A NEW EXPOSITION AND CHART FOR THE PEARSON SYSTEM
OF FREQUENCY CURVES

By Cecin C. Cralic

In the course of some years of teaching classes in mathematical statistics,
the author has expanded the treatment of the Pearson system of frequency
functions begun in the Handbook of Mathematical Statistics! into an exposition
that he believes possesses marked advantages in unity, clarity, and elegance.
This is accomplished by expressing the variable in standard units throughout
and by making the two parameters as(a? = Bi, as = B2 in Pearson’s notation)
and

2a4—3a§ - 6’
a4+3

fundamental in the discussion. The various formulae that arise are obtained
directly and in a uniform manner and are relatively simple in form and easy
to use. The criteria for the different members of the system of funetions are
expressed very simply in terms of a; and  and the chart corresponding to the
extension of the Rhind diagram given by Pearson? takes on a strikingly simple
form.

Following the beginning made in the Handbook, the system of Pearson
frequency functions are to be found among the solutions of the differential
equation

é =

IS

Y a—1

1
ydt b+ byt + bt
For those solutions y = f(t) for which,

¢))

(bo + blt + bgtz) t”f(t):l = 0’

L
t

-

1t H. L. Rietz, Editor-in-Chief; Houghton-Mifflin Co., Boston (1924). See the chapter
on Frequency Curves by H. C. Carver.

2 The notation used is that of the Handbook, loc. cit., to which reference will be fre-
quently made. The discussion of Robert Henderson, ‘‘Frequency Curves and Moments,”’
Transactions of the Actuarial Society of America, Vol. VIII (1904), pp. 3041, also proceeds
along very similar lines, although Professor Carver was quite unaware of it when he wrote
his chapter in the Handbook. The notation of the Handbook seems preferable however.

3 Karl Pearson: Mathematical Contributions to the Theory of Evolution, XIX. Second
Supplement to a Memoir on Skew Variation; Proc. Roy. Soc., A. Vol. 216 (1916), plate
opposite p. 456.
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CHART FOR PEARSON SYSTEM OF FREQUENCY CURVES 17

if 7 and s are the extremes of the range of variation for ¢, and for which the
first » 4 1 moments over this range exist, the recursion formula for moments,

(2) a,a + na,._lbg + (n + l)a,,bl + (n + 2)an+1b2 = n4ly

can be derived. Then setting n = 0, 1, 2, 3 we get the following expressions
for the parameters, a, by, by, bs in terms of a3 and 4:

a = ___L b, = .;.3___
@) T O2(1 4+ 29)° YT2(1 + 2%)
' , _ 240 ST B

7 2(1 + 26) 27 2(1 4 26)
valid except when 6 = —3. Below note will be taken of those solutions for
which the conditions imposed in deriving (2) are not satisfied. The case in
which 6 = —3 will be included in the discussion of the transitional types of
functions.

It is useful to note that
-2<é6<2.

To show this, using a well-known device, we see that

/. f@O @+ N)2at = oy + 2Naz + A2

is never negative since f(f) = 0,r < t < s, for any real A. This requires that

al S o4
But
4y — 3aj a; + 4
t s 8 @+ 3

and the result follows. One consequence of this is that by cannot vanish for

any Pearson frequency function possessing moments of the fourth order.
Turning now to the integration of (1) and the development of the various

forms of f(¢) that arise, it is useful to make the preliminary statements:

1. Over the range of variation of ¢, we must have f(f) = 0.

2. The area under curve y = f(¢) over the range of variation must be finite.
This being true then we always determine the constant of integration so
that this area is unity.

3. The range in each case is taken as the maximum one for which (1) and (2)
may be secured which contains the point, ¢t = 0.

4. It is sufficient throughout to take as = 0 since the curve for a3 = —k is

only a reflection of that for a3 = & through the line { = 0.

¢ See the Handbook, pp. 103, 104.



18 CECIL C. CRAIG

It seems best to follow the Handbook in disposing of three of the transitional
types before proceeding to the main types of the system and then to the remain-
ing transitional types.

The discussion is planned to embody a direct and uniform method of treat-
ment, giving simple formulae for the calculation of the parameters in terms of
az and & in each case, and noting the salient features of each type of curve.
The criteria for each type are expressed in terms of as and 8§, which for the
whole system permit a simple graphical representation by means of the chart
found at.the end of this article. The construction of this chart is made clear
in the deviation of the criteria.

Transitional Type: The Normal Frequency Function: a; = 6 = 0

In this case (1) reduces to,

from which

N) =ce

The range is, of course, (— o, o) with C = (2 v)~}. On the chart, which we
shall refer to as the (a3, §)-diagram, we see that this function corresponds to
but a single point.

It may have the appearance of reasoning in a circle to use the values of the
parameters given by (3), which were derived from (2), in solving (1) and then
for the solution obtained examine the validity of (2). However, we may argue
as follows: We will use the relations (3) as definitions of @, bo, by, and bsin
terms of a3 and & which are not yet defined. Using the values of a and the b’s
given by any choice of a3 and §, we solve (1). If the solution is such that for
it (2) may be derived, then the relations (3) are valid when a3 and é have their
usual meanings. For convenience let us denote the conditions for the validity
of (2) by (4). It is obvious that conditions (4) are satisfied for

1 -
—e 2.
\V2r
(M, a3 %0, &=0
Transitional types {
X, if also a? = 4.
We get here (See the Handbook, loc. cit.):

(I11) @) = A_AE e (A + )41 g—a
T I(4?) !
if A = 2/as, the range being (— A4, «).
1t is readily verified that, since A2 — 1 > — 1, conditions (4) are satisfied.

(N) f@ =
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For A? > 1.(i.e., for a < 4) the curve is bell-shaped; for A2 < 1 it is J-shaped
with an infinite ordinate at ¢ = —A. For the bell-shaped curve the mode
falls at ¢ = —1/A and the mean—the mode = 1/4 = a3/2.

For A% = 1, we have

—t

(X) 5o =%,

which represents a J-shaped curve with the range (—1, «).

For A? # 1, the function has been designated type III, the special case as
type X. On the (a?, §)-chart the points corresponding to type III functions
fall on the line 6 = 0, the type X functions being represented by a single point
on this line.

Turning now to the discussion of the three main types, we note that for
6 % 0, by ¢ 0 and that consequently the denominator on the right in (1) is
always a quadratic which we can write in the form

bz(t — 7'1) (t - Tz)
in which neither 7, nor r, can be zero (since b, # 0), and
—bi+ Vb —4bhy —as— Val—46+2 —a+ VD
20 B 29 - 26 ‘

—as—\/ﬁ
25 )

T =

4

T =

Leaving aside the special case, 7, = r,, to be dealt with later, we can always
solve (1) in the form

(5) fO) = Ct — r)m™(t — ry)™
with
m o= a—7"n _1+6 asg _1+25
() 1_b2(7‘1—7'2)— & \/1_) é
6
M = a — Ty ___1—{-—5 as —1+25
T ba(ra—m) 6 /D §

For 6 < 0, the 7’s are real and opposite in sign; for § > 0 and o} < 45(5 + 2),
the r’s are complex; and for § > 0 and a2 > 45(8 + 2), the 's are real and of
the same sign. These three conditions with the additional condition that
as # 0 give rise respectively to the main types of frequency functions designated
I, IV, and VI. The points corresponding to them fall in simply determined
areas on the (a3, 8)-chart. The boundaries of these areas, the curve,

(2 + 30)a; = 4(1 + 28)* (2 + 9),
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which intersects the type I and type VI areas, and the line,
6= —1/2

contain the points which correspond to the transitional types.

Main TypeI. a5 # 0, — 1 <5 <0[6 5= — }, (2 4+ 38)aj # 4(1 + 20)? (2 + 9)]
For a3 > 0, we see that
1n<0<rsandthat |m] < |raf.
The range is taken to be (ry, r2) and (5) is written
I y=Ct — r)™m@r: — t)™.

It is evident that the area under the curve over this interval is finite only
whenm; + 1 > 0and m: 4+ 1 > 0 and that if these inequalities hold moments
of all orders exist. In this case also conditions (4) are satisfied. Now

m1+1=_1_+_6(1___"3_)

8 D
) _ 14356 ag
mtl= - <l+\/ﬁ>’
and in the present case
1+ -2 >0.
VD

Thus m; + 1 and m, + 1 are each > 0 only if 8 > —1. On the chart, then,
the points for 8 < —1 correspond to no frequency functions,—they fall in the
“Impossible Area.”

Further the type I curve will be U-shaped, J-shaped, or bell-shaped if both
m’s are < 0, if the m’s are opposite in sign, or if both are > 0. We have

_ 146 a3 _
m = — 5 (1—\/5> 1.

Since for —1 <8 < — 4,
0< -1t
é
we see that m; < 0 (as > 0) for & in this interval. For —3 <8 < 0, m; > 0

only if

_._1_+.‘§<1__‘E_>>1
) D ’
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which leads to the condition:
(2 4 38)a; < 4(1 4 26)2 (2 + 9) .
Also,

=___1+5<1 "’>_1
my 5 +\/E

whence it is similarly seen that m, > 0 when —% < § < 0, and that generally
ms > 0 only when

(2 4 38)a; < 4(1 + 262 (2 +9).
Thus the curve,
2 + 30)a; = 4(1 + 20)2 (2 + 9) ,

being tangent to the line a3 = 0 at § = —}, divides the type I area on the chart
into three parts: Above it lie the points corresponding to U-shaped curves,
to the right of it the points corresponding to J-shaped curves, and below it

the points corresponding to bell-shaped curves. (Note that for § < — g the

curves are always U-shaped.)

Since r2 — 71 > 0 and b; 2 0 accordingly as § S —3, it is readily verified
that 1 < @ < 3 only for U- or bell-shaped curves. The sign of a is always
opposite to that of a3 for curves with a mode. Finally the constant is deter-
mined by setting

o [ ¢mrms—pmar =1,
giving

C = 1
ﬁ(ml + 1, me + l) (7'2 —_ 7'1)”"+""'H .

Main Type IV: a; = 0,6 > 0, and a3 < 45(3 + 2)

In this case we write:

,.1____2_;‘3 1"‘26_D_-_- r 4+ 18, To = —T — 1s.
146 a . 1425 wm o
m, = 3 .__D‘L— F; é—m, m,__.2._m

With this notation (5) becomes

t-{-r—is)T
71 -1 ?

y=C[(t+r)’+sz‘"‘<t+r+is



22 CECIL C. CRAIG

and since,

ct

— b7\ 2
a bi = e° tan"'b/a = ec(:‘l2—tan_l alb)
a+ bl !

the frequency function can be written,

—y tan™! t+r
(Iv) y=Cer[(t + 17 + sime ™"
It is readily seen that m > 0, that » is opposite in sign to as, that
— tan™ £FT
e

can always be taken to lie between e—*/2 and ¢’*/2, and that the range can now
be taken (— o, «).

In the previously discussed cases in which § < 0, if the area under the curve
was finite moments of all orders existed. In the present case, the area and the
first four moments are always finite but this may fail to be true of moments of
higher orders. For, since 0 < § < 2,

m= 112,95

) 2’

and the integral,

/ " (o) dt

—00

v
p—

for f(¢) given by (IV) will be finite for n < 4 and infinite for n = 5 if §
In order for the n-th moment to exist we must have

2m > n +1
or

2
n—3

i <

Pearson designated as heterotypic those members of his system of frequency
functions for which the eighth moment failed to exist. (In such a case the
standard deviation of the fourth moment in samples would be infinite.) Set-
ting n = 8, we get 8 = 2/5 as the deadline on the (aj, §)-chart.

It was apparent that conditions (4) were satisfied for —1 < & < 0. (It
will uppear below that the case in which § = —% is no exception.) For é > 0
it will be seen that it is generally true, as in the present case, that the formulae
(2) and (3) can be derived if a2 exists, i.e., if

2

6<n—1'
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To determine C, on setting the integral of (V) over the interval (— o, )
equal to unity, we get

C s2m—l
= G@m— 2,)
in which
G@2m — 2,v) = / sin?™2pe*e dp © (so = er — tan™! H_TT>
0

Main Type VI: o5 7 0,8 > 0, a3 > 45(5 + 2) [(2 + 38) i # 4(1 + 20)2(2 + 5)]

The conditions specify the remaining area on the chart. This may be left
in the form
() y=C@t —r)™t — ro™.

Now r; and r; are both opposite in sign to as, which, as usual, we will consider
positive, and |ry| > |r|. Always ms < 0 and m; 2 0 accordingly as

(2 + 30)a; S 4(1 + 20)* (2 + 9).
We note that
a — ry = by(rs — ri)yme > 0,
since now b2 > 0, and that
a — 11 = ba(ry — re)my

has the same sign as m;. Finally a < 0.

Thus for @z > 0 and m; > 0, the point ¢ = @ on the axis of ¢ lies to the right
of botht = r,and ¢ = r.. Also
_2(l+26) _ _4_2

é - 6"

The range is taken (r;, =), the curve being bell-shaped when m; > 0. If
my < 0, the curve is J-shaped, { = a now lying to the left of ¢ = 7.

Since

my + mg =

my 4+ me < —5,andm; +1 >0,

the area and the first four moments always exist. In order for the n-th moment
to be finite, we must have

—(my 4+ my) >n+41

which is the same condition as in the case of the type IV function, giving the
same deadline, § = 2/5.

® Cf: Tables for Statisticians and Biometricians, Cambridge Univ. Press, Part I, 2nd
edition (1924), p. Ixxxi.
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If the origin be shifted to the point, ¢ = r,, we have writing,
t —ry =2, rn—rT:= a,
for the type VI function the expression,
(V1) y = Cem — 9™,
with the range (a, ©). Finally

1

C =
amtmtigmy + 1, —my — my — 1)

Transitional Type II: a3 = 0, -1 <86 < 0. (6 % —3%)

In this case,

vD

T = —Tz=—6-—<0
m = mg = —1":26 2 0 accordingly as § 2 —%.

The frequency function is a special case of type I; setting,
—r =12 =8
m =me =M,
we can write it in the form,
1) y = C(82 — )~

As in all cases in which a3 = 0, the curve is symmetrical about the mean.® As
in the type I case, the area and moments do not exist for § < —1; for -1 <
8 < —1}, the curve is U-shaped; for —} < § < 0, it is bell-shaped. The range
is, of course, (-8, S).

Finally,
_ 1
T @SMHgM+ 1, M+ 1)’

Transitional Type VII; a3 = 0,5 > 0

C

This function may be regarded as a special case of type IV, with

s=—-—————'46(8+2)>0, v=20, and m=1—t—2§>0,

r=0, 2 3

¢ It follows at once from the recursion formula,

n
—————— [(2 + 5) an- 5
2—(u—2)6[( + 8) an—1 + as @)
obtained from setting the expressions (3) in (2), that on changing the sign of as, the signs
of all the odd moments are changed.

Qnyt =
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and we write the function:
(VII) y = C@{ + &)~
The type VII function may equally well be derived from the type II function
by noting that
S=wand M = —m.

The range is (— «, «) however and for 6 = 2/5 the function is heterotypic.
Finally .

C g2m—1 r (m)

Transitional Type V; a3 # 0,6 > 0, a} = 45(5 + 2)
Here

Ty =Ty = —T

and we return to (1) to derive the form of the function, writing it: (The type V
can also be derived as a limiting form of type VI)

ldy _ ot
ydt — b(t 4 )2’

On integration we get
atr

1
Yy = C(t + T)—;’e-bx(l-f-r)

2(1+28) _as(143)

=Ct+r) & ¢ ¥+n),
_2r(m——1)

V) =C(t+ r)me t+r

We note that r has the same sign as as and that m = 2 4+ 1/6. The range is
taken to be (—r, &= «) accordingly as a3 2 0. The curve is always bell-
shaped. In order for the n-th moment to exist we must have as always when
8> 0,

44+2/>n+1

leading to the same conclusions as in the type IV or VI case. Finally

[2r(m — 1))zt

“="Tem-1

Transitional Type VIII; a3 = 0,8 < —3, (2 + 38)a; = 4(1 + 28)2(2 + 6)

The function is a special case of type I in which m; < 0 and m; = 0. But
when my; = 0, m; = —2m, and the frequency function becomes

(VIII) y=C{l —r)2m.



26 CECIL C. CRAIG

The range is (ry, 72), the curve being J-shaped with an infinite ordinate at
t = ryand a finite one at ¢ = r,. In this case,

1—-2m

= (rs — r)t2m”

C a-2m>1)

Transitional Type IX: a3 # 0, —3 < 6 < 0, (2 4 38)al = 4(1 + 25)2(2 + ¢)

We have another special type I function in which m; = 0 and m; = —2m > 0.
The function is
IX) y=Cls e t)2m

the range still being (r), 72), the curve being J-shaped with a finite ordinate at
t = rs.  C has the same value as in the type VIII case.

Transitional Type XI; a; # 0,0 < & < 2/5, (2 4 38)ai = 4(1 + 26)%(2 + 6)

The function is a special type VI in which m; = 0, and m; = —2m < 0,
and we may write it
(XI) Yy = C(t —_ r2)—2m
with the range still (r;, ). The curve is J-shaped with a finite ordinate at
t = r. Again,
2m — 1 2
= M= om — 1 = “
¢ (re — )t < " St 5)
Transitional Type XII: 6 = —1
If 6 = —3, the four linear equations derived from (2) from which the values

of a, by, by, and b, in (3) are derived are inconsistent. We can however sct the
values (3) in the differential equation (1) and from its limiting form as 6 — —3,
derive the function appropriate to this case.

We obtain
ldy = — a3 — 2(1 4 25)¢
ydt (2 4 6) + asgt + o2
and if 6 = —3, this becomes
l d_y _ 2 a3 '_ 2 a3
ydt _t2—2a3t—- 3 (t— 7”1) (t— 7‘2)
with

T1=a3-—-\/a§+3, r2=a3+\/a§+3,
On integration,

y = Ct— r)m (L= )™,
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in which

as a3

m = — ——— msg = .
o+ 3 Val + 3

We observe that (a3 > 0)
re > 0>, [ra|.> ||
mg = —m; > 0.

Taking the range to be (ry, r2), we write,

(XII) y=C ("’ - ’)"”,

t—rl

the curve being J-shaped. Here

1
T e ) B = may I + )

The values of the parameters and the form of the function can also be derived
as a special type I function in which § = —1.
Finally we note that for a3 = 0, (XII) reduces to

y=C

c

thus including the rectangular distribution function among the Pearson system.

In the course of the above discussion a system of criteria for the various
types of functions has been set up in terms of a; and §, in terms of which in
every case the parameters may be readily calculated. The (a3, §)-chart which
makes these criteria visual is comparatively simple to construct and is strik-
ingly simple in appearance. Besides the lines,

1 2
6=—1, 5=—§, 6=0, 6=5, and a3=0,

it contains only the curves
af = 45(6 + 2)
on which the points corresponding to the type V function lie, and the curve,
(2 + 38)a; = 4(1 + 26)2 (2 + 9)

on which the points corresponding to the functions of types VIII, IX, X, and
XTI are found. I must take occasion to express my thanks to Mr. Simon Yang
who constructed this chart for me.
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THE (a?, 8) CHART FOR .THE PEARSON SYSTEM OF FreQUENCY CURVES

(The subscript L refers to bell-shaped curves)
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