A TEST OF A SAMPLE VARIANCE BASED ON BOTH TAIL ENDS OF
THE DISTRIBUTION
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(1) Imtroduction

In testing the hypothesis, say Ho, that an observed sample E of size N has
been drawn from a normal population for which the standard deviation, ¢, has a
particular value, o, one may form the ratio

N 2
v 8 @—mYad =N )
i=1 (4]
if the population mean m be known, or
N 2
Vo= 8 A= (I
t=1 (5

where % is the sample mean, if the population mean be unknown. The proba-
bility of obtaining a larger (or smaller) value of v or v’ than that observed may
readily be obtained from the appropriate tail area of the x* distribution with
n=Norn = (N — 1) degrees of freedom respectively. The alternative
hypotheses to H, concerning the normal populations from which the sample
may have been drawn assign different values to ¢ and form a set of hypotheses,
Q. The members of @ may be classed accoiding to whether they specify
¢ > ap,oro < agy. The practice of regarding only one tail of the distribution,
the upper or lower depending on whether » > N or v < N, is tantamount to
accepting as admissible alternatives to H, only one of the classes of Q.

The alternatives may sometimes be limited to one class.or the other through
some a priori knowledge, or the problem may be such that only one of the classes
is relevant. However, since this is not generally the case, some method of
considering all of the alternatives is needed. When testing hypotheses con-
cerning the mean of the sampled population, the problem is quite simple, since
the distribution of means is symmetrical. Thus, the “corresponding” value to
any positive deviation, (£ — m), is the negative deviation of the same magnitude.
Merely doubling the tail area pertaining to either of the deviations will serve to
take account of both classes of alternatives, i.e., those in which m > m, and
those in which m < my. The problem is more difficult in the case of v or ¢/,

1 From the Memorial Foundation for Neuro-Endocrine Research and the Research
Service of the Worcester State Hospital, Worcester, Massachusetts.

193

]

; Jz-sq

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,%jc@}
The Annals of Mathematical Statistics. MINGIS ®

www.jstor.org



194 JOHN W. FERTIG

since the distribution is not symmetrical. In addition to the value of » or v’
pertaining to the observed sample we require a “‘corresponding” value at the
other end of the distribution. The definition of ‘“corresponding” which is
accepted will determine the required value. There may be a number of such
definitions but not all of these will be equally acceptable. The value of »
which delimits an equal tail area specifies one of the possible definitions of
“corresponding.” Another definition would require that the ordinates at the
two values of v be equal.

The Neyman and Pearson Approach. Generalized procedures for. testing
statistical hypotheses have been elaborated in recent years by J. Neyman and
E. S. Pearson (1-5). These have considerable philosophical appeal and will be
traced as a basis of solution of the immediate problem. A test of a hypothesis
H, consists essentially of a rule for rejecting Hy, when the observed sample E
falls within a suitable critical region w of the N-dimensioned sample space W,
and of accepting Hy, when E falls in (W — w). In testing any hypothesis two
types of error may be made:

i) H, may be rejected when it is true;

ii) Ho may be accepted when some alternative hypothesis, H;, is true.
Errors of the first kind may be considered ‘‘equivalent’ since, if a true hypoth-
esis is to be rejected, it is immaterial which one is chosen. Furthermore, the
first type of error can be controlled through our choice of the size of w, say a.
The size of w represents the probability of a sample E being an element of w
when the hypothesis Hy is true. This probability may be designated briefly as
P{E ew| Hy}. Then

P{E ew| Hp} =/---[”p(EIHo)dxldn---de=a ...... (I11)

where p(E | Hy) is the elementary probability law of the sample when Hj is
true, i.e.,
p(E|Ho) = p(@1, %2, - 2n | Ho) oo oo (IV)

Errors of the second type, however, are not equivalent, since their consequences
depend on the difference of the true hypothesis from Hy. The utility of a test
of H, will depend largely on how it controls the second type of error. Ideally,
the selection of a critical region should take into consideration the probabilities
4 priori of the hypotheses composing Q. Since these probabilities are generally
unknown, tests may be sought which are valid independently of them.

A distinction must be made between simple hypotheses which specify com-
pletely the elementary probability law of the sample, p(E), and composite hy-
potheses which specify the law subject to one or more undetermined parameters.

(2) Simple Hypothesis Concerning Population Variance

A test based on a critical region wo may be called independent of the probabili-
ties 4 priori of the alternative hypotheses if it is more powerful than any other
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equivalent test for all of the alternative hypotheses (3). An equivalent test
is one based on a region wy of the same size, «, i.e.,

P{Eé’wolHo} = P{Eew1|Ho} I (V)

The power of a test based on any critical region, as w, , is the probability of its
rejecting a hypothesis .-Hy when some other hypothesis H; is true. That is,
it is the probability of E falling in w, when H; is true. Denote this power by
P{E ew, | H;}. The greater the power of a test, the smaller the risk of the
second type of error. If tests as defined above exist, they minimize the proba-
bility of the second type of error. Furthermore, the probability of the first
type of error is no larger than . Neyman and Pearson (2) have designated
regions satisfying this definition as Best Critical Regions for testing H, with
regard to the set Q. If there is no such Best Critical Region, some compromise
region must be chosen.

A necessary and sufficient condition for w, to be a Best Critical Region with
regard to an alternative H; is that within w,

PE|H) <kp(BH) ..o (VI)

where k is some constant depending on «. If this inequality is true for any H, ,
wo will be a Best Critical Region for the set Q.

Neyman and Pearson (2) have shown that in testing the hypothesis that
o = g9, when the population mean m is known, there are two Best Critical
regions, one pertaining to the class of alternatives for which ¢ < gy and defined
by v < v, the other to the class ¢ > oy defined by v > v2. v and v, are values
of v so chosen that the size of the critical region shall be «. Although there is
no Best Critical Region for all of the alternatives, the choice of a compromise
critical region should still depend on its control of the second source of error,
that is, on its power for the various alternatives (4). Such a compromise
region may be designated as a Good Critical Region. What is needed is a
region wp of size a defined by the inequalities v < v, and v > v2. If v; and e
are taken as the values cutting off equal tail areas, then the power of the test
will be less than « for some values of ¢ less than ¢y . For those values of o, Hy
would be accepted more frequently than if it were true. Thus a first require-
ment for a Good Critical Region is that its power should nowhere be less than «,
the value when H, is true. Of all such-unbiassed Critical Regions of size «,
wo should then be selected so that its power is everywhere greater than that of
any other equivalent unbiassed region.

Critical Regions sufficiently satisfying the above requirements can often be
obtained by stipulating that the first derivative of the power function with
respect to 6, the parameter under consideration, shall be zero at § = 6,, and
that the second shall be a maximum there. Then not only does the probability
of the second source of error decrease as we move away from 6, , but it decreases
most rapidly in the vicinity of 6, . Critical Regions satisfying these conditions
are called unbiassed Critical Regions of Type A, (4). Under certain assumptions
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concerning the nature of the elementary probability law p(E | 6) it can be shown
that wo is defined by the inequalities ¢; < ¢; and ¢1 > ¢, where ¢; and ¢, satisfy
the conditions

c2
/ ploddor =1 —a o.ooo L (VID)
c1
s
/ epledder =0 ... ... (VIII)
c1
where o1 = M .................... (IX)
de 0=t

and p(¢) is the distribution function of ¢ .
In applying these results to the testing of the hypothesis that ¢ = o> when
the population mean is known,

Obviously p(v), the distribution of », may be considered instead of p(e1). wp is
defined by the inequalities v < v, and v > v, where

/; p(®) dv + / pwdv =1 +w=a ............ (XI)
/vz (v — N)p@)dv = ™2™ " =0... 0. (XII)

wo so defined is also of type A,, that is, its power curve lies everywhere
above that of any other equivalent region, vanishing in the first derivative at
o = a0, (4).

The use of w, as the appropriate critical region is equivalent to the use of r
as a test criterion, where

vN/2e—h — 7') ........................ XIII)

That is, a value of » yielding the same r as the observed » may be taken as the
corresponding value. Reference to the appropriate tables and summing of the
two tail areas gives P, , the probability of obtaining a smaller value of » when
H,is true. H, may be rejected if P, is less than some previously fixed number,
say a. If the distribution of r could be evaluated the necessity of dealing with
two values of ¥ would be obviated.

The criterion r is equivalent to that deduced by the use of maximum likelihood

ratios (6). Thus,

N
— 8 (zy—m)2/22
p(E'laz) - (21r0_2)—-N12e =1 e (XIV)

2 The solution is the same in terms of ¢2.
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Maximizing p(E | ¢°) for fixed E and all possible ¢* we have

N —N/2
Duax. (B | 6°) = NV? [27r S (z; — m)z] e (XV)
=1
p(E | a0) —NIZ, NI2 ~}a—N) .
AN= = N " e XVI
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= N Ve e . (XVII)
0 [ 8 10 K 12 14 16 L
9 —K 1]
\
i \\
8} 20
\
74 \ Has
B N
5 \ 1~°
z >
5-5 35 s
Z '\ z
H N H
) Y 9
a4 \\ J/K\ 4.0
\,
I \ 45
+
2 ﬁr,\ \\ 5.0
N
) P~ 55
~— \¥
09 5 8 10 K 1.2 W I.SG'O
Fic. 1. Graph of Equation z — log. z = k log. 10
The h*® moment coefficient of X about zero, ux(\), is given by
P[gva + h)]
() = 2 J(9e/NYP(1 4 BTN (X VIII)

T T(N/2)



6000°
G100’
9100°

6200
0%00°
§S00°
GL00"
€010°
gv10°
L610°
8L20°
18€0°
$€90°
€690
83L0°
L680°
101"
¥8¢1°
14218
9981"
6922°
188"
6v¥¢”
Geey”
G699°
g8’

8000°
1100°
S100°
0200°
£200°
9€00°
8700
$900°
6800°
0210°
910

2060°
(4441}
¥850°
6890°
$180°
¥960°
SYIT”
P81’
091"
861"
99¢¢°
188¢°
6¥9¢”
0S¥¥"
TLL8"
S¥v8”

0100°
¥100°
8100°
GG00°
£€00°
00"
8500
800"
¥010°
0¥10°
8810°
Nz
60"
89%0".
0%90°
08L0°
1880°
L80T”
(<48
6¥¥1
oL
Gg0c”
L9¥G
G86C°
259¢”
Lvsy
£98¢°
8L¥8”

wﬁoo.wﬁco.mmoo.mmco.wmoo.@wco.¢©co.wwcc‘mcﬁo.mwﬂo.nwﬂo.mvmo.Nmmo.@Nwo.wwmo.mmho.wcoﬁ.mwmﬁ.owwﬂ.mwmn.
wﬂco‘mmco.m&oo.hmoo.wwco‘ﬁocc.@hoo.ﬂoﬁo.omﬁo‘w@ﬁc‘wﬁmo.Nwmo.hcmo.mmwo.w«mo.wmwo.w@oﬁ.waﬁ.Hhmﬂ.monm.
mmoc‘mmoa.umoc.hwcc.owoc.@hco.omcc.ﬂmﬂc.omﬂc.mmﬁo.wmmo.@mmo.mﬂwo.ovmo.mmwo.momo.omﬁﬂ.wwmﬁ.omoﬂ.mmwm.
ﬁmco‘wmoc.mwoo.cooc‘mncc.wmoo.wﬁﬁo.wwﬁo.wwﬁc.mmmc.hmﬂo.@hmo.whwo.mcco.mnno.ﬁooﬁ.meH.mwwﬁ.nﬂmm.mme.
owoo.omoc.ﬁ@oo.@hoo.wmoc.hﬁﬂo.mwﬁo.owﬁc.Mch.whNo.wwmo.mmwo.owmo.ww@o.mwwo.mo-.wc«~.ﬁHwH.wmmN.mon.
mmoo.m@oo.muco,h@oo‘wﬁﬁc.mwﬁc‘hhﬁo.wﬁmo.wwmc‘ommc.howo.womo.mmwo.hhh@.Ohmo.nﬂmﬁ.wmmﬁ.mwmﬁ.Homm.wmmm.
onoc.wwoo.ﬂoﬁo.mmﬁo.mvﬁo.owﬁo.wﬁmc‘mwmc.ﬂmmc.Nmmo.whwo.wwmo.mﬂho.@hwo.wmoH.mvmﬁ.mmw~.mao&.amwm.hﬁwm.
maoc.cﬁﬂo.mmﬂo.hmﬁo.wwﬁo.wmmc.@omc.ﬂmmc.uwmo.wowo.mec‘wh©c.oﬂwo.@mmo.mﬂmﬁ.mwvﬂ.nmwﬁ.mmmm.omwm.wwmm.
mmﬁo.wwﬁc.omﬁo.ﬁoﬂc.ummo‘owmc.mmmc.mamc.@@wc.wmmo‘0®oo.hwho.mw@o.cmHH.owmﬁ.mwwﬁ.namﬂ.mwwm.mﬁom.mnhm.
moﬁo.@wﬁc.HNNo.hmwo.ocmo.ﬂmmc.oﬁwo.cwwc.mwmo.wao.wNNc.hﬂmc.mwcﬂ.wwmﬂ.wmmﬁ.mmwﬁ.mwﬁm.mmwm.wﬁmm.mwmm.
wﬂwo.mwmc.@wmc.ommc.ﬁwmo.@mwo.womo.wwmo.ﬁw@o.oauc.wH@cJouoﬁ.w«mﬂ.ﬁovﬂ.wﬁnﬁ.mmoﬂ.mmmm.wmwm.mmwm.Hwﬁw.
mwmo,wmmo.mnmc.mmwc‘wwvo‘mmwo.Hm@c.ﬂmhc.wmwc.hwmo.mwcﬂ‘ﬁmmﬁ.mwwﬂ.hwoﬂ.mmmﬁ.ommm.wam.nmom.wnwm.-¢w.
owmo.wmwo.wwwo.@wmo.wﬁwc.hm@o.@whc‘wwwo.wooﬁ.wmﬁﬁ.oamﬁ.@@wﬁ.onwﬂ.homﬂ.mwﬂm.mcmw.h@wm.w@mm,hmmm.owww.
@ﬁmc.hhmo.oﬂwo.mﬂho.N@hc.mwwo.mwmc.hmoﬁ‘wmmﬂ‘ﬂhmﬁ.hmmﬁ.mﬂhﬁ.owmﬁ.wwﬁm.mm«m.wowm.nmﬁm.mwmm.wmmw.mmmw.
Nohc‘chhc.mwwo‘mmmo.omoﬂ.mmﬁﬁ‘@mmﬁ‘m@mﬂ.momﬁ.H@wﬁ‘mmwﬂ.wmo&.moﬂm.dﬂmm.Nﬁwm.mwﬁm.@mmm.ocow.mmmw.wmmm.
wﬁwc.mawc.mu@o‘mwoﬂ‘owﬁﬁ.mwﬂﬁ.wwmﬁ.Hmmﬂ‘wwwa.waﬁ.mﬁom.@ﬁmﬂ.mwﬁm.wonm.mocm.ovmm.mmmm.mwﬁw.mmhw.hmmm.
mmmo.mmoﬁ.mmﬁﬂ.uﬁmﬁ‘mmmﬁ‘@mwﬁ.m©mﬁ.ﬂchﬂ,wmwa.mmoﬂ.HHNN.omvm.mmww.mﬂaN.ﬁﬂmm.nwmm.wmmm.wwmw.wﬁmw.mmmm.
uﬁﬁﬁ.mcmﬁ.wmmﬁ.w@mﬂ.momﬂ.om@ﬂ.ﬁwhﬁ.@@@a.«@cﬂ.wmmm‘omwm.mw@m.mhwm.mwﬁm.wmwm.mnum.mmﬁw.nmmw.aﬁﬁm.ﬁmhm.
oﬁmﬁ.mowﬁ.ﬂcmﬂ.oﬁwﬁ.@Nhﬁ.mmwﬁ.oaaﬁ.ovﬁﬂ.momm.wam‘hﬁ@m.mmwn.omﬁm.mmmm.wwmm.mHow.mmmw.nwww.mmmm.w«am.
ﬂwmﬁ.mmwﬁ.mwhﬁ.@mwﬂ.Hwaﬁ.mﬁﬂﬂ.mmmm.@@«N.wumm.wmum.@mam.mnﬁm.oﬁwm.mhcm.mwam.@www.nmww.nmom.wwmm.wmﬁw.
mﬂwﬁ.wmaﬁ.mmcm‘wmﬁﬂ.ﬂwmm.uﬁwm‘m@mm.Hﬂhm.cmwm.whcm.mhmm.@wwm.wmnm.¢w@m.ohmw.hwmw.wwmw.ommm.Hmwm.mwmc.
wmﬁm.hwmm‘mwmm‘@omm.hm@m.@unm.mN@N‘wwom.mmmm.@mwm‘@m@m.cmwm.Nwow.mmmw.mﬁww.ommw.mwmm.Hmmm.wmow.wmww.
wnmm.hw@m.@cwm.Hmam.w@cm.mcﬂm.mmmm.wamm.mw@m.m@wm.@mov.N@Nw.N@ww.hmuw.mocm.wmﬂm.HN@m.uwmm.mO¢m.mmmw.
wmcm.wamm.wmmm.wwvm.hwmm.wmhm.wuwm.omow.mmﬁw.ommw‘hmww.@muw.ﬁnmv.momm.mmwm.mmhm.mmow.ummm.mmuw.momh.
o@hm.mhwm.om@m.mﬁﬁw.mew.mmmw‘@ﬂmw,wc@w.o&ww.wwmw.mmﬁm.w«mm.Nwmm.«mum.mwmw.mmmw.momc.wowm.Hmﬁn,mmmh.
@www‘mmuw.N@ww.mhmv.m@om‘mﬁmm.mwmm.@uwm.wﬁ@m.m@mm.hﬁam.owo@.mmmc.wmww.wmww.owww.mwon.meh.wmwn.wwmh.
omam.mﬂow.Nﬂﬁw.wcﬂc.@@N@.w@mw.oomw.wcww.hﬁm@.mmww.«m@@‘ﬁwon.mﬂmn.hmmh.womn.thn.w«wh.mwow.mmmw.momw.
Nﬁmw.wmmw.mew.hﬁow.mm@w‘mmww.mmnw.muhw.mﬁww.@mww.momw.Nmmw.mooa.mmoa.Hﬂﬁm.ﬁnﬁm.mmwm.momm.mwmm.mnwm.

114

¥

€%

44 2 4 61 81 | oer g1 4! g1 48 1 o1 6 8 L 9 S ¥ €

289¢”
108¢"
926¢”
L80%°
G617°
0vey”
tdiisa
299%”
4dia
200g°
P61¢°
668"
619¢°
L88¢°
L1197
9529°
20¥9°
L889°
12L9°
9689°
€80L°
L8¢L
0TSL°
8GLL
1%08°
LLES
c188”
1866

82GS”
L29%°
084S’
98e¢”
9¥6S”
1909°
0819°
$0€9°
PEV9°
0L59°
g1Ly°
¥989°
GG0L°
L6TL°
a8EL°
I8%L°
€86L°
T69L°
GO8L°
926L°
GS08°
P618°
izl
g198"
7048
8268
L1%6°
¥3oL6°

0%9°0
0€9°0
029°0
019°0
009°0
06$°0
08570
0480
09$°0
09570
0%5°0
0€s°0
02s°0
01$°0
00$°0
G6%°0
06%°0
g8%'0
08%°0
GLv 0
0L%°0
9970
09%°0
g% 0
0S%°0
2
0¥7°0
g€V 0

% ‘WOpddIL] Jo $991F9(]
UOKIDIAIP PIDPUDIS 40 29UDLIDA PaY102ds D ypun uoyvndod (DuLIOU D WoLf UNDID u22q svy 2)dws D 10y} fi1qDQOLT
I H719VL

198



0000°|TT00" (8220°| 000°8

T000°(2%00°|96€0°| 004°8

0000"|¥000° |S¥00° |¥950°| 00%"3

0000°T000" | TT00"|2600°|2080°| 00T"%

0000 |T000° |9000°|€€00° |28T0" [6STT | 008" T

0000°|2000° |2000°|S200° {9600 [¥8€0"[2291"| 00S"T

1000°|€000° 6000 |1€00° [FTT0" |88%0"|S8LI"| 0SF T

0000°|T000° #000° (3100°|0700"|2810°|06%0°|0061°| 00%" T

1000°2000°|2000° (9T00° |TS00° [FITO" |€SG0° [¥202"| 09€' T

0000°|T000° (€000 |2000°|2200°[F900°|£610°(9290° 812" | 008" T

1600°{T000" %000 | TT00° |6300° (2800°|9830" |600°|10€2"| 095 T

0000°|T000° (2000° (9000 |ST00"|6€00°|SOTO" [¥820° 2080 |9%3°| 003" T

0000|1000 |Z000° [¥000°|6000°|2200" |€300° |€8T0° |2520° |1T60" |1292°| 0ST" 1

1000° | T000"|€000°|9000°|8T00° |TE00" (300" |0A410" |ZTH0" |#€0T"|0082"| 00T" T

0000°|T000"12000°|¥000° (0T00°|0800° |S500" |8600° (8120° |26%0° |SLIT" 3662 | 090" 1

0000°/0000° | T000"|2000° [7000" [8000° |ST00" |IS00" |$900° |2€T0" {0820 |1090 8€81°|902€"| 000°T

0000°T000" | T000"|Z000° [7000"|£000° |8100° |S300° 800" [2600° | 18T0" |6580° L3207 |S2ST°|98¥E"| 09670

0000710000"|T000"|T000"{3000° (700" |2000° |ST00° |£300° [TF00° [$200° [¥S10" 8520 €970° (€880 |gFL1°|9898"| 006 0

0000° (0000"|T000"| T000° (3000"|£000° |S000° [8000" [FT00° |£200° |6200° |2900° [$110" |26T0° 68€0° 8690 (FLOT"|S661°|5968"| 098 0

0000°|0000°|0000° | T000"|T000° 3000° {2000 000" [2000°| TT00" |£100° |2300°|€500° 8900 6010 |9L10°|9820°|89%0°|9220° |311 (2635 (892% | 0080

0000° 10000 |0000"| 000" |T000" [Z000° |2000° (€000" |S000" |2000° |TT00" |9T00" [$200° |9g00" €900°10800° (0Z10"|T8T0" |F230°|6TFO0"|£F90"|TTOT"|0T9T " (3592|6097 | 0S4 0
1000 |T000°/2000° (€000° |7000°|$000°|2000°|0T00° [¥T00"|0200° |2200° 800" |£500° 2200 9010°|6¥10"12120° | T0S0" TE70°T290° 3060 |22ET"|9861"|0908" (€66%° | 002 0
1000 13000°|£000° 7000° |9000°|2000° |6000°|£100° |2100" [¥Z00" |£€00° |S500° |2900° |2800" IT0°|6910° | 2830° ($€80" 2L¥0"|3L90° G960 |80¥1"|8L0C " [¥STE (920S"| 069°0
€000° £000°|8000"S000°|9000° (8000 (3T00° |9T00"|T300° [6300° |0%00° [¥800° [$200°| 100" [0%T0" €610°|2920° |1480° (810" (820" |8€0T " |88%T (9912 |192€" | 191G | 089°0
€000° 1€000° 000" (9000° {8000 (TT00"|ST00"|0200° |9300° |S£00° |SF00" |$900° |2800° |8TT0" 09T10°6160"6620° | TT70° [8950° (680" |90T1" |89ST"|1922" 298" |6%2S°| 049°0
€000° |5000°|9000"|8000°|0T00" [FI00"|8T00" [$300" [GE00" |S700"|£S00° |2200° |S0TO" | 2810 9810 |6¥20°|98€0° | 29%0"|€290°|9980" |S8TT " |6G9T"|2982"|29¥€" [688S | 099°0
9000° 9000°|8000°|0T00° (¥100"|8T00" [€200°|0200° |0F00° [£500°|6900° [1600°|1210" |09T0 |e1Z0" 830" |8480°|8090°(¥890° 8260 |0231° | 2641|072 (2988 |as¥e"| 089°0

199



0000°|0000
|0000°{1000" {1000
0000|0000 |T000° 1000 1000
0000°|0000°|T000° |1000° 1000 {1000 {1000
0000°|0000°|0000° |T000° {1000" {1000" {1000; [1000" [2000° [2000"
0000°|0000" |0000° (000" |T000" |T000" [T000" {1000" {1000 [2000° [2000" {000 |£000
0000°/0000°|0000° (000" {1000" {1000" {T000" [T000" |T000" [3000° [3000° |2000° |€000° [£000° (000" |000
0000" {T000" (T000" |T000" {T000°|T000°|T000° 3000 [2000" |2000" [£000" [2000" [7000" |S000" [S000"|9000° |8000
1000 {T000° 000" {T000" (2000° [2000° [2000° [£000° [£000° [7000° (%000 |2000" |9000" |2000° [8000" |0T00" 2100
T000" 2000° (200" {2000 |€000°[€000° [F000" (000" |000°|9000" | 2000" [8000° [0T00° | T100" [£100° |00 |8T00
£000° (£000" (000" [F000" |S000° 9000|9000 |£000° [6000° |0T00" {1T00" [£100" |ST00" [8T00" | 1300" [¥200° |£200
000" 19000°|£000°8000° |6000° |0T00°|TT00"|£100" [F100" [L100" |6T00° [2200° |9200° [8200° 2€00° |£800°|5700"
6000° 100" (2100°|€100°|ST00°|£100°|6100° [2300" (F300" (800" |1£00" |S£00" |0700°|SF00° |TS00° |£S00° [¥900
L100° 600" [2200° [7200°(£200°|0800° (800" |2€00" {T500" [9500" {1S00" |2600" [¥900" | 1200° |0800° |6800° 6600
€800° 9800" (6200° |8500" |8700" [€600° [8900° (7900|0200 |8200" (800" [¥600" [0T0" |STTO" |92T0" |0¥T0" [FSTO
1900° |£900" 200" (600" 980" |£600°[30TO"|TTT0" 05T0" |TET0" [510° |92T0" |0410" |8T0" (3080|0520 0730
¥800° (1600"|8600°|9010° |STT0"|S3T0°|SETO" 97T0" |8ST0" (110" |S8T0" |T020" |8120"|9820° |9620° |£220 |0080
910" (SBT0" [FET0" 710" |SETO"|L9T0°|6AT0° |£6T0" 800" [FB20" [T520" |6920" |6220° |T0E0" [72€0° |08€0" |£280
0910° | TLI0" 8810|9610 (6020 (¥230" 630" |9920" [7£20" [8620" [¥1€0°|9820° |0920° 5820 |8T¥0" [25F0" [FLFO
8220° 9820°|1920° (920" [¥820° |T080° 050" [T780" [2920° |9880" |0TH0" | 2850 |S9%0° (5670 |L250" 190" 8680
0T€0" |2380"|2¥E0" 9980|9880 |L0F0" [1EF0" 570" [1870"|60S0" {8820 |6950° |5090° |8890° |5290" [FT120" 2620
€EV0" (99¥0"|LLF0"|T0S0"|2350°|€950° |T8S0" [TT90" (290" (490" (6020" |9F20" [¥820° 280" |8980" |¥160° 3960
6090° 19890 [¥990° 690" |£220" |95£0" 680 7280 |1980" |6680" |0¥60° 2860|4201 " [FLOT" 8511 [F2TT" |625T
980" |9680° (0860|960 [200T" 6201”6201 " |0gTT"|89TT 8021 " [FEZT"|20ET " [PSET 2071 " [29¥ 1 |0gST  |08eT
8€31° |LLET | LIS |8GET"|TOFT |SPHI" 0671 |8EST |28GT 8891|1691 |GHLI" |208T " 1981 |2261" (9861 " 2502
BOBT" |9¥81" (2681|6861 8861|802 (6808 |G¥1 (961" (2625" (0182 (0482 |2€VE"|S672 | 1992|8295 (8698
897" |PELG’|¥8LC"|988T" |L88C " |0V6¢" (9663 |1S08" |80TE" |L91€ | L2ze" |682¢" |agee: |LTve " |Fa¥e [sgge” 8308
B6L¥' 685V |L8TH |98ET" (98EF " |LEVF" |88F Y |0VGH  [F6CH" [859F" [FOLY" |09LF" [STSF" 028" 086¥ |366¥ |0908
VOLL' |9BLL|808L’|TE8L(8GRL"|9L8L" |006L" 8B6L" |L¥6L" [3L6L |966L° | 1208|9708 [3208" |8608" [FET8" 1618
0s (14 8¥ Ly 9% 14 144 34 (44 34 oF 6e 8¢ L8 98 [ ¥e

*{1000°
lt000°
“11000"
l2000"

000"
-l9000"
*6000°
'|¥100°
"{1800°
"|c800°

“le2o0’
lrtror
"10210°
“l2920°
"19280°
"190%0°
"I8080°
"12890°
“|1080°
“g1o1°
“losar
17p9T°
“logte’
lieLe
"|c69g"
gizaly
I8L18°

€

0000°|0000°| 0S4°0
0000°T000"(1000°| 004°0
0000°|T000"|1000" {1000 | 069 0
0000°{T000"|T000°|T000" {T000"| 089 0
0000°{T000° 1000|1000 |T000°|3000° | 0490
1000°|T000°|T000"(1000" 2000 |€000°| 099°0
1000°|T000"|3000"(2000" |£000° [¥000°| 0S9°0
T000°|2000°|3000" |€000" (¥000° |S000°| 0%9°0
G000°{€000° |€000° | ¥000°|S000°|2000° | 089°0
€000° 000" (000" |9000°|2000° |6000° | 0290
¥000°{S000°|£000° 8000 |0T00°|€100" | 019°0
9000° 8000° (6000 |T100" [¥100"|4100°| 009 0
6000°TT00" |€100°|9100°|0200" {¥300°| 06S°0
€100°|9T00° |6100°|€300°|8200" [€€00°| 08S"0
0500 |€200"8200° €800 |6800°|9%00°| 045 0
6200 |¥€00° |0¥00"|£¥00°|SS00° [¥900° | 0950
€700°|6¥00°|2S00°|9900°|2200°|6800° | 0SS 0
€900°|2£00°|3800° |9600°|8010°|¥2T0° | 0¥ 0
€600°|9010° |6TT0" |SETO"|€STO" |FLIO | 08S°0
6€10°|9ST0" ($L10° [$610°|8120° |¥¥30°| 0TS 0
8020°|6250° [¥S20° | 180" |T1€0°|F¥€0°| 0TS 0
GI€0°|T¥E0"|€480" | 2070 |9%F0"|48%0 | 00S O
¥8€0°|L1¥0" €970 126¥0"|9€S0" (3850 | S6¥% 0
€L¥0°|TTS0"|T9S0° {960 %90 (9690° | 06% 0
¥890°|4290°|8L90° |€2L0° [9220" [7€80°| 987" 0
¥2L0°|3LLO" [7G80°|6480° |6€60° (00T | 087 0
0060° [¥S60°|3TOT" {8201 |6ETT 6081 | G470
€CTT"|88TL" |L¥GT |STET |L88T"|€9F1 | 0L¥ 0
60¥1"|SLVT  GPST (6191|2691  [6LL1 | G970
6LLT"|TS8T"|L261° (9002 |060C " |LL13°| 097 0
992" |8¥6C" |Ve¥e  |L09C |69 (9892 | SV 0
€262 |€00€" |9808" |CL1E"|T92E"|85€¢" | 0% 0
9¥8€" |¥C6€" |00 |680F " |SLTV |€98F | S 0
99CS" |¥C8S " |¥6€S°|997S " |6€9S" F19S"| OFF 0
¥628°|29%8" 1638|1288 |1988°|58€8" | S€¥'0
1€ 0e (14 82 L2 92 9

paprpouo)—]1 HIGV.L



TEST OF SAMPLE VARIANCE BASED ON TAIL ENDS OF DISTRIBUTION 201

For N infinite, (—2log,\) will be distributed as x* with one degree of freedom.
For finite values of N, however, we have not been able to evaluate the dis-
tribution of \, although the distribution of the Incomplete Beta Function serves
as a good approximation. Approximate distributions for several values of N
have been obtained. Py, the probability of obtaining a smaller value of \
than that observed, as obtained from these distributions agrees well with the
sum of the tail areas pertaining to »; and v, yielding the same value of \ (or 7).
The construction of tables is simplified by taking (1)

log A = N/2(loge — k) .ooooeennn.. (XIX)

That is,
z—logex =klog, 10 .................... XX)

where z = v/N. Equation (XX) is independent of N and may be solved once
and for all for z, given k.> In Figure 1 is plotted the graph of equation (XX).
For convenience, the branch of the curve giving the roots greater than unity
has been folded back with altered scale from the minimum value of k, logiee,
occurring at # = 1. Table I was then constructed by multiplying the two
values of z for a given k by (N /2)}, referring to the Tables of the Incomplete
Gamma Function (7) with p = (N — 2)/2, and adding the resulting two tail
areas. The values for the odd numbers above 12 were obtained by interpolating
between the even numbers. For N = 1, (z)! was used as a normal deviate.
The values in Table I should be correct to four decimals. Table I is entered
with the number of degrees of freedom, 7, on which z is based. In the case of the
simple hypothesis this is N.

The following may serve as an illustration: Blood urea nitrogen determinations
(ng./100 cc.) were made on a sample of 25 schizophrenic patients. The mean
was found to be 15.56, the variance, 10.486. Previous investigation of blood
urea nitrogen on a large sample of normal control subjects gave a mean of 16.03
and a variance of 20.268, which for the purpose of the example may be considered
as the population parameters. Then we may wish to test the hypothesis that
the variance of the sampled population, ¢* , is o5 = 20.268, knowing the mean
of the sampled population to be 16.03. Calculate

2 = 2
T = s_'*_'(x__;m)_ = .528
[}

Referring to Fig. 1, the value of k is about .505. Turning to Table I with
k = .505,n = 25, P is found to be .0457. We should thus be inclined to reject
the hypothesis. '

For N small, the area of the tail of the distribution near zero is considerably
larger than that at the upper end. As N increases the distribution of » becomes

3 If the solution were explicit the distribution of A could easily be deduced from that of z.
4 k obtained directly from (X X) is .507, corresponding to P = .0427.
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more and more symmetrical and the two areas approach equality. Even for
N = 50, however, they are rather unequal, so that merely doubling the area
pertaining to the observed » does not give a sufficiently accurate approximation.
For N > 50 an approximation correct within several units in the third decimal
place may be obtained by taking +/2N(1/z — 1) as a normal deviate. This
assumes that the standard deviation is normally distributed with variance o&/2N.

(3) Composite Hypothesis Concerning Population Variance

Here H, specifies enly the value of the parameter § = 6, , leaving undetermined
the value of a second parameter, ». Thus, H, consists of a subset, w, of simple
hypotheses, each of which specifies a different value for ». Any simple hypoth-
esis specifying different values of both parameters, 6 and v, is an alternative
to Ho. These alternatives form the set 2. The elementary probability law
determined by Hois p(E | Ho) = p(E | ), while that determined by an alterna-
tive hypothesis H; is p(E | H;) = p(E | 8»;). In testing composite hypotheses
the first requirement is to find regions ‘“‘similar’’ to W with regard to », i.e., such
that the chance of rejection of a true hypothesis, P{E e w | Hy}, equals « for all
the values of » specified by the simple hypotheses composing H,. A test based
on a similar region w, may be called independent of the probabilities 4 priori,
if its power with respect to all the alternatives of @ is greater than that of any
other similar region w, of the same size, «, (3). Let

o2 = 0log p(E |09)/0v)omay .o (XXI)

Then the equations ¢, = constant will describe hypersurfaces in N-dimensioned
space, on one of which the observed E must fall. Under certain assumptions
pertaining to the law of elementary probability it can be shown (2) that a
necessary and sufficient condition for w to be a similar region is that

P{E ew(es) | Ho} = oP{E e W(pg) | Ho}u........ (XXII)

for all values of ¢, , where w(gp,) and W(e,) are parts of the surface ¢, = constant
common to w and W respectively. A similar region is' then built up of these
parts w(ez) obtaining for the various values of ¢, . The Best Critical Region,
wy , for a particular simple alternative, H;, must then be composed of pieces,
wolge), maximizing P{E e wo(gz) | H:}. The problem is the same as for simple
hypotheses except that we shall be working in a space W(g;) of (N — 1) dimen-
sions. wo(ez) is defined by the inequality

p(E|H) > k(o) p(BHo). oo (XXIII)

where k(g2) is some constant depending on «. If wy(e:) is the same for all H;,
then wy is the Best Critical Region for testing H, with respect to €.

Neyman and Pearson showed (2) that in testing the composite hypothesis that
o = oo when the pépulation mean is unknown there are two Best Critical Regions
corresponding to the class of alternatives ¢ < g9 and ¢ > 09, defined respectively
by the inequalities »’ < v; and o’ > v;. If the whole set of alternatives, €, is to
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be considered some compromise region must be sought. Dealing with the case
where similar regions exist Neyman (5) defines a Critical Region as unbiassed
and of Type B if the first derivative of the power function, P(E e w | H;), with
respect to 6 vanishes at 8 = 6, , and if the second derivative at that point is a
maximum. Let

o= 2P EI®)) (XXIV)

a0 9=8,

Then it can be shown that the desired region will be defined by the inequalities
o1 < ki(ez) and ¢ > ko(ez2) where ki(e2) and k() are determined to satisfy

k2 (o2)
/ plore)dor = (1 — a)plez) oot XXV)
ki(e2)
and
k2 (p2) ©
‘A on e1p(p102) dor = (1 — a) B orplergd der ... ... (XXVI)

where p(g2) is the distribution function of ¢, , and p(epe) is the simultaneous
distribution of ¢; and ¢, .

Applying equations (XXV) and (XXVI) it follows that the appropriate
Critical Region is defined by the inequalities o' < v, and v > v; where

a=a + a = [ ' p®) dv' + / p@)dv ....... (XXVII)
0 v3

and

—1)/2 _—4o’ [V4
v/(N ) e 4o

=0......... ... (XXVIII)

i

where p(v’) is the distribution function of v'.
The use of the unbiassed Critical Region of Type B corresponds to adopting
as a criterion

e (XXIX)

Since v’ derived from a sample of size N is distributed as v derived from a sample
of size (N — 1), it follows that ' is equivalent to the r of equation (XIII) based
on a sample of size (N — 1). Therefore Table I may also be used for testing
the hypothesis that ¢ = ¢, whatever be the population mean, by entering with
the number of degrees of freedom, N — 1.
In the example previously used, compute
2

Ql(‘l.:
o

From Figure 1, k is approximately .51, corresponding to P = .0422.
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r’ is not the same as the maximum likelihood ratio N’ (6).

2
N = %};((E‘E—i:;:g - N—N/2vIN/2e—§(v'—-N) - N—N/2eN/2vl}rl. . (XXX)
As N becomes infinite the distribution of N’ is the same as that of the X of (XVI).
For N = 49, the probabilities corresponding to N’ agree with those using ' to
within a unit in the third decimal.

The N test is biassed as may be seen in Figure 2 where we have plotted the
power of the test based on the region w defined by »; = 3.187, v, = 22.912 for
which a = .0436 + .0064 = .0500, on the assumption that of = 1.0, for N = 10.
Although the criterion is biassed it is slightly more sensitive to alternatives

80
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o
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F1c. 2. Comparison of Critical Regions for v’. H, Specifies ¢§ = 1.0. N = 10.

specifying ¢ < o} than is the unbiassed Critical Region of Type B defined by
vy = 2.953, v; = 20.305, « = .0339 + .0161 = .0500. The criterion of con-
stant distribution, p(v’),

P (XXXI)

has also been considered. In this case v; = 1.903, vy = 17.391, a = .0071 +
.0429 = .0500. This criterion is biassed for some alternatives specifying
o’ < ot , but its power curve lies above that of the unbiassed region for @ > .

Apparently the bias may be shifted at will by changing the exponent of '.
This may be desirable if greater weight is to be given to one class of alternatives.
In fact decreasing the exponent of »' to 0 produces the Best Critical Region
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for the class of alternatives specifying ¢* > o¢, and defined by v, = 0, v, = 16.919
for « = .0500. No region can be found giving greater power. On the other
hand this region is insensitive to alternatives of the other class. Increasing the
exponent indefinitely produces the Best Critical Region for the other class
defined by vs = ® and v; = 3.325 for & = .0500.
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