(4.3)

Note that z is not in the interior of H, so x−z ∈H. Using positive connection
correlations,

P�0↔ x in ��H�� ≥ P�0↔ x− z↔ x in H�
≥ P�0↔ x− z in ��H��P�x− z↔ x in ��H��(4.4)

= P�0↔ z in ��Hz��P�z↔ x in ��Hz���
We need to compare the left side of (4.3) to the right side of (4.4). For x ∈ �d

let fd�x� be log �x� for d = 2	3 and �log �x��2 for d ≥ 4. By Lemma 2.6, there
exists c33 such that, defining

Bz = B�z	2+ c33fd�x��	 B̃z = B�z	 c33fd�x��	
we have

P�z↔ ∂B̃z� ≤
c32A

4
exp�−�d+ c30C5 +C�fd�x��	(4.5)
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whereA	C are as in Theorem 1.1. (A = 1 if d ≥ 4.) Assume first that 0	 x /∈ Bz.
Define

Ñ=�ω � there is a �c30 log �x��-near connection from 0 to x outside Bz in ω��
For �x� large, Lemma 2.5, (4.5), (4.1), Theorem 1.1 and (4.3) give

P�
0↔ z↔ x in Hz� ∩ Ñ�
≤ P�
z↔ ∂B̃z� ∩ Ñ�
≤ 2P�z↔ ∂B̃z�P�Ñ�

≤ c32A

2
exp�−m�x� − �d+C�fd�x��

≤ 1
2
P�0↔ z↔ x in Hz ∩B0��

(4.6)

Therefore, by Lemma 2.5, positive connection correlations and (2.14), for some
c34, provided c30 and �x� are large,

P
(
0↔ z↔ x in ��Hz ∩B0�

)
≤ 2P

(
0↔ z↔ x in ��Hz ∩B0�� ∩ Ñc
)

≤ 2P
(
0↔ ∂Bz in Hz ∩B0� ∩ 
x↔ ∂Bz in Hz ∩B0� ∩ Ñc

)
≤∑
I	J

P
(
��0	 �Hz ∩B0�\Bz� = I	 ��x	 �Hz ∩B0�\Bz� = J

)
≤∑
I	J

2P
(
��0	 �Hz ∩B0�\Bz� = I

)
P
(
��x	 �Hz ∩B0�\Bz� = J

)
≤ 2P

(
0↔ ∂Bz in ��Hz�

)
P
(
x↔ ∂Bz in ��Hz�

)
≤ ∑
q	r∈Hz∩∂Bz

2P�0↔ q in ��Hz��P�x↔ r in ��Hz��

≤ exp�c34fd�x��P�0↔ z in ��Hz��P�z↔ x in ��Hz��

(4.7)

where the sum is over I	J ⊂ �B0 ∩ Hz�\Bz with 0 ∈ I	 I ∩ ∂Bz �= φ	x ∈
J	J∩∂Bz �= φ and d�I	J� ≥ c30 log �x�. Combining (4.3), (4.4) and (4.7) yields

P�0↔ x in ��H�� ≥ exp�−c34fd�x��
c32

�x�dP�0↔ x��(4.8)

With Theorem 1.1 this completes the proof, when 0 /∈ Bz and x /∈ Bz.
When 0 ∈ Bz	 the proof is simpler. We have

P�0↔ z in ��Hz�� ≥ exp�−c35fd�x��(4.9)

and in place of (4.7),

exp�−c36fd�x��P�0↔ z↔ x in ��Hz ∩B0��
≤ P�0↔ z in ��Hz��P�z↔ x in ��Hz���

(4.10)
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Combining (4.3), (4.4), (4.9) and (4.10) again yields (4.8). The proof when x ∈
Bz is similar. ✷
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