POWER-LAW CORRECTIONS TO EXPONENTIAL DECAY OF CONNECTIVITES AND CORRELATIONS IN LATTICE MODELS ${ }^{1}$

By Kenneth S. Alexander
University of Southern California

Abstract

Consider a translation-invariant bond percolation model on the integer lattice which has exponential decay of connectivities, that is, the probability of a connection $0 \leftrightarrow x$ by a path of open bonds decreases like $\exp \{-m(\theta)|x|\}$ for some positive constant $m(\theta)$ which may depend on the direction $\theta=x /|x|$. In two and three dimensions, it is shown that if the model has an appropriate mixing property and satisfies a special case of the FKG property, then there is at most a power-law correction to the exponential decay-there exist A and C such that $\exp \{-m(\theta)|x|\} \geq P(0 \leftrightarrow$ $x) \geq A|x|^{-C} \exp \{-m(\theta)|x|\}$ for all nonzero x. In four or more dimensions, a similar bound holds with $|x|^{-C}$ replaced by $\exp \left\{-C(\log |x|)^{2}\right\}$. In particular the power-law lower bound holds for the Fortuin-Kasteleyn random cluster model in two dimensions whenever the connectivity decays exponentially, since the mixing property is known to hold in that case. Consequently a similar bound holds for correlations in the Potts model at supercritical temperatures.

1. Introduction and statement of results. Many quantities encountered in statistical mechanics decay at an approximately exponential rate as a function of distance. Typical finite-range spin systems have exponential decay of correlations at sufficiently high temperatures and many standard percolation models, such as the Fortuin-Kastelyn random cluster model [13], are known or believed to have exponential decay of connectivities for those parameter values (other than critical points) at which there is no percolation. For the modified correlation function

$$
\rho(0, x)=\frac{q^{2}}{q-1} \operatorname{cov}\left(\delta_{\left[\sigma_{0}=i\right]}, \delta_{\left[\sigma_{x}=i\right]}\right)
$$

of the (free-boundary) q-state Potts model, or for the connectivity function

$$
\rho(0, x)=P(0 \leftrightarrow x)
$$

of a translation-invariant percolation model having the FKG property, supermultiplicativity holds:

$$
\rho(0, x+y) \geq \rho(0, x) \rho(0, y),
$$

so $-\log \rho(0, x)$ is a subadditive function of x. (Here $[0 \leftrightarrow x]$ denotes the event that 0 is connected to x by a path of open bonds and σ_{x} denotes the spin at

[^0]site x.) From standard properties of subadditive sequences, this implies that the limit
\[

$$
\begin{equation*}
m=m(x /|x|)=\lim _{n \rightarrow \infty} \frac{1}{n|x|} \log \rho(0, n x) \tag{1.1}
\end{equation*}
$$

\]

exists and the exponential approximation is an upper bound for the actual correlation or connectivity function:

$$
\rho(0, x) \leq e^{-m|x|}, \quad x \in \mathbb{Z}^{d} .
$$

It is therefore of interest to find lower bounds, establishing results of the form

$$
\begin{equation*}
\rho(0, x) \geq f(x) e^{-m|x|}, \quad x \in \mathbb{Z}^{d}, \tag{1.2}
\end{equation*}
$$

where ρ is the correlation or connectivity function, f decays subexponentially and $|\cdot|$ is the Euclidean norm.

Ornstein and Zernike [20] predicted for certain models that the analog of the correlation should behave like

$$
\begin{equation*}
|x|^{-(d-1) / 2} e^{-m|x|} \tag{1.3}
\end{equation*}
$$

as $|x| \rightarrow \infty$, for some constant m. This was verified for a wide class of models at very high temperatures by Bricmont and Fröhlich [9], for self-avoiding random walk with x "near an axis" by Chayes and Chayes [12] and then for general x by Ioffe [17], and for Bernoulli percolation at arbitrary subcritical densities with x "near an axis" by Campanino, Chayes and Chayes [10] and then for general x by Campanino and Ioffe [11]. For the two-dimensional Ising model at supercritical temperatures, (1.3) can be obtained from the exact solution (see [19] or Section 7 of [21].) [An exception to (1.3) is found for the twodimensional Ising model at subcritical temperatures under "plus" or under "minus" boundary conditions, where the correct exponent on $|x|$ is 2 , not $1 / 2$; see [19]. The heuristics for this are discussed in [9].] In the case of connectivity functions, the heuristic for (1.3) in general is as follows; see, for example, [10] or [17] for more. For simplicity take x on an axis and let H_{x} be the hyperplane orthogonal to the axis at x. The sum of $P(0 \leftrightarrow y)$ over sites y in H_{x} should be approximately $e^{-m|x|}$ with nearly no correction. Given that there is a path from 0 to H_{x}, it should reach only a few close-together sites in H_{x} and from the central limit theorem, since the transverse fluctuations of different segments of the path are approximately independent, the location of these sites in H_{x} should be approximately Gaussian distributed with variance of order $|x|$. This Gaussian distribution accounts for the factor $|x|^{-(d-1) / 2}$. (Note that constants have been omitted in this heuristic.)

Thus the form we should seek for the function $f(x)$ in (1.2) is an inverse power of $|x|$, that is, a power-law correction to exponential decay. We will not attempt to obtain the optimal power $(d-1) / 2$. We will instead obtain results of form (1.2) with $f(x)$ an inverse power of $|x|$ when $d=2$ or 3 and with $f(x)=\exp \left\{-C(\log |x|)^{2}\right\}$ for some constant C when $d \geq 4$. Analogous results for Bernoulli percolation at arbitrary subcritical densities are in [2] and [4]. Our results have suboptimal powes of $|x|$ for two reasons. First, we wish to
work with quite general models and at arbitrary supercritical temperatures, which likely makes rigorous proof of precise behavior as in (1.3) a particularly difficult problem. Second, interesting applications of (1.2) do not always require the optimal power $(d-1) / 2$. For example, power-law correction results from [2] are applied in [3] to study boundary fluctuations in the Wulff construction for Bernoulli percolation and Pfister and Velenik [21] use only the existence of a power-law correction (obtained from the exact solution) for correlations in the two-dimensional Ising model in their study of the continuum limit of that model.

For simplicity we restrict attention to the integer lattice, but our results apply to more general lattices. For $\Lambda \subset \mathbb{Z}^{d}$ let $\mathscr{B}(\Lambda)$ denote the set of all nearest-neighbor bonds $\langle x y\rangle$ with $x, y \in \Lambda$ and let $\overline{\mathscr{B}}(\Lambda)$ denote the set of all nearest-neighbor lattice bonds $\langle x y\rangle$ with x or y in Λ. A bond percolation model on \mathbb{Z}^{d} is a measure P on $\{0,1\}^{\mathscr{B}\left(\mathbb{Z}^{d}\right)}$. We consider here only translationinvariant models. A bond configuration is an element $\omega \in\{0,1\}^{\mathscr{B}\left(\mathbb{Z}^{d}\right)}$; when convenient we view ω as a subset of $\mathscr{B}\left(\mathbb{Z}^{d}\right)$. A bond e is open in a configuration ω if $\omega_{e}=1$ and closed if $\omega_{e}=0$. The configuration $\left\{\omega_{e}: e \in \mathscr{E}\right\}$ restricted to a set $\mathscr{\mathscr { O }}$ of bonds is denoted $\omega_{\mathscr{E}} . P$ has positive connection correlations if

$$
P(0 \leftrightarrow x+y) \geq P(0 \leftrightarrow x) P(x \leftrightarrow x+y) \quad \text { for all } x, y ;
$$

this is a special case of the standard FKG property. We write $P_{\Lambda, \rho}$ for $P(\cdot \mid$ $\omega_{\mathscr{B}\left(\Lambda^{c}\right)}=\rho_{\mathscr{B}\left(\Lambda^{c}\right)}$); we assume the latter is given by a regular conditional measure. Let \mathscr{F}_{Λ} denote the σ-algebra generated by $\left\{\omega_{e}: e \in \mathscr{B}(\Lambda)\right\} . P$ has the weak mixing property if for some $C, \lambda>0$, for all finite sets Δ, Λ with $\Delta \subset \Lambda$,

$$
\begin{aligned}
\sup & \left\{\operatorname{Var}\left(P_{\Lambda, \rho}\left(\omega_{\mathscr{B}(\Delta)} \in \cdot\right), P_{\Lambda, \rho^{\prime}}\left(\omega_{\mathscr{B}(\Delta)} \in \cdot\right)\right): \rho, \rho^{\prime} \in\{0,1\}^{\mathscr{B}\left(\Lambda^{c}\right)}\right\} \\
& \leq C \sum_{x \in \Delta, y \in \Lambda^{c}} \exp \{-\lambda|x-y|\},
\end{aligned}
$$

where $\operatorname{Var}(\cdot, \cdot)$ denotes total variation distance between measures. Roughly, the influence of the boundary condition on a finite region decays exponentially with distance from that region. Equivalently, for some $C, \lambda>0$, for all sets $\Delta, \Gamma \subset \mathbb{Z}^{d}$,

$$
\begin{align*}
& \sup \left\{|P(E \mid F)-P(E)|: E \in \mathscr{\mathscr { }}_{\Delta}, F \in \mathscr{F}_{\mathrm{T}}, P(F)>0\right\} \\
& \quad \leq C \sum_{x \in \Delta, y \in \Gamma} e^{-\lambda|x-y|} . \tag{1.4}
\end{align*}
$$

P has the ratio weak mixing property if for some $C, \lambda>0$, for all sets $\Delta, \Gamma \subset \mathbb{Z}^{d}$,

$$
\begin{align*}
& \sup \left\{\left|\frac{P(E \cap F)}{P(E) P(F)}-1\right|: E \in \mathscr{F}_{\Delta}, F \in \mathscr{T}_{\Gamma}, P(E) P(F)>0\right\} \tag{1.5}\\
& \quad \leq C \sum_{x \in \Delta, y \in \Gamma} e^{-\lambda|x-y|},
\end{align*}
$$

whenever the right side of (1.5) is less than 1 . For $\Lambda \subset \mathbb{Z}^{d}$ finite, $\rho \in\{0,1\}^{\mathscr{B}\left(\Lambda^{c}\right)}$ and $\Gamma \subset \Lambda^{c}$ finite, we call $\mathscr{B}(\Gamma)$ a controlling region for $\overline{\mathscr{B}}(\Lambda)$ and ρ if for every
$\rho^{\prime} \in\{0,1\}^{\mathscr{B}\left(\Lambda^{c}\right)}$ such that $\rho=\rho^{\prime}$ on $\mathscr{B}(\Gamma)$, we have $P_{\Lambda, \rho}=P_{\Lambda, \rho^{\prime}}$. We say P has exponentially bounded controlling regions if there exist constants $C, \lambda>0$ such that for every choice of disjoint finite sets Λ and Γ,

$$
\begin{aligned}
& P\left(\left\{\rho \in\{0,1\}^{\mathscr{B}\left(\Lambda^{c}\right)}: \mathscr{B}(\Gamma) \text { is not a controlling region for } \overline{\mathscr{B}}(\Lambda) \text { and } \rho\right\}\right) \\
& \quad \leq C \sum_{x \in \Lambda, y \in \Lambda^{c} \backslash \Gamma} e^{-\lambda|x-y|} .
\end{aligned}
$$

Note that when $P(E)$ is much smaller than the right side of (1.4), the weak mixing condition (1.4) allows $P(E \mid F)$ to be many times larger than $P(E)$, but the ratio weak mixing condition (1.5) does not allow this. Nonetheless, it is proved in [6] that if P has exponentially bounded controlling regions and the weak mixing property, then P has the ratio weak mixing property. We say P has exponential decay of connectivities if there exist $C, \lambda>0$ such that for all x and y,

$$
P(x \leftrightarrow y) \leq C e^{-\lambda|x-y|} .
$$

Writing θ for $x /|x|$, when the limit

$$
\lim _{n \rightarrow \infty} \frac{1}{n|x|} \log P(0 \leftrightarrow n x)
$$

exists for all $x \in \mathbb{Z}^{d}$, is finite and depends only on θ (as, e.g., when P has positive connection correlations), we denote this limit by $m(\theta)$ and say P is nondegenerate.

Here is the main result of this paper.
Theorem 1.1. Suppose:
P is a nondegenerate translation-invariant bond percolation model on \mathbb{Z}^{d} which has positive connection correlations, exponential decay of connectivities and the ratio weak mixing property.
(i) If $d=2$ or 3 , then there exist positive finite A, C and $m(\theta)$ such that

$$
\begin{align*}
\exp \{-m(\theta)|x|\} \geq P(0 \leftrightarrow x) \geq & \frac{A}{|x|^{C}} \exp \{-m(\theta)|x|\} \tag{1.7}\\
& \quad \text { or all nonzero } x \in \mathbb{Z}^{d},
\end{align*}
$$

where $\theta=x /|x|$.
(ii) If $d \geq 4$, then there exist positive finite C and $m(\theta)$ such that

$$
\begin{array}{r}
\exp \{-m(\theta)|x|\} \geq P(0 \leftrightarrow x) \geq \exp \left\{-C(\log |x|)^{2}\right\} \exp \{-m(\theta)|x|\} \tag{1.8}\\
\text { for all nonzero } x \in \mathbb{Z}^{d},
\end{array}
$$

where $\theta=x /|x|$.

The proof will be given in Sections 2 and 3. Theorem 1.1 applies to site percolation models as well; we restrict attention to bond percolation to keep the exposition simple.

The only obstacle to proving the superior result (i), instead of (ii), in dimension $d \geq 4$ is the purely geometric Proposition 2.7 of [4], which is proved only for $d=2$ and 3 ; we believe this Proposition is true in all dimensions and certainly we expect that (1.7) is true in all dimensions.

The Fortuin-Kasteleyn random cluster model (or simply, the FK model) with parameters (q, p) and free boundary, on a finite subgraph $(\Lambda, \mathscr{B}(\Lambda))$ of the lattice \mathbb{Z}^{d}, is the percolation model with probabilities given by the weights

$$
p^{|\omega|}(1-p)^{|\mathscr{B}(\Lambda)|-|\omega|} q^{K(\omega)}, \quad \omega \in\{0,1\}^{\mathscr{B}(\Lambda)},
$$

where $|\omega|$ denotes the number of open bonds in ω and $K(\omega)$ denotes the number of connected components in ω. Here $q>0$ and $p \in[0,1]$. Taking the limit $\Lambda \nearrow \mathbb{Z}^{d}$ yields the FK model, with free boundary, on the full lattice (see [14].) This model was introduced in [13]; see also [1] and [14] for basic properties. For the q-state Potts model at a supercritical temperature T, for $\beta=1 / T, p=1-e^{-\beta}$ and the FK model at (p, q), the covariance in the Potts model and the connectivity in the FK model are related by

$$
\begin{equation*}
q^{2} \operatorname{cov}\left(\delta_{\left[\sigma_{0}=i\right]}, \delta_{\left[\sigma_{x}=i\right]}\right)=(q-1) P(0 \leftrightarrow x), \quad i=1, \ldots, q ; \tag{1.9}
\end{equation*}
$$

see [1] or [15]. Thus exponential decay of connectivities in the FK model is equivalent to exponential decay of correlations in the corresponding Potts model. Further, the critical inverse temperature $\beta_{c}(q, d)$ of the Potts model and the percolation critical point $p_{c}(q, d)$ of the FK model are related by

$$
p_{c}(q, d)=1-\exp \left\{-\beta_{c}(q, d)\right\} ;
$$

again see [1] or [14]. For $q \geq 1$, the FK model has the FKG property [13] and hence has positive connection correlations. For the two-dimensional FK model, the following facts are known. For $q=1, q=2$, and $q \geq 25.72$, we have $p_{c}(q, 2)=\frac{\sqrt{q}}{1+\sqrt{q}}[18]$ and the connectivity decays exponentially for all $p<p_{c}(q, 2)$ [15]. This is believed to be true for all q; for $2<q<25.72$ the connectivity is known to decay exponentially at least for all $p<\frac{\sqrt{q-1}}{1+\sqrt{q-1}}$ [5]. For general $q \geq 1$ and $p<p_{c}(q, 2)$, if the connectivity decays exponentially then the model has the ratio weak mixing property [6]. With Theorem 1.1 and (1.9), these facts yield the following results.

Theorem 1.2. Suppose that the $F K$ model on \mathbb{Z}^{2} with parameters (q, p), with $q \geq 1$ and $p<p_{c}(q, 2)$, has exponential decay of connectivities. Then there exist positive finite A, C and $m(\theta)$, depending on p and q, such that

$$
\begin{equation*}
e^{-m(\theta)|x|} \geq P(0 \leftrightarrow x) \geq \frac{A}{|x|^{C}} e^{-m(\theta)|x|} \quad \text { for all } x \in \mathbb{Z}^{2}, \tag{1.10}
\end{equation*}
$$

where $\theta=x /|x|$. In particular (1.10) holds for all $p<p_{c}(q, 2)=\frac{\sqrt{q}}{1+\sqrt{q}}$ if $q=2$ or $q \geq 25.72$ and (1.10) holds for all $p<\frac{\sqrt{q-1}}{1+\sqrt{q-1}}$ if $2<q<25.72$.

Corollary 1.3. Suppose that the q-state Potts model on \mathbb{Z}^{2} at inverse temperature $\beta<\beta_{c}(q, 2)$ has exponential decay of correlations. Then there exist positive finite A, C and $m(\theta)$, depending on β and q, such that

$$
\begin{equation*}
e^{-m(\theta)|x|} \geq \operatorname{cov}\left(\delta_{\left[\sigma_{0}=i\right]}, \delta_{\left[\sigma_{x}=i\right]}\right) \geq \frac{A}{|x|^{C}} e^{-m(\theta)|x|} \quad \text { for all } x \in \mathbb{Z}^{2}, i \leq q, \tag{1.11}
\end{equation*}
$$

where $\theta=x /|x|$.
For the FK model in general dimension, exponential decay of connectivities implies exponentially bounded controlling regions (see [6]), so that weak mixing and exponential decay of connectivities together imply ratio weak mixing. It is believed that weak mixing and exponential decay of connectivities hold whenever $p<p_{c}(q, d)$, in which case Theorem 1.1 gives a power-law correction for all subcritical p, for $d=3$ and $q \geq 1$ and a correction as in (1.8) for all subcritical p, for $d \geq 4$ and $q \geq 1$.

It is of interest in certain contexts (see, e.g., Lemma 4.3 and Theorem 4.1 of [3]) to have an analog of Theorem 1.1 for connections in halfspaces; this is our next result.

Theorem 1.4. Assume (1.6). Let H be the intersection with \mathbb{Z}^{d} of a closed halfspace in \mathbb{R}^{d} containing 0 .
(i) If $d=2$ or 3 , then there exist positive finite A, C and $m(\theta)$ such that
(1.12) $e^{-m(\theta)|x|} \geq P(0 \leftrightarrow x$ in $\mathscr{B}(H)) \geq \frac{A}{|x|^{C}} e^{-m(\theta)|x|} \quad$ for all nonzero $x \in H$,
where $\theta=x /|x|$.
(ii) If $d \geq 4$, then there exist positive finite C and $m(\theta)$ such that

$$
\begin{align*}
\exp \{-m(\theta)|x|\} & \geq P(0 \leftrightarrow x \text { in } \mathscr{B}(H)) \\
& \geq \exp \left\{-C(\log |x|)^{2}\right\} \exp \{-m(\theta)|x|\} \tag{1.13}\\
& \text { for all nonzero } x \in H,
\end{align*}
$$

where $\theta=x /|x|$.
2. Proof of Theorem 1.1 (ii). Throughout the paper, C_{1}, C_{2}, \ldots and c_{1}, c_{2}, \ldots denote constants which may depend on the model P, but not on x. Additional parameters on which these constants may depend are listed in parentheses after the constant, for example, $C_{9}(C, K)$. Phrases such as "sufficiently large" or "small enough" implicitly mean "larger/smaller than a
constant depending only on P," unless otherwise specified. Throughout the paper we tacitly assume in proofs that $|x|$ and C are sufficiently large, in this sense, and assume (1.6). To facilitate bookkeeping we will use C_{i} for constants appearing in statements of results and c_{i} for constants which appear only in the course of proofs.

Define

$$
h(x)=-\log P(0 \leftrightarrow x), \quad x \in \mathbb{Z}^{d},
$$

so that, by positive connection correlation, h is subadditive:

$$
h(x+y) \leq h(x)+h(y) .
$$

In particular $\{h(n x): n \geq 1\}$ is a subadditive sequence, so by standard methods the limit

$$
\begin{equation*}
m(x)=\lim _{n \rightarrow \infty} \frac{h(n x)}{n} \tag{2.1}
\end{equation*}
$$

exists, extending the definition (1.1) and for all $x \in \mathbb{Z}^{d}$,

$$
\begin{equation*}
m(x) \leq h(x) \tag{2.2}
\end{equation*}
$$

In fact for $x \in \mathbb{Q}^{d}$, if we restrict n to those values for which $n x \in \mathbb{Z}^{d}$, then the limit in (2.1) exists, so $m(\cdot)$ extends to \mathbb{Q}^{d}. By exponential decay of correlations, $m(x)$ is strictly positive for all $x \neq 0$. Further, from subadditivity, $m(x)$ is finite if and only if x is in the linear span of $\left\{e_{i}: P\left(\omega_{\left\langle 0 e_{i}\right\rangle}=1\right)>0\right\}$, where e_{i} denotes the ith unit coordinate vector. Under positive connection correlations, nondegeneracy of P is equivalent to

$$
\begin{equation*}
P\left(\omega_{\left\langle 0 e_{i}\right\rangle}=1\right)>0 \quad \text { for all } i . \tag{2.3}
\end{equation*}
$$

By the arguments in [7], m is uniformly continuous and m extends to a function on \mathbb{R}^{d} which is continuous, convex and positive-homogeneous of order 1. In particular,

$$
m(x)=m(\theta)|x|,
$$

where $\theta=x /|x|$. Let

$$
m_{0}=\min _{i} m\left(e_{i}\right), \quad M_{0}=\max _{i} m\left(e_{i}\right) .
$$

It follows from convexity that

$$
\begin{equation*}
m_{0}|x|_{\infty} \leq m(x) \leq M_{0}|x|_{1}, \tag{2.4}
\end{equation*}
$$

where $|\cdot|_{r}$ denotes the l^{r} norm. We suppress the r in the notation for the Euclidean norm, $r=2$.

Observe that (1.8) may be rewritten as

$$
m(x) \leq h(x) \leq m(x)+C(\log |x|)^{2} \quad \text { for all } x \in \mathbb{Z}^{d} \text { with }|x|>1
$$

which in the terminology of [4] is the general approximation property, or GAP, with exponent 0 and correction factor $(\log |x|)^{2}$, for the subadditive function h. It is proved in [4] that to establish this property, it is sufficient to establish
what is called the convex-hull approximation property, or CHAP, with exponent 0 and correction factor $\log |x|$. So we give now a description of CHAP.

Let $B_{1}=\left\{x \in \mathbb{R}^{d}: m(x) \leq 1\right\}$. For $x \in \mathbb{R}^{d}$ let T_{x} denote a hyperplane tangent to $\partial\left(m(x) B_{1}\right)$ at x; note that if ∂B_{1} is not smooth, there is not necessarily a unique choice of T_{x}. Let T_{x}^{0} denote the hyperplane through 0 parallel to T_{x}. There is a unique linear functional m_{x} on \mathbb{R}^{d} satisfying

$$
m_{x}(y)=0 \quad \text { for all } y \in T_{x}^{0}, m_{x}(x)=m(x) .
$$

The functional m_{x} is a linear approximation to m, for vectors nearly parallel to x. By convexity and symmetry of m we have

$$
\begin{equation*}
\left|m_{x}(y)\right| \leq m(y) \quad \text { for all } y \in \mathbb{R}^{d} . \tag{2.5}
\end{equation*}
$$

For $y \in \mathbb{R}^{d}, m_{x}(y)$ is the m-length of a projection of y onto the line through 0 and x. The value $m_{x}(y)$ may therefore be thought of as the amount of progress (measured in the norm m) toward x made by a vector increment of y. Then for fixed x,

$$
s_{x}(y)=h(y)-m_{x}(y)
$$

is a measure of the error or inefficiency associated with an increment of y within a path from 0 to x. For $x \in \mathbb{R}^{d}$ and $C>1$ we define a set of vector increments for which this "error" is of order at most $\log |x|$:

$$
Q_{x}(C)=\left\{y \in \mathbb{Z}^{d}: m_{x}(y) \leq m(x), s_{x}(y) \leq C \log |x|\right\} .
$$

Note that s_{x} is nonnegative and subadditive, by (2.2) and (2.5). For $M>0$ and $C, t>1$, we say that h satsfies $\operatorname{CHAP}(M, C, t)$ [with exponent 0 and correction factor $\log (\cdot)]$ if

$$
\frac{x}{\alpha} \in \operatorname{Co}\left(Q_{x}(C)\right) \quad \text { for some } \alpha \in[1, t] \text {, for all } x \in \mathbb{Z}^{d} \text { with }|x| \geq M,
$$

where $\operatorname{Co}(\cdot)$ denotes the convex hull. Roughly this says that, up to a bounded constant, every x is in the convex hull of some sites satisfying the desired power-law lower bound, except that m is replaced by the linear approximation m_{x}.

Remark 2.1. In [4] the definition of $Q_{x}(\cdot)$ requires in addition, for some constant K, that $|y| \leq K|x|$. No such requirement is needed here because of Lemma 2.4(i) below.

From ([4], Lemma 1.6), one way to establish $\operatorname{CHAP}(M, C, t)$ is to find a lattice path γ from 0 to $n x$ for some n which can be cut up into at most $t n$ increments, each in $Q_{x}(C)$. That is, there must exist sites $0=u_{0}, u_{1}, . ., u_{k}=$ $n x$ in γ such that $k \leq t n$ and $u_{i}-u_{i-1} \in Q_{x}(C)$ for all $i \leq k$. This was the approach taken in [2] and our approach here is based somewhat on the methods employed there. Loosely the idea is to show that for large n, the probability that 0 is connected to $n x$ by a path of open bonds which fails to have this "cutting-up" property is strictly less than $P(0 \leftrightarrow n x)$.

By a path we always implicitly mean a self-avoiding lattice path, that is, a sequence $x_{0},\left\langle x_{0} x_{1}\right\rangle, x_{1},\left\langle x_{1} x_{2}\right\rangle, x_{2}, . ., x_{n}$ of alternating sites and bonds, with all x_{i} distinct. An open path is a path in which all bonds are open. Define

$$
G_{x}=\left\{y \in \mathbb{Z}^{d}: m_{x}(y) \leq m(x)\right\}
$$

For $D \subset \mathbb{R}^{d}$ and $y \in \mathbb{R}^{d}$ we let $D+y$ denote the translate of the set D by the vector y. Let $d(\cdot, \cdot)$ denote Euclidean distance, $d(D, E)=\inf \{d(z, w): z \in$ $D, w \in E\}$ and $d(z, D)=d(\{z\}, D)$. For $D \subset \mathbb{Z}^{d}$ let

$$
\partial D=\left\{x \in D^{c}: x \text { adjacent to } D\right\}, \quad \bar{D}=D \cup \partial D, \quad \partial_{i n} D=\partial\left(D^{c}\right)
$$

For $D \subset \mathbb{R}^{d}$ and $y \in D \cap \mathbb{Z}^{d}$ let $\Gamma(y, D)$ denote the union of $\{y\}$ and all sites in open paths in $\mathscr{B}(D)$ which contain y; if $y \notin D$ we define $\Gamma(y, D)$ to be empty. Note that

$$
\begin{equation*}
[\Gamma(y, D)=R] \in \mathscr{F}_{\bar{R}} \quad \text { for all } y, D \text { and } R \tag{2.6}
\end{equation*}
$$

Given x and C, we say a path γ is (x, C)-clean (or just clean if confusion is unlikely) if for every pair of sites u, v in γ with u preceding v, we have $s_{x}(v-$ $u)<C \log |x|$. For sites $y, z \in G \subset \mathbb{Z}^{d}$ we say z is (x, C)-cleanly reachable from y inside G if there exists an (x, C)-clean path (not necessarily open!) from y to z having all sites in G. Note that clean reachability is a deterministic property, not dependent on the bond configuration. If z is (x, C)-cleanly reachable from y inside G, but is adjacent to some site in G which is not cleanly reachable from y inside G, we say z is barely (x, C)-cleanly reachable from y inside G. Define

$$
\tilde{Q}_{x}(C)=\left\{y \in \mathbb{Z}^{d}: y \text { is cleanly reachable from } 0 \text { inside } G_{x}\right\}
$$

and observe that

$$
\begin{equation*}
\tilde{Q}_{x}(C) \subset Q_{x}(C) \tag{2.7}
\end{equation*}
$$

Finally, define

$$
\Delta_{x, C}(y, D)=\left\{z \in \Gamma\left(y,\left(y+\tilde{Q}_{x}(C)\right) \cap D\right) \cap \partial_{i n}\left(y+\tilde{Q}_{x}(C)\right):\right.
$$

$\langle z w\rangle$ is open for some $\left.w \in\left(y+G_{x}\right) \backslash\left(y+\tilde{Q}_{x}(C)\right)\right\}$.
Note that every site in $\Delta_{x, C}(y, D)$ is connected to y by an open path (not necessarily clean!) with all sites in $\left(y+\tilde{Q}_{x}(C)\right) \cap D$ and is barely cleanly reachable from y inside $y+G_{x}$.

REmARK 2.2. Let u_{0}, \ldots, u_{n} be sites of \mathbb{Z}^{d}. For Bernoulli bond percolation, from the FKG-Harris [16] and van den Berg-Kesten [8] inequalities one has

$$
\begin{equation*}
P\left(u_{0} \leftrightarrow u_{1} \leftrightarrow \cdot \cdot \leftrightarrow u_{n}\right) \geq \prod_{i=1}^{n} P\left(u_{i-1} \leftrightarrow u_{i}\right) \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left(u_{0} \leftrightarrow u_{1} \leftrightarrow \cdots \leftrightarrow u_{n} \text { via disjoint paths }\right) \leq \prod_{i=1}^{n} P\left(u_{i-1} \leftrightarrow u_{i}\right) \tag{2.9}
\end{equation*}
$$

which together, roughly speaking, allow one to treat distinct segments of a path from u_{0} to u_{n} as independent. Recall that such independence underlies the central limit theorem heuristic for Ornstein-Zernike behavior as in (1.3). The near-independence given by (2.8) and (2.9) was strongly exploited in [2], though not in the context of the central limit theorem, and the lack of an analog of (2.9) is perhaps the major difficulty in adapting the methods of [2] to other models. The ratio weak mixing property substitutes in part for (2.9), but its application requires in effect that one specify nonrandom disjoint sets of bonds on which the two events of interest are going to occur, which is not always feasible for pairs of events like [$u_{i-1} \leftrightarrow u_{i}$] and [$u_{j-1} \leftrightarrow u_{j}$] in the contexts we would like. Our solution, again roughly speaking, involves expressing an event $[u \leftrightarrow v]$ as a union $\cup_{R}[\Gamma(u, D)=R]$ for an appropriate choice of D, where the union is over an appropriate collection of sets R containing u and v. This is helpful because the event $[\Gamma(u, D)=R]$ necessarily takes place on the set of bonds $\overline{\mathscr{B}}(R)$ [cf. (2.6)].

For $D \subset \mathbb{Z}^{d}$ and $r \geq 0$ we define

$$
D^{r}=\left\{x \in \mathbb{R}^{d}: d(x, D) \leq r\right\} .
$$

Definition 2.3. For y and z sites in a path γ with y preceding z, we let $\gamma[y, z]$ denote the segment of γ from y to z. Suppose there is a path γ of open bonds in ω from 0 to z for some z. For $C>1, x \in \mathbb{Z}^{d}$ and $r>0$, we can then define the gapped (C, r, x)-skeleton derived from γ in ω, a finite sequence $\left\{\left(u_{i}, v_{i}, v_{i}^{\prime}, w_{i}\right), 0 \leq i \leq k\right\}$ of tuples of sites in γ, iteratively as follows. Let $u_{0}=0$ and $D_{0}=\mathbb{Z}^{d}$. Having defined $u_{0}, \ldots, u_{i}, v_{0}, . ., v_{i-1}, v_{0}^{\prime}, . ., v_{i-1}^{\prime}, w_{0}, \ldots$, $w_{i-1}, D_{0}, \ldots, D_{i}, \Gamma_{0}, \ldots, \Gamma_{i-1}$ and $R_{0}, . ., R_{i-1}$, let

$$
\begin{aligned}
\Gamma_{i} & =\Gamma\left(u_{i},\left(u_{i}+\tilde{Q}_{x}(C)\right) \cap D_{i}\right), \\
R_{i} & =\left(\Gamma_{i}\right)^{r \log |x|}, \\
D_{i+1} & =\left(R_{0} \cup \cdots \cup R_{i}\right)^{c} .
\end{aligned}
$$

Then let v_{i}^{\prime} be the first site of $\gamma\left[u_{i}, z\right]$ which is not in Γ_{i}, if such v_{i}^{\prime} exists. If there is no such v_{i}^{\prime}, then $z \in \Gamma_{i}$ and we let $v_{i}^{\prime}=v_{i}=w_{i}=z$ and end the construction; otherwise let v_{i} be the site in γ immediately preceding v_{i}^{\prime}. Next let u_{i+1} be the first site of γ after v_{i} with the property that $\gamma\left[u_{i+1}, z\right]$ is contained in D_{i+1}, if such u_{i+1} exists. If no such u_{i+1} exists then $z \in R_{i} \backslash \Gamma_{i}$ and we let $v_{i}^{\prime}=v_{i}=w_{i}=z$ and end the construction. Let w_{i} be the closest site to u_{i+1} in Γ_{i}. Note that $v_{k}^{\prime}=v_{k}=w_{k}=z$. See Figures 1 and 2 .

From the definition of u_{i+1}, the site u_{i+1}^{\prime} immediately preceding u_{i+1} in γ must be in $\cup_{j=0}^{i} R_{j}$. Since $\gamma\left[u_{i}, z\right]$ does not intersect R_{j} for $j<i$, we must in fact have $u_{i+1}^{\prime} \in R_{i}$. Therefore

$$
\begin{equation*}
r \log |x| \leq\left|u_{i+1}-w_{i}\right| \leq 1+r \log |x| . \tag{2.10}
\end{equation*}
$$

FIg. 1. A short increment: $v_{i} \in \Delta_{x, C}\left(u_{i}, D_{i}\right)$. The site v_{i}^{\prime} is not cleanly reachable from u_{i}. The path γ is the heavy line; lighter lines represent other paths in Γ_{i} and boundaries of regions.

The gapped (C, r, x)-skeleton then has the following properties:
For each i there exist both an open path ψ_{i} from u_{i} to w_{i}, and the open path $\gamma\left[u_{i}, v_{i}\right]$ from u_{i} to v_{i}, each having all sites in D_{i} and all sites cleanly reachable from u_{i} inside $u_{i}+G_{x}$.

For $i \neq j$, the clusters Γ_{i} and Γ_{j} are separated by a distance of at least $r \log |x|$.
(2.13) For each $i \leq k-1, v_{i} \in\left(u_{i}+\partial_{i n} G_{x}\right) \cup \Delta_{x, C}\left(u_{i}, D_{i}\right)$.

Note that the paths ψ_{i} are not necessarily segments of the path γ and we need not have $w_{i} \in \gamma$. For fixed C, from (2.13) we divide the indices into two classes, corresponding to "short" and "long" increments $v_{i}-u_{i}$, as follows (see Figures 1 and 2):

$$
\begin{aligned}
& S\left(\left(u_{i}, v_{i}, v_{i}^{\prime}, w_{i}\right)_{i \leq k}\right)=\left\{i: 0 \leq i \leq k-1, v_{i} \in \Delta_{x, C}\left(u_{i}, D_{i}\right) \backslash\left(u_{i}+\partial_{i n} G_{x}\right)\right\} \\
& L\left(\left(u_{i}, v_{i}, v_{i}^{\prime}, w_{i}\right)_{i \leq k}\right)=\left\{i: 0 \leq i \leq k-1, v_{i} \in u_{i}+\partial_{i n} G_{x}\right\}
\end{aligned}
$$

Set

$$
p=\min _{i} P\left(\omega_{\left\{0 e_{i}\right\}}=1\right)
$$

so $p>0$ by (2.3) and note that by positive connection correlations,

$$
\begin{equation*}
P(0 \leftrightarrow x) \geq p^{|x|_{1}} \quad \text { for all } x \tag{2.14}
\end{equation*}
$$

The next lemma summarizes some basic properties of the quantities we have defined.

Fig. 2. A long increment: $v_{i} \in u_{i}+\partial_{i n} G_{x}$. The path γ stays in the cleanly reachable region all the way to $u_{i}+\partial G_{x}$.

Lemma 2.4. (i) Given $C>1$ there exists a constant $C_{1}(C)$ such that if $y \in Q_{x}(C)$ and $|x| \geq C_{1}(C)$ then

$$
m(y) \leq 2 m(x) \quad \text { and } \quad|y| \leq 2 d M_{0}|x| / m_{0}
$$

(ii) For all $y \in \mathbb{Z}^{d}, 0 \leq s_{x}(y) \leq 2|y|_{1} \log \frac{1}{p}$.
(iii) If $y \in \partial_{i n} G_{x}$ then $m_{x}(y) \geq m(x)-M_{0}$.

PROOF. (i) Suppose $m(y)>2 m(x)$ and $m_{x}(y) \leq m(x)$. Then from (2.2) and (2.5),

$$
2 m(x)<m(y) \leq h(y)=m_{x}(y)+s_{x}(y) \leq m(x)+s_{x}(y)
$$

so from (2.4), $s_{x}(y)>m(x)>C \log |x|$, provided $|x|$ is large (depending on C.) Thus $y \notin Q_{x}(C)$ and the first inequality in (i) follows. The second inequality then follows from (2.4).
(ii) The fact that s_{x} is nonnegative has already been noted. From (2.2), (2.5) and (2.14) we have

$$
s_{x}(y) \leq h(y)+\left|m_{x}(y)\right| \leq 2 h(y) \leq 2|y|_{1} \log \frac{1}{p}
$$

(iii) We have $z=y \pm e_{i}$ for some $z \notin G_{x}$ and $i \leq d$. Therefore using (2.5) we have $m_{x}(y)=m_{x}(z)-m_{x}\left(\pm e_{i}\right) \geq m(x)-M_{0}$.

Let $\operatorname{diam}(B)$ denote the d-diameter of a set B. The following is immediate from the definition of ratio weak mixing.

LEMMA 2.5. Let P be a bond percolation model on \mathbb{Z}^{d} with the ratio weak mixing property. There exists a constant C_{2} as follows. Suppose $s>3$ and
$U, V \subset \mathbb{Z}^{d}$ with $\operatorname{diam}(U) \leq s$ and $d(U, V) \geq C_{2} \log s$. Then for $D \in \mathscr{F}_{U}, E \in \mathscr{F}_{V}$ we have $P(D \cap E) \leq 2 P(D) P(E)$.

For $y \in \mathbb{Z}^{d}$ and $r>0$, define $B(y, r)=\left\{z \in \mathbb{Z}^{d}:|z-y| \leq r\right\}$.

Lemma 2.6. Assume (1.6). There exists C_{3} such that for $r \geq C_{3}$,

$$
P(0 \leftrightarrow \partial B(0, r)) \leq \exp \left\{-m_{0} r / 2 d\right\}
$$

Proof. For $y \in \partial B(0, r)$ we have $m(y)>m_{0} r / d$ by (2.4), so $P(0 \leftrightarrow y) \leq$ $\exp \left\{-m_{0} r / d\right\}$. The result follows easily.

We say there is an r-near connection from y to z in the configuration ω if there exist u, v such that $|u-v| \leq r, y \leftrightarrow u$ in ω and $v \leftrightarrow z$ in ω.

LEMMA 2.7. Assume (1.6). There exist C_{4} and C_{5} such that if $|y|>1, x \neq 0$ and $r \geq C_{4} \log |y|$ then

$$
P(\text { there is an r-near connection from } 0 \text { to } y) \leq \exp \left\{-m_{x}(y)+C_{5} r\right\} .
$$

Proof. By Lemma 2.6, (2.4) and (2.5) there exists c_{1} such that

$$
\begin{equation*}
P\left(0 \leftrightarrow \partial B\left(0, c_{1}|y|\right)\right) \leq \exp \left\{-m_{x}(y)\right\} \tag{2.15}
\end{equation*}
$$

Therefore we need only consider r-near connections in $\mathscr{B}\left(B\left(0, c_{1}|y|\right)\right)$. Let $E=$ $B\left(0, c_{1}|y|\right)$ and $\Gamma_{0}=\Gamma(0, E \backslash B(y, r))$, and for $R \subset \mathbb{Z}^{d}$ let $F(R)=\left(R^{r}\right)^{c} \cap E$, so

$$
\begin{align*}
& {\left[\Gamma_{0}=R\right] \in \mathscr{F}_{R}, \quad \operatorname{diam}(F(R)) \leq \operatorname{diam}(E) \leq 2 c_{1}|y|} \tag{2.16}\\
& \quad \text { and } \quad d(\bar{R}, F(R)) \geq C_{4} \log |y|-1
\end{align*}
$$

If there is an r-near connection, but not a connection, from 0 to y in $\mathscr{B}(E)$ in a configuration ω, let $v(\omega)$ be the closest site to Γ_{0} which has an open path to y in $\mathscr{B}\left(F\left(\Gamma_{0}\right)\right)$, and let $u(\omega)$ be the closest site to $v(\omega)$ in Γ_{0}; ties are broken arbitrarily. The existence of the r-near connection implies that $r \leq|u(\omega)-v(\omega)| \leq r+1$. Note that

$$
m_{x}(v-u) \leq c_{2} r
$$

Using this, along with (2.16) and Lemma 2.5, we obtain

$$
\begin{align*}
& P(\text { there is an } r-\text { near connection from } 0 \text { to } y \text { in } \mathscr{B}(E)) \\
& \quad \leq P(0 \leftrightarrow y)+\sum_{R, u, v} P\left(\Gamma_{0}=R, u(\omega)=u, v(\omega)=v\right) \\
& \quad \leq P(0 \leftrightarrow y)+\sum_{R, u, v} P\left(\Gamma_{0}=R, v \leftrightarrow y \text { in } \mathscr{B}(F(R))\right) \\
& \quad \leq P(0 \leftrightarrow y)+\sum_{R, u, v} 2 P\left(\Gamma_{0}=R\right) P(v \leftrightarrow y) \\
& \quad \leq P(0 \leftrightarrow y)+\sum_{u, v} 2 P(0 \leftrightarrow u) P(v \leftrightarrow y) \tag{2.17}\\
& \quad \leq \exp \left\{-m_{x}(y)\right\}+\sum_{u, v} 2 \exp \left\{-m_{x}(u)-m_{x}(y-v)\right\} \\
& \quad=\exp \left\{-m_{x}(y)\right\}+\sum_{u, v} 2 \exp \left\{-m_{x}(y)+m_{x}(v-u)\right\} \\
& \quad \leq \exp \left\{-m_{x}(y)\right\}+2|E|^{2} \exp \left\{-m_{x}(y)+c_{2} r\right\} \\
& \quad \leq \exp \left\{-m_{x}(y)+c_{3} r\right\},
\end{align*}
$$

where the sums are over all $u, v \in E$ with $r \leq|v-u| \leq r+1$ and over all possible values R of Γ_{0} containing u. Together (2.15) and (2.17) yield the lemma.

From (2.2) and (2.5), the probability of an open path $0 \leftrightarrow y$ is at most $\exp \left\{-m_{x}(y)\right\}$. Consider for some C an (x, C)-unclean open path $0 \leftrightarrow u \leftrightarrow v \leftrightarrow$ y with $s_{x}(v-u) \geq C \log |x|$. One can ask whether the cost of such a path (measured by the negative log of the probability) is increased by an amount of order $C \log |x|$, meaning that the probability is at most $\exp \left\{-m_{x}(y)-c C \log |x|\right\}$. For Bernoulli percolation the van den Berg-Kesten inequality [8] can be used to show there is always such a cost increase. But for dependent percolation the situation is more complex. Consider the situation in which u and v are approximately on the straight line $[0, y]$, with v closer to 0 , so that the path of interest "doubles back" from u to v on the way to y. If the doubling back occurs in a narrow enough tube around the straight line $[0, y]$, then the three near-parallel segments of the path between approximately v and u are not far enough apart for (ratio) weak mixing to ensure that there is any extra cost. The next lemma, however, shows that if after doubling back from u to v (or otherwise traversing an expensive segment) the path does not return to a neighborhood of u, then an extra cost is indeed paid.

Lemma 2.8. Assume (1.6). There exists C_{6} with the following property: For every $a \geq 1$ and $0<b<C_{6}$, there exist $C_{7}(a, b), C_{8}(a, b)$ and $C_{9}(a, b)$ such
that if $C \geq C_{7},|x| \geq C_{8}$ and $|y| \leq a|x|$, then
$P\left(\right.$ for some $u, v \in \mathbb{Z}^{d}$ with $s_{x}(v-u) \geq C \log |x|, 0 \leftrightarrow y$ via a path γ which visits u before v and does not return to $B(u, b C \log |x|)$ after visiting $v)$ $\leq \exp \left\{-m_{x}(y)-C_{9} C \log |x|\right\}$.

Proof. By Lemma 2.6, (2.4) and (2.5), there exists $c_{4}(a)$ such that for $E=B\left(0, c_{4}(|x|+C \log |x|)\right)$, we have

$$
\begin{equation*}
P(0 \leftrightarrow \partial E) \leq \exp \left\{-m_{x}(y)-C \log |x|\right\} \quad \text { for all }|y| \leq a|x|, \tag{2.19}
\end{equation*}
$$

so it is sufficient to consider paths γ within $\mathscr{B}(E)$.
For $u, v \in \mathbb{Z}^{d}$ let

$$
\begin{gathered}
B_{u}=B(u, b C \log |x|), \quad \tilde{B}_{u}=B\left(u, \frac{1}{2} b C \log |x|\right), \\
S_{v}=B\left(v, 4 d c_{6} C \log |x|\right), \quad \tilde{S}_{v}=B\left(v, 2 d c_{6} C \log |x|\right),
\end{gathered}
$$

where $0<b<c_{5}$; here $c_{5}<c_{6}$ are constants to be specified later. Provided c_{6} is small enough, we obtain using Lemma 2.4 that for some $c_{7}<1 / 8$, for all u, v with $s_{x}(v-u) \geq C \log |x|$,

$$
\begin{equation*}
m(w-t) \geq 2 c_{7} C \log |x| \quad \text { and } \quad s_{x}(w-t) \geq \frac{C}{2} \log |x| \tag{2.20}
\end{equation*}
$$

$$
\text { for every } t \in \overline{B_{u}}, w \in \overline{S_{v}}
$$

so that in particular B_{u} and S_{v} are disjoint. Further, again provided c_{6} is small enough, we have

$$
\begin{equation*}
\left|m_{x}(q-r)\right| \leq c_{7} C \log |x| \quad \text { for all } q, r \in \overline{S_{0}} \tag{2.21}
\end{equation*}
$$

and if also c_{5} is small enough relative to c_{6},

$$
\begin{equation*}
\left|m_{x}(t-s)\right|<\frac{m_{0}}{4} c_{6} C \log |x|<c_{7} C \log |x| \quad \text { for all } s, t \in \overline{B_{0}} . \tag{2.22}
\end{equation*}
$$

Fix $y \in \mathbb{Z}^{d}$. For u, v with $s_{x}(v-u) \geq C \log |x|$, let $A(u, v)$ be the event that there exists an open path γ from 0 to y in $\mathscr{B}(E)$ which visits u before v and does not return to B_{u} after reaching v.

CASE 1. $0, y \notin B_{u} \cup S_{v}$. We can then further decompose $A(u, v)$ as follows: for $s, t \in \partial B_{u}$ and $w, z \in \partial S_{v}$, let $A(u, v ; s, t, w, z)$ be the event that there exists γ as above which first reaches ∂B_{u} at s, which last exits B_{u} via a step to t, which has $\gamma[t, y]$ first enter S_{v} at w and which last exits S_{v} via a step to z.

Ideally, when $A(u, v ; s, t, w, z)$ occurs we would like the three segments $\gamma[0, s]$ from 0 to $\partial B_{u}, \gamma[t, w]$ from ∂B_{u} to ∂S_{v} and $\gamma[z, y]$ from ∂S_{v} to y to be well-separated from one another, so that Lemma 2.5 can be applied, but in fact there may be various unwanted connections or near-connections outside B_{u} and/or S_{v} which we must handle. Depending on the presence of these nearconnections, the source of the extra cost $C_{9} C \log |x|$ exhibited in (2.18) is either
the expensive segment from u to v, or the connection from u to $\partial \tilde{B}_{u}$ inside B_{u}, or the connection from v to $\partial \tilde{S}_{v}$ inside S_{v}.

For $q, r \in A \subset \mathbb{Z}^{d}$, let $N(q, r, A)$ be the event that there is a $\left(2+c_{8} b C \log |x|\right)$ near connection from q to r in $\mathscr{B}(A)$, where c_{8} is a (small) constant to be specified.

Note that the distance $2+c_{8} b C \log |x|$ quantifying "near-connections" is much less than the diameter of $B_{u} ; B_{u}$, in turn, is much smaller than S_{v}.

First consider $A(u, v) \cap N\left(0, y, E \backslash B_{u}\right)$. When this event occurs we have a near-connection from 0 to y outside B_{u}, and a connection from u to $\partial \tilde{B}_{u}$. If c_{8} is sufficiently small (depending on C_{5}) and C and x are sufficiently large (depending on a, b), then Lemmas 2.5, 2.6 and 2.7 give for some c_{9},

$$
\begin{align*}
& P\left(A(u, v) \cap N\left(0, y, E \backslash B_{u}\right)\right) \\
& \quad \leq P\left(\left[u \leftrightarrow \partial \tilde{B}_{u}\right] \cap N\left(0, y, E \backslash B_{u}\right)\right) \\
& \quad \leq 2 P\left(u \leftrightarrow \partial \tilde{B}_{u}\right) P\left(N\left(0, y, \mathbb{Z}^{d}\right)\right) \tag{2.23}\\
& \quad \leq 2 \exp \left\{-m_{x}(y)+C_{5} c_{8} b C \log |x|-m_{0} b C(\log |x|) / 4 d\right\} \\
& \quad \leq 2 \exp \left\{-m_{x}(y)-c_{9} b C \log |x|\right\}
\end{align*}
$$

Second, consider $A(u, v ; s, t, w, z) \cap N\left(0, y, E \backslash B_{u}\right)^{c} \cap N\left(t, y, E \backslash\left(B_{u} \cup S_{v}\right)\right)^{c}$. When this occurs we have clusters $\Gamma\left(0, E \backslash B_{u}\right)$ containing the sites of $\gamma[0, s]$, $\Gamma\left(t, E \backslash\left(B_{u} \cup S_{v}\right)\right)$ containing the sites of $\gamma[t, w]$, and $\Gamma\left(y, E \backslash\left(B_{u} \cup S_{v}\right)\right)$ containing the sites of $\gamma[z, y]$, these clusters being separated from each other by at least $2+c_{8} b C \log |x|$. Therefore using Lemma 2.5, (2.6), (2.20) and (2.21), if C is sufficiently large (depending on b) and if $|x|$ is sufficiently large (depending on a, b), we obtain that for some c_{10},

$$
\begin{aligned}
& P\left(A(u, v ; s, t, w, z) \cap N\left(0, y, E \backslash B_{u}\right)^{c} \cap N\left(t, y, E \backslash\left(B_{u} \cup S_{v}\right)\right)^{c}\right) \\
& \quad \leq \sum_{I, J, K} P\left(\Gamma\left(0, E \backslash B_{u}\right)=I, \Gamma\left(t, E \backslash\left(B_{u} \cup S_{v}\right)\right)=J,\right. \\
& \left.\quad \Gamma\left(y, E \backslash\left(B_{u} \cup S_{v}\right)\right)=K\right) \\
& \quad \leq \sum_{I, J, K} 4 P\left(\Gamma\left(0, E \backslash B_{u}\right)=I\right) \\
& \quad \times P\left(\Gamma\left(t, E \backslash\left(B_{u} \cup S_{v}\right)\right)=J\right) P\left(\Gamma\left(y, E \backslash\left(B_{u} \cup S_{v}\right)\right)=K\right) \\
& \quad \leq 4 P(0 \leftrightarrow s) P(t \leftrightarrow w) P(z \leftrightarrow y) \\
& \quad \leq 4 \exp \left\{-\left[m_{x}(s)+m_{x}(w-t)+s_{x}(w-t)+m_{x}(y-z)\right]\right\} \\
& \quad=4 \exp \left\{-\left[m_{x}(y)-m_{x}(t-s)-m_{x}(z-w)+s_{x}(w-t)\right]\right\} \\
& \quad \leq 4 \exp \left\{-m_{x}(y)+2 c_{7} C \log |x|-\frac{C}{4} \log |x|\right\} \\
& \quad \leq \exp \left\{-m_{x}(y)-c_{10} C \log |x|\right\}
\end{aligned}
$$

where the sums are over all $I, J, K \subset E$ with $0, s \in I, t, w \in J, z, y \in K$ and $\min (d(I, J), d(I, K), d(J, K))>2+c_{8} b C \log |x|$.

Third, consider $A(u, v ; s, t, w, z) \cap N\left(0, y, E \backslash B_{u}\right)^{c} \cap N\left(0, s, E \backslash\left(B_{u} \cup S_{v}\right)\right)^{c}$. When this occurs and $\Gamma\left(0, E \backslash\left(B_{u} \cup S_{v}\right)\right)=I, \Gamma\left(s, E \backslash\left(B_{u} \cup S_{v}\right)\right)=J, \Gamma\left(0, E \backslash B_{u}\right)$ $=K, \Gamma\left(y, E \backslash\left(B_{u} \cup S_{v}\right)\right)=L$ for some I, J, K, L, we must have $I \cup J \subset K$, $d(I, J)>2+c_{8} b C \log |x|$ and $d(K, L)>2+c_{8} b C \log |x| ; I$ contains the sites of an open path from 0 to $\partial S_{v}, J$ contains the sites of an open path from ∂S_{v} to s and L contains the sites of $\gamma[z, y]$. (Here we do not make use of the cluster containing t and w.) Therefore, using Lemma 2.5, (2.6), (2.20) and (2.21), if C and x are sufficiently large (depending on a, b), we obtain that for some c_{11},

$$
\begin{align*}
& P\left(A(u, v ; s, t, w, z) \cap N\left(0, y, E \backslash B_{u}\right)^{c} \cap N\left(0, s, E \backslash\left(B_{u} \cup S_{v}\right)\right)^{c}\right) \\
& \quad \leq \sum_{I, J, L} P\left(\Gamma\left(0, E \backslash\left(B_{u} \cup S_{v}\right)\right)=I, \Gamma\left(s, E \backslash\left(B_{u} \cup S_{v}\right)\right)=J,\right. \\
& \left.\quad \Gamma\left(y, E \backslash B_{u}\right)=L\right) \\
& \quad \leq \sum_{I, J, L} 4 P\left(\Gamma\left(0, E \backslash\left(B_{u} \cup S_{v}\right)\right)=I\right) P\left(\Gamma\left(s, E \backslash\left(B_{u} \cup S_{v}\right)\right)=J\right) \\
& \quad \times P\left(\Gamma\left(y, E \backslash B_{u}\right)=L\right) \\
& \quad \leq 4 P\left(0 \leftrightarrow \partial S_{v}\right) P\left(\partial S_{v} \leftrightarrow s\right) P(z \leftrightarrow y) \tag{2.25}\\
& \quad \leq 4 \sum_{q, r \in \partial S_{v}} P(0 \leftrightarrow q) P(r \leftrightarrow s) P(z \leftrightarrow y) \\
& \quad \leq 4 \sum_{q, r \in \partial S_{v}} \exp \left\{-\left[m_{x}(q)+m(s-r)+m_{x}(y-z)\right]\right\} \\
& \quad=4 \sum_{q, r \in \partial S_{v}} \exp \left\{-m_{x}(y)+m_{x}(z-q)-m(s-r)\right\} \\
& \quad \leq\left|\partial S_{v}\right|^{2} \exp \left\{-m_{x}(y)-c_{7} C \log |x|\right\} \\
& \quad \leq \exp \left\{-m_{x}(y)-c_{11} C \log |x|\right\}
\end{align*}
$$

where the sum is over $I, J, L \subset E$ with $0 \in I, I \cap \partial S_{v} \neq \phi, s \in J, J \cap \partial S_{v} \neq$ $\phi, y, z \in L$ and $\min (d(I, J), d(I, L), d(J, L))>2+c_{8} b C \log |x|$.

Fourth, consider
$A(u, v ; s, t, w, z) \cap N\left(0, y, E \backslash B_{u}\right)^{c} \cap N\left(0, s, E \backslash\left(B_{u} \cup S_{v}\right)\right) \cap N\left(t, y, E \backslash\left(B_{u} \cup S_{v}\right)\right)$.
When this occurs and $\Gamma\left(0, E \backslash\left(B_{u} \cup S_{v}\right)\right) \cup \Gamma\left(s, E \backslash\left(B_{u} \cup S_{v}\right)\right)=I, \Gamma\left(0, E \backslash B_{u}\right)=$ $J, \Gamma\left(t, E \backslash\left(B_{u} \cup S_{v}\right)\right) \cup \Gamma\left(y, E \backslash\left(B_{u} \cup S_{v}\right)\right)=K$ and $\Gamma\left(y, E \backslash B_{u}\right)=L$ for some I, J, K, L, we must have $I \subset J, K \subset L$ and $d(J, L) \geq 2+c_{8} b C \log |x| ; I$ contains the sites of a near-connection from 0 to s and K contains the sites of a near-connection from t to y. There is also an open path from v to $\partial \tilde{S}_{v}$. Therefore assuming b is small enough relative to c_{6}, using Lemmas 2.5-2.7,
(2.6) and (2.22), if C and x are sufficiently large (depending on a, b), we obtain

$$
\begin{align*}
& P\left(A(u, v ; s, t, w, z) \cap N\left(0, y, E \backslash B_{u}\right)^{c} \cap N\left(0, s, E \backslash\left(B_{u} \cup S_{v}\right)\right)\right. \\
& \left.\cap N\left(t, y, E \backslash\left(B_{u} \cup S_{v}\right)\right)\right) \\
& \leq \sum_{I, K} P\left(\Gamma\left(0, E \backslash\left(B_{u} \cup S_{v}\right)\right) \cup \Gamma\left(s, E \backslash\left(B_{u} \cup S_{v}\right)\right)=I,\right. \\
& \left.\quad \Gamma\left(t, E \backslash\left(B_{u} \cup S_{v}\right)\right) \cup \Gamma\left(y, E \backslash\left(B_{u} \cup S_{v}\right)\right)=K, v \leftrightarrow \partial \tilde{S}_{v}\right) \\
& \leq \sum_{I, K} 4 P\left(\Gamma\left(0, E \backslash\left(B_{u} \cup S_{v}\right)\right) \cup \Gamma\left(s, E \backslash\left(B_{u} \cup S_{v}\right)\right)=I\right) \\
& \quad \times P\left(\Gamma\left(y, E \backslash\left(B_{u} \cup S_{v}\right)\right) \cup \Gamma\left(t, E \backslash\left(B_{u} \cup S_{v}\right)\right)=K\right) \tag{2.26}\\
& \quad \times P\left(v \leftrightarrow \partial \tilde{S}_{v}\right) \\
& \leq 4 P\left(N\left(0, s, \mathbb{Z}^{d}\right)\right) P\left(N\left(t, y, \mathbb{Z}^{d}\right)\right) P\left(v \leftrightarrow \partial \tilde{S}_{v}\right) \\
& \leq 4 \exp \left\{-m_{x}(s)-m_{x}(y-t)+2 C_{5} c_{8} b C \log |x|-m_{0} c_{6} C \log |x|\right\} \\
& \leq \exp \left\{-m_{x}(y)+m_{x}(t-s)-\frac{1}{2} m_{0} c_{6} C \log |x|\right\} \\
& \leq \exp \left\{-m_{x}(y)-\frac{1}{4} m_{0} c_{6} C \log |x|\right\} .
\end{align*}
$$

where the sum is over those $I \ni 0, s$ and $K \ni t, y$ consistent with the event appearing in the first sum in (2.26), with $d(I, K) \geq 2+c_{8} b C \log |x|$. Combining (2.23), (2.24), (2.25) and (2.26) and summing over s, t, w, z, provided C and x are sufficiently large (depending on a, b), we obtain

$$
\begin{equation*}
P(A(u, v)) \leq \exp \left\{-m_{x}(y)-c_{12} b C \log |x|\right\} . \tag{2.27}
\end{equation*}
$$

It remains to consider cases with 0 and/or y in $B_{u} \cup S_{v}$. Note that when $A(u, v)$ occurs we cannot have $y \in B_{u}$. Also, the bound (2.23) is valid regardless of the locations of u and v (the left side is 0 if $0 \in B_{u}$.)

CASE 2. $0 \in B_{u}, y \notin B_{u} \cup S_{v}$. Here there is no longer a site s but we can define t, w, z and $A(u, v ; t, w, v)$ similarly to Case 1 . Similarly to (2.24) we obtain

$$
\begin{align*}
& P(\left.A(u, v, t, w, z) \cap N\left(0, y, E \backslash B_{u}\right)^{c} \cap N\left(t, y, E \backslash\left(B_{u} \cup S_{v}\right)\right)^{c}\right) \\
& \leq 2 P(t \leftrightarrow w) P(z \leftrightarrow y) \\
& \quad \leq 2 \exp \left\{-\left[m_{x}(w-t)+s_{x}(w-t)+m_{x}(y-z)\right]\right\} \\
& \quad=2 \exp \left\{-\left[m_{x}(y)-m_{x}(t)-m_{x}(z-w)+s_{x}(w-t)\right]\right\} \tag{2.28}\\
& \quad \leq 2 \exp \left\{-m_{x}(y)+2 c_{7} C \log |x|-\frac{C}{4} \log |x|\right\} \\
& \quad \leq \exp \left\{-m_{x}(y)-c_{10} C \log |x|\right\},
\end{align*}
$$

while similarly to (2.26) we obtain

$$
\begin{align*}
& P\left(A(u, v ; t, w, z) \cap N\left(0, y, E \backslash B_{u}\right)^{c} \cap N\left(t, y, E \backslash\left(B_{u} \cup S_{v}\right)\right)\right) \\
& \quad \leq 2 P\left(N\left(t, y, \mathbb{Z}^{d}\right)\right) P\left(v \leftrightarrow \partial \tilde{S}_{v}\right) \\
& \quad \leq 4 \exp \left\{-m_{x}(y-t)+C_{5} c_{8} b C \log |x|-m_{0} c_{6} C \log |x|\right\} \tag{2.29}\\
& \quad \leq \exp \left\{-m_{x}(y)+m_{x}(t)-\frac{1}{2} m_{0} c_{6} C \log |x|\right\} \\
& \quad \leq \exp \left\{-m_{x}(y)-c_{12} C \log |x|\right\}
\end{align*}
$$

Summing these over t, w, z and combining with (2.23) yields (2.27).

CASE 3. $\quad 0 \in S_{v}, y \notin B_{u} \cup S_{v}$. Similarly to (2.25), using (2.20) and (2.21) we obtain

$$
\begin{align*}
& P\left(A(u, v ; s, t, w, z) \cap N\left(0, y, E \backslash B_{u}\right)^{c}\right) \\
& \quad \leq 2 P(0 \leftrightarrow s) P(z \leftrightarrow y) \\
& \quad \leq 2 \exp \left\{-\left[m(s)+m_{x}(y-z)\right]\right\} \\
& \quad \leq \exp \left\{-\frac{C}{2} \log |x|-m_{x}(y)+c_{7} C \log |x|\right\} \tag{2.30}\\
& \quad \leq \exp \left\{-m_{x}(y)-\frac{C}{4} \log |x|\right\}
\end{align*}
$$

Summing over s, t, w, z and combining with (2.23) again yields (2.27).

CASE 4. $0 \notin B_{u} \cup S_{v}, y \in S_{v}$. This time there is no longer a site z but we can define s, t, w and $A(u, v ; s, t, w)$ similarly to Case 1. Similarly to (2.24) we obtain

$$
\begin{align*}
& P(\left.A(u, v ; s, t, w) \cap N\left(0, y, E \backslash B_{u}\right)^{c}\right) \\
& \leq 2 P(0 \leftrightarrow s) P(t \leftrightarrow w) \\
& \quad \leq 2 \exp \left\{-\left[m_{x}(s)+m_{x}(w-t)+s_{x}(w-t)\right]\right\} \\
& \quad=2 \exp \left\{-\left[m_{x}(y)-m_{x}(t-s)-m_{x}(y-w)+s_{x}(w-t)\right]\right\} \tag{2.31}\\
& \quad \leq 2 \exp \left\{-m_{x}(y)+2 c_{7} C \log |x|-\frac{C}{4} \log |x|\right\} \\
& \quad \leq \exp \left\{-m_{x}(y)-c_{10} C \log |x|\right\}
\end{align*}
$$

Once again, summing over s, t, w and combining with (2.23) yields (2.27).

CASE 5. $0 \in B_{u}, y \in S_{v}$. Here

$$
\begin{align*}
P(A(u, v)) & \leq P(u \leftrightarrow v) \\
& \leq \exp \left\{-\left[m_{x}(v-u)+s_{x}(v-u)\right]\right\} \\
& =\exp \left\{-\left[m_{x}(y)-m_{x}(y-v)-m_{x}(u)+s_{x}(v-u)\right]\right\} \tag{2.32}\\
& \leq \exp \left\{-m_{x}(y)+2 c_{7} C \log |x|-C \log |x|\right\} \\
& \leq \exp \left\{-m_{x}(y)-\frac{C}{2} \log |x|\right\},
\end{align*}
$$

so again (2.27) is valid.
CASE 6. $0, y \in S_{v}$. Here, from (2.20) and (2.21),

$$
\begin{align*}
P(A(u, v)) & \leq P(0 \leftrightarrow u) \\
& \leq \exp \{-m(u)\} \tag{2.33}\\
& \leq \exp \left\{-2 c_{7} C \log |x|\right\} \\
& \leq \exp \left\{-m_{x}(y)-c_{7} C \log |x|\right\},
\end{align*}
$$

so once more (2.27) is valid.
Thus (2.27) is valid for all $u, v \in E$ with $s_{x}(v-u) \geq C \log |x|$. Summing over such u, v and combining with (2.19) yields (2.18).

As discussed in the remarks preceding Lemma 2.8, an unclean open path from 0 to some y need not cost more than a clean one, outside of the circumstances of (2.18). The next lemma shows that when all paths to y, open or not, are unclean, then every open path to y must be as in (2.18), so an extra cost is always paid. The lemma is valid for more general G than stated, but we only need the halfspace case.

Lemma 2.9. Assume (1.6). There exist C_{i} such that if G is either \mathbb{Z}^{d} or the intersection of a halfspace with \mathbb{Z}^{d}, if $C \geq C_{11},|x| \geq C_{12}$ and $y \in Q_{x}(C)$ is not (x, C)-cleanly reachable from 0 inside G, then

$$
P(0 \leftrightarrow y \text { in } \mathscr{B}(G)) \leq e^{-m_{x}(y)-C_{10} C \log |x|} .
$$

Proof. Suppose y is not (x, C)-cleanly reachable from 0 but $0 \leftrightarrow y$ via some path γ of open bonds in $\mathscr{B}(G)$. (If there is more than one such γ, we can choose one arbitrarily.) Define $0=w_{0}, w_{1}, \ldots, w_{m}=y$ inductively as follows: w_{i+1} is the first site in γ after w_{i} for which $\gamma\left[w_{i+1}, z\right] \subset B\left(w_{i}, C_{15} C \log |x|\right)^{c}$, where C_{15} is a constant to be specified; if there is no such w_{i+1} for some value $i=m-1$, then $y \in B\left(w_{i}, c_{13} C \log |x|\right)$ and we end the construction. Let $B_{i}=B\left(w_{i}, c_{13} C \log |x|\right)$.

Since $w_{i+1} \in \partial B_{i}$, it is easy to see that there exists a lattice path α from 0 to y in $\mathscr{B}(G)$ contained in $\cup_{i=0}^{m} B_{i}$, and α can be chosen so that once α leaves any of the balls B_{i}, it does not return to $\cup_{j \leq i} B_{j}$. (Since $G \cap B_{i}$ is "connected"
for each i, one need only ensure that when α exits any ball B_{i}, it exits into the ball B_{j} of maximal index j for which $B_{j} \cap B_{i} \neq \phi$. Informally speaking, α is approximately γ with doublebacks erased.) Since y is not (x, C)-cleanly reachable from 0 inside G, there must exist sites u, v in α with u preceding v such that $s_{x}(v-u) \geq C \log |x|$. Let k and l be such that $u \in B_{k}, v \in B_{l}$. Provided c_{13} is small enough, we have by Lemma 2.4(ii):

$$
\left|s_{x}\left(u-w_{k}\right)\right| \leq \frac{1}{4} C \log |x|, \quad\left|s_{x}\left(v-w_{l}\right)\right| \leq \frac{1}{4} C \log |x|
$$

and therefore

$$
\begin{equation*}
s_{x}\left(w_{l}-w_{k}\right) \geq \frac{1}{2} C \log |x|, \tag{2.34}
\end{equation*}
$$

which by Lemma 2.4(ii) implies $\left|w_{l}-w_{k}\right|>2 c_{13} C \log |x|$. Thus B_{k} and B_{l} are disjoint. Since α visits u before v and does not visit $\cup_{j \leq k} B_{j}$ after leaving B_{k}, it follows that $k<l$ and so w_{k} precedes w_{l} in γ. But now we are in the situation of Lemma 2.8 (with $b=c_{13}, a=2 d M_{0} / m_{0}$ obtained from Lemma 2.4(i) and $C / 2$ in place of C): we have an open path γ from 0 to y which visits w_{k}, then w_{l}, after which it does not return to B_{k} and (2.34) holds; provided c_{13} is small enough, the lemma follows.

Let $m_{x}^{+}(\cdot)=\max \left(m_{x}(\cdot), 0\right)$.
Lemma 2.10. Assume (1.6). There exist constants C_{i} such that if $D \subset$ $\mathbb{Z}^{d}, C \geq 1,|x| \geq C_{14}(C)$ and $v, w \in \tilde{Q}_{x}(C)$, then

$$
\begin{equation*}
P\left(v \in \Delta_{x, C}(0, D) \text { and } 0 \leftrightarrow w\right) \leq e^{-m_{x}^{+}(w)-C_{13} C \log |x|} . \tag{2.35}
\end{equation*}
$$

Note that, in contrast to (2.35), from (2.2) and (2.5) one obtains that the probability of the event $0 \leftrightarrow w$ alone can be bounded above by $\exp \{-m(w)\}$ or $\exp \left\{-m_{x}^{+}(w)\right\}$. The significance of Lemma 2.10 is that because $v \in \Delta_{x, C}(0, D)$, so that v is barely cleanly reachable from 0 , the additional presence of a path $0 \leftrightarrow v$ introduces an extra cost of $C_{13} C \log |x|$, even though the two paths need not be disjoint.

Proof of Lemma 2.10. There exist $C_{16}(C)$ and c_{15} such that $|x| \geq C_{16}$ and $w \in \tilde{Q}_{x}(C)$ imply $|w| \leq c_{15}|x|$. Hence as in (2.19), we have for some c_{16}

$$
\begin{equation*}
P\left(0 \leftrightarrow \partial B\left(0, c_{16}|x|\right)\right) \leq \exp \left\{-m_{x}(w)-C \log |x|\right\} . \tag{2.36}
\end{equation*}
$$

Let $0<c_{17}<c_{18}$ be constants to be specified later, let
$E=B\left(0, c_{16}|x|\right), \quad B_{v}=B\left(v, 4 d c_{18} C \log |x|\right), \quad \tilde{B}_{v}=B\left(v, 2 d c_{18} C \log |x|\right)$,
and let N denote the event that there is a $\left(c_{17} C \log |x|\right)$-near connection from 0 to w in $\mathscr{B}\left(E \backslash B_{v}\right)$. If c_{17} is sufficiently small relative to c_{18}, and $|x|$ and C
are sufficiently large, then by Lemmas $2.5,2.6$ and 2.7 we have

$$
\begin{align*}
P([v & \left.\left.\in \Delta_{x, C}(0, D)\right] \cap N\right) \\
& \leq P\left(\left[v \leftrightarrow \partial \tilde{B}_{v}\right] \cap N\right) \\
& \leq 2 P\left(v \leftrightarrow \partial \tilde{B}_{v}\right) P(N) \tag{2.37}\\
& \leq 2 \exp \left\{-m_{0} c_{18} C \log |x|\right\} \exp \left\{-m_{x}(w)+C_{5} c_{17} C \log |x|\right\} \\
& \leq 2 \exp \left\{-m_{x}(w)-c_{19} C \log |x|\right\} .
\end{align*}
$$

Next, we suppose first that $w \notin \overline{B_{v}}$. Using Lemma 2.5, again assuming $|x|$ and C are sufficiently large,

$$
\begin{align*}
& P\left(\left[v \in \Delta_{x, C}(0, D)\right] \cap[0 \leftrightarrow w] \cap N^{c}\right) \\
& \quad \leq P(0 \leftrightarrow \partial E)+\sum_{I, J} P\left(\Gamma\left(0, E \backslash B_{v}\right)=I, \Gamma\left(w, E \backslash B_{v}\right)=J\right) \\
& \quad \leq P(0 \leftrightarrow \partial E)+\sum_{I, J} 2 P\left(\Gamma\left(0, E \backslash B_{v}\right)=I\right) P\left(\Gamma\left(w, E \backslash B_{v}\right)=J\right) \tag{2.38}\\
& \quad \leq P(0 \leftrightarrow \partial E)+2 P\left(0 \leftrightarrow \partial B_{v} \text { in } \mathscr{B}\left(\tilde{Q}_{x}(C)\right)\right) P\left(\partial B_{v} \leftrightarrow w\right),
\end{align*}
$$

where the sum is over all I, J with $0 \in I, w \in J, J \cap \partial B_{v} \neq \phi, d(I, J)>$ $c_{17} C \log |x|$ and with I containing the sites of a path from 0 to ∂B_{v} in $\mathscr{B}\left(\tilde{Q}_{x}(C)\right)$. Presuming c_{18} is sufficiently small we have $s_{x}(u-z) \leq(C \log |x|) / 4$ for all $u, z \in \overline{B_{v}}$. Since v is barely (x, C)-cleanly reachable from 0 inside G_{x}, it follows readily that no $y \in \partial B_{v}$ is ($x, C / 2$)-cleanly reachable from 0 inside G_{x}. Hence by Lemma 2.9, for some $c_{20}<1$,

$$
\begin{align*}
P(0 & \left.\leftrightarrow y \text { in } \mathscr{B}\left(\tilde{Q}_{x}(C)\right)\right) \tag{2.39}\\
& \leq \exp \left\{-m_{x}(y)-5 c_{20} C \log |x|\right\} \quad \text { for all } y \in \partial B_{v} .
\end{align*}
$$

Further, if $|x|$ is large and c_{18} is chosen sufficiently small, for $y \in \overline{B_{v}}$ we have from (2.5) and (2.4):

$$
\begin{equation*}
\left|m_{x}(y)-m_{x}(v)\right| \leq c_{20} C \log |x| . \tag{2.40}
\end{equation*}
$$

Therefore if $|x|$ is sufficiently large, (2.39) yields

$$
\begin{align*}
2 P\left(0 \leftrightarrow \partial B_{v} \text { in } \mathscr{B}\left(\tilde{Q}_{x}(C)\right)\right) & \leq 2\left|\partial B_{v}\right| \exp \left\{-m_{x}(v)-4 c_{20} C \log |x|\right\} \tag{2.41}\\
& \leq \exp \left\{-m_{x}(v)-3 c_{20} C \log |x|\right\}
\end{align*}
$$

and similarly

$$
\begin{equation*}
P\left(\partial B_{v} \leftrightarrow w\right) \leq \exp \left\{-m_{x}(w-v)+2 c_{20} C \log |x|\right\} . \tag{2.42}
\end{equation*}
$$

If $w \in \overline{B_{v}}$, the same argument applies with $P\left(\partial B_{v} \leftrightarrow w\right)$ replaced by 1 throughout, by (2.40). Combining (2.36), (2.38), (2.41) and (2.42) shows that

$$
P\left(\left[v \in \Delta_{x, C}(0, D)\right] \cap[0 \leftrightarrow w] \cap N^{c}\right) \leq 3 \exp \left\{-m_{x}(w)-c_{20} C \log |x|\right\},
$$

which with (2.37) proves (2.35) with m_{x} in place of m_{x}^{+}. But since v is barely (x, C)-cleanly reachable from 0 inside G_{x}, for some c_{21} and c_{22} we must have $|v| \geq c_{21} C \log |x|$ and hence the left side of (2.35) is bounded by

$$
P(0 \leftrightarrow v) \leq \exp \left\{-c_{22} C \log |x|\right\},
$$

so we can replace m_{x} with m_{x}^{+}in (2.35).
Let $\mathscr{A}(C, r, x)$ denote the set of all gapped ($C, r, x)$-skeletons derived from all paths γ (starting from 0) in all configurations ω and

$$
\begin{aligned}
\mathscr{f}_{j l}(C, r, x)=\{ & \left\{\left(u_{i}, v_{i}, v_{i}^{\prime}, w_{i}\right)_{i \leq k} \in \mathscr{\rho}(C, r, x): v_{k}=z,\right. \\
& \left.\left|S\left(\left(u_{i}, v_{i}, v_{i}^{\prime}, w_{i}\right)_{i \leq k}\right)\right|=j,\left|L\left(\left(u_{i}, v_{i}, v_{i}^{\prime}, w_{i}\right)_{i \leq k}\right)\right|=l\right\} .
\end{aligned}
$$

The next result is the analog of Lemma 2.3 of [2].
Lemma 2.11. Assume (1.6). There exist constants $C_{i}>3$ such that if $C \geq C_{15}, r \geq C_{16}$ and $|x| \geq C_{17}(C)$, then for n sufficiently large, there exist a configuration ω and a path γ from 0 to $n x$ for which the gapped ($C, r, x)$ skeleton consists of at most $3 n$ tuples.

Proof. Fix $x \in \mathbb{Z}^{d}$ and $C>1$. The conclusion will follow if we can show that

$$
\begin{align*}
& P(0 \leftrightarrow n x \text { via a path } \gamma \text { for which the gapped } \\
& \quad(C, r, x) \text {-skeleton consists of more than } 3 n \text { tuples }) \tag{2.43}\\
& \quad<P(0 \leftrightarrow n x) \text { for } n \text { large. }
\end{align*}
$$

From the definition of $m(x)$ we have

$$
\begin{equation*}
P(0 \leftrightarrow n x) \geq 2^{-n} e^{-n m(x)} \text { for } n \text { large. } \tag{2.44}
\end{equation*}
$$

Fix j, l and $U=\left(u_{i}, v_{i}, v_{i}^{\prime}, w_{i}\right)_{i \leq k} \in \mathscr{S}_{j l}(C, r, x, z)$. Let $\Lambda_{i}, 0 \leq i \leq k$, be subsets of $\mathscr{B}\left(\mathbb{Z}^{d}\right)$ which are possible values of the clusters $\Gamma\left(u_{i},\left(u_{i}+\tilde{Q}_{x}(C)\right) \cap\right.$ D_{i}), subject to (2.12) and satisfying $v_{i}, w_{i} \in \Lambda_{i}$ whenever $\Lambda_{i} \neq \phi$, where $D_{i}=\mathbb{Z}^{d} \backslash \cup_{j<i}\left(\Lambda_{j}\right)^{r \log |x|}$ as in Definition 2.3. That is, we suppose there exists a configuation ω for which $v_{i}, w_{i} \in \Lambda_{i}$ whenever $\Lambda_{i} \neq \phi$, and $\Gamma\left(u_{i},\left(u_{i}+\right.\right.$ $\left.\left.\tilde{Q}_{x}(C)\right) \cap D_{i}, \omega\right)=\Lambda_{i}$ for all $i \leq k$ and (2.10) holds. (Note that we can have $\Lambda_{i}=\phi$ only for $i=k$.) We call such sequences of sets $\Lambda_{i}, 0 \leq i \leq k$, allowable. Then
$P(0 \leftrightarrow n x$ via a path γ with gapped (C, r, x)-skeleton U

$$
\begin{align*}
& \text { and } \left.\Gamma\left(u_{i},\left(u_{i}+\tilde{Q}_{x}(C)\right) \cap D_{i}\right)=\Lambda_{i} \text { for all } i \leq k\right) \tag{2.45}\\
& \leq P\left(\Gamma\left(u_{i},\left(u_{i}+\tilde{Q}_{x}(C)\right) \cap D_{i}\right)=\Lambda_{i} \text { and }\left\langle v_{i} v_{i}^{\prime}\right\rangle \text { is open for all } i \leq k\right) .
\end{align*}
$$

Here, for convenience of notation, we define the event " $\left\langle v_{k} v_{k}^{\prime}\right\rangle$ is open" to be the full probability space $\{0,1\}^{\mathscr{B}\left(\mathbb{Z}^{d}\right)}$, since $v_{k}=v_{k}^{\prime}=z$. If $|x| \geq C_{1}(C)$ then by
(2.7) and Lemma 2.4(i),

$$
\begin{equation*}
\operatorname{diam}\left(\bar{\Lambda}_{i}\right) \leq \operatorname{diam}\left(Q_{x}(C)\right)+2 \leq c_{23}|x| \tag{2.46}
\end{equation*}
$$

Since the event $\left[\Gamma\left(u_{i},\left(u_{i}+\tilde{Q}_{x}(C)\right) \cap D_{i}\right)=\Lambda_{i}\right.$ and $\left\langle v_{i} v_{i}^{\prime}\right\rangle$ is open $] \in \mathscr{T}_{\bar{\Lambda}_{i}}$, if $|x|$ and r are sufficiently large then from (2.12), (2.46) and Lemma 2.5 it follows that

$$
\begin{align*}
& P\left(\Gamma\left(u_{i},\left(u_{i}+\tilde{Q}_{x}(C)\right) \cap D_{i}\right)=\Lambda_{i} \text { and }\left\langle v_{i} v_{i}^{\prime}\right\rangle \text { is open for all } i \leq k\right) \\
& \quad \leq 2^{k} \prod_{i \leq k} P\left(\Gamma\left(u_{i},\left(u_{i}+\tilde{Q}_{x}(C)\right) \cap D_{i}\right)=\Lambda_{i} \text { and }\left\langle v_{i} v_{i}^{\prime}\right\rangle \text { is open }\right) \tag{2.47}
\end{align*}
$$

From (2.7) and Lemma 2.4(i), for a given value of u_{i} there are at most $c_{24}|x|^{d}$ choices for each of v_{i}, v_{i}^{\prime} and w_{i}, for some $c_{24}(C)$. Therefore for some c_{25}, if $|x| \geq C_{1}(C)$ then

$$
\begin{equation*}
\left|\mathscr{S}_{j l}(C, r, x, n x)\right| \leq \exp \left\{c_{25}(j+l) \log |x|\right\} \tag{2.48}
\end{equation*}
$$

If C is large enough and $|x| \geq c_{26}(C)$ then by (2.7), (2.45), (2.46), Lemma 2.10 and Lemma 2.4(iii), summing (2.47) over all allowable sequences $\left\{\Lambda_{i}, 0 \leq i \leq\right.$ $k\}$ gives

$$
\begin{align*}
& P(0 \leftrightarrow n x \text { via a path } \gamma \text { with gapped }(C, r, x) \text { - skeleton } U) \\
& \leq 2^{k} \prod_{i \leq k} P\left(v_{i} \in \Delta_{x, C}\left(u_{i}, D_{i}\right) \cup\left(u_{i}+\partial_{i n} G_{x}\right) ;\right. \\
& \left.\quad u_{i} \leftrightarrow v_{i} \text { and } u_{i} \leftrightarrow w_{i} \text { both in } \mathscr{B}\left(u_{i}+\tilde{Q}_{x}(C)\right)\right) \\
& \leq 2^{k} \exp \left(-\sum_{i \in S(U)} m_{x}^{+}\left(w_{i}-u_{i}\right)-C_{13} C|S(U)| \log |x|\right) \\
& \quad \times \exp \left(-\max \left[\sum_{i \notin S(U)} m_{x}\left(w_{i}-u_{i}\right), \sum_{i \in L(U)} m_{x}\left(v_{i}-u_{i}\right)\right]\right) \tag{2.49}\\
& \leq 2^{j+l} \exp \left(-\sum_{i \in S(U)} m_{x}^{+}\left(w_{i}-u_{i}\right)-C_{13} C j \log |x|\right) \\
& \quad \times \exp \left(-\max \left[\sum_{i \notin S(U)} m_{x}\left(w_{i}-u_{i}\right), l\left(m(x)-M_{0}\right)\right]\right)
\end{align*}
$$

The remainder of the proof follows that of Lemma 2.3 of [2]. (It should be noted at this point that there is a significant misprint in that proof, corrected in Remark 2.13 below.) Choose C such that $C_{13} C \geq 4 c_{25}+6 d M_{0} r$. We consider
first $l \geq 3 n$. If $|x|$ is large, then using (2.49), (2.48) and (2.44),

$$
\begin{align*}
& \sum_{l \geq 3 n} \sum_{j \geq 0} P(0 \leftrightarrow n x \text { via a path } \gamma \\
& \left.\quad \text { with gapped }(C, r, x)-\text { skeleton in } \mathscr{J}_{j l}(C, r, x, n x)\right) \\
& \leq \sum_{l \geq 3 n} \sum_{j \geq 0} 2^{j+l} \exp \left\{c_{25}(j+l) \log |x|\right\} \exp \left\{-C_{13} C j \log |x|\right\} \tag{2.50}\\
& \quad \times \exp \left\{-l\left(m(x)-M_{0}\right)\right\} \\
& \leq \\
& \leq \exp \left\{-3 n\left[m(x)-M_{0}-c_{25} \log |x|-\log 2\right]\right\} \\
& \leq \\
& \exp \{-2 n m(x)\} \\
& =o(P(0 \leftrightarrow n x)) \quad \text { as } n \rightarrow \infty
\end{align*}
$$

Next we consider $n \leq l<3 n$. Again from (2.49), (2.48) and (2.44), for $|x|$ large,

$$
\sum_{n \leq l<3 n} \sum_{j \geq 3 n-l} P(0 \leftrightarrow n x \text { via a path } \gamma \text { with gapped }
$$

$$
\begin{align*}
& \left.\quad(C, r, x)-\text { skeleton in } \mathscr{S}_{j l}(C, r, x, n x)\right) \\
& \leq \sum_{n \leq l<3 n} \sum_{j \geq 3 n-l} 2^{j+l} \exp \left\{c_{25}(j+l) \log |x|\right\} \exp \left\{-C_{13} C j \log |x|\right\} \\
& \quad \times \exp \left\{-l\left(m(x)-M_{0}\right)\right\} \tag{2.51}\\
& \leq 2 \exp \left\{-2 C_{13} C n \log |x|\right\} \sum_{l \geq n} \exp \left\{-l\left(m(x)-M_{0}-4 c_{25} \log |x|\right)\right\} \\
& \leq 2 \exp \left\{-n m(x)-n\left(C_{13} C \log |x|-M_{0}\right)\right\} \\
& =o(P(0 \leftrightarrow n x)) \quad \text { as } n \rightarrow \infty .
\end{align*}
$$

Finally we consider $l<n$. From (2.5), (2.4) and (2.10) we have

$$
m_{x}\left(u_{i+1}-w_{i}\right) \leq 2 d M_{0} r \log |x|
$$

so

$$
\sum_{i \leq k} m_{x}\left(w_{i}-u_{i}\right)=m_{x}(n x)-\sum_{i \leq k-1} m_{x}\left(u_{i+1}-w_{i}\right) \geq n m(x)-2 k d M_{0} r \log |x| .
$$

With (2.49), (2.48) and (2.44) this shows

$$
\begin{align*}
& \sum_{0 \leq l<n} \quad \sum_{j \geq 3 n-l} P(0 \leftrightarrow n x \text { via a path } \gamma \text { with gapped } \\
& \left.\quad(C, r, x)-\text { skeleton in } \mathscr{f}_{j l}(C, r, x, n x)\right) \\
& \leq \sum_{0 \leq l<n} \sum_{j \geq 3 n-l} 2^{j+l} \exp \left\{c_{25}(j+l) \log |x|\right\} \\
& \quad \times \exp \left\{-\sum_{i \leq k} m_{x}\left(w_{i}-u_{i}\right)-C_{12} C j \log |x|\right\} \\
& \begin{aligned}
& \leq \sum_{0 \leq l<n} \sum_{j \geq 3 n-l} 2^{j+l} \exp \left\{c_{25}(j+l) \log |x|\right\} \\
& \quad \quad \exp \left\{-n m(x)+2(j+l) d M_{0} r \log |x|-C_{13} C j \log |x|\right\} \\
& \leq 2 n \cdot 2^{3 n} \exp \left\{3 n c_{25} \log |x|-n m(x)\right. \\
&\left.\quad+6 n d M_{0} r \log |x|-2 C_{13} C n \log |x|\right\}
\end{aligned} \tag{2.52}\\
& \leq \exp \left\{-n m(x)-C_{13} C n \log |x|\right\} \\
& = \\
& =o(P(0 \leftrightarrow n x)) \quad \text { as } n \rightarrow \infty .
\end{align*}
$$

Statement (2.43) now follows from (2.50), (2.51) and (2.52).
Theorem 1.1(ii) is an immediate consequence of Theorem 1.9 of [4] and the next Proposition, which proves slightly more than CHAP for the function h.

Proposition 2.12. Assume (1.6). There exist C and M such that
(2.53) $\frac{x}{\alpha} \in \operatorname{Co}\left(\tilde{Q}_{x}(C)\right)$ for some $\alpha \in[2,6], \quad$ for all $x \in \mathbb{Z}^{d}$ with $x \geq M$.

Proof. In the notation of Lemma 2.11, let C, r satisfy $C \geq C_{15}$ and $C_{16} \leq$ $r \leq c_{27} C$, where c_{27} is a constant to be specified later and suppose $|x| \geq C_{17}(C)$. By Lemma 2.11 there exist n and a gapped ($C, r, x)$-skeleton $\left(u_{i}, v_{i}, v_{i}^{\prime}, w_{i}\right)_{i \leq k}$ corresponding to some path from 0 to $n x$, with $k<3 n$. From (2.11) we have $w_{i}-u_{i} \in \tilde{Q}_{x}(C)$. For each $i<k$ there is a path φ_{i} from w_{i} to u_{i+1} of length $\left|u_{i+1}-w_{i}\right|_{1}$. If z, y are vertices of φ_{i} then by Lemma 2.4(ii) and (2.10), provided c_{27} is chosen small enough,

$$
s_{x}(z-y) \leq 2|z-y|_{1} \log \frac{1}{p} \leq 4 d r(\log |x|) \log \frac{1}{p} \leq C \log |x|
$$

and by (2.5) and (2.4), if $|x| \geq c_{28}(C)$,

$$
m_{x}(z-y) \leq 2 M_{0}\left|u_{i+1}-w_{i}\right|_{1} \log \frac{1}{p} \leq 4 d r M_{0}(\log |x|) \log \frac{1}{p} \leq m(x) .
$$

If follows that $u_{i+1}-w_{i} \in \tilde{Q}_{x}(C)$. Thus we have

$$
\begin{equation*}
n x=\sum_{i=0}^{k}\left(w_{i}-u_{i}\right)+\sum_{i=0}^{k-1}\left(u_{i+1}-w_{i}\right)=\sum_{y \in \tilde{\mathscr{Q}}_{x}(C)} n(y) y, \tag{2.54}
\end{equation*}
$$

where $n(y)$ is the number of times y appears in the first two sums in (2.54). Since

$$
\sum_{y \in \tilde{Q}_{x}(C)} n(y)=2 k+1 \in[2 n, 6 n],
$$

the conclusion (2.53) is obtained by dividing (2.54) by $\sum_{y \in \tilde{Q}_{x}(C)} n(y)$.
Remark 2.13. In the proof of [2], Lemma 2.3, the top three lines on page 1554 should read as follows:

First, for $\|x\| \geq$ some c_{10}, by (2.12) and Lemma 2.2(ii),

$$
\begin{gathered}
\sum_{k \geq 3 n} \sum_{j \geq 0} \sum_{\left(v_{i}\right) \in \int_{j k}^{x}(n x)}\left(\prod_{i \notin L\left(\left(v_{i}\right)\right)} \exp \left[-s_{x}\left(v_{i+1}-v_{i}\right)-\sigma g_{x}\left(v_{i+1}-v_{i}\right)\right]\right) \\
\times\left(\prod_{i \in L\left(\left(v_{i}\right)\right)} \exp \left[-\sigma g_{x}\left(v_{i+1}-v_{i}\right)\right]\right) .
\end{gathered}
$$

3. Proof of Theorem 1.1(i). Theorem 1.1(i) is a consequence of Proposition 2.12 above, together with some results from [2] (Lemmas 2.6, 2.8, 2.9 and Proposition 2.7) modified only slightly. Therefore we will give only a sketch of the proof.

We say that a path γx-backtracks by t if there exist sites u, v in γ with u preceding v but $m_{x}(v-u) \leq-t$. Since $0 \leq h(v-u)=m_{x}(v-u)+s_{x}(v-u)$, this implies $s_{x}(v-u) \geq t$. Thus an (x, C)-clean path cannot x-backtrack by more than $C \log x$.

By Proposition 2.12, there exists C such that for $|x| \geq M$ we can express x as

$$
x=\sum_{i=1}^{d+1} \alpha_{i} y_{i} \quad \text { with } \alpha_{i} \geq 0, \quad 2 \leq \sum_{i=1}^{d+1} \alpha_{i} \leq 6 \quad \text { and } \quad y_{i} \in \tilde{Q}_{x}(C) .
$$

In fact, since we can have $y_{i}=y_{j}$ for $i \neq j$, we have a similar statement with $\alpha_{i} \leq 1$ for all i :

$$
\begin{equation*}
x=\sum_{i=1}^{d+6} \alpha_{i} y_{i} \quad \text { with } 0 \leq \alpha_{i} \leq 1 \quad \text { and } y_{i} \in \tilde{Q}_{x}(C) . \tag{3.1}
\end{equation*}
$$

For each y_{i}, there is an (x, C)-clean path from 0 to y_{i} and consequently $s_{x}\left(y_{i}\right) \leq C \log x$. We would like to find a constant b, depending only on P, such that

$$
\begin{equation*}
s_{x}\left(\alpha_{i} y_{i}\right) \leq b C \log |x| \quad \text { for all } i . \tag{3.2}
\end{equation*}
$$

Of course $\alpha_{i} y_{i}$ need not be in \mathbb{Z}^{d}, in which case $s_{x}\left(\alpha_{i} y_{i}\right)$ is not defined, but we can replace $\alpha_{i} y_{i}$ with an "adjacent" lattice site at the expense of an easily manageable error. If we can establish (3.2), then (3.1) and subadditivity of s_{x} give

$$
\begin{equation*}
s_{x}(x) \leq \sum_{i=1}^{d+6} \alpha_{i} y_{i} \leq(d+6) b C \log |x| . \tag{3.3}
\end{equation*}
$$

Since $m_{x}(x)=m(x)=m(\theta)|x|$, we have $P(0 \leftrightarrow x)=\exp \left\{-m(\theta)|x|-s_{x}(x)\right\}$, so (3.3) yields the desired conclusion (1.7). Thus it is enough to prove the following:

$$
\begin{equation*}
\text { there exists } b \text { such that if } y \in \tilde{Q}_{x}(C) \text { and } 0 \leq \alpha \leq 1 \text {, then } \tag{3.4}
\end{equation*}
$$

$$
s_{x}(\alpha y) \leq b C \log |x| .
$$

(Again, αy should be interpreted as an adjacent lattice site if αy is not itself a lattice site.) To prove (3.4), let $y \in \tilde{Q}_{x}(C)$ and $0 \leq \alpha \leq 1$ and let $\gamma:[0,1] \rightarrow \mathbb{R}^{d}$ be an (x, C)-clean lattice path from 0 to y. Since γ does not x-backtrack by $C \log |x|$ or more, we can approximate γ to within $C \log |x|$ (measured in the norm $m(\cdot)$) by a curve $\tilde{\gamma}$ (not necessarily a lattice path) from 0 to y which does not x-backtrack at all; in fact we can have $m_{x}(\tilde{\gamma}(t))$ strictly increasing. Proposition 2.7 of [2] then states that there exist k_{d}, depending only on the dimension $d=2$ or 3 and a collection of k_{d} subintervals $\left[s_{j}, t_{j}\right], j=1, \ldots, k_{d}$, of $[0,1]$, such that

$$
\begin{align*}
\alpha y & =\sum_{i=1}^{k_{d}}\left(\tilde{\gamma}\left(t_{j}\right)-\tilde{\gamma}\left(s_{j}\right)\right) \tag{3.5}\\
& =\sum_{i=1}^{k_{d}}\left[\left(\tilde{\gamma}\left(t_{j}\right)-\gamma\left(t_{j}\right)\right)+\left(\gamma\left(t_{j}\right)-\gamma\left(s_{j}\right)\right)+\left(\gamma\left(s_{j}\right)-\tilde{\gamma}\left(s_{j}\right)\right)\right] .
\end{align*}
$$

(The intervals $\left[s_{j}, t_{j}\right.$] may depend on γ here and may overlap.) Let us assume all the points appearing in (3.5) are lattice sites; otherwise we again approximate them by adjacent lattice sites. Since γ is (x, C)-clean, we have

$$
s_{x}\left(\gamma\left(t_{j}\right)-\gamma\left(s_{j}\right)\right) \leq C \log |x| .
$$

From (2.4) and Lemma 2.4(ii), for some c_{29} depending only on P,

$$
s_{x}\left(\tilde{\gamma}\left(t_{j}\right)-\gamma\left(t_{j}\right)\right) \leq c_{29} m\left(\tilde{\gamma}\left(t_{j}\right)-\gamma\left(t_{j}\right)\right) \leq c_{29} C \log |x|
$$

and similarly for $s_{x}\left(\tilde{\gamma}\left(s_{j}\right)-\gamma\left(s_{j}\right)\right)$. Together with (3.5), these bounds yield

$$
s_{x}(\alpha y) \leq k_{d}\left(4 c_{29}+1\right) C \log |x|,
$$

so (3.4) is proved.
4. Proof of Theorem 1.4. We will adapt the techniques of [2], Lemma 4.3, to our present context.

We may assume that $0 \in \partial H$. Let n denote the outward unit normal to H. Given ω in which $0 \leftrightarrow x$, let γ_{ω} be an open path in ω from 0 to x (chosen arbitrarily if there is more than one such path) and let $X(\omega)$ be a site in γ_{ω} which maximizes $n \cdot y$ over $y \in \gamma_{\omega}$ (the first such site, say, if there is more than one). Note that if the segment of γ_{ω} from 0 to $X(\omega)$ and the segment from $X(\omega)$ to x are interchanged, the result is a path from 0 to x in H. To make such an interchange possible, in a sense, we must show that the two segments are nearly independent.

By Lemma 2.7, provided $|x|$ is large and $c_{30} \geq C_{4}$, the event

$$
N=\left\{\omega: \text { there is a }\left(c_{30} \log |x|\right) \text {-near connection from } 0 \text { to } x \text { in } \omega\right\}
$$

satisfies

$$
\begin{equation*}
P(N) \leq \exp \left\{-m(x)+c_{30} C_{5} \log |x|\right\} \tag{4.1}
\end{equation*}
$$

By Lemma 2.6 and Theorem 1.1, there exists c_{31} such that for $B_{0}=B\left(0, c_{31}|x|\right)$ the event

$$
U=\left\{\omega: 0 \leftrightarrow \partial B_{0}\right\}
$$

satisfies

$$
\begin{equation*}
P(U) \leq \frac{1}{2} P(0 \leftrightarrow x) \tag{4.2}
\end{equation*}
$$

Therefore there exist $z \in B_{0}$ and c_{32} such that, letting H_{z} denote the translate of H with $z \in \partial H_{z}$,

$$
\begin{equation*}
P\left(0 \leftrightarrow z \leftrightarrow x \text { in } \mathscr{B}\left(H_{z} \cap B_{0}\right)\right) \geq P\left(0 \leftrightarrow x, X=z, U^{c}\right) \geq \frac{c_{32}}{|x|^{d}} P(0 \leftrightarrow x) \tag{4.3}
\end{equation*}
$$

Note that z is not in the interior of H, so $x-z \in H$. Using positive connection correlations,

$$
\begin{align*}
P(0 \leftrightarrow x \text { in } \mathscr{B}(H)) & \geq P(0 \leftrightarrow x-z \leftrightarrow x \text { in } H) \\
& \geq P(0 \leftrightarrow x-z \text { in } \mathscr{B}(H)) P(x-z \leftrightarrow x \text { in } \mathscr{B}(H)) \tag{4.4}\\
& =P\left(0 \leftrightarrow z \text { in } \mathscr{B}\left(H_{z}\right)\right) P\left(z \leftrightarrow x \text { in } \mathscr{B}\left(H_{z}\right)\right) .
\end{align*}
$$

We need to compare the left side of (4.3) to the right side of (4.4). For $x \in \mathbb{Z}^{d}$ let $f_{d}(x)$ be $\log |x|$ for $d=2,3$ and $(\log |x|)^{2}$ for $d \geq 4$. By Lemma 2.6, there exists c_{33} such that, defining

$$
B_{z}=B\left(z, 2+c_{33} f_{d}(x)\right), \quad \tilde{B}_{z}=B\left(z, c_{33} f_{d}(x)\right)
$$

we have

$$
\begin{equation*}
P\left(z \leftrightarrow \partial \tilde{B}_{z}\right) \leq \frac{c_{32} A}{4} \exp \left\{-\left(d+c_{30} C_{5}+C\right) f_{d}(x)\right\} \tag{4.5}
\end{equation*}
$$

where A, C are as in Theorem 1.1. ($A=1$ if $d \geq 4$.) Assume first that $0, x \notin B_{z}$. Define
$\tilde{N}=\left\{\omega:\right.$ there is a $\left(c_{30} \log |x|\right)$-near connection from 0 to x outside B_{z} in $\left.\omega\right\}$.
For $|x|$ large, Lemma 2.5, (4.5), (4.1), Theorem 1.1 and (4.3) give

$$
\begin{align*}
& P\left(\left[0 \leftrightarrow z \leftrightarrow x \text { in } H_{z}\right] \cap \tilde{N}\right) \\
& \quad \leq P\left(\left[z \leftrightarrow \partial \tilde{B}_{z}\right] \cap \tilde{N}\right) \\
& \quad \leq 2 P\left(z \leftrightarrow \partial \tilde{B}_{z}\right) P(\tilde{N}) \tag{4.6}\\
& \quad \leq \frac{c_{32} A}{2} \exp \left\{-m(x)-(d+C) f_{d}(x)\right\} \\
& \quad \leq \frac{1}{2} P\left(0 \leftrightarrow z \leftrightarrow x \text { in } H_{z} \cap B_{0}\right) .
\end{align*}
$$

Therefore, by Lemma 2.5, positive connection correlations and (2.14), for some c_{34}, provided c_{30} and $|x|$ are large,

$$
\begin{align*}
P(& \left.0 \leftrightarrow z \leftrightarrow x \text { in } \mathscr{B}\left(H_{z} \cap B_{0}\right)\right) \\
& \leq 2 P\left(\left[0 \leftrightarrow z \leftrightarrow x \text { in } \mathscr{B}\left(H_{z} \cap B_{0}\right)\right] \cap \tilde{N}^{c}\right) \\
& \leq 2 P\left(\left[0 \leftrightarrow \partial B_{z} \text { in } H_{z} \cap B_{0}\right] \cap\left[x \leftrightarrow \partial B_{z} \text { in } H_{z} \cap B_{0}\right] \cap \tilde{N}^{c}\right) \\
& \leq \sum_{I, J} P\left(\Gamma\left(0,\left(H_{z} \cap B_{0}\right) \backslash B_{z}\right)=I, \Gamma\left(x,\left(H_{z} \cap B_{0}\right) \backslash B_{z}\right)=J\right) \\
& \leq \sum_{I, J} 2 P\left(\Gamma\left(0,\left(H_{z} \cap B_{0}\right) \backslash B_{z}\right)=I\right) P\left(\Gamma\left(x,\left(H_{z} \cap B_{0}\right) \backslash B_{z}\right)=J\right) \tag{4.7}\\
& \leq 2 P\left(0 \leftrightarrow \partial B_{z} \text { in } \mathscr{B}\left(H_{z}\right)\right) P\left(x \leftrightarrow \partial B_{z} \text { in } \mathscr{B}\left(H_{z}\right)\right) \\
& \leq \sum_{q, r \in H_{z} \cap \partial B_{z}} 2 P\left(0 \leftrightarrow q \text { in } \mathscr{B}\left(H_{z}\right)\right) P\left(x \leftrightarrow r \text { in } \mathscr{B}\left(H_{z}\right)\right) \\
& \leq \exp \left\{c_{34} f_{d}(x)\right\} P\left(0 \leftrightarrow z \text { in } \mathscr{B}\left(H_{z}\right)\right) P\left(z \leftrightarrow x \text { in } \mathscr{B}\left(H_{z}\right)\right)
\end{align*}
$$

where the sum is over $I, J \subset\left(B_{0} \cap H_{z}\right) \backslash B_{z}$ with $0 \in I, I \cap \partial B_{z} \neq \phi, x \in$ $J, J \cap \partial B_{z} \neq \phi$ and $d(I, J) \geq c_{30} \log |x|$. Combining (4.3), (4.4) and (4.7) yields

$$
\begin{equation*}
P(0 \leftrightarrow x \text { in } \mathscr{B}(H)) \geq \exp \left\{-c_{34} f_{d}(x)\right\} \frac{c_{32}}{|x|^{d}} P(0 \leftrightarrow x) \tag{4.8}
\end{equation*}
$$

With Theorem 1.1 this completes the proof, when $0 \notin B_{z}$ and $x \notin B_{z}$.
When $0 \in B_{z}$, the proof is simpler. We have

$$
\begin{equation*}
P\left(0 \leftrightarrow z \text { in } \mathscr{B}\left(H_{z}\right)\right) \geq \exp \left\{-c_{35} f_{d}(x)\right\} \tag{4.9}
\end{equation*}
$$

and in place of (4.7),

$$
\begin{align*}
& \exp \left\{-c_{36} f_{d}(x)\right\} P\left(0 \leftrightarrow z \leftrightarrow x \text { in } \mathscr{B}\left(H_{z} \cap B_{0}\right)\right) \tag{4.10}\\
& \quad \leq P\left(0 \leftrightarrow z \text { in } \mathscr{B}\left(H_{z}\right)\right) P\left(z \leftrightarrow x \text { in } \mathscr{B}\left(H_{z}\right)\right) .
\end{align*}
$$

Combining (4.3), (4.4), (4.9) and (4.10) again yields (4.8). The proof when $x \in$ B_{z} is similar.

REFERENCES

[1] Aizenman, M., Chayes, J. T., Chayes, L. and Newman, C. M. (1988). Discontinuity of the magnetization in the $1 /|x-y|^{2}$ Ising and Potts models. J. Statist. Phys. 50 1-40.
[2] Alexander, K. S. (1990). Lower bounds on the connectivity function in all directions for Bernoulli percolation in two and three dimensions. Ann. Probab. 18 1547-1562.
[3] Alexander, K. S. (1992). Stability of the Wulff minimum and fluctuations in shape for large finite clusters in two-dimensional percolation. Probab. Theory Related Fields 91 507532.
[4] Alexander, K. S. (1997). Approximation of subadditive functions and convergence rates in limiting shape results. Ann. Probab. 25 30-55.
[5] Alexander, K. S. (1997). The asymmetric random cluster model and comparison of Ising and Potts models. Probab. Theory Related Fields. To appear.
[6] Alexander, K. S (1998). On weak mixing in lattice models. Probab. Theory Related Fields 110 441-471.
[7] Alexander, K. S., Chayes, J. T. and Chayes, L. (1990). The Wulff construction and asymptotics of the finite cluster distribution for two dimensional Bernoulli percolation. Comm. Math. Phys. 131 1-50.
[8] van den Berg, J. and Kesten, H. (1985). Inequalities with applications to percolation and reliability. J. Appl. Probab. 22 556-569.
[9] Bricmont, J. and Frölich, J. (1985). Statistical mechanical methods in particle structure analysis of lattice field theories. II. Scalar and surface models. Comm. Math. Phys. 98 553-578.
[10] Campanino, M., Chayes, J. T. and Chayes, L. (1991). Gaussian fluctuations of connectivities in the subcritical regime of percolation. Probab. Theory Related Fields 88 269-341.
[11] Campanino, M. and Ioffe, D. (1999). Ornstein-Zernike theory for the Bernoulli bond percolation on \mathbb{Z}^{d}. Unpublished manuscript.
[12] Chayes, J. T. and Chayes, L. (1986). Ornstein- Zernike behavior for self-avoiding walks at all noncritical temperatures. Comm. Math. Phys. 105 221-238.
[13] Fortuin, C. M. and Kasteleyn, P. W. (1972). On the random cluster model. I. Introduction and relation to other models. Physica 57 536-564.
[14] Grimmett, G. R. (1995). The stochastic random-cluster process and uniqueness of randomcluster measures. Ann. Probab. 23 1461-1510.
[15] Grimmett, G. R. (1997). Percolation and disordered systems. Lectures on Probability Theory and Statistics. Lecture Notes in Math. 1665 153-300. Springer, New York.
[16] Harris, T. (1960). A lower bound for the critical probability in a certain percolation process. Proc. Cambridge Philos. Soc. 56 13-20.
[17] Ioffe, D. (1998). Ornstein-Zernike behaviour and analyticity of shapes for self-avoiding walks on \mathbb{Z}^{d}. Unpublished manuscript. Markov Processes and Related Fields 4 323-350.
[18] Laanait, L., Messager, A. and Ruiz, J. (1986). Phase coexistence and surface tensions for the Potts model. Comm. Math. Phys. 105 527-545.
[19] McCoy, B. M. and Wu, T. T. (1973). The Two-Dimensional Ising Model. Harvard Univ. Press.
[20] Ornstein, L. S. and Zernike, F. (1914). Accidental deviations of density and opalescence at the critical point of a single substance. Proc. Acad. Sci. (Amst.) 17 793-806.
[21] Pfister, C.-E. and Velenik, Y. (1997). Large deviations and continuum limit in the 2D Ising model. Probab. Theory Related Fields 109 435-506.

Department of Mathematics DRB 155 University of Southern California Los Angeles, California 90089-1113
E-mALL: alexandr@math.usc.edu

[^0]: Received October 14, 1997; revised June 8, 2000.
 ${ }^{1}$ Supported by NSF Grant DMS-95-04462.
 AMS 2000 subject classifications. Primary 60K35; secondary 82B20, 82B43.
 Key words and phrases. Exponential decay, power-law correction, Ornstein-Zernike behavior, weak mixing, FK model.

