ON THE ELIMINATION OF SYSTEMATIC ERRORS
DUE TO GROUPING
By
Joun R. ABERNETHY

In the calculation of the moments of a frequency distribution it
is often desirable, or even necessary, to consider not the distribution
itself but another derived from it by certain groupings. As a first
approximation to the moments of the original distribution we take
the corresponding moment of the grouped distribution. But this first
approximation is not satisfactory, and it is necessary to obtain some
method for the elimination of part of the error committed in replac-
ing the moments of the original distribution by the corresponding
moments of the grouped distribution.

This problem was first discussed by W. F. Sheppard in a‘paper :
On the Calculation of the most Probable Value of Frequency-Con-
stants, for Data arranged according to Equidistant Divisions of a
Scale 1f we denote the n-th moment of the original distribution
by i, and the nth moment of the grouped distribution by A
we will have Sheppard’s corrections in the form:

P:'VI‘O'
v -1
M2V 120

M3=Vs,
1 7
M=% "2V 230
: 5
Ms=Vs 6 Vs, etc.
As pointed out by Karl Pearson? the hypotheses under which
these formulae have been obtained are: (a) that Taylor’s theorem

"1 Proceedings I.:ondon Mathematical Society, Vol. 29, p. 353-380.
20n an elementary proof of Sheppard’s formulae for correcting raw
monents and other allied points, editorial in Biometrica, Vol. 3, p. 308-312.
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264 ELIMINATION QOF SYSTEMATIC ERRORS

mn\"l > applied to the frequency function throughout the range: (b)
x'f u)(M) is finite and continuous throughout the range; (c) f(x)
and its derivatives vanish at the limits of the range. These hypothe-
ses are not always satisfied by the frequency functions with which
the statistician has to work ; and as it is impossible to tell before cal-
culating the moments of a distribution whether the corresponding
theoretical frequency function satisfies these conditions, it is desir-
able to study the problem from another standpoint.

A comparison of the title of Sheppard’s paper and the paper
itself suggests the question. in what sense do Sheppard’s formulae
give the most probable value of the moments of a distribution? A
partial answer is given by B. L. Shook in the Synop-is of Elementar~
Mathematical Statistics* Miss Shook presents* the formulae

1 . .
)J,l=-\/!=0, )J,z=-1é-%z(1-7n—z),and H3=Y for a discrete dis-

tribution with m values of the variable grouped in each class interval
and shows that for a particular distribution thése formulae serve
to eliminate the systematic errors from M , My and p, . Two
problems are suggested by the synopsis: the derivation of formulae
for the class of discrete distributions, as these three formulae are
stated without proof ;* the proof that this larger set of formulae and
those ‘of Sheppard do serve under all conditions to eliminate the
systematic error due to grouping, subject only to the existence of
the moments involved. When we have solved these two problems,
we shall be in position to understand the true nature of the approxi-

3 TyE ANNALS OF MATHEMATICAL STATIsTICS, Vol. 1; p. 34-40.

4 These formulae are only special cases of a more general formula stated
by H. C. Carver in an editorial: ANNALS OF MATHEMATICAL STATISTICS,
Vol. 1; formula (14), p. 111.

5 Two methods of developing this formula suggest themselves: (a) the
elimination of the moment of a continuous graduating function expressed in
terms of fine groupings of class intervals of 3 on the one hand and in
the terms of coarse groupings of unit class intervals on the other; (b) by a
process similar to that of Sheppard, employing for example Lubbock’s form-
ula instead of the Euler-Maclaurin sum formula. According to a statement
made by Professor Carver, the formulae in question were derived by the
latter process.
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‘mation involved in employing Sheppard’s corrections and correc-
tions similar to them for discrete distributions.
The problem we wish to consider is this. Given the probabilities

(p(xi) that a value of the statistical variable x taken at random

will fall within the interval x; ——12: <X < +’1Z , we wish to find

the moments of the distribution. We consider this problem for two
classes of distributions: the distribution of a discrete variable; the
distribution bf a continuous variable. In either case we shall work
with the uni-frequency distributional function f(x) . For the dis-

N J -
crete distribution % f( ﬁ;]) represents the probability that a value

of x taken at random will be the number -;,J-n ; m denotes a definite

positive integer ; ( j=-2,-1,0, 14,2, ... ). For the continuous
b
distribution / f(¢)dx represents the probability that a value of x
a

taken at random will fall within the interval a <x<b. Thus the
function f (x) has the value zero outside the range of the distribu-
tion and we may for the sake of convenience denote the limits of
summation and integration as ¥ oo . For the n-th moment about

the origin we have:
\ oo ,l n"f J 1
P E, () (F)mo

for the discrete distribution ; and
+00

M =/x" f (x)dx,
Zoo

for the continuous distribution. What we wart is the value of ).J.:'.
What we are able to find is the value of

+00
V. = )9 (x:).
- ,Ew(xl) P (x;)
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In establishing approximate relations between the set of true

moments { ,u'n] and the set of raw moments { '\/n' } we shall

o e L .
employ another set of statistical constants { v, } . For the discrete
distribution there are m distinct sets of groupings that can be made,

. L
leading to m values of the raw moment \/ R \/ is used to repre-

scnt the average of these. Snmlarly for the contmuous distribution,

'\/n is used to denote the average of the moments \/ correspond-

ingto x; =i+t forall values of t satisfying 02t <1. We shall

-
call this intermediate set of statistical constants g\/n } the average
grouped moments of the distribution. We then divide the problem
into two parts. First we seek the expression of }_L",, in terms of the

-
{\/n] . Secondly we seek the nature of approximation in replacing

\7,_: by V;. The first of these can be solved completely without
approximation and without any assumption other than the existence
of the moments involved. We can best understand the nature of
the approximation involved in the second after the first of our two
problems has been solved.

The m values of \/n' corresponding to the m distinct methods
of grouping a discrete distribution are given by

4.nml i
(t):Z (i+t+ mi) J‘Z.:o%'nf(i+t+im);m’t=0,1,...m-l,

i=-o0

The average of these is

= g mlre ok om- m . k+j
Vn mEoZL;-w(Hm T 5‘2;,_3- f(u-—r—n—-).
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—
We shall first express the average grouped moment '\{l in terms of
the true moments { ).L:'} , and then solve for the { P"n] in terms
of the { {-/n' } . We wish to arrange the right hand side of the above

equation according to values of the argument x appearing in f (x) ;
we therefore let s =mi+k+] . This equation then becomes

+

- 0 m-i
%k 2R G e

3=
@

m

from which, by means of the binomial theorem, we obtain

LR OE LA R

L=0 j=0

But

We therefore have

-,

() %‘Eo(?) b () fgi
where

ma-2j\iL

We shall sometimes write b; instead of b;(m) in order to simplify

the cxpression of an equation. The change of order of summation
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. . '
is based on the assumption that the m summations '\/r.I (t) converge

absolutely, an assumption equivalent to that of the existence of }.1:,,
since f(x) has only positive or zero values.

We see immediately from (2) that b 2kcrd (m) =0, since the

terms of the summation cancel each other in pairs, with the possible
addition of a middlc term equal to zero. The calculation of b, (m)

may readily be effected by means of the Euler-Maclaurin  sum
formula®

m-1 . m (] ’ (2i 1)
: 9(Jf%)=/o (t)dh_z?l [—4‘_(%7 a (t)] '

where

0P o
LI
|~ Ln;v- f';

»
W
LG

Do 21 ’

127
Dg- 15+

We substitute

q('t)' zk+1 (‘t-%m}

6 See for example Norlund's Differenzenrechnung, Berlin 1924 ; espe-
cially formulae (39), p. 27; (4 Y, p. 28 and (49), p. 30. Formula (39) is

E( )Dm—%: 1) )D,.;=0 for ri>1, Dy=1.

From this we may obtain the values of D . and show that D -+=O; also

n
we obtain Z' 2n+1) DZI. =0 for n >0 which we shall employ in the
L=0

proof of our formula (7).
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obtaining

K Zk+1) DZi

(3)‘ bZk(m)‘4“(2k+1) im0\ 2L / mf

The first few values are:
b,(m)=1,
1 1
bz (m) 'IZ (i— ;;2) »

10 .7
0, (M= (O 1 * o3 )

z_ 49 31
b(m)-i—-—344(3 = )
_60 , 294 _ 620 381
By (m)= 11520( mz M4 me wril

A control on the values of b;(m) may be obtained by substituting
m=1; then all except b, vanish as b, (1)=0, for i>0.

Having in (1) and (3) obtained the expression of the average
grouped moment of a discrete distribution in terms of the true mo-
ments, we wish to solve for the true moments in terms of the average
grouped moments. We shall obtain this solution by the method of
undetermined coefficients. Let

— |
n-j Vi -

Ms
—
[ 1
~r
>

4) Hpy = .

]

i

Substituting this in (1) we shall have

-1 n i
v oz (?)b-‘jz?o("j’)An_H v,

N =0
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from which we obtain

by a change of order of summation effected by applying the Dirchlet

sum formula’

R win-2 i,
)=0

i=o0 j=0 i=0

-
Equating coefficients of \/J gives us the recurring formula

k
M (‘f)bi‘Ak_-L=O for k>0,
=0

together with the initial condition A j= 1. [his may also be written

(5)" —-z: (" )b, Ap.for kZ1; A =1.
=0

Ordinarily in an expression such as (4) we would have written
A, i (n) instead of A n-j had we done so in this case, we would
now drop the functional expression as we have shown that the value
of An-j (n) depending only on n-j is completely independent
of n . The coefficients A n.) are also independent of the position

of the origin since if in

, n
-E()hp

“nm—h n-i:x?

7 For the method of derivation of this formuia see, for example; Steffen-
sen’s Interpolation (Baltimore, 1927), p. 91-92.
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we substitute

n-Lx

' i n-i -}
)vl "Zj—-io(j )Aj-\/n—l—j:JC’

we shall have '

S ,"'3 SR
Froxen JZ:‘o(j)AlEo(nLJ)h Vit

and hence

- n n .\7I
Mun:x+n =§O( J )AJ n-1:x+h "

If in (5) we substitute k=1 we shall obtain A, =-b,= 0

Moreover in general A 2141 = O, since by induction if
Ap=Ag=r-=Ay4=0,

the terms of the summation (5) will have respectively the zero

factors

b A, b

21+1° : bs' A

1’ “2i-1° Aa»" 21-1" bn'

Also from (5) we obtain:
A, =1,
Az=-b,
A== b+ 6(by)%,
Ag=-bg+30b b, - 90(b,)?,
Ag=-by+ 56 b,b, +70(b,)*-1260(b,)"b, + 2520(b,)".
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An observation of these expressions of the A3 suggests the formula:

1 (201K (B)%(b,)%%. - (b )
(21)%(41)%2.-. (2% (e )(a,!)- - (a;1)

where k=a,+a, ... a j » the summation extending over all

positive integral or zero values of A, Gy, ot a; satisfying

a,+ Zay+--+jaj=1i. That this formula holds in general may be
proved by induction: assume it true for 1= O, 1, ... j-1 and
substitute in (S) for k=2) . Upon collecting terms according to
products of the b's we shall have established this formula also for
L 2 j ,and hence for every positive integral value.

If in the expressions of the A's in terms of the b's we sub-
stitute the values of the b's in terms of m, we shall obtain the
expression of the A's in terms of m . Thus we have

Ag=1,
Ar=-L(1-15)
z- 12.( m2 /»

0.3
(6) Ag= z4o (7"151*??')'
49
o '1344(31 m4 6)
1 620 L, 204 _ 60 5
Ag~11520 (301 i ¥ od T et el

A comparison of the values of A, with b, ,of A, with b, ; of A4
with b, ,of A, with b, ,and of Agwith bg showsa remarkable
similarity between the coefficients in A, and those in b,; i in fact

1 o '
we observe that A, = A b (—in;) . Substituting %,, for

m .in (3) and dividing by m‘ﬁ', we obtain
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. 1 K r2k+1\ Dau.zi
7 . —2k-ZL
@) A (M= i Zket) &y (Zi+1> m2i

In order to prove that (7) is true in general, we assume it true up
to a certain point and prove it true for the next highest value of k .

That is we assume

1 1 .
Azi’ﬁ bzi('r'n) for 1=0,1,--- k-1

and substitute in k-1
2k
Azk " -Eo (2&) b2 k21 Azi>

another form of (5) since’ b‘zk.ﬁ_1 = 0. From (3) we have

L

1 k- .+ D..
b > : 2k-2i+1\72j
2K-21 g4kl (2K-2i+1) E ( 2] )mll '
and
A = __—__1 i (2'“1 D,

After this substitution we arrange the terms of A, according to

i ..
powers of R obtaining
A ,_i___g, 2k+1> i (5 zm)D }
2k AX(2k+l) S0\ 2541/ m*s J-(Zj 2j
{ i 2k-25+1

U (zZk-25+1)F L 2r Dzr}’

where s=i-r «). When s=0,1,--- k-1 the summation
extends from r=0 to r=k-s for j# O ,butfrom r=0 to
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r=k-s-1for j=0 . Since

E 2k- 254‘1)

r=0

for s < k, the summation as to r gives zero for J # O but

-(Zk-,Zséfl)D‘Zk 250 for j=0O.
At the same time for j=0 , the factor ( 25+1).D equals unity
and we have the desired terms for s= O, i < k-1

For s=k we have constantly r=0 , the summation as to | be-
ing from j=1 to j=k ; we therefore have

E ( 2,5+1)

at the same time that

1 ZO: Rk-23+1 1
(2k-25+1),.=0( ar /Per= 7t

We therefore come again to formula (7) with i replaced by s .
Hence formula (7) is true for every positive integral value of k .
The first few values of the A's have been calculated in (6), others
may be easily obtained by substituting the value of the Eulerian

numbers from some table of D,; .
Formulae (4) and (7) give us the expression of the true mo-

ment J:w( ) f( )

of a discreet distribution in terms of the set of average grouped
moments

8 Norlund, loc. cit., Tafel 4, p. 458, gives the value up to DZO
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+

‘71’=§wm e ';;:)4)( )+ %)

Employing the particular values given in (6), we have the formula

*V i3 (z)(i mz)‘/ 2 240(4)(7 i 3 V4

8) - ,344( Vo-E+ - 200,
0, 294 60
+m(a)(331‘22“ —rr9\—4' me ma)

For any particular value of n, this series terminates and we may
therefore apply the ordinary theory of limits to (8). Thus we
obtain

-1 n
Hn=Va ‘ii'z(z)‘/nz 216 (2)Vns
©))
-1 127 /n
L344-(0) n-6+5640(6)vn-8f""

+ 02
the expression of the true moment "_‘ = / x"f(x)dx ofa
lo

continuous distribution in terms of the set of average grouped mo-

ments
+00

12' =-/w(x+%)bq) (x+%—)dx=_/wx‘.¢(x)d¥.

We have thus completely solved the first of our two problems ; we
have obtained the expression of the true moments in terms of the
average grouped moments without any assumption other than the
existence of p.:,‘ . 'The existence of p:q requires the convergence
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of the summation or integration as the lower limit approaches -oo
and as the upper limit approaches + oo independently.
If in (8) we replace

by

, +00 L
1/i ='E (xj) @(XJ),

J:-w

we will have the general Sheppard-Carver formula. Since there is
no approximation involved in (8), any error in the Sheppard-Car-
ver formulae must be a result .(.)f, the error involved in replacing
the average grouped moments V; by the raw moments 1/£'. By
definition 17l-' is the-average of the

H 6L (144)' 0 1),

and, therefore, if we take any particular grouping at random,

=B L) @ 0),

is the mean of a random sample of one from the parent distribution
’V;" (t)  and hence the most probable value of \7‘:'. The Shep-
pard-Carver formula, therefore, gives the most probable value of
the true moment a1 of a discrete distribution in the sense that
these formulae eliminate the systematic errors due to grouping.

Similarly, we shall obtain Sheppard’s corrections if in (9) we
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replace
+00

\Z:"f/_x,iq)(x,)dx,

Y=, ) a0k,

These formulae give the most probable value of the true mioments
}J.'n for a continuous distribution in the same sense as do the
Sheppard-Carver formulae for a discrete distribution.

The Sheppard corrections for continuous distributions and the
Sheppard-Carver corrections for discrete distributions give the most
probable value of the true moments { ).L'n } of a distribution f (x)
in the sense that they give an approximate value for )"'n which is
correct on the average. That is these formulae eliminate the sys-
tematic errors due to grouping whatever the distributional function
 (x) so long as the moments under consideration exist. While it is
true that the accidental errors not accounted for in these corrections
may not be negligible, these formulae do give the most probable value
of )J,'n. for a particular grouping and hence have a basis for uni-

versal application.



